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1. Introduction

In some situations it may be more efficient for the rendering component to allocate and supply the
decoder's output buffers, which are the inputs to the renderer. There may be constraints for the
input buffers to the rendering components such as the buffers must be physically contiguous,
reside in specific memory regions, etc. In order to avoid copying, which can be quite expensive
for video, the decoder must place its output directly into buffers that meet the constraints for the
renderer input buffers.

This document details the methods for providing decoder output buffers from the media I/0
component. Although the methods described are primarily useful for video, they are not limited to
video. Familiarity with media 1/O components is assumed throughout the document. See the
Media I/O Developer's Guide[4] for those details.

2. Overview of Graph Initialization

During the initialization of the multimedia graph for playback, nodes implementing data sources,
decoding, and rendering are connected, parameters are configured, and buffers are allocated.
The buffer allocation is established as a part of the graph setup phase between each connected
pair of nodes. The media data in the basic playback graph tends to flow in one direction from
source to sink, and the typical case is for the upstream node to allocate and supply buffers to the
downstream node However, the scenario of interest here is one where the downstream sink
node allocates and supplies buffers to the upstream decoder node. The methods in this
document only concern the decoder and media output nodes, so the description and diagrams
will focus only on that portion of the multimedia graph for clarity.

Figure X and Figures Y illustrate a high-level overview of the sequence of messages involved in
the initialization of the decoder and media I/O nodes for video. The figures show the
communication between the nodes as well as the communication with each node's internal
components. Although the example mentions specific parameters for video, the process applies
generally with main difference being the parameters that are passed along with the desired
number of buffers and buffer size. For audio, those parameters would be number of channels,
sample rate, and bits per sample.

After passing the basic configuration information (e.g., format, width, height, etc for video)
including the desired number of buffers and buffer size, the decoder node will query the media
output node for an allocator object. The MIO component may optionally provide an allocator at
this point. If an allocator is provided, then the decoder will use it for allocating buffers.
Otherwise, the decoder node handles the buffer allocation internally. The decoder node will use
the standard OpenMAX[4] OMX_UseBuffer calls to notify the OpenMAX component about these
buffers, so no special handling is required within the OpenMAX component.
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5. Pass Width x Height, numberof buffers, buffersize overSetParameterSync call

Figure 1: High-level Initialization Sequence (Part 1)
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6.Use GetParameterSync calloverthe portto query for bufferallocator

T.Use GetParameterSync calls to query for bufferallocator.

§.Afterallocating buffers and wrapping inside memory pool use
UseBuffercalls to pass buffers to O MX decoder.

9. Atthis point, bufferpassing proceeds as usualusing existing APIs.

Figure 2: High-level Initialization Sequence (Part 2)
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3. Sequence Diagrams

This section contains more detailed sequence diagrams showing the call flow between the
different components including the allocator object. Note that the allocator is only used initially to
obtain the buffers. During steady-state processing the buffer usage is tracked with other data
container objects and the buffers are recycled once they are done being rendered.
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Figure 3: Video Buffer Allocation (Part 1)
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Figure 4: Video Buffer Allocation (Part 2)
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Figure 5: Buffer Allocation
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Figure 6: Cleanup



4. Buffer Allocator

The buffer allocator has a very simple interface that provides a way to allocate and release
buffers of a fixed size. The interface also provides methods to get the fixed buffer size and the
number of buffers that the allocator can provide. The interface definition is provided below for
convenience, but the definition in the header file should be referenced for the most up-to-date

version.

/**

* This interface is used to allocate a set of fixed-size buffers.

*/

class PVMFFixedSizeBufferAlloc

1

public:

virtual ~PVMFFixedSizeBufferAlloc() {};

/**
* This method allocates a fixed-size buffer as long as there are
* buffers remaining. Once the maximum number of buffers have been
* allocated, further requests will fail.
*
* @returns a ptr to a fixed-size buffer
*

or NULL if there is an error.
*/
virtual OsclAny* allocate() = 0;

/**
* This method deallocates a buffer ptr that was previously
* allocated through the allocate method.

*
* @param ptr is a ptr to the previously allocated buffer to release.
*/

virtual void deallocate(OsclAny* ptr) = 0;

/**
* This method returns the size of the buffers that
* will be allocated.
*
* @returns the fixed size used for all buffers.
*/
virtual uint32 getBufferSize() = 0;

/**
* This method returns the maximum number of buffers
* available for allocation
*
* @returns the max number of buffers available for allocation.
*/
virtual uint32 getNumBuffers() = 0;
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