
The LuaTEX-ja package

The LuaTEX-ja project team

November 20, 2011

Contents

I User’s manual 3

1 Introduction 3
1.1 Backgrounds . 3
1.2 Major Changes from pTEX . 3
1.3 Notations . 4
1.4 About the project . 4

2 Getting Started 5
2.1 Installation . 5
2.2 Cautions . 5
2.3 Using in plain TEX . 5
2.4 Using in LATEX . 6
2.5 Changing Fonts . 6

3 Changing Parameters 8
3.1 Editing the range of JAchars . 8
3.2 kanjiskip and xkanjiskip . 9
3.3 Insertion Setting of xkanjiskip . 10
3.4 Shifting Baseline . 10
3.5 Cropmark . 10

II Reference 11

4 Font Metric and Japanese Font 11
4.1 \jfont primitive . 11
4.2 Structure of JFM file . 12
4.3 Math Font Family . 13
4.4 Callbacks . 14

5 Parameters 15
5.1 \ltjsetparameter primitive . 15
5.2 List of Parameters . 15

6 Other Primitives 16
6.1 Primitives for Compatibility . 16
6.2 \inhibitglue primitive . 17

7 Control Sequences for LATEX 2ε 17
7.1 Patch for NFSS2 . 17
7.2 Cropmark/‘tombow’ . 18

8 Extensions 18
8.1 luatexja-fontspec.sty . 18
8.2 luatexja-otf.sty . 18

III Implementations 18

1

9 Storing Parameters 18
9.1 Used Dimensions, Attributes and whatsit nodes . 18
9.2 Stack System of LuaTEX-ja . 20

10 Linebreak after Japanese Character 21
10.1 Reference: Behavior in pTEX . 21
10.2 Behavior in LuaTEX-ja . 21

11 Insertion of JFM glues, kanjiskip and xkanjiskip 22
11.1 Overview . 22
11.2 Definition of a ‘cluster’ . 22

This documentation is far from complete. It may have many grammatical (and contextual)
errors.

2

Part I

User’s manual
1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents when using
LuaTEX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese documents in
TEX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents without using
very complicated macros. But this point is a mixed blessing: pTEX is left behind from other extensions of
TEX, especially ε-TEX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8
encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and ε-pTEX (merging of
pTEX and ε-TEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua ‘callbacks’, users can
customize the internal processing of LuaTEX. So there is no need to modify sources of engines to support
Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTEX

The LuaTEX-ja package is under much influence of pTEX engine. The initial target of development was to im-
plement features of pTEX. However, LuaTEX-ja is not a just porting of pTEX; unnatural specifications/behaviors
of pTEX were not adopted.

The followings are major changes from pTEX:

• A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional string
called ‘variation’.

• In pTEX, a line break after Japanese character is ignored (and doesn’t yield a space), since line breaks (in
source files) are permitted almost everywhere in Japanese texts. However, LuaTEX-ja doesn’t have this
function completely, because of a specification of LuaTEX.

• The insertion process of glues/kerns between two Japanese characters and between a Japanese character
and other characters (we refer these glues/kerns as JAglue) is rewritten from scratch.

– As LuaTEX’s internal character handling is ‘node-based’ (e.g., of{}fice doesn’t prevent ligatures),
the insertion process of JAglue is now ‘node-based’.

– Furthermore, nodes between two characters which have no effects in line break (e.g., \special node)
and kerns from italic correction are ignored in the insertion process.

– Caution: due to above two points, many methods which did the dividing the process of the insertion
of JAglue in pTEX are not effective anymore. In concrete terms, the following two methods are not
effective anymore:

ちょ{}っと ちょ\/っと

If you want to do so, please put an empty hbox between it instead:

ちょ\hbox{}っと

– In the process, two Japanese fonts which only differ in their ‘real’ fonts are identified.

• At the present, vertical typesetting (tategaki), is not supported in LuaTEX-ja.

For detailed information, see Part III.

3

1.3 Notations

In this document, the following terms and notations are used:

• Characters are divided into two types:

– JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other punctuation
marks for Japanese.

– ALchar: standing for all other characters like alphabets.

We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

• A word in a sans-serif font (like prebreakpenalty) means an internal parameter for Japanese typesetting,
and it is used as a key in \ltjsetparameter command.

• A word in typewriter font with underline (like fontspec) means a package or a class of LATEX.

• The word ‘primitive’ is used not only for primitives in LuaTEX, but also for control sequences that defined
in the core module of LuaTEX-ja.

• In this document, natural numbers start from 0.

1.4 About the project

Project Wiki Project Wiki is under construction.

• http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29 (English)

• http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage (Japanese)

This project is hosted by SourceForge.JP.

Members

• Hironori KITAGAWA • Kazuki MAEDA • Takayuki YATO

• Yusuke KUROKI • Noriyuki ABE • Munehiro YAMAMOTO

• Tomoaki HONDA • Shuzaburo SAITO

4

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage

2 Getting Started

2.1 Installation

To install the LuaTEX-ja package, you will need:

• LuaTEX (version 0.65.0-beta or later) and its supporting packages.
If you are using TEX Live 2011 or current W32TEX, you don’t have to worry.

• The source archive of LuaTEX-ja, of course:)

The installation methods are as follows:

1. Download the source archive.
At the present, LuaTEX-ja has no official release, so you have to retrieve the archive from the repository.
You can retrieve the Git repository via

$ git clone git://git.sourceforge.jp/gitroot/luatex-ja/luatexja.git

or download the archive of HEAD in master branch from

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

Note that the forefront of development may not be in master branch.

2. Extract the archive. You will see src/ and several other sub-directories.

3. Copy all the contents of src/ into one of your TEXMF tree.

4. If mktexlsr is needed to update the file name database, make it so.

2.2 Cautions

• The encoding of your source file must be UTF-8. No other encodings, such as EUC-JP or Shift-JIS, are
not supported.

• May be conflict with other packages.
For example, the default setting of JAchar in the present version does not coexist with the unicode-math
package. Putting the following line in preamble makes that mathematical symbols will be typeset correctly,
but several Japanese characters will be treated as an ALchar as side-effect:

\ltjsetparameter{jacharrange={-3, -8}}

2.3 Using in plain TEX

To use LuaTEX-ja in plain TEX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

• The following 6 Japanese fonts are preloaded:

classification font name ‘10 pt’ ‘7 pt’ ‘5 pt’
mincho Ryumin-Light \tenmin \sevenmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

– The ‘Q（級）’ is a unit used in Japanese phototypesetting, and 1Q = 0.25mm. This length is stored
in a dimension \jQ.

– It is widely accepted that the font ‘Ryumin-Light’ and ‘GothicBBB-Medium’ aren’t embedded into
PDF files, and PDF reader substitute them by some external Japanese fonts (e.g., Kozuka Mincho
is used for Ryumin-Light in Adobe Reader). We adopt this custom to the default setting.

5

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

– A character in an alphabetic font is generally smaller than a Japanese font in the same size. So actual
size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts, namely scaled
by 0.962216.

• The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip) is set
to

(0.25 · 0.962216 · 10pt)+1 pt
−1 pt = 2.40554pt+1 pt

−1 pt.

2.4 Using in LATEX

LATEX 2ε Using in LATEX 2ε is basically same. To set up the minimal environment for Japanese, you only
have to load luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pLATEX are plfonts.dtx and pldefs.ltx):

• JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTEX-ja in the future, JT3 will be used for vertical fonts.

• Two font families mc and gt are defined:

classification family \mdseries \bfseries scale
mincho mc Ryumin-Light GothicBBB-Medium 0.962216
gothic gt GothicBBB-Medium GothicBBB-Medium 0.962216

Remark that the bold series in both family are same as the medium series of gothic family. This is a con-
vention in pLATEX. This is a trace that there were only 2 fonts (these are Ryumin-Light and GothicBBB-
Medium) in early years of DTP.

• Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based docu-
ments, you are better to use class files other than article.cls, book.cls, and so on. At the present, we have
the counterparts of jclasses (standard classes in pLATEX) and jsclasses (classes by Haruhiko Okumura),
namely, ltjclasses and ltjsclasses.

\CID, \UTF and macros in OTF package Under pLATEX, otf package (developed by Shuzaburo Saito) is
used for typesetting characters which is in Adobe-Japan1-6 CID but not in JIS X 0208. Since this package is
widely used, LuaTEX-ja supports some of functions in otf package. If you want to use these functions, load
luatexja-otf package.

1 森

2 \UTF{9DD7}外と内田百\UTF{9592}とが\UTF{9AD9}島屋

に行く。

3

4 \CID{7652}飾区の\CID{13706}野家，

5 葛飾区の吉野家

森鷗外と内田百閒とが髙島屋に行く。

�飾区の𠮷野家，葛飾区の吉野家

2.5 Changing Fonts

Remark: Japanese Characters in Math Mode Since pTEX supports Japanese characters in math mode,
there are sources like the following:

1 $f_{高温}$~($f_{\text{high temperature}}$).
2 \[y=(x-1)^2+2\quad{}よって\quad y>0 \]
3 $5\in{}素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

f
高温

 (fhigh temperature).

y = (x− 1)2 + 2 よって y > 0

5 ∈ 素 := { p ∈ N : p is a prime }.

We (the project members of LuaTEX-ja) think that using Japanese characters in math mode are allowed if and
only if these are used as identifiers. In this point of view,

6

• The lines 1 and 2 above are not correct, since ‘ 高温 ’ in above is used as a textual label, and ‘ よって ’ is
used as a conjunction.

• However, the line 3 is correct, since ‘ 素 ’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1 $f_{\text{高温}}$~%
2 ($f_{\text{high temperature}}$).
3 \[y=(x-1)^2+2\quad
4 \mathrel{\text{よって}}\quad y>0 \]
5 $5\in{}素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

f
高温

 (fhigh temperature).

y = (x− 1)2 + 2 よって y > 0

5 ∈ 素 := { p ∈ N : p is a prime }.

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change
Japanese fonts in math mode in this chapter. For the method, please see Part II.

plain TEX To change Japanese fonts in plain TEX, you must use the primitive \jfont. So please see Part II.

NFSS2 For LATEX 2ε, LuaTEX-ja simply adopted the font selection system from that of pLATEX 2ε (in plfonts.dtx).

• Two control sequences \mcdefault and \gtdefault are used to specify the default font families for mincho
and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

• Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change attributes
of Japanese fonts.

encoding family series shape selection
alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman
Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji

both — – \fontseries \fontshape —
auto select \fontencoding \fontfamily — — \usefont

\fontencoding{<encoding>} changes the encoding of alphabetic fonts or Japanese fonts depending on
the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to JY3 and
\fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also changes the family
of Japanese fonts, alphabetic fonts, or both. For detail, see Subsection 7.1.

• For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily. However,
in the present implementation, using \DeclareFontFamily doesn’t cause any problem.

fontspec To coexist with the fontspec package, it is needed to load luatexja-fontspec package in the
preamble. This additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original commands
in the fontspec package:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

1 \fontspec[Numbers=OldStyle]{TeX Gyre Termes}
2 \jfontspec{IPAexMincho}
3 JIS~X~0213:2004→辻

4

5 \addjfontfeatures{CJKShape=JIS1990}
6 JIS~X~0208:1990→辻

JIS X 0213:2004→辻
JIS X 0208:1990→􀄃

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that nearly all
Japanese glyphs have same widths. Also note that the kerning feature is set off by default in these 7 commands,
since this feature and JAglue will clash (see 4.1).

7

3 Changing Parameters

There are many parameters in LuaTEX-ja. And due to the behavior of LuaTEX, most of them are not stored
as internal register of TEX, but as an original storage system in LuaTEX-ja. Hence, to assign or acquire those
parameters, you have to use commands \ltjsetparameter and \ltjgetparameter.

3.1 Editing the range of JAchars

To edit the range of JAchars, you have to assign a non-zero natural number which is less than 217 to the
character range first. This can be done by using \ltjdefcharrange primitive. For example, the next line
assigns whole characters in Supplementary Multilingual Plane and the character ‘ 漢 ’ to the range number 100.
\ltjdefcharrange{100}{"10000-"1FFFF,`漢}

This assignment of numbers to ranges are always global, so you should not do this in the middle of a document.
If some character has been belonged to some non-zero numbered range, this will be overwritten by the new

setting. For example, whole SMP belong to the range 4 in the default setting of LuaTEX-ja, and if you specify
the above line, then SMP will belong to the range 100 and be removed from the range 4.

After assigning numbers to ranges, the jacharrange parameter can be used to customize which character
range will be treated as ranges of JAchars, as the following line (this is just the default setting of LuaTEX-ja):

\ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, +8}}

The argument to jacharrange parameter is a list of integer. Negative integer −n in the list means that ‘the
characters that belong to range n are treated as ALchar’, and positive integer +n means that ‘the characters
that belong to range n are treated as JAchar’.

Default Setting LuaTEX-ja predefines eight character ranges for convenience. They are determined from the
following data:

• Blocks in Unicode 6.0.

• The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japan1-6 and Unicode.

• The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these eight ranges. The alphabet ‘J’ or ‘A’ after the number shows whether characters in
the range is treated as JAchars or not by default. These settings are similar to the prefercjk settings defined
in PXbase bundle.

Range 8J Symbols in the intersection of the lower half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208
(a basic character set for Japanese). This character range consists of the following characters:

• § (U+00A7, Section Sign)
• ¨ (U+00A8, Diaeresis)
• ° (U+00B0, Degree sign)
• ± (U+00B1, Plus-minus sign)

• ´ (U+00B4, Spacing acute)
• ¶ (U+00B6, Paragraph sign)
• × (U+00D7, Multiplication sign)
• ÷ (U+00F7, Division Sign)

Range 1A Latin characters that some of them are included in Adobe-Japan1-6. This range consist of the
following Unicode ranges, except characters in the range 8 above:

• U+0080–U+00FF: Latin-1 Supplement
• U+0100–U+017F: Latin Extended-A
• U+0180–U+024F: Latin Extended-B
• U+0250–U+02AF: IPA Extensions

• U+02B0–U+02FF: Spacing Modifier Letters
• U+0300–U+036F: Combining Diacritical Marks
• U+1E00–U+1EFF: Latin Extended Additional

Range 2J Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

8

Table 1. Unicode blocks in predefined character range 3.

U+2000–U+206F General Punctuation U+2070–U+209F Superscripts and Subscripts
U+20A0–U+20CF Currency Symbols U+20D0–U+20FF Comb. Diacritical Marks for Symbols
U+2100–U+214F Letterlike Symbols U+2150–U+218F Number Forms
U+2190–U+21FF Arrows U+2200–U+22FF Mathematical Operators
U+2300–U+23FF Miscellaneous Technical U+2400–U+243F Control Pictures
U+2500–U+257F Box Drawing U+2580–U+259F Block Elements
U+25A0–U+25FF Geometric Shapes U+2600–U+26FF Miscellaneous Symbols
U+2700–U+27BF Dingbats U+2900–U+297F Supplemental Arrows-B
U+2980–U+29FF Misc. Mathematical Symbols-B U+2B00–U+2BFF Miscellaneous Symbols and Arrows
U+E000–U+F8FF Private Use Area

Table 2. Unicode blocks in predefined character range 6.

U+2460–U+24FF Enclosed Alphanumerics U+2E80–U+2EFF CJK Radicals Supplement
U+3000–U+303F CJK Symbols and Punctuation U+3040–U+309F Hiragana
U+30A0–U+30FF Katakana U+3190–U+319F Kanbun
U+31F0–U+31FF Katakana Phonetic Extensions U+3200–U+32FF Enclosed CJK Letters and Months
U+3300–U+33FF CJK Compatibility U+3400–U+4DBF CJK Unified Ideographs Extension A
U+4E00–U+9FFF CJK Unified Ideographs U+F900–U+FAFF CJK Compatibility Ideographs
U+FE10–U+FE1F Vertical Forms U+FE30–U+FE4F CJK Compatibility Forms
U+FE50–U+FE6F Small Form Variants U+20000–U+2FFFF (Supplementary Ideographic Plane)

Table 3. Unicode blocks in predefined character range 7.

U+1100–U+11FF Hangul Jamo U+2F00–U+2FDF Kangxi Radicals
U+2FF0–U+2FFF Ideographic Description Characters U+3100–U+312F Bopomofo
U+3130–U+318F Hangul Compatibility Jamo U+31A0–U+31BF Bopomofo Extended
U+31C0–U+31EF CJK Strokes U+A000–U+A48F Yi Syllables
U+A490–U+A4CF Yi Radicals U+A830–U+A83F Common Indic Number Forms
U+AC00–U+D7AF Hangul Syllables U+D7B0–U+D7FF Hangul Jamo Extended-B

• U+0370–U+03FF: Greek and Coptic
• U+0400–U+04FF: Cyrillic

• U+1F00–U+1FFF: Greek Extended

Range 3J Punctuations and Miscellaneous symbols. The block list is indicated in Table 1.

Range 4A Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which
are not in other predefined ranges. Hence, instead of showing the block list, we put the definition of this
range itself:
\ltjdefcharrange{4}{%

"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DC0-"4DFF, "A4D0-"A82F, "A840-"ABFF, "FB50-"FE0F,
"FE20-"FE2F, "FE70-"FEFF, "FB00-"FB4F, "10000-"1FFFF} % non-Japanese

Range 5A Surrogates and Supplementary Private Use Areas.

Range 6J Characters used in Japanese. The block list is indicated in Table 2.

Range 7J Characters used in CJK languages, but not included in Adobe-Japan1-6. The block list is indicated
in Table 3.

3.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

• Glues/kerns specified in JFM. If \inhibitglue is issued around a Japanese character, this glue will be
not inserted at the place.

9

• The default glue which inserted between two JAchars (kanjiskip).

• The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.
\ltjsetparameter{kanjiskip={0pt plus 0.4pt minus 0.4pt},

xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JFM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip’. To
use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

3.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For example,
xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘(あ ’ and ‘(あ ’).

LuaTEX-ja can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode
for JAchars and alxspmode parameters ALchars respectively.

1 \ltjsetparameter{jaxspmode={`あ,preonly},
alxspmode={`\!,postonly}}

2 p あ q !う

p あq ! う

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but not
after’. the other possible values are postonly, allow and inhibit. For the compatibility with pTEX, natural
numbers between 0 and 3 are also allowed as the second argument1.

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to true/false, respectively.

3.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of
the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero length (the baseline
of alphabetic fonts is shifted below). However, for documents whose main language is not Japanese, it is
good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTEX-ja can
independently set the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and that
of Japanese fonts (yjabaselineshift parameter).

1 \vrule width 150pt height 0.4pt depth 0pt\hskip
-120pt

2 \ltjsetparameter{yjabaselineshift=0pt,
yalbaselineshift=0pt}abc あいう

3 \ltjsetparameter{yjabaselineshift=5pt,
yalbaselineshift=2pt}abc あいう

abc あいう abc
あいう

Here the horizontal line in above is the baseline of a line.
There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by

setting two parameters appropriately. The following is an example (beware the value is not well tuned):

1 xyz 漢字

2 {\scriptsize
3 \ltjsetparameter{yjabaselineshift=-1pt,
4 yalbaselineshift=-1pt}
5 XYZ ひらがな

6 }abc かな

xyz 漢字

XYZ ひらがな abc かな

3.5 Cropmark

Cropmark is a mark for indicating 4 corners and horizontal/vertical center of the paper. In Japanese, we call
cropmark as tombo(w). pLATEX and this LuaTEX-ja support ‘tombow’ by their kernel. The following steps are
needed to typeset cropmark:

1But we don’t recommend this: since numbers 1 and 2 have opposite meanings in jaxspmode and alxspmode.

10

1. First, define the banner which will be printed at the upper left of the paper. This is done by assigning a
token list to \@bannertoken.
For example, the following sets banner as ‘filename (YYYY-MM-DD hh:mm)’:

\makeatletter

\hour\time \divide\hour by 60 \@tempcnta\hour \multiply\@tempcnta 60\relax
\minute\time \advance\minute-\@tempcnta
\@bannertoken{%

\jobname\space(\number\year-\two@digits\month-\two@digits\day
\space\two@digits\hour:\two@digits\minute)}%

2. ...

Part II

Reference
4 Font Metric and Japanese Font

4.1 \jfont primitive

To load a font as a Japanese font, you must use the \jfont primitive instead of \font, while \jfont admits
the same syntax used in \font. LuaTEX-ja automatically loads luaotfload package, so TrueType/OpenType
fonts with features can be used for Japanese fonts:

1 \jfont\tradgt={file:ipaexg.ttf:script=latn;%
2 +trad;-kern;jfm=ujis} at 14pt
3 \tradgt{}当／体／医／区

當／體／醫／區

Note that the defined control sequence (\tradgt in the example above) using \jfont is not a font_def
token, hence the input like \fontname\tradgt causes a error. We denote control sequences which are defined
in \jfont by 〈jfont_cs〉.

Prefix psft Besides file: and name: prefixes, psft: can be used a prefix in \jfont (and \font) primitive.
Using this prefix, you can specify a ‘name-only’ Japanese font which will be not embedded to PDF. Typical use
of this prefix is to specify the ‘standard’ Japanese fonts, namely, ‘Ryumin-Light’ and ‘GothicBBB-Medium’. For
kerning or other information, that of Kozuka Mincho Pr6N Regular (this is a font by Adobe Inc., and included
in Japanese Font Packs for Adore Reader) will be used.

JFM As noted in Introduction, a JFM has measurements of characters and glues/kerns that are automatically
inserted for Japanese typesetting. The structure of JFM will be described in the next subsection. At the calling
of \jfont primitive, you must specify which JFM will be used for this font by the following keys:

jfm=〈name〉 Specify the name of JFM. A file named jfm-〈name〉.lua will be searched and/or loaded.
The followings are JFMs shipped with LuaTEX-ja:

jfm-ujis.lua A standard JFM in LuaTEX-ja. This JFM is based on upnmlminr-h.tfm, a metric for
UTF/OTF package that is used in upTEX. When you use the luatexja-otf package, please use
this JFM.

jfm-jis.lua A counterpart for jis.tfm, ‘JIS font metric’ which is widely used in pTEX. A major
difference of jfm-ujis.lua and this jfm-jis.lua is that most characters under jfm-ujis.lua are
square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric shipped with
pTEX. There are notable difference between this JFM and other 2 JFMs, as shown in Table 4.

jfmvar=〈string〉 Sometimes there is a need that

11

Table 4. Differences between JFMs shipped with LuaTEX-ja

jfm-ujis.lua jfm-jis.lua jfm-min.lua

Example 1 ◆◆◆◆◆◆◆

ある日モモちゃ

んがお使いで迷

子になって泣き

ました．

◆◆◆◆◆◆◆

ある日モモちゃ

んがお使いで迷

子になって泣き

ました．

◆◆◆◆◆◆◆

ある日モモちゃ

んがお使いで迷

子になって泣き

ました．

Example 2 ちょっと！ 何 ちょっと！何 ちょっと！何

Bounding Box 漢 漢 漢

Note: kern feature Some fonts have information for inter-glyph spacing. However, this information is not
well-compatible with LuaTEX-ja. More concretely, this kerning space from this information are inserted before
the insertion process of JAglue, and this causes incorrect spacing between two characters when both a glue/kern
from the data in the font and it from JFM are present.

• You should specify -kern in \jfont primitive, when you want to use other font features, such as
script=... .

• If you want to use Japanese fonts in proportional width, and use information from this font, use jfm-prop.lua
for its JFM, and ...
TODO: kanjiskip?

4.2 Structure of JFM file

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are devoted to
describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers in design-size
unit.

dir=〈direction〉 (required)
The direction of JFM. At the present, only 'yoko' is supported.

zw=〈length〉 (required)
The amount of the length of the ‘full-width’.

zh=〈length〉 (required)

kanjiskip={〈natural〉, 〈stretch〉, 〈shrink〉} (optional)
This field specifies the ‘ideal’ amount of kanjiskip. As noted in Subsection 3.2, if the parameter kanjiskip
is \maxdimen, the value specified in this field is actually used (if this field is not specified in JFM, it is
regarded as 0 pt). Note that 〈stretch〉 and 〈shrink〉 fields are in design-size unit too.

xkanjiskip={〈natural〉, 〈stretch〉, 〈shrink〉} (optional)
Like the kanjiskip field, this field specifies the ‘ideal’ amount of xkanjiskip.

Besides from above fields, a JFM file have several sub-tables those indices are natural numbers. The table
indexed by i ∈ ω stores information of ‘character class’ i. At least, the character class 0 is always present, so
each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by i)
has the following fields:

12

height

depth

width

left
down

Consider a node containing Japanese character whose value of the
align field is 'middle'.

• The black rectangle is a frame of the node. Its width, height
and depth are specified by JFM.

• Since the align field is 'middle', the ‘real’ glyph is centered
horizontally (the green rectangle).

• Furthermore, the glyph is shifted according to values of fields
left and down. The ultimate position of the real glyph is
indicated by the red rectangle.

Figure 1. The position of the ‘real’ glyph.

chars={〈character〉, ...} (required except character class 0)
This field is a list of characters which are in this character type i. This field is not required if i = 0,
since all JAchar which are not in any character class other than 0 (hence, the character class 0 contains
most of JAchars). In the list, a character can be specified by its code number, or by the character itself
(as a string of length 1). Moreover, there are ‘imaginary characters’ which specified in the list. We will
describe these later.

width=〈length〉, height=〈length〉, depth=〈length〉, italic=〈length〉 (required)
Specify width of characters in character class i, height, depth and the amount of italic correction. All
characters in character class i are regarded that its width, height and depth are as values of these fields.
But there is one exception: if 'prop' is specified in width field, width of a character becomes that of its
‘real’ glyph

left=〈length〉, down=〈length〉, align=〈align〉
These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are 'left',
'middle' and 'right'. If one of these 3 fields are omitted, left and down are treated as 0, and align
field is treated as 'left'. The effects of these 3 fields are indicated in Figure 1.
In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle' or
'right'. For example, setting the align field to 'right' is practically needed when the current character
class is the class for opening delimiters’.

kern={[j]=〈kern〉, ...}

glue={[j]={〈width〉, 〈stretch〉, 〈shrink〉}, ...}

'lineend' An ending of a line.

'diffmet' Used at a boundary between two JAchars whose JFM or size is different.

'boxbdd' The beginning/ending of a horizontal box, and the beginning of a noindented paragraph.

'parbdd' The beginning of an (indented) paragraph.

'jcharbdd' A boundary between JAchar and anything else (such as ALchar, kern, glue, ...).

−1 The left/right boundary of an inline math formula.

4.3 Math Font Family

TEX handles fonts in math formulas by 16 font families2, and each family has three fonts: \textfont, \scriptfont
and \scriptscriptfont.

LuaTEX-ja’s handling of Japanese fonts in math formulas is similar; Table 5 shows counterparts to TEX’s
primitives for math font families. There is no relation between the value of \fam and that of \jfam; with
appropriate settings, you can set both \fam and \jfam to the same value.

2Omega, Aleph, LuaTEX and ε-(u)pTEXcan handles 256 families, but an external package is needed to support this in plain
TEX and LATEX.

13

Table 5. Primitives for Japanese math fonts.

Japanese fonts alphabetic fonts
font family \jfam ∈ [0, 256) \fam
text size jatextfont ={〈jfam〉,〈jfont_cs〉} \textfont〈fam〉=〈font_cs〉
script size jascriptfont ={〈jfam〉,〈jfont_cs〉} \scriptfont〈fam〉=〈font_cs〉
scriptscript size jascriptscriptfont ={〈jfam〉,〈jfont_cs〉} \scriptscriptfont〈fam〉=〈font_cs〉

4.4 Callbacks

Like LuaTEX itself, LuaTEX-ja also has callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks

luatexja.load_jfm callback With this callback you can overwrite JFMs. This callback is called when a new
JFM is loaded.

function (<table> jfm_info, <string> jfm_name)
return <table> new_jfm_info

end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument has
chars field which contains character codes whose character class is not 0.
An example of this callback is the ltjarticle class, with forcefully assigning character class 0 to 'parbdd'
in the JFM jfm-min.lua. This callback doesn’t replace any code of LuaTEX-ja.

luatexja.define_font callback This callback and the next callback form a pair, and you can assign letters
which don’t have fixed code points in Unicode to non-zero character classes. This luatexja.define_font
callback is called just when new Japanese font is loaded.

function (<table> jfont_info, <number> font_number)
return <table> new_jfont_info

end

You may assume that jfont_info has the following fields:

jfm The index number of JFM.
size Font size in a scaled point (= 2−16 pt).
var The value specified in jfmvar=... at a call of \jfont.

The returned table new_jfont_info also should include these three fields. The font_number is a font
number.
A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx" form
for Adobe-Japan1 CID characters in a JFM. This callback doesn’t replace any code of LuaTEX-ja.

luatexja.find_char_class callback This callback is called just when LuaTEX-ja inready to determine which
character class a character chr_code belongs. A function used in this callback should be in the following
form:

1 function (<number> char_class, <table> jfont_info, <number> chr_code)
2 if char_class~=0 then return char_class
3 else
4
5 return (<number> new_char_class or 0)
6 end
7 end

The argument char_class is the result of LuaTEX-ja’s default routine or previous function calls in this
callback, hence this argument may not be 0. Moreover, the returned new_char_class should be as same
as char_class when char_class is not 0, otherwise you will overwrite the LuaTEX-ja’s default routine.
This callback doesn’t replace any code of LuaTEX-ja.

14

luatexja.set_width callback This callback is called when LuaTEX-ja is trying to encapsule a JAchar glyph_node,
to adjust its dimension and position.

1 function (<table> shift_info, <table> jfont_info, <number> char_class)
2 return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are the
amount of shifting down/left the character in a scaled-point.

5 Parameters

5.1 \ltjsetparameter primitive

As noted before, \ltjsetparameter and \ltjgetparameter are primitives for accessing most parameters
of LuaTEX-ja. One of the main reason that LuaTEX-ja didn’t adopted the syntax similar to that of pTEX
(e.g., \prebreakpenalty`）=10000) is the position of hpack_filter callback in the source of LuaTEX, see
Section 9.

\ltjsetparameter and \ltjglobalsetparameter are primitives for assigning parameters. These take one
argument which is a 〈key〉=〈value〉 list. Allowed keys are described in the next subsection. The difference between
\ltjsetparameter and \ltjglobalsetparameter is only the scope of assignment; \ltjsetparameter does a
local assignment and \ltjglobalsetparameter does a global one. They also obey the value of \globaldefs,
like other assignment.

\ltjgetparameter is the primitive for acquiring parameters. It always takes a parameter name as first
argument, and also takes the additional argument—a character code, for example—in some cases.

1 \ltjgetparameter{differentjfm},
2 \ltjgetparameter{autospacing},
3 \ltjgetparameter{prebreakpenalty}{`）}.

average, 1, 10000.

The return value of \ltjgetparameter is always a string. This is outputted by tex.write(), so any character
other than space ‘ ’ (U+0020) has the category code 12 (other), while the space has 10 (space).

5.2 List of Parameters

The following is the list of parameters which can be specified by the \ltjsetparameter command. [\cs]
indicates the counterpart in pTEX, and symbols beside each parameter has the following meaning:

• No mark: values at the end of the paragraph or the hbox are adopted in the whole paragraph/hbox.

• ‘∗’ : local parameters, which can change everywhere inside a paragraph/hbox.

• ‘†’: assignments are always global.

jcharwidowpenalty =〈penalty〉 [\jcharwidowpenalty]
Penalty value for suppressing orphans. This penalty is inserted just after the last JAchar which is not
regarded as a (Japanese) punctuation mark.

kcatcode ={〈chr_code〉,〈natural number〉}
An additional attributes having each character whose character code is 〈chr_code〉. At the present version,
the lowermost bit of 〈natural number〉 indicates whether the character is considered as a punctuation mark
(see the description of jcharwidowpenalty above).

prebreakpenalty ={〈chr_code〉,〈penalty〉} [\prebreakpenalty]

postbreakpenalty ={〈chr_code〉,〈penalty〉} [\postbreakpenalty]

jatextfont ={〈jfam〉,〈jfont_cs〉} [\textfont in TEX]

jascriptfont ={〈jfam〉,〈jfont_cs〉} [\scriptfont in TEX]

jascriptscriptfont ={〈jfam〉,〈jfont_cs〉} [\scriptscriptfont in TEX]

15

yjabaselineshift =〈dimen〉∗

yalbaselineshift =〈dimen〉∗ [\ybaselineshift]

jaxspmode ={〈chr_code〉,〈mode〉} [\inhibitxspcode]
Setting whether inserting xkanjiskip is allowed before/after a JAchar whose character code is 〈chr_code〉.
The followings are allowed for 〈mode〉:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
2, preonly Insertion of xkanjiskip is allowed before the character, but not after.
1, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is the default

value.

alxspmode ={〈chr_code〉,〈mode〉} [\xspcode]
Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is 〈chr_code〉.
The followings are allowed for 〈mode〉:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This is the

default value.

Note that parameters jaxspmode and alxspmode use a common table.

autospacing =〈bool〉∗ [\autospacing]

autoxspacing =〈bool〉∗ [\autoxspacing]

kanjiskip =〈skip〉 [\kanjiskip]

xkanjiskip =〈skip〉 [\xkanjiskip]

differentjfm =〈mode〉† Specify how glues/kerns between two JAchars whose JFM (or size) are different. The
allowed arguments are the followings:

average

both

large

small

jacharrange =〈ranges〉∗

kansujichar ={〈digit〉, 〈chr_code〉} [\kansujichar]

6 Other Primitives

6.1 Primitives for Compatibility

The following primitives are implemented for compatibility with pTEX:

\kuten

\jis

\euc

\sjis

\ucs

\kansuji
16

6.2 \inhibitglue primitive

The primitive \inhibitglue suppresses the insertion of JAglue. The following is an example, using a special
JFM that there will be a glue between the beginning of a box and ‘ あ ’, and also between ‘ あ ’ and ‘ ウ ’.

1 \jfont\g=psft:Ryumin-Light:jfm=test \g
2 あウあ\inhibitglue{}ウ\inhibitglue\par
3 あ\par\inhibitglue{}あ

4 \par\inhibitglue\hrule{}あoff\inhibitglue ice

あ ウあウ

あ

あ

あ office

With the help of this example, we remark the specification of \inhibitglue:

• The call of \inhibitglue in the (internal) vertical mode is effective at the beginning of the next paragraph.
This is realized by hacking \everypar.

• The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not get
over boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as shown in line 4
of above example.

• The call of \inhibitglue in math mode is just ignored.

7 Control Sequences for LATEX 2ε

7.1 Patch for NFSS2

As described in Subsection 2.4, LuaTEX-ja simply adopted plfonts.dtx in pLATEX 2ε for the Japanese patch
for NFSS2. For an convenience, we will describe commands which are not described in Subsection 2.5.

\DeclareYokoKanjiEncoding{〈encoding〉}{〈text-settings〉}{〈math-settings〉}
In NFSS2 under LuaTEX-ja, distinction between alphabetic font families and Japanese font families is only
made by its encoding. For example, encodings OT1 and T1 are for alphabetic font families, and a Japanese
font family cannot have these encodings. This command defines a new encoding scheme for Japanese font
family (in horizontal direction).

\DeclareKanjiEncodingDefaults{〈text-settings〉}{〈math-settings〉}

\DeclareKanjiSubstitution{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}

\DeclareErrorKanjiFont{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}
The above 3 commands are just the counterparts for DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{〈unified-cmd〉}{〈al-cmd〉}{〈ja-cmd〉}
和文・欧文の数式用フォントファミリを一度に変更する命令を作成する．具体的には，欧文数式用フォント

ファミリ変更の命令 〈al-cmd〉 と，和文数式用フォントファミリ変更の命令 〈ja-cmd〉 の 2 つを同時に行う命令

として 〈unified-cmd〉 を（再）定義する．実際の使用では 〈unified-cmd〉 と 〈al-cmd〉 に同じものを指定する，

すなわち，〈al-cmd〉 に和文側も変更させるようにするのが一般的と思われる．

本コマンドの使用については，pLATEX 配布中の plfonts.dtx に詳しく注意点が述べられているので，そち

らを参照されたい．

\DeclareRelationFont{〈ja-encoding〉}{〈ja-family〉}{〈ja-series〉}{〈ja-shape〉}
{〈al-encoding〉}{〈al-family〉}{〈al-series〉}{〈al-shape〉}
This command sets the ‘accompanied’ alphabetic font family (given by the latter 4 arguments) with respect
to a Japanese font family given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local assign-
ment, where \DeclareRelationFont does a global assignment.

\userelfont
Change current alphabetic font encoding/family/… to the ‘accompanied’ alphabetic font family with respect
to current Japanese font family, which was set by \DeclareRelationFont or SetRelationFont. Like
\fontfamily, \selectfont is required to take an effect.

\adjustbaseline
17

...
\fontfamily{〈family〉}

As in LATEX 2ε, this command changes current font family (alphabetic, Japanese, or both) to 〈family〉.
Which family will be changed is determined as follows:

• Let current encoding scheme for Japanese fonts be 〈ja-enc〉. Current Japanese font family will be changed
to 〈family〉, if one of the following two conditions is met:

– The family 〈fam〉 under the encoding 〈ja-enc〉 is already defined by \DeclareKanijFamily.
– A font definition named 〈enc〉〈ja-enc〉.fd (the file name is all lowercase) exists.

• Let current encoding scheme for Japanese fonts be 〈al-enc〉. For alphabetic font family, the criterion as
above is used.

• There is a case which none of the above applies, that is, the font family named 〈family〉 doesn’t seem to
be defined neither under the encoding 〈ja-enc〉, nor under 〈al-enc〉.
In this case, the default family for font substitution is used for alphabetic and Japanese fonts. Note that
current encoding will not be set to 〈family〉, unlike the original implementation in LATEX.

As closing this subsection, we shall introduce an example of SetRelationFont and \userelfont:

1 \gtfamily{}あいうabc
2 \SetRelationFont{JY3}{gt}{m}{n}{OT1}{pag}{m}{n}
3 \userelfont\selectfont{}あいうabc

あいう abc あいう abc

7.2 Cropmark/‘tombow’

8 Extensions

8.1 luatexja-fontspec.sty

8.2 luatexja-otf.sty

This optional package supports typesetting characters in Adobe-Japan1. luatexja-otf.sty offers the following
2 low-level commands:

\CID{〈number〉} Typeset a character whose CID number is 〈number〉.

\UTF{〈hex_number〉} Typeset a character whose character code is 〈hex_number〉 (in hexadecimal). This com-
mand is similar to \char"〈hex_number〉, but please remind remarks below.

Remarks Characters by \CID and \UTF commands are different from ordinary characters in the following
points:

• Always treated as JAchars.

• Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the luaotfload
package is not performed to these characters.

Additionally Syntax of JFM luatexja-otf.sty extends the syntax of JFM; the entries of chars table
in JFM now allows a string in the form 'AJ1-xxx', which stands for the character whose CID number in
Adobe-Japan1 is xxx.

Part III

Implementations
9 Storing Parameters

9.1 Used Dimensions, Attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTEX-ja.
18

\jQ (dimension) As explained in Subsection 2.3, \jQ is equal to 1Q = 0.25mm, where ‘Q’ (also called ‘ 級 ’)
is a unit used in Japanese phototypesetting. So one should not change the value of this dimension.

\jH (dimension) There is also a unit called ‘ 歯 ’ which equals to 0.25mm and used in Japanese phototypesetting.
This \jH is a synonym of \jQ.

\ltj@zw (dimension) A temporal register for the ‘full-width’ of current Japanese font.

\ltj@zh (dimension) A temporal register for the ‘full-height’ (usually the sum of height of imaginary body and
its depth) of current Japanese font.

\jfam (attribute) Current number of Japanese font family for math formulas.

\ltj@curjfnt (attribute) The font index of current Japanese font.

\ltj@charclass (attribute) The character class of Japanese glyph_node.

\ltj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point (2−16 pt).

\ltj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (2−16 pt).

\ltj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\ltj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\ltj@icflag (attribute) An attribute for distinguishing ‘kinds’ of a node. One of the following value is assigned
to this attribute:

italic (1) Glues from an italic correction (\/). This distinction of origins of glues (from explicit \kern,
or from \/) is needed in the insertion process of xkanjiskip.

packed (2)
kinsoku (3) Penalties inserted for the word-wrapping process of Japanese characters (kinsoku).
from_jfm (4) Glues/kerns from JFM.
line_end (5) Kerns for ...
kanji_skip (6) Glues for kanjiskip.
xkanji_skip (7) Glues for xkanjiskip.
processed (8) Nodes which is already processed by ...
ic_processed (9) Glues from an italic correction, but also already processed.
boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.

\ltj@kcati (attribute) Where i is a natural number which is less than 7. These 7 attributes store bit vectors
indicating which character block is regarded as a block of JAchars.

Furthermore, LuaTEX-ja uses several ‘user-defined’ whatsit nodes for typesetting. All those nodes store a
natural number (hence the node’s type is 100).

30111 Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t matter.

30112 Nodes for LuaTEX-ja’s stack system (see the next subsection). The value field of these nodes is current
group.

30113 Nodes for Japanese Characters which the callback process of luaotfload won’t be applied, and the
character code is stored in the value field. Each node having this user_id is converted to a ‘glyph_node’
after the callback process of luaotfload.

These whatsits will be removed during the process of inserting JAglues.

19

9.2 Stack System of LuaTEX-ja

Background LuaTEX-ja has its own stack system, and most parameters of LuaTEX-ja are stored in it. To
clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following source:

1 \ltjsetparameter{kanjiskip=0pt}ふがふが.%
2 \setbox0=\hbox{\ltjsetparameter{kanjiskip=5pt}

ほげほげ}
3 \box0.ぴよぴよ\par

ふがふが. ほ げ ほ げ. ぴよぴよ

As described in Part II, the only effective value of kanjiskip in an hbox is the latest value, so the value of
kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaTEX,
this ‘5 pt’ cannot be known from any callbacks. In the tex/packaging.w (which is a file in the source of
LuaTEX), there are the following codes:
void package(int c)
{

scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;
grp = cur_group;
d = box_max_depth;
unsave();
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {

cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1), grp, saved_level(2));

subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed): so
‘5 pt’ in the above source is orphaned at +unsave+, and hence it can’t be accessed from hpack_filter callback.

The method The code of stack system is based on that in a post of Dev-luatex mailing list3.
These are two TEX count registers for maintaining information: \ltj@@stack for the stack level, and

\ltj@@group@level for the TEX’s group level when the last assignment was done. Parameters are stored in
one big table named charprop_stack_table, where charprop_stack_table[i] stores data of stack level i. If
a new stack level is created by \ltjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in ‘Background’ above, LuaTEX-ja uses another thing: When a new stack
level is about to be created, a whatsit node whose type, subtype and value are 44 (user_defined), 30112, and
current group level respectively is appended to the current list (we refer this node by stack_flag). This enables
us to know whether assignment is done just inside a hbox. Suppose that the stack level is s and the TEX’s
group level is t just after the hbox group, then:

• If there is no stack_flag node in the list of hbox, then no assignment was occurred inside the hbox. Hence
values of parameters at the end of the hbox are stored in the stack level s.

• If there is a stack_flag node whose value is t + 1, then an assignment was occurred just inside the hbox
group. Hence values of parameters at the end of the hbox are stored in the stack level s+ 1.

• If there are stack_flag nodes but all of their values are more than t+1, then an assignment was occurred
in the box, but it is done is ‘more internal’ group. Hence values of parameters at the end of the hbox are
stored in the stack level s.

Note that to work this trick correctly, assignments to \ltj@@stack and \ltj@@group@level have to be local
always, regardless the value of \globaldefs. This problem is resolved by using \directlua{tex.globaldefs=0}
(this assignment is local).

3[Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

20

scan a cs

��

// N

0

::

d, g

��

5 (\par)

OO

j

--

S
0

^^

d, g

~~

5

OO

j

ww
M

0

GG

10 ()

>>

5 ()

��
j

88
K

0

PP

d
oo

10 ()

[[

5

��

d := {3, 4, 6, 7, 8, 11, 12, 13}, g := {1, 2}, j := (Japanese characters)

• Numbers represent category codes.

• Category codes 9 (ignored), 14 (comment) and 15 (invalid) are omitted in above diagram.

Figure 2. State transitions of pTEX’s input processor.

10 Linebreak after Japanese Character

10.1 Reference: Behavior in pTEX

In pTEX, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces
in Japanese writings. However, this feature isn’t fully implemented in LuaTEX-ja due to the specification of
callbacks in LuaTEX. To clarify the difference between pTEX and LuaTEX, We briefly describe the handling
of a line break in pTEX, in this subsection.

pTEX’s input processor can be described in terms of a finite state automaton, as that of TEX in Section 2.5
of [?]. The internal states are as follows:

• State N : new line

• State S: skipping spaces

• State M : middle of line

• State K: after a Japanese character

The first three states—N , S and M—are as same as TEX’s input processor. State K is similar to state M ,
and is entered after Japanese characters. The diagram of state transitions are indicated in Figure 2. Note that
pTEX doesn’t leave state K after ‘beginning/ending of a group’ characters.

10.2 Behavior in LuaTEX-ja

States in the input processor of LuaTEX is the same as that of TEX, and they can’t be customized by any
callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress a space
by a line break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-line) is
converted into an space token in the input processor. So we can use only the process_input_buffer callback.
This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTEX-ja are as follows:

A character U+FFFFF (its category code is set to 14 (comment) by LuaTEX-ja) is appended to an
input line, before LuaTEX actually process it, if and only if the following two conditions are satisfied:

1. The category code of the character 〈return〉 (whose character code is 13) is 5 (end-of-line).
2. The input line matches the following ‘regular expression’:

(any char)∗(JAchar)
(
{catcode = 1} ∪ {catcode = 2}

)∗
21

Remark The following example shows the major difference from the behavior of pTEX:

1 \ltjsetparameter{autoxspacing=false}
2 \ltjsetparameter{jacharrange={-6}}x あ

3 y\ltjsetparameter{jacharrange={+6}}z あ

4 u

xyzあ u

• There is no space between ‘x’ and ‘y’, since the line 2 ends with a JAchar ‘ あ ’ (this ‘ あ ’ considered as
an JAchar at the ending of line 1).

• There is no space between ‘ あ ’ (in the line 3) and ‘u’, since the line 3 ends with an ALchar (the letter
‘ あ ’ considered as an ALchar at the ending of line 2).

11 Insertion of JFM glues, kanjiskip and xkanjiskip

11.1 Overview

NOT COMPLETED

11.2 Definition of a ‘cluster’

Definition 1. A cluster is a list of nodes in one of the following forms, with the id of it:

1. Nodes whose value of \ltj@icflag is in [3, 15). These nodes come from a hbox which is already packaged,
by unpackaging (\unhbox). The id is id_pbox.

2. A inline math formula, including two math_nodes at the boundary of it: HOGE The id is id_math.

3. A glyph_node with nodes which relate with it: HOGE The id is id_jglyph or id_glyph, according to
whether the glyph_node represents a Japanese character or not.

4. An box-like node, that is, an hbox, an vbox and an rule (\vrule). The id is id_hlist if the node is an
hbox which is not shifted vertically, or id_box_like otherwise.

5. A glue, a kern whose subtype is not 2 (accent), and a discretionary break. The id is id_glue, id_kern and
id_disc, respectively.

We denote a cluster by Np, Nq and Nr.

Internally, a cluster is represented by a table Np with the following fields.

first, last The first/last node of the cluster.

id The id in above definition.

nuc

auto_kspc, auto_xspc

xspc_before, xspc_after

pre, post

char

class

lend

met, var

22

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX
	Changing Fonts

	Changing Parameters
	Editing the range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline
	Cropmark

	II Reference
	Font Metric and Japanese Font
	92jfont primitive
	Structure of JFM file
	Math Font Family
	Callbacks

	Parameters
	92 ltjsetparameter primitive
	List of Parameters

	Other Primitives
	Primitives for Compatibility
	92 inhibitglue primitive

	Control Sequences for LaTeX2ε
	Patch for NFSS2
	Cropmark/`tombow'

	Extensions
	luatexja-fontspec.sty
	luatexja-otf.sty

	III Implementations
	Storing Parameters
	Used Dimensions, Attributes and whatsit nodes
	Stack System of LuaTeX-ja

	Linebreak after Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Insertion of JFM glues, kanjiskip and xkanjiskip
	Overview
	Definition of a `cluster'

