
PVMFMediaClock Guide

OpenCORE 2.0, ver 1
Feb 3, 2009

© 2009 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

Table of Contents
1. Introduction ... 4
2.PVMFMediaClock Features ... 4

2.1. Timekeeping .. 5
2.2. Clock Observers .. 5
2.3. NPT Mapping ... 5
2.4. Timer Callbacks ... 6
2.5. Latency Handling ... 7
2.6. NPT Clock Transition ... 8

3.Design Details .. 8
3.1. PVMFMediaClock Class Design ... 8
3.2. Clock Timebase ... 10
3.3. State Machine .. 10
3.4. Timekeeping .. 11
3.5. Clock Adjustments ... 11
3.6. NPT Mapping ... 13
3.7. Clock Notifications and Latency Handling ... 13
3.8. Callbacks ... 14
3.9. NPT Callbacks ... 15
3.10. PVMFMediaClockObservers and PVMFMediaClockStateObservers 15
3.11. NPT Clock Transition ... 15
3.12. Multithreading Support .. 15

4.Time Comparison Utilities .. 15

 - Page 2 of 16 -

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

List of Figures
Figure 1: Illustration of the Mapping between the Media Clock and NPT..6
Figure 2: Sink Latency Registration..7
Figure 3: PVMFMediaClock Class Diagram..8
Figure 4: PVMFMediaClock State Diagram..10
Figure 5: Restrictions on New Observations while Performing a Clock Adjustment......................12
Figure 6: Restrictions on New Observations after Completing a Clock Adjustment.....................12
Figure 7: Sequence Diagram Showing Usage of PVMFMediaClockNotificationsInterface...........14
Figure 8: Conceptual Model of Time Values...16

 - Page 3 of 16 -

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

1. Introduction

This document describes the details of the updated media clock, PVMFMediaClock, introduced
as part of the OpenCORE 2.0 release. The media clock is responsible for maintaining a common
time reference used to pace media playback or capture and implement A/V synchronization. The
details of the functionality and design of the PVMFMediaClock are described in the later sections
of the document after briefly giving some history on the previous clock implementation to motivate
the reason for the change.

The previous implementation of the media or playback clock functionality in OpenCORE 1.0 was
partially contained in the OsclClock class in the oscl util layer and partially implemented in various
nodes and components in the graph and within the player engine. The OsclClock was a passive
library that did not directly handle active timing notification. Instead, it provided back the current
media clock value when queried by an outside caller. A component waiting on the media clock to
reach a particular value had to essentially poll the OsclClock component to determine if a
particular value had been reached. However, the OsclClock did support observer class
registration for notification of state changes. The state change notifications happened as a pass-
through within the state change method, so the clock component did not need to be active.

However, the OsclClock implementation resulted in a number of issues that could be improved:

• Each component wanting to base activity on specific values (or ranges of values) of the
media clock must maintain its own timers which are based on the system clock. The
result is that whenever the media clock value is updated, those components must be
notified and they have to cancel the current timers and most likely create new ones.

• The logic for timestamp and clock comparisons was duplicated in multiple places even
though this is a very fundamental functionality. Handling that in a common location helps
minimize the chance of mistakes and makes the code more readable.

• There was no central place to account for fixed, known rendering latencies in the media
sinks. If all rendering components would register these values with the common clock,
then the relative differences could be accounted for when dealing with requests for clock
value notifications associated with rendering decisions.

• The mapping between the media clock value and the Normal Play Time (NPT) or clip
position was handled outside the clock component. It was best to handle this within the
clock since it made notifications based on NPT possible.

The new PVMFMediaClock is enhanced to actively manage notifications based on clock values. It
maintains a single timer representing the earliest deadline among all pending requests. The code
for the updated media clock is located in the PVMI layer rather than OSCL (where the OsclClock
was located) since the logic is not part of the OS abstraction and fits best as part of the
multimedia infrastructure layer.

2. PVMFMediaClock Features

This section describes the features of PVMFMediaClock.

 - Page 4 of 16 -

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

2.1. Timekeeping
The PVMFMediaClock acts as a time source for multimedia graphs. There is a provision for
specifying a timebase which the clock uses as a time source. This timebase can be a system
clock or any other time source (e.g., audio driver clock). The media clock itself is derived from
PVMFTimebase; therefore one instance of PVMFMediaClock can act as a timebase for another.

Besides APIs to get the current time, the media clock also provides APIs to start, stop, adjust,
pause, etc the clock. A user can specify time values in various units with microseconds being the
smallest unit of time.

2.2. Clock Observers
The PVMFMediaClock can notify objects about changes in the clock state. The objects can set
themselves as clock observers to receive notifications by implementing observer interfaces and
calling the API to set observer. There are three observer interfaces.

1.PVMFMediaClockObserver - notification for clock timebase update, clock count update, clock
adjustment.

2.PVMFMediaClockStateObserver – notification for clock state changes.

3.PVMFMediaClockNotificationsObs – For getting callback notifications.

Objects can implement more than one of the observer interfaces to get multiple notifications.

2.3. NPT Mapping
The media clock implements a monotonic non-decreasing counter that represents a time
reference to be used for media rendering decisions. It does not directly provide any reference to
the clip position (a.k.a., the normal play time (NPT)). If there is random positioning in the clip, then
the NPT may jump ahead discontinuously or even jump backwards, but the media clock would
continue to move ahead in a continuous manner. Therefore a mapping must be maintained to
relate a given media clock value back to the corresponding NPT value. Figure 1 below illustrates
how the mapping between the times works.

The PVMFMediaClock maintains a mapping between the playback time and the NPT. Any
module changing the clip position must notify the media clock about clip repositioning events
using the UpdateNPTClockPosition() API so that the NPT mapping can be maintained.

 - Page 5 of 16 -

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

2.4. Timer Callbacks
Components that need to take action based on the value of the media clock can set callbacks on
PVMFMediaClock. These callbacks eliminate the need for components to set their own timers
and cancel and reset them to a new value when clock value is adjusted or clock is paused.
Callbacks can be set to an absolute media clock time or a delta from the current media clock time
when the timer should call back. A callback timer can be canceled after it has been created. It is
also possible to set/cancel callbacks based on NPT clock time.

Instead of an absolute time, the media clock takes an input specifying a time window for
scheduling a callback. This approach is used since competing tasks and threads may delay a
timer callback from happening at the exact requested moment, so firing a bit early may be
preferable to always firing late. Also the media clock can combine firing callbacks that have
overlapping windows, which reduces overhead.

 - Page 6 of 16 -

Figure 1: Illustration of the Mapping between the Media Clock and NPT.

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

2.5. Latency Handling
One common issue when integrating different sink implementations is that each may have some
amount of measurable latency from the time a decision is made to render a sample to the time it
reaches the final output (e.g., display, speakers, etc). These latencies need to be compensated in
order for the different media types to rendered in a synchronized manner. For example, consider
a case where there is an audio, video, and text sink which must be rendered in a synchronized
fashion. The fixed latencies associated with these media sinks is 10, 20, and 2 msec respectively.
The means that video needs the biggest head start relative to the other two in order to display a
sample at the same time as the others. If all three have initial samples with timestamp values of
0, then in order to render simultaneously, video should start 10 msec before audio and 18 msec
before text. The scenario is shown in Figure 2.

Each sink registers its latency with media clock while creating the notifications interface. The
media clock subtracts the largest common latency out and adjusts the residual latency value in
scheduling notifications.

 - Page 7 of 16 -

Figure 2: Sink Latency Registration

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

2.6. NPT Clock Transition
The PVMFMediaClock has a provision to schedule an NPT clock change event in the future. A
user can specify an absolute media clock time value when the change should take place along
with the new startNPT value that should be used. Also, the user can make the NPT clock run in
either direction, forward or backward, from that point onwards.

3. Design Details

3.1. PVMFMediaClock Class Design

 - Page 8 of 16 -

Figure 3: PVMFMediaClock Class Diagram

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

Figure 3 shows the detailed class diagram of PVMFMediaClock. In the diagram, dotted lines
represent interface implementation, solid lines with block arrow represent inheritance and simple
solid lines represent relationship between classes.

PVMFMediaClock’s features are grouped into four different interfaces.

1.PVMFMediaClockControlInterface – Clock control function like Start/Stop etc
2.PVMFMediaClockAccessInterface – Time access functions like GetCurrentTime32
3.PVMFMediaClockNPTClockPositionAccessInterface – NPT mapping related APIs
4.PVMFMediaClockNotificationsInterface/PVMFMediaClockNotificationsImplInterface – The
PVMFMediaClock needs to adjust for latencies of modules while scheduling notifications. To do
so, it needs the latency value of all modules, and it also needs to know from which module the
API is being called. One way of doing this is to assign ID values to all modules, which they can
pass to media clock while calling APIs. Instead of creating IDs for modules, the media clock uses
unique ClockNotificationsInterfaceImpl object for each module. Modules call APIs using their
interface-object and the interface object calls corresponding APIs in the clock. The media clock
then schedules notifications after adjusting for the latency.
PVMFMediaClockNotificationsInterface interface contains client side functions for setting
notifications on media clock and PVMFMediaClockNotificationsImplInterface contains
corresponding functions implemented by PVMFMediaClock.
PVMFMediaClockNotificationsInterface is implemented by ClockNotificationsInterfaceImpl class
and PVMFMediaClockNotificationsImplInterface interface is implemented by PVMFMediaClock.
There is a one to one mapping between the functions of these two interfaces. Functions
implemented in ClockNotificationsInterfaceImpl class call the corresponding functions in
PVMFMediaClock. The signature of the functions is same except for the object reference pointer
that setCallBack functions in ClockNotificationsInterfaceImpl class pass to functions in
PVMFMediaClock. For more details please refer to Section 3.7.

The PVMFMediaClock implements all functions of the above four interfaces. The following is the
description of the other classes:

• OsclTimerObject – PVMFMediaClock inherits from OsclTimerObject to be able to
implement active object.

• PVMFMediaClockObserver – When the media-clock uses count base timebase, it has to
set itself as the clock observer of the timebase to receive count update notices.
Therefore, the media clock implements this PVMFMediaClockObserver interface.

• PVMFMediaClockNotificationsObs – To be able to set callbacks on PVMFMediaClock,
any class has to implement PVMFMediaClockNotificationsObs interface. The
PVMFMediaClock itself implements this interface because it sets callbacks on itself for
queuing NPT clock transition events.

• PVMFTimebase - A clock timebase may be specified by the user by using the
SetClockTimebase() method. The specified timebase must implement the
PVMFTimebase interface. The PVMFMediaClock uses the specified clock timebase as
the basic time source (i.e., source of “ticks”) to calculate the current clock value. The
PVMFMediaClock itself implements PVMFTimebase interface so that it can act as a
timebase for other instances of PVMFMediaClock. For more details on timebase please
refer to Section 10

 - Page 9 of 16 -

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

3.2. Clock Timebase
The PVMFMediaClock uses the specified clock timebase as the basic time source (i.e., source of
“ticks”) to calculate the current clock value. The specified timebase must implement the
PVMFTimebase interface. Usually the clock timebase uses the system tickcount for the clock
value so a clock timebase based on the OSCL tickcount is provided. The relationship between
PVMFMediaClock, PVMFTimebase and user supplied timebase is depicted in the class diagram
in Section 8 If no timebase is provided, PVMFMediaClock can still be used, but the clock time will
not progress from the start time unless clock adjustments are made. PVMFMediaClock itself
implements the PVMFTimebase interface so that it can act as a timebase for other instances of
PVMFMediaClock.

The clock timebase for the PVMFMediaClock is expected to satisfy several requirements. The
clock timebase must return the timebase value in microseconds and the value must be
monotonically non-decreasing. The PVMFMediaClock estimates the current clock value using the
timebase by subtracting the tickcount at the clock start time from the current tickcount to compute
the latest value.

The PVMFMediaClock timing behavior can be modified by providing different timebases. By
having a clock timebase returning the clock value X times “real-time”, the PVMFMediaClock
would report the time as running X times faster. For multimedia playback scenario, the playback
speed could be adjusted this way. A timebase can also be a so-called “counted” timebase which
increments based on asynchronous events that may not happen based on uniform time intervals
(e.g., consider a case where video frames should advance based on user interaction – i.e., frame
stepping).

3.3. State Machine
PVMFMediaClock maintains an internal state machine of 3 states: STOPPED, RUNNING, and
PAUSED. The state transition diagram for the 3 states is shown below:

When a PVMFMediaClock object is instantiated, it starts in the STOPPED state. While in
STOPPED state, clock start time and the clock timebase can be set. When Start() is called,
PVMFMediaClock transitions to the RUNNING state where the current clock time is sourced from

 - Page 10 of 16 -

Figure 4: PVMFMediaClock State Diagram

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

the clock timebase. While in RUNNING state, clock adjustments could be done via
AdjustClockTime32() methods. AdjustClockTime32() allows the PVMFMediaClock time value to
be adjusted to match another clock such as the audio output clock. The clock timebase cannot be
changed while the clock is running. Also, ConstructMediaClockNotificationsInterface() function
cannot be called while clock is running. When Pause() is called, PVMFMediaClock transitions to
the PAUSED where the current clock time would freeze until the clock is started again. The clock
time cannot be modified with AdjustClockTime32() methods in this state. The clock timebase can
be changed while clock is in paused state. To return PVMFMediaClock to the RUNNING state
from the PAUSED state, Start() needs to be called. The clock time then resumes from the point
where it was paused and the clock time does not incorporate the timebase time elapsed while
paused. When Stop() is called in RUNNING or PAUSED states, PVMFMediaClock returns to the
initial STOPPED state and all runtime parameters such as last adjusted, start, and paused times
are reset. Any active callbacks are fired with status code PVMFErrCallbackClockStopped and are
deleted. Reset() can be called from any state of PVMFMediaClock. Calling Reset() puts the clock
in STOPPED state and deletes all ClockObservers, ClockStateObservers and
MediaClockNotificationsInterface objects. PVMFMediaClock does not send any notification to
ClockObservers and ClockStateObservers before deleting them. Any active callbacks are fired
with status code PVMFErrCallbackClockStopped when the clock is stopped at Reset(). The intent
of the Reset() function is to bring the clock to the state when it was created.

3.4. Timekeeping
Internally, PVMFMediaClock stores all time values as unsigned 32-bit integer values. The default
time unit for storing time is milliseconds but the clock switches to microseconds if user calls
AdjustClockTime32() or SetStartTime32() with a microsecond time value. This is done to support
modules that still use microseconds as time units. As the clock uses 32 bit variables to store time,
there is a high probability that clock will wrap using microseconds as time units, but any
components using the clock should be prepared for the time value to wrap. Time comparisons
independent of the wrap point can be done using the time comparison utilities described in
Section 15 The actual resolution of the clock would depend on the clock timebase resolution and
the adjustment time resolutions.

The PVMFMediaClock uses 32 bit variables to store the tickcount value returned by timebase.
There is a chance that a 32 bit variable would wrap during the lifetime of the clock as the
tickcount may not start from zero when the clock starts. To overcome this problem, media clock
stores the tickcount value at the start of clock and subtracts it from current tickcount before
storing current tickcount value in the 32 bit variable. Using this mechanism, tickcount virtually
starts from zero for the clock. Clock uses PVTimeComparisonUtils APIs to calculate the
difference which takes care of the wrap-around scenario.

3.5. Clock Adjustments
In the RUNNING state, the PVMFMediaClock value can be adjusted to track another source of
timing information by using the AdjustClockTime32() methods. To adjust the clock, information on
the observed “desired” time must be provided along with the PVMFMediaClock time and
timebase value at the moment of that observation. The “desired” time usually comes from another
time source such as the audio device driver which controls the rate of playback or capture of
audio samples. By adjusting the clock value based on observations of the audio device, the
temporal synchronization of audio and video data, as well as any other media tracks, can be
maintained.

 - Page 11 of 16 -

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

In the AdjustClockTime32() method, the PVMFMediaClock timebase value at the time of the
observation is provided to give an absolute scale for determining how recently the observation
was made. The PVMFMediaClock has logic to avoid using obsolete information as part of the
adjustment. If an observation is older than the time of the last adjustment, which is recorded in
the PVMFMediaClock, then the observation is considered obsolete and is not used. Any values
which have an observation time in the future (i.e., later than the current timebase value) are also
not used (i.e., thrown out as invalid). In addition, the adjustment logic attempts to use the most
recent observation so older observations may be thrown out. The diagram in helps illustrate
some of these rules.

The time is increasing from left to right in the diagram. At the “Current Time”, the clock is being
adjusted with observations made at “ADJ1” (i.e., “ADJ1” is being processed). In this scenario,
adjustment made with observations from “ADJ2” and “ADJ3” would not be allowed. “ADJ2” data is
beyond the current time (i.e., in the future) and “ADJ3” data is older than “ADJ1” data. Adjustment
with “ADJ4” is not excluded by the rules mentioned so far, but if there is already an adjustment
being processed, then the default PVMFMediaClock algorithm will finish that processing and not
utilize “ADJ4”. Supporting the interruption of a previous adjustment by another observation is
more complicated so it was decided that the typical use-cases don't warrant that complication.
Once the algorithm has completed processing “ADJ1”, the last adjustment time value is updated
to reflect the timebase value at that moment. Any new observations must lie between the last
adjustment time and the current time to be considered by the algorithm. Figure 6 illustrates the
restriction where only “ADJ5” will be considered for new clock adjustments in that case.

 - Page 12 of 16 -

Figure 5: Restrictions on New Observations while
Performing a Clock Adjustment.

Being
Processed

Not used while
processing previous
adjustment

Figure 6: Restrictions on New Observations after Completing a Clock
Adjustment.

Can be used by
default algorithm

Used for previous
time adjustment.

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

To maintain the requirement that the time value should always be monotonically non-decreasing,
calling AdjustClockTime32() with a desired adjusted clock value earlier than the
PVMFMediaClock observed value will “freeze” the time value for a duration determined by the
difference between two values according to the clock timebase. This default algorithm is
implemented in the virtual function GetAdjustedRunningClockTime() so derived classes may
override the function to use a different algorithm.

3.6. NPT Mapping
The NPT mapping is stored in the media clock in three variables. StartMediaClockTimestamp,
StartNPT and clockDirection. These three values provide the necessary information for mapping
the times during a continuous playback segment. When there is a discontinuous in jump in the
NPT such as during repositioning or a change in direction, then the mapping needs to be
updated. The method UpdateNPTClockPosition() provides a way to update these values. For
the NPT mapping algorithm please refer to Section 5

3.7. Clock Notifications and Latency Handling
The PVMFMediaClock can notify components on changes in clock states or based on reaching
specific values of the clock. For components that need to take action based on a specific value of
the clock, the callback eliminates the need for setting their own timer and canceling and reseting
it when the PVMFMediaClock pauses, restarts, or is adjusted. To get notifications for these
events, modules have to implement corresponding observer interfaces. There are three such
observer interfaces:

1.PVMFMediaClockObserver – Notified on clock Timebase update, clock count update and clock
adjustment.

2.PVMFMediaClockStateObserver – Notified on clock state changes.

3.PVMFMediaClockNotificationsObs - These observers can set callbacks on clocks. For details
on callbacks, please see Section 6

The PVMFMediaClock stores PVMFMediaClockObservers in a list. When a component adds
itself as PVMFMediaClockObserver, the pointer supplied is added to the list. At the time of an
event (timebase update, count update or clock adjustment), PVMFMediaClock goes through the
list and calls appropriate function of the observer. Notifications for these observers are not
adjusted for module latency.

Handling PVMFMediaClockStateObserver and PVMFMediaClockNotificationsObs observers is
more complicated than PVMFMediaClockObserver observers. The reason for this is that
PVMFMediaClock has to adjust for individual module latencies while scheduling notifications to
these observers. For PVMFMediaClockStateObserver, only the clock-start notification is adjusted
for module latency whereas clock-pause and clock-stop notifications are sent right away. All
callback notifications to PVMFMediaClockNotificationsObs observers are adjusted for module
latency.

The latency adjustment algorithm is as described in Section 7 To implement this method, the
PVMFMediaClock needs the latency value of all modules to calculate largest common value and
it also needs to know from which module the API is being called. To solve this, PVMFMediaClock
uses unique PVMFMediaClockNotificationsInterfaceImpl objects for each module. Modules call
the APIs using their interface object and the interface object calls corresponding APIs in the

 - Page 13 of 16 -

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

media clock. The interface object adjusts for the latency in the time-value supplied to the clock.
The following sequence diagram describes this mechanism.

3.8. Callbacks
Timer callbacks are implemented using a single active object. The PVMFMediaClock keeps all
active timers in a priority queue with earlier expiring timers having the highest priority. It
schedules the active object to the timer expiry time of the earliest expiring element in the queue.
When a callback is fired, it is deleted from the queue and the AO is scheduled to expiry time of
next pending timer in the queue. This AO is canceled when clock is paused/stopped and started
again when clock starts.

 - Page 14 of 16 -

Figure 7: Sequence Diagram Showing Usage of
PVMFMediaClockNotificationsInterface

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

While setting the callback timer, a module can give a time window for timer expiry rather than
giving a specific time. When a timer at the front of the queue expires, next in line timers are
checked to see if the current time is in their window or if they have expired. If it is, the next timer
is fired too. Subsequent times are also checked until a timer is found whose window lies in the
future. This logic works in a similar manner if window size is zero.

As described in the previous section, the callback timer APIs are accessed through a
PVMFMediaClockNotificationsInterfaceImpl object. This object has to be explicitly created and
destroyed. At the time of interface object destruction, if there are any active callback timers set
through that interface object, they are deleted. For API usage example, please refer pvmf unit test
code.

3.9. NPT Callbacks
NPT callbacks are implemented in the same way as regular callbacks. A separate priority queue
is maintained for NPT timers.

3.10. PVMFMediaClockObservers and
PVMFMediaClockStateObservers

The PVMFMediaClock stores PVMFMediaClockObservers in a list. When a module adds itself as
a PVMFMediaClockObserver, the pointer supplied is added to the list. At the time of event
(timebase update, count update, or clock adjustment), the PVMFMediaClock goes through the list
and calls appropriate function of the objects.

PVMFMediaClockStateObservers are stored in the corresponding interface objects. When the
clock state changes, the ClockStateUpdated function of all observers is called. The mechanism is
different when the clock start notification has to be sent because the PVMFMediaClock has to
adjust for latency while calling the PVMFMediaClockStateObservers for the clock start event. For
all clock start notifications that have to be sent in future, the PVMFMediaClock sets a timer
callback on itself. When these timers expire, the clock start notifications are sent.

3.11. NPT Clock Transition
User modules can set NPT clock transition events in the future. The PVMFMediaClock simply
schedules the callback timers and changes the NPT clock when the callback expires. It stores the
set of new values as an element in a queue and pops it when the time expires.

3.12. Multithreading Support
The PVMFMediaClock has limited multithreading support as of now. All regular and NPT Callback
APIs have a threadlock flag. If this flag is set, class data is modified only after acquiring a
common mutex.

4. Time Comparison Utilities
The time comparison utilities provide a small set of functions that take care common calculations
needed when comparing time values. Although the time comparison utilities are not part of
PVMFMediaClock itself, the implementation makes heavy use of them.

 - Page 15 of 16 -

PVMFMediaClock Guide
OpenCORE 2.0, ver 1

The time values are stored as 32-bit unsigned integers and will eventually wrap around the
maximum integer value back to 0 given enough time. The time interval necessary to reach the
wrap point depends on the initial starting value and the timescale (i.e, how quickly the time values
increment). With the current default timescale of milliseconds, it would take 49+ days to reach
the 32-bit limit starting from 0. However, if the timescale increases in the future to have higher
resolution or it is not possible to guarantee a 0 initial time value, then the wrap point could be
reached much quicker. Using simple integer comparisons to decide if one time value is earlier or
later than another doesn't really work across the wrap point. A better way is to check the
difference between two time values against a threshold. This method works even if the two
values straddle the wrap point.

The diagram below shows a conceptual model of the time evolution of these values. The values
progress in a clockwise direction around the circle as time advances. Once the value increments
beyond the maximum 32-bit value, it wraps back to 0. The difference between two values can be
seen by the distance between the two values in the counter-clockwise direction. For example,
Figure 8 shows two values R0 and R1 where R1 occurs after (i.e., later than) R0 and the
difference R1 - R0 is the distance between R1 and R0 in the counter-clockwise direction.

The basic comparison utilities are placed in baselibs/media_data_structures along with the clock
converter. The utilities are structured specifically for time comparisons. One function, called
IsEarlier(), takes two values to compare as well as an output parameter to return the difference.
The function determines if the first parameter is earlier than the second and always provides the
difference as output. The difference is computed as part of the process so it is no extra work to
return it, and since many callers need this information, the implementation included it.

The IsEarlier method can also be used to compare the stream IDs used the PVMFMediaMsg
structure for carrying datapath messages because the design stipulates that the stream IDs must
be assigned so the comparison shown above indicates the time ordering of two stream IDs.

Another utility is the CheckTimeWindow() function. This API can determine if a given timestamp
falls within a time window, which is a common check used to decide if an event notification should
be sent.

 - Page 16 of 16 -

Figure 8: Conceptual
Model of Time Values

	1. Introduction
	2.PVMFMediaClock Features
	2.1. Timekeeping
	2.2. Clock Observers
	2.3. NPT Mapping
	2.4. Timer Callbacks
	2.5. Latency Handling
	2.6. NPT Clock Transition

	3.Design Details
	3.1. PVMFMediaClock Class Design
	3.2. Clock Timebase
	3.3. State Machine
	3.4. Timekeeping
	3.5. Clock Adjustments
	3.6. NPT Mapping
	3.7. Clock Notifications and Latency Handling
	3.8. Callbacks
	3.9. NPT Callbacks
	3.10. PVMFMediaClockObservers and PVMFMediaClockStateObservers
	3.11. NPT Clock Transition
	3.12. Multithreading Support

	4.Time Comparison Utilities

