‘°pv

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1
Mar 13, 2009

© 2010 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

M

Open
Table of Contents

1. INtrOdUCTION. .. teeirererenrnresrnnsrnsrasressensrassassrasrassassenssastassenseassassanseasessasessasensansnsas 5

2. Overview of Graph InitialiZatioN........cceeueeieereesrnemsseesensrnssnassassasseassssassssassasans 5

3. SeqUENCE Diagl M S, .. uuuieuiuauimsrassnassassassnsssassassnssnassassssssassassssssassnssssssassnssnnssnssass 7

4. Buffer AllOCaAtOruuueieeeieeinsinseaseassassnassassmssnsssnssassnssnnssnssnsssnssnssnsssnsassasaneas 10

List of Figures

Figure 1: High-level Initialization SeqUeNCe (PArt 1)........cccuuviiiiiiiiiiiiiie e
Figure 2: High-level Initialization SeqUenCe (Part 2).........ccuuviiiiiiiiiiiieiee s
Figure 3: Video Buffer AIOCAtIoN (PArt 1).........ccuuuiiiiiiiiiiiiiiie et
Figure 4: Video Buffer AIOCation (PArt 2).........ccuuuiiiiiiiiiiiie ettt
Figure 5: BUFfEr AIOCATION.ueiiieiiiiiiii ettt e st e e s e e e e e e
(o [(I R O [T T LU] o PRSP

Open

References

1Media I/O Developer's Guide. OpenCORE 2.02, rev. 1. http.//android.qgit.kernel.org/?
p=platform/external/opencore.git.a=summary

20penMAX Integration Layer Application Programming Interface Specification. Version 1.1.2,
http://www.khronos.org/openmax/

http://www.khronos.org/openmax/
http://android.git.kernel.org/?p=platform/external/opencore.git;a=summary
http://android.git.kernel.org/?p=platform/external/opencore.git;a=summary

1. Introduction

In some situations it may be more efficient for the rendering component to allocate and supply the
decoder's output buffers, which are the inputs to the renderer. There may be constraints for the
input buffers to the rendering components such as the buffers must be physically contiguous,
reside in specific memory regions, etc. In order to avoid copying, which can be quite expensive
for video, the decoder must place its output directly into buffers that meet the constraints for the
renderer input buffers.

This document details the methods for providing decoder output buffers from the media I/0
component. Although the methods described are primarily useful for video, they are not limited to
video. Familiarity with media 1/O components is assumed throughout the document. See the
Media I/O Developer's Guide[4] for those details.

2. Overview of Graph Initialization

During the initialization of the multimedia graph for playback, nodes implementing data sources,
decoding, and rendering are connected, parameters are configured, and buffers are allocated.
The buffer allocation is established as a part of the graph setup phase between each connected
pair of nodes. The media data in the basic playback graph tends to flow in one direction from
source to sink, and the typical case is for the upstream node to allocate and supply buffers to the
downstream node However, the scenario of interest here is one where the downstream sink
node allocates and supplies buffers to the upstream decoder node. The methods in this
document only concern the decoder and media output nodes, so the description and diagrams
will focus only on that portion of the multimedia graph for clarity.

Figure X and Figures Y illustrate a high-level overview of the sequence of messages involved in
the initialization of the decoder and media I/O nodes for video. The figures show the
communication between the nodes as well as the communication with each node's internal
components. Although the example mentions specific parameters for video, the process applies
generally with main difference being the parameters that are passed along with the desired
number of buffers and buffer size. For audio, those parameters would be number of channels,
sample rate, and bits per sample.

After passing the basic configuration information (e.g., format, width, height, etc for video)
including the desired number of buffers and buffer size, the decoder node will query the media
output node for an allocator object. The MIO component may optionally provide an allocator at
this point. If an allocator is provided, then the decoder will use it for allocating buffers.
Otherwise, the decoder node handles the buffer allocation internally. The decoder node will use
the standard OpenMAX[4] OMX_UseBuffer calls to notify the OpenMAX component about these
buffers, so no special handling is required within the OpenMAX component.

Open

Node
_’

©

o of

OpenMAX Decoder

®

portconnection

v

OMX Decoder

Media Output
Node

©
l

Mo
Component

T.oParse inputstream configuration information.

l:‘ = Node [frameworkelement
D = Internalnode component

2.Use OMX SetParametercalls to set W idth x Heightinformation,

J.Use OMX GetParameterto query desired numberofbuffers and buffersize.

4. Pass Width x Height, numberof buffers, buffersize overthe portinterface.

5. Pass Width x Height, numberof buffers, buffersize overSetParameterSync call

Figure 1: High-level Initialization Sequence (Part 1)

OpenMAX Decoder
Node

l

OMX Decoder

®

< »
< »

Media Output

Node
o1

l

M 10
Component

I:l = Node [framework element
I:l = Internalnode component

6.Use GetParameterSync calloverthe portto query for bufferallocator

T.Use GetParameterSync calls to query for bufferallocator.

§.Afterallocating buffers and wrapping inside memory pool use
UseBuffercalls to pass buffers to O MX decoder.

9. Atthis point, bufferpassing proceeds as usualusing existing APIs.

Figure 2: High-level Initialization Sequence (Part 2)

Open

3. Sequence Diagrams

This section contains more detailed sequence diagrams showing the call flow between the
different components including the allocator object. Note that the allocator is only used initially to
obtain the buffers. During steady-state processing the buffer usage is tracked with other data
container objects and the buffers are recycled once they are done being rendered.

sd Video bultevallocation:partl/

OMX Component PVMFOMXVideoDecNode PVMediaQutputhode W10 Comyponent
T T T T
| | | |
OMX _Geqparameter(OMX _PARAM _PORTDEFINITIQNTYPE) | |
I< 1 | |
LI [} I I
1 | | |
| | |
Querythe OpenM AX IL decoder : : :
componentforparameterssuch aswidth | | |
and height, buffersize, desired number | | |
of buffers, ete, I SetParametersSync(format specific_infe) | |
Lt |
|
elParame[ersSyncUnrma:ispecmc,mLu):
Lt

AN
The format-specific inform ation provides information on the format, width
and height (used to size the buffers), display width and height, stride orpitch,
desired buffersize, and desired numberofbuffers. Today, some ofthese
parametersare provided asseparate setParameterSynccalls. A change
would be made tosetthem assingle SetParameterSync call so thatthe M 10
hasallthe parametersatonce and can validate immediately whetherthe
valuescan be supported. Thisinformation should allow the W10 to validate
thatitcan handle the inputand also determine the parametersforthe buffer
allocator

——————————e e —— [}

Figure 3: Video Buffer Allocation (Part 1)

Open

Guide to Supplying Decoder Buffers from the MIO Component

OpenCORE 2.02, ver 1

sd Video huflera\laca(inn:panl/

OMYX Component

Setthe numberof
buffersand buffersize
before calling
UseBuffer

PVMFOMXVideoDecNode PVMediaOutputhode W10 Component BufferAllocator
0bject

T T T
| | |
| | |
I I I
g:ewaramelersSync[BUFFER,AHOCATO‘R :
el |
|
] (Pl!lmEIHSSML[BUFFER_AHOEATU)!
U
|

Ifthe W10 isable toprovide a bufferallocatorobjectthen respondsto the

a PVinterface pointerthatwillbe queried forthe exactbufferallocation
interface.

GetParametersSyncrequestwith the BUFFER_ALLOCATOR key by providing

Query forenactinterface

|
queryintenface (PV M FFinedSizeBufferAllocUUID)
T

|
releaseParameters() :

»
P

releaseParameters()

Yy

L ———————]

Yy

Release the parametersfrom the
previousgetParametersSync call,
The bufferallocatorisstill active
because the queryinterface forthe
specific interface ID will increment
the refeounterforthatinterface

OM K Sedpammeter(0 U X _PARAN PORTDEFINIT
<

————————————]

|
|
|
|
|
|
!
;
|
]
|
:
|
:
|
|
|
:
|
|
|
|
|
|
|
:
|
|
|
|
|
|

] |
| |
| |
| |
I I
! ! gethum B uifers() =:
m] i t
| | |
| | getBufferSize() - |
T
|
e ! 1
N E) | I
1 |
I |
loop Allocate buffers / : :
1 |
I I I
i	!
	!
. s |

Figure 4: Video Buffer Allocation (Part 2)

- Page 8 of 10 -

Open

sd Buffer Allocation /

loop Buffer Allocation /

[NumAllocated < Num BuffersinAllocator]

OMX Component PVMFOMXVideoDecNode BufferAllocator
0bject

allocate()bufptr

OMX_UseBuffer(bufptr)

L;J=

e[-
B T e Il st

Figure 5: Buffer Allocation

sd Cleanup /

OMX Component PVMFOMXVideoDecNode BufferAllocator
Object
T T T
[0N X _FreeBuffer()	
il	
n .	
H deallocate() -	
I]	
	Deallocation done for
	each bufferthatwas
: : originally allocated	
1 1	
loop	
—/l I I	
NumDeallbcated < NumBuffersinAllocator]	
[[rem queRef]) [
L » L	
[
	I
1 1 N

ThecalltoremoveRef
signalsthat
PYMFOMNXVideoDecNode
sdone with the allocator
and decrementsthe
refeount. Ifno other
referencesare active then
the allocatorisno longer
needed

Figure 6: Cleanup

4. Buffer Allocator

The buffer allocator has a very simple interface that provides a way to allocate and release
buffers of a fixed size. The interface also provides methods to get the fixed buffer size and the
number of buffers that the allocator can provide. The interface definition is provided below for
convenience, but the definition in the header file should be referenced for the most up-to-date

version.

/**

* This interface is used to allocate a set of fixed-size buffers.

*/

class PVMFFixedSizeBufferAlloc

1

public:

virtual ~PVMFFixedSizeBufferAlloc() {};

/**
* This method allocates a fixed-size buffer as long as there are
* buffers remaining. Once the maximum number of buffers have been
* allocated, further requests will fail.
*
* @returns a ptr to a fixed-size buffer
*

or NULL if there is an error.
*/
virtual OsclAny* allocate() = 0;

/**
* This method deallocates a buffer ptr that was previously
* allocated through the allocate method.

*
* @param ptr is a ptr to the previously allocated buffer to release.
*/

virtual void deallocate(OsclAny* ptr) = 0;

/**
* This method returns the size of the buffers that
* will be allocated.
*
* @returns the fixed size used for all buffers.
*/
virtual uint32 getBufferSize() = 0;

/**
* This method returns the maximum number of buffers
* available for allocation
*
* @returns the max number of buffers available for allocation.
*/
virtual uint32 getNumBuffers() = 0;

	1.Introduction
	2.Overview of Graph Initialization
	3.Sequence Diagrams
	4.Buffer Allocator

