
The LuaTEX-ja package

The LuaTEX-ja project team

September 10, 2011

Contents

I User’s manual 2

1 Introduction 2

1.1 Backgrounds . 2

1.2 Major Changes from pTEX . 2

1.3 Notations . 2

1.4 About the project . 3

2 Getting Started 4

2.1 Installation . 4

2.2 Cautions . 4

2.3 Using in plain TEX . 4

2.4 Using in LATEX . 5

2.5 Changing Fonts . 5

3 Changing Parameters 6

3.1 Editing the range of JAchar . 6

3.2 kanjiskip and xkanjiskip . 6

3.3 Insertion Setting of xkanjiskip . 7

3.4 Shifting Baseline . 7

3.5 ‘tombow’ . 7

II Reference 8

4 Font Metric and Japanese Font 8

4.1 \jfont primitive . 8

4.2 Structure of JFM file . 8

4.3 Math Font Family . 9

5 Parameters 9

5.1 \ltjsetparameter primitive . 9

5.2 List of Parameters . 10

6 Other Primitives 11

7 Control Sequences for LATEX2ε 11

III Implementations 11

8 Storing Parameters 11

8.1 Used Dimensions and Attributes . 11

8.2 Stack System of LuaTEX-ja . 12

This documentation is far from complete. It may have many gram-
matical (and contextual) errors.

1

Part I

User’s manual

1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents in LuaTEX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese documents
in TEX. pTEXis an engine extension of TEX: so it can produce high-quality Japanese documents without using
very complicated macros. But this point is a mixed blessing: pTEX is left behind from other extensions of
TEX, especially ε-TEX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8
encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and ε-pTEX (merging of
pTEXand ε-TEX extension), have developed to fill those gaps to some extent, but gaps are still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua ‘callbacks’, users can
customize the internal processing of LuaTEX. So there is no need to modify sources of engines to support
Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTEX

The LuaTEX-ja package is under much influence of pTEX engine. The initial target of development was to im-
plement features of pTEX. However, LuaTEX-ja is not a just porting of pTEX; unnatural specifications/behaviors
of pTEX were not adopted.

The followings are major changes from pTEX:

• A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional string
called ‘variation’.

• In pTEX, a linebreak after Japanese character is ignored (and doesn’t yield a space), since linebreaks (in
source files) are permitted almost everywhere in Japanese texts. However, LuaTEX-ja doesn’t have this
function completely, because of a specification of LuaTEX.

• The insertion process of glues/kerns between two Japanese characters and between a Japanese character
and other characters (we refer these glues/kerns as JAglue) is rewritten from scratch.

– As LuaTEX’s internal character handling is ‘node-based’ (e.g., of{}fice doesn’t prevent ligatures),
the insertion process of JAglue is now ‘node-based’.

– Furthermore, nodes between two characters which have no effects in linebreak (e.g., \special node)
are ignored in the insertion process.

– In the process, two Japanese fonts which differ in their ‘real’ fonts only are identified.

• At the present, vertical typesetting (tategaki), is not supported in LuaTEX-ja.

For detailed information, see Part III.

1.3 Notations

In this document, the following terms and notations are used:

• Characters are divided into two types:

– JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other punctuation
marks for Japanese.’

– ALchar: standing for all other characters like alphabets.

We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

2

• A word in a sans-serif font (like prebreakpenalty) represents an internal parameter for Japanese typesetting,
and it is used as a key in \ltjsetparameter command.

• The word ‘primitive’ is used not only for primitives in LuaTEX, but also for control sequences that defined
in the core module of LuaTEX-ja.

1.4 About the project

Project Wiki http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29

This project is hosted by SourceForge.JP.

Members

3

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29

2 Getting Started

2.1 Installation

To install the LuaTEX-ja package, you will need:

• LuaTEX (version 0.65.0-beta or later) and its supporting packages.
If you are using TEX Live 2011 or W32TEX, you don’t have to worry.

• The source archive of LuaTEX-ja, of course:)

The installation methods are as follows:

1. Download the source archive.

At the present, LuaTEX-ja has no official release, so you have to retrieve the archive from the repository.
You can retrieve the Git repository via

$ git clone git://git.sourceforge.jp/gitroot/luatex-ja/luatexja.git

or download the archive of HEAD in master branch from

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

2. Extract the archive. You will see src/ and several other sub-directories.

3. Copy all the contents of src/ into one of your TEXMF tree.

4. If mktexlsr is needed to update the filename database, make it so.

2.2 Cautions

• The encoding of your source file must be UTF-8.

• Not well-tested. In particular, the default setting of the range of JAchar in the present version does not
coexist with other packages which use Unicode fonts.

2.3 Using in plain TEX

To use LuaTEX-ja in plain TEX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

• The following 6 Japanese fonts are preloaded:

classification font name 13.5Q 9.5Q 7Q

mincho Ryumin-Light \tenmin \sevenmin \fivemin

gothic GothicBBB-Medium \tengt \sevengt \fivegt

– The ‘Q’ is an unit used in Japanese phototypesetting, and 1Q = 0.25mm. This length is stored in
a dimension \jQ.

– It is widely accepted that the font ‘Ryumin-Light’ and ‘GothicBBB-Medium’ aren’t embedded into
PDF files, and PDF reader substitute them by some external Japanese fonts (e.g., Kozuka Mincho
is used in Adobe Reader). We adopt this custom to the default setting.

– You may notice that size of above fonts is slightly smaller than their alphabetic counterparts: for
example, the size \texmin is 13.5Q ' 9.60444 pt. This is intensional: ...

• A character in Unicode is treated as JAchar if and only if its code-point has more than or equal to
U+0100.

• The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip) is set
to

0.25 \zw+1 pt
−1 pt =

27

32
mm+1 pt

−1 pt.

Here \zw is the counterpart of em for Japanese fonts, that is, the length of ‘full-width’ in current Japanese
font.

4

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

2.4 Using in LATEX

LATEX2ε Using in LATEX2ε is basically same. To set up the minimal environment for Japanese, you only have
to load luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pLATEX are plfonts.dtx and pldefs.ltx):

• JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTEX-ja in the future, JT3 will be used for vertical fonts.

• Two font families mc and gt are defined:

classification family \mdseries \bfseries scale

mincho mc Ryumin-Light GothicBBB-Medium 0.960444
gothic gt GothicBBB-Medium GothicBBB-Medium 0.960444

Note on fonts in bold series

• Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based doc-
uments, You are better to use class files other than article.cls, book.cls, ... At the present, BXjscls
(bxjsarticle.cls and bxjsbook.cls, by Takayuki Yato) are better alternative. It is not determined whether
LuaTEX-ja will develop and contain counterparts of major classes used in pTEX (including jsclasses by Haruhiko
Okumura).

2.5 Changing Fonts

Remark: Japanese Characters in Math Mode Since pTEX supports Japanese characters in math mode,
there are sources like the following:

1 $f_{高温}$~($f_{\text{high temperature}}$).

2 \[y=(x-1)^2+2\quad{}よって\quad y>0 \]

3 $5\in{}素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

f
高温

(fhigh temperature).

y = (x− 1)2 + 2 よって y > 0

5 ∈ 素 := { p ∈ N : p is a prime }.

We (the project members of LuaTEX-ja) think that using Japanese characters in math mode are allowed if
and only if these are used as identifiers. In this point of view,

• The lines 1 and 2 above are not correct, since ‘高温’ in above is used as a textual label, and ‘よって’ is
used as a conjunction.

• However, the line 3 is correct, since ‘素’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1 $f_{\text{高温}}$~%

2 ($f_{\text{high temperature}}$).

3 \[y=(x-1)^2+2\quad

4 \mathrel{\text{よって}}\quad y>0 \]

5 $5\in{}素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

f
高温

(fhigh temperature).

y = (x− 1)2 + 2 よって y > 0

5 ∈ 素 := { p ∈ N : p is a prime }.

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change
Japanese fonts in math mode in this chapter. For the method, please see Part II.

plain TEX To change Japanese fonts in plain TEX, you must use the primitive \jfont. So please see Part II.

5

NFSS2 For LATEX2ε, LuaTEX-ja simply adopted the font selection system from that of pLATEX2ε (in plfonts.dtx).

• Two control sequences \mcdefault and \gtdefault are used to specify the default font families formincho
and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

• Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change attributes
of Japanese fonts.

encoding family series shape

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape

Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape

both — – \fontseries \fontshape

auto select \fontencoding \fontfamily — —

• For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily.

fontspec To coexist with fontspec package, it is needed to load luatexja-fontspec package in the preamble.
This additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original commands
in fontspec:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily

alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures

alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

使用例

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that nearly all
Japanese glyphs have same widths.

3 Changing Parameters

There are many parameters in LuaTEX-ja. And due to the behavior of LuaTEX, most of them are not stored
as internal register of TEX, but as an original storage system in LuaTEX-ja. Hence, to assign or acquire those
parameters, you have to use commands \ltjsetparameter and \ltjgetparameter.

3.1 Editing the range of JAchar

As noted before, the default setting is:

A character in Unicode is treated as JAchar,
if and only if its code-point has more than or equal to U+0100.

↑ TODO: CHANGE THIS!

3.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

• Glues/kerns specified in JFM. If \inhibitglue is issued around a Japanese character, this glue will be
not inserted at the place.

• The default glue which inserted between two JAchars (kanjiskip).

• The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.

\ltjsetparameter{kanjiskip={0pt plus 0.4pt minus 0.4pt},

xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JFM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip’. To
use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

6

3.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted between every boundary between JAchars and ALchars. For
example, xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘(あ’ and ‘(あ’).

LuaTEX-ja can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode
for JAchars and alxspmode parameters ALchars respectively.

1 \ltjsetparameter{jaxspmode={‘あ,preonly},

alxspmode={‘\!,postonly}}

2 p あ q !う

p あq ! う

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but not
after’. the other possible values are postonly, allow and inhibit. For the compatibility with pTEX, natural
numbers between 0 and 3 are also allowed as the second argument1.

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to false, respectively.

3.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of
the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero length (the baseline
of alphabetic fonts is shifted below). However, for documents whose main language is not Japanese, it is
good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTEX-ja can
independently set the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and that
of Japanese fonts (yjabaselineshift parameter).

1 \vrule width 150pt height 0.4pt depth 0pt\hskip

-120pt

2 \ltjsetparameter{yjabaselineshift=0pt,

yalbaselineshift=0pt}abc あいう

3 \ltjsetparameter{yjabaselineshift=5pt,

yalbaselineshift=2pt}abc あいう

abc あいう abc
あいう

Here the horizontal line in above is the baseline of a line.

There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by
setting two parameters appropriately. The following is an example (beware the value is not well tuned):

1 xyz 漢字

2 {\scriptsize

3 \ltjsetparameter{yjabaselineshift=-1pt,

4 yalbaselineshift=-1pt}

5 XYZ ひらがな

6 }abc かな

xyz 漢字

XYZ ひらがな abc かな

3.5 ‘tombow’

‘tombow’ is a mark for indicating 4 corners and horizontal/vertical center of the paper. pLATEXand this
LuaTEX-ja support ‘tombow’ by their kernel. The following steps are needed to typeset tombow:

1. First, define the banner which will be printed at the upper left of the paper. This is done by assigning a
token list to \@bannertoken.

For example, the following sets banner as ‘filename (2012-01-01 17:01)’:

\makeatletter

\hour\time \divide\hour by 60 \@tempcnta\hour \multiply\@tempcnta 60\relax

\minute\time \advance\minute-\@tempcnta

\@bannertoken{%

\jobname\space(\number\year-\two@digits\month-\two@digits\day

\space\two@digits\hour:\two@digits\minute)}%

1But we don’t recommend this: since numbers 1 and 2 have opposite meanings in jaxspmode and alxspmode.

7

2. ...

Part II

Reference

4 Font Metric and Japanese Font

4.1 \jfont primitive

To load a font as a Japanese font, you must use the \jfont primitive instead of \font, while \jfont admits
the same syntax used in \font. LuaTEX-ja automatically loads luaotfload package, so TrueType/OpenType
fonts with features can be used for Japanese fonts:

1 \jfont\tradgt={file:ipaexg.ttf:script=latn;%

2 +trad;jfm=ujis} at 14pt

3 \tradgt{}当／体／医／区

當／體／醫／區

Note that the defined control sequence (\tradgt in the example above) using \jfont is not a font def token,
hence the input like \fontname\tradgt causes a error. We denote control sequences which are defined in \jfont

by 〈jfont cs〉.

Prefix Besides file: and name: prefixes, psft: can be used a prefix in \jfont (and \font) primitive. Using
this prefix, you can specify a font that has its name only and is not related to any real font.

Mainly, use of this psft: prefix is for using non-embedding ‘standard’ Japanese fonts (Ryumin-Light and
GothicBBB-Medium). 歴史

Features jfm, jfmvar

4.2 Structure of JFM file

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are devoted to
describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers in design-size
unit.

dir=〈direction〉 (required)

The direction of JFM. At the present, only ’yoko’ is supported.

zw=〈length〉 (required)

The amount of the length of the ‘full-width’.

zh=〈length〉 (required)

kanjiskip={〈natural〉, 〈stretch〉, 〈shrink〉} (optional)

This field specifies the ‘ideal’ amount of kanjiskip. As noted in Subsection 3.2, if the parameter kanjiskip
is \maxdimen, the value specified in this field is actually used (if this field is not specified in JFM, it is
regarded as 0 pt). Note that 〈stretch〉 and 〈shrink〉 fields are in design-size unit too.

xkanjiskip={〈natural〉, 〈stretch〉, 〈shrink〉} (optional)

Like the kanjiskip field, this field specifies the ‘ideal’ amount of xkanjiskip.

Besides from above fields, a JFM file have several sub-tables those indices are natural numbers. The table
indexed by i ∈ ω stores informations of ‘character class’ i. At least, the character class 0 is always present, so
each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by i)
has the following fields:

8

height

depth

width

left

down

Consider a node containing Japanese character whose value of the
align field is ’middle’.

• The black rectangle is a frame of the node. Its width, height
and depth are specified by JFM.

• Since the align field is ’middle’, the ‘real’ glyph is centered
horizontally (the green rectangle).

• Furthermore, the glyph is shifted according to values of fields
left and down. The ultimate position of the real glyph is
indicated by the red rectangle.

Figure 1: The position of the ‘real’ glyph

chars={〈character〉, ...} (required except character class 0)

This field is a list of characters which are in this character type i. This field is not required if i = 0, since
all JAchar which are not in any character class other than 0 (hence, the character class 0 contains most
of JAchars). In the list, a character can be specified by its code number, or by the character itself (as a
string of length 1).

In addition to those ‘real’ characters, the following ‘imaginary characters’ can be specified in the list:

width=〈length〉, height=〈length〉, depth=〈length〉, italic=〈length〉 (required)

Specify width of characters in character class i, height, depth and the amount of italic correction. All
characters in character class i are regarded that its width, height and depth are as values of these fields.
But there is one exception: if ’prop’ is specified in width field, width of a character becomes that of its
‘real’ glyph

left=〈length〉, down=〈length〉, align=〈align〉
These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are ’left’,
’middle’ and ’right’. If one of these 3 fields are omitted, left and down are treated as 0, and align

field is treated as ’left’. The effects of these 3 fields are indicated in Figure 1.

In most cases, left and down fields are 0, while it is not uncommon that the align field is ’middle’ or
’right’. For example, setting the align field to ’right’ is practically needed when the current character
class is the class for opening delimiters’.

kern={[j]=〈kern〉, ...}

glue={[j]={〈width〉, 〈stretch〉, 〈shrink〉}, ...}

4.3 Math Font Family

Japanese fonts alphabetic fonts
font family \jfam \fam

text size jatextfont ={〈jfam〉,〈jfont cs〉} \textfont〈fam〉=〈font cs〉
script size jascriptfont ={〈jfam〉,〈jfont cs〉} \scriptfont〈fam〉=〈font cs〉
scriptscript size jascriptscriptfont ={〈jfam〉,〈jfont cs〉} \scriptscriptfont〈fam〉=〈font cs〉

5 Parameters

5.1 \ltjsetparameter primitive

As noted before, \ltjsetparameter and \ltjgetparameter are primitives for accessing most parameters
of LuaTEX-ja. One of the main reason that LuaTEX-ja didn’t adopted the syntax similar to that of pTEX
(e.g., \prebreakpenalty‘）=10000) is the position of hpack_filter callback in the source of LuaTEX, see
Section 8.

\ltjsetparameter and \ltjglobalsetparameter are primitives for assigning parameters. These take one
argument which is a 〈key〉=〈value〉 list. Allowed keys are described in the next subsection. The difference between
\ltjsetparameter and \ltjglobalsetparameter is only the scope of assignment; \ltjsetparameter does a

9

local assignment and \ltjglobalsetparameter does a global one. They also obey the value of \globaldefs,
like other assignment.

\ltjgetparameter is the primitive for acquiring parameters. It always takes a parameter name as first
argument, and also takes the additional argument—a character code, for example—in some cases.

1 \ltjgetparameter{differentjfm},

2 \ltjgetparameter{autospacing},

3 \ltjgetparameter{prebreakpenalty}{‘）}.

average, 1, 10000.

The return value of \ltjgetparameter is always a string. This is outputted by tex.write(), so any character
other than space ‘ ’ (U+0020) has the category code 12 (other), while the space has 10 (space).

5.2 List of Parameters

In the following list of parameters,

• ‘∗’ : local

• ‘†’ always global

• No mark: the last of paragraph

kcatcode ={〈chr code〉,〈value〉}

prebreakpenalty ={〈chr code〉,〈penalty〉}

postbreakpenalty ={〈chr code〉,〈penalty〉}

jatextfont ={〈jfam〉,〈jfont cs〉}

jascriptfont ={〈jfam〉,〈jfont cs〉}

jascriptscriptfont ={〈jfam〉,〈jfont cs〉}

yjabaselineshift =〈dimen〉∗

yalbaselineshift =〈dimen〉∗

jaxspmode ={〈chr code〉,〈mode〉}

alxspmode ={〈chr code〉,〈mode〉}

autospacing =〈bool〉∗

autoxspacing =〈bool〉∗

kanjiskip =〈skip〉

xkanjiskip =〈skip〉

jcharwidowpenalty =〈penalty〉

differentjfm =〈mode〉†

jacharrange =〈ranges〉∗

10

6 Other Primitives

7 Control Sequences for LATEX2ε

Part III

Implementations

8 Storing Parameters

8.1 Used Dimensions and Attributes

Here the following is the list of dimension and attributes which are used in LuaTEX-ja.

\jQ (dimension)

\jH (dimension)

\ltj@zw (dimension)

\ltj@zh (dimension)

\jfam (attribute)

\ltj@curjfnt (attribute) The font index of current Japanese font.

\ltj@charclass (attribute) The character class of Japanese glyph node.

\ltj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point (2−16 pt).

\ltj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (2−16 pt).

\ltj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\ltj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\ltj@icflag (attribute) For distinguishing ‘kinds’ of the node. To this attribute, one of the following value is
assigned:

ITALIC (1)

PACKED (2)

KINSOKU (3)

FROM JFM (4)

LINE END (5)

KANJI SKIP (6)

XKANJI SKIP (7)

PROCESSED (8)

IC PROCESSED (9)

BOXBDD (15)

\ltj@kcati (attribute) Where i is a natural number which is less than 8. These 8 attributes store bit vectors
indicating ...

11

8.2 Stack System of LuaTEX-ja

Background LuaTEX-ja has its own stack system, and most parameters of LuaTEX-ja are stored in it. To
clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following source:

1 \ltjsetparameter{kanjiskip=0pt}ふがふが.%

2 \setbox0=\hbox{\ltjsetparameter{kanjiskip=5pt}

ほげほげ}

3 \box0.ぴよぴよ\par

ふがふが. ほ げ ほ げ. ぴよぴよ

As described in Part II, the only effective value of kanjiskip in an hbox is the latest value, so the value of
kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaTEX,
this ‘5 pt’ cannot be known from any callbacks. In the tex/packaging.w (which is a file in the source of
LuaTEX), there are the following codes:

void package(int c)

{

scaled h; /* height of box */

halfword p; /* first node in a box */

scaled d; /* max depth */

int grp;

grp = cur_group;

d = box_max_depth;

unsave ();

save_ptr -= 4;

if (cur_list.mode_field == -hmode) {

cur_box = filtered_hpack(cur_list.head_field ,

cur_list.tail_field , saved_value (1),

saved_level (1), grp , saved_level (2));

subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed): so
‘5 pt’ in the above source is orphaned at +unsave+, and hence it can’t be accessed from hpack_filter callback.

The method The code of stack system is based on that in a post of Dev-luatex mailing list2.

These are two TEX count registers for maintaining informations: \ltj@@stack for the stack level, and
\ltj@@group@level for the TEX’s group level when the last assignment was done. Parameters are stored in
one big table named charprop stack table, where charprop stack table[i] stores data of stack level i. If a
new stack level is created by \ltjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in ‘Background’ above, LuaTEX-ja uses another thing: When a new stack
level is about to be created, a whatsit node whose type, subtype and value are 44 (user defined), 30112, and
current group level respectively is appended to the current list (we refer this node by stack flag). This enables
us to know whether assignment is done just inside a hbox. Suppose that the stack level is s and the TEX’s
group level is t just after the hbox group, then:

• If there is no stack flag node in the list of hbox, then no assignment was occurred inside the hbox. Hence
values of parameters at the end of the hbox are stored in the stack level s.

• If there is a stack flag node whose value is t + 1, then an assignment was occurred just inside the hbox
group. Hence values of parameters at the end of the hbox are stored in the stack level s+ 1.

• If there are stack flag nodes but all of their values are more than t+ 1, then an assignment was occurred
in the box, but it is done is ‘more internal’ group. Hence values of parameters at the end of the hbox are
stored in the stack level s.

Note that to work this trick correctly, assignments to \ltj@@stack and \ltj@@group@level have to be
local always. ...

2[Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

12

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX
	Changing Fonts

	Changing Parameters
	Editing the range of JAchar
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline
	`tombow'

	II Reference
	Font Metric and Japanese Font
	92jfont primitive
	Structure of JFM file
	Math Font Family

	Parameters
	92 ltjsetparameter primitive
	List of Parameters

	Other Primitives
	Control Sequences for LaTeX2ε

	III Implementations
	Storing Parameters
	Used Dimensions and Attributes
	Stack System of LuaTeX-ja

