OSDN Git Service

[Docs] Update docs to indicate that CUDA compilation is supported on Windows.
[android-x86/external-llvm.git] / docs / CompileCudaWithLLVM.rst
1 =========================
2 Compiling CUDA with clang
3 =========================
4
5 .. contents::
6    :local:
7
8 Introduction
9 ============
10
11 This document describes how to compile CUDA code with clang, and gives some
12 details about LLVM and clang's CUDA implementations.
13
14 This document assumes a basic familiarity with CUDA. Information about CUDA
15 programming can be found in the
16 `CUDA programming guide
17 <http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html>`_.
18
19 Compiling CUDA Code
20 ===================
21
22 Prerequisites
23 -------------
24
25 CUDA is supported in llvm 3.9, but it's still in active development, so we
26 recommend you `compile clang/LLVM from HEAD
27 <http://llvm.org/docs/GettingStarted.html>`_.
28
29 Before you build CUDA code, you'll need to have installed the appropriate
30 driver for your nvidia GPU and the CUDA SDK.  See `NVIDIA's CUDA installation
31 guide <https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html>`_
32 for details.  Note that clang `does not support
33 <https://llvm.org/bugs/show_bug.cgi?id=26966>`_ the CUDA toolkit as installed
34 by many Linux package managers; you probably need to install nvidia's package.
35
36 You will need CUDA 7.0, 7.5, or 8.0 to compile with clang.
37
38 CUDA compilation is supported on Linux, on MacOS as of 2016-11-18, and on
39 Windows as of 2017-01-05.
40
41 Invoking clang
42 --------------
43
44 Invoking clang for CUDA compilation works similarly to compiling regular C++.
45 You just need to be aware of a few additional flags.
46
47 You can use `this <https://gist.github.com/855e277884eb6b388cd2f00d956c2fd4>`_
48 program as a toy example.  Save it as ``axpy.cu``.  (Clang detects that you're
49 compiling CUDA code by noticing that your filename ends with ``.cu``.
50 Alternatively, you can pass ``-x cuda``.)
51
52 To build and run, run the following commands, filling in the parts in angle
53 brackets as described below:
54
55 .. code-block:: console
56
57   $ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch> \
58       -L<CUDA install path>/<lib64 or lib>             \
59       -lcudart_static -ldl -lrt -pthread
60   $ ./axpy
61   y[0] = 2
62   y[1] = 4
63   y[2] = 6
64   y[3] = 8
65
66 On MacOS, replace `-lcudart_static` with `-lcudart`; otherwise, you may get
67 "CUDA driver version is insufficient for CUDA runtime version" errors when you
68 run your program.
69
70 * ``<CUDA install path>`` -- the directory where you installed CUDA SDK.
71   Typically, ``/usr/local/cuda``.
72
73   Pass e.g. ``-L/usr/local/cuda/lib64`` if compiling in 64-bit mode; otherwise,
74   pass e.g. ``-L/usr/local/cuda/lib``.  (In CUDA, the device code and host code
75   always have the same pointer widths, so if you're compiling 64-bit code for
76   the host, you're also compiling 64-bit code for the device.)
77
78 * ``<GPU arch>`` -- the `compute capability
79   <https://developer.nvidia.com/cuda-gpus>`_ of your GPU. For example, if you
80   want to run your program on a GPU with compute capability of 3.5, specify
81   ``--cuda-gpu-arch=sm_35``.
82
83   Note: You cannot pass ``compute_XX`` as an argument to ``--cuda-gpu-arch``;
84   only ``sm_XX`` is currently supported.  However, clang always includes PTX in
85   its binaries, so e.g. a binary compiled with ``--cuda-gpu-arch=sm_30`` would be
86   forwards-compatible with e.g. ``sm_35`` GPUs.
87
88   You can pass ``--cuda-gpu-arch`` multiple times to compile for multiple archs.
89
90 The `-L` and `-l` flags only need to be passed when linking.  When compiling,
91 you may also need to pass ``--cuda-path=/path/to/cuda`` if you didn't install
92 the CUDA SDK into ``/usr/local/cuda``, ``/usr/local/cuda-7.0``, or
93 ``/usr/local/cuda-7.5``.
94
95 Flags that control numerical code
96 ---------------------------------
97
98 If you're using GPUs, you probably care about making numerical code run fast.
99 GPU hardware allows for more control over numerical operations than most CPUs,
100 but this results in more compiler options for you to juggle.
101
102 Flags you may wish to tweak include:
103
104 * ``-ffp-contract={on,off,fast}`` (defaults to ``fast`` on host and device when
105   compiling CUDA) Controls whether the compiler emits fused multiply-add
106   operations.
107
108   * ``off``: never emit fma operations, and prevent ptxas from fusing multiply
109     and add instructions.
110   * ``on``: fuse multiplies and adds within a single statement, but never
111     across statements (C11 semantics).  Prevent ptxas from fusing other
112     multiplies and adds.
113   * ``fast``: fuse multiplies and adds wherever profitable, even across
114     statements.  Doesn't prevent ptxas from fusing additional multiplies and
115     adds.
116
117   Fused multiply-add instructions can be much faster than the unfused
118   equivalents, but because the intermediate result in an fma is not rounded,
119   this flag can affect numerical code.
120
121 * ``-fcuda-flush-denormals-to-zero`` (default: off) When this is enabled,
122   floating point operations may flush `denormal
123   <https://en.wikipedia.org/wiki/Denormal_number>`_ inputs and/or outputs to 0.
124   Operations on denormal numbers are often much slower than the same operations
125   on normal numbers.
126
127 * ``-fcuda-approx-transcendentals`` (default: off) When this is enabled, the
128   compiler may emit calls to faster, approximate versions of transcendental
129   functions, instead of using the slower, fully IEEE-compliant versions.  For
130   example, this flag allows clang to emit the ptx ``sin.approx.f32``
131   instruction.
132
133   This is implied by ``-ffast-math``.
134
135 Standard library support
136 ========================
137
138 In clang and nvcc, most of the C++ standard library is not supported on the
139 device side.
140
141 ``<math.h>`` and ``<cmath>``
142 ----------------------------
143
144 In clang, ``math.h`` and ``cmath`` are available and `pass
145 <https://github.com/llvm-mirror/test-suite/blob/master/External/CUDA/math_h.cu>`_
146 `tests
147 <https://github.com/llvm-mirror/test-suite/blob/master/External/CUDA/cmath.cu>`_
148 adapted from libc++'s test suite.
149
150 In nvcc ``math.h`` and ``cmath`` are mostly available.  Versions of ``::foof``
151 in namespace std (e.g. ``std::sinf``) are not available, and where the standard
152 calls for overloads that take integral arguments, these are usually not
153 available.
154
155 .. code-block:: c++
156
157   #include <math.h>
158   #include <cmath.h>
159
160   // clang is OK with everything in this function.
161   __device__ void test() {
162     std::sin(0.); // nvcc - ok
163     std::sin(0);  // nvcc - error, because no std::sin(int) override is available.
164     sin(0);       // nvcc - same as above.
165
166     sinf(0.);       // nvcc - ok
167     std::sinf(0.);  // nvcc - no such function
168   }
169
170 ``<std::complex>``
171 ------------------
172
173 nvcc does not officially support ``std::complex``.  It's an error to use
174 ``std::complex`` in ``__device__`` code, but it often works in ``__host__
175 __device__`` code due to nvcc's interpretation of the "wrong-side rule" (see
176 below).  However, we have heard from implementers that it's possible to get
177 into situations where nvcc will omit a call to an ``std::complex`` function,
178 especially when compiling without optimizations.
179
180 As of 2016-11-16, clang supports ``std::complex`` without these caveats.  It is
181 tested with libstdc++ 4.8.5 and newer, but is known to work only with libc++
182 newer than 2016-11-16.
183
184 ``<algorithm>``
185 ---------------
186
187 In C++14, many useful functions from ``<algorithm>`` (notably, ``std::min`` and
188 ``std::max``) become constexpr.  You can therefore use these in device code,
189 when compiling with clang.
190
191 Detecting clang vs NVCC from code
192 =================================
193
194 Although clang's CUDA implementation is largely compatible with NVCC's, you may
195 still want to detect when you're compiling CUDA code specifically with clang.
196
197 This is tricky, because NVCC may invoke clang as part of its own compilation
198 process!  For example, NVCC uses the host compiler's preprocessor when
199 compiling for device code, and that host compiler may in fact be clang.
200
201 When clang is actually compiling CUDA code -- rather than being used as a
202 subtool of NVCC's -- it defines the ``__CUDA__`` macro.  ``__CUDA_ARCH__`` is
203 defined only in device mode (but will be defined if NVCC is using clang as a
204 preprocessor).  So you can use the following incantations to detect clang CUDA
205 compilation, in host and device modes:
206
207 .. code-block:: c++
208
209   #if defined(__clang__) && defined(__CUDA__) && !defined(__CUDA_ARCH__)
210   // clang compiling CUDA code, host mode.
211   #endif
212
213   #if defined(__clang__) && defined(__CUDA__) && defined(__CUDA_ARCH__)
214   // clang compiling CUDA code, device mode.
215   #endif
216
217 Both clang and nvcc define ``__CUDACC__`` during CUDA compilation.  You can
218 detect NVCC specifically by looking for ``__NVCC__``.
219
220 Dialect Differences Between clang and nvcc
221 ==========================================
222
223 There is no formal CUDA spec, and clang and nvcc speak slightly different
224 dialects of the language.  Below, we describe some of the differences.
225
226 This section is painful; hopefully you can skip this section and live your life
227 blissfully unaware.
228
229 Compilation Models
230 ------------------
231
232 Most of the differences between clang and nvcc stem from the different
233 compilation models used by clang and nvcc.  nvcc uses *split compilation*,
234 which works roughly as follows:
235
236  * Run a preprocessor over the input ``.cu`` file to split it into two source
237    files: ``H``, containing source code for the host, and ``D``, containing
238    source code for the device.
239
240  * For each GPU architecture ``arch`` that we're compiling for, do:
241
242    * Compile ``D`` using nvcc proper.  The result of this is a ``ptx`` file for
243      ``P_arch``.
244
245    * Optionally, invoke ``ptxas``, the PTX assembler, to generate a file,
246      ``S_arch``, containing GPU machine code (SASS) for ``arch``.
247
248  * Invoke ``fatbin`` to combine all ``P_arch`` and ``S_arch`` files into a
249    single "fat binary" file, ``F``.
250
251  * Compile ``H`` using an external host compiler (gcc, clang, or whatever you
252    like).  ``F`` is packaged up into a header file which is force-included into
253    ``H``; nvcc generates code that calls into this header to e.g. launch
254    kernels.
255
256 clang uses *merged parsing*.  This is similar to split compilation, except all
257 of the host and device code is present and must be semantically-correct in both
258 compilation steps.
259
260   * For each GPU architecture ``arch`` that we're compiling for, do:
261
262     * Compile the input ``.cu`` file for device, using clang.  ``__host__`` code
263       is parsed and must be semantically correct, even though we're not
264       generating code for the host at this time.
265
266       The output of this step is a ``ptx`` file ``P_arch``.
267
268     * Invoke ``ptxas`` to generate a SASS file, ``S_arch``.  Note that, unlike
269       nvcc, clang always generates SASS code.
270
271   * Invoke ``fatbin`` to combine all ``P_arch`` and ``S_arch`` files into a
272     single fat binary file, ``F``.
273
274   * Compile ``H`` using clang.  ``__device__`` code is parsed and must be
275     semantically correct, even though we're not generating code for the device
276     at this time.
277
278     ``F`` is passed to this compilation, and clang includes it in a special ELF
279     section, where it can be found by tools like ``cuobjdump``.
280
281 (You may ask at this point, why does clang need to parse the input file
282 multiple times?  Why not parse it just once, and then use the AST to generate
283 code for the host and each device architecture?
284
285 Unfortunately this can't work because we have to define different macros during
286 host compilation and during device compilation for each GPU architecture.)
287
288 clang's approach allows it to be highly robust to C++ edge cases, as it doesn't
289 need to decide at an early stage which declarations to keep and which to throw
290 away.  But it has some consequences you should be aware of.
291
292 Overloading Based on ``__host__`` and ``__device__`` Attributes
293 ---------------------------------------------------------------
294
295 Let "H", "D", and "HD" stand for "``__host__`` functions", "``__device__``
296 functions", and "``__host__ __device__`` functions", respectively.  Functions
297 with no attributes behave the same as H.
298
299 nvcc does not allow you to create H and D functions with the same signature:
300
301 .. code-block:: c++
302
303   // nvcc: error - function "foo" has already been defined
304   __host__ void foo() {}
305   __device__ void foo() {}
306
307 However, nvcc allows you to "overload" H and D functions with different
308 signatures:
309
310 .. code-block:: c++
311
312   // nvcc: no error
313   __host__ void foo(int) {}
314   __device__ void foo() {}
315
316 In clang, the ``__host__`` and ``__device__`` attributes are part of a
317 function's signature, and so it's legal to have H and D functions with
318 (otherwise) the same signature:
319
320 .. code-block:: c++
321
322   // clang: no error
323   __host__ void foo() {}
324   __device__ void foo() {}
325
326 HD functions cannot be overloaded by H or D functions with the same signature:
327
328 .. code-block:: c++
329
330   // nvcc: error - function "foo" has already been defined
331   // clang: error - redefinition of 'foo'
332   __host__ __device__ void foo() {}
333   __device__ void foo() {}
334
335   // nvcc: no error
336   // clang: no error
337   __host__ __device__ void bar(int) {}
338   __device__ void bar() {}
339
340 When resolving an overloaded function, clang considers the host/device
341 attributes of the caller and callee.  These are used as a tiebreaker during
342 overload resolution.  See `IdentifyCUDAPreference
343 <http://clang.llvm.org/doxygen/SemaCUDA_8cpp.html>`_ for the full set of rules,
344 but at a high level they are:
345
346  * D functions prefer to call other Ds.  HDs are given lower priority.
347
348  * Similarly, H functions prefer to call other Hs, or ``__global__`` functions
349    (with equal priority).  HDs are given lower priority.
350
351  * HD functions prefer to call other HDs.
352
353    When compiling for device, HDs will call Ds with lower priority than HD, and
354    will call Hs with still lower priority.  If it's forced to call an H, the
355    program is malformed if we emit code for this HD function.  We call this the
356    "wrong-side rule", see example below.
357
358    The rules are symmetrical when compiling for host.
359
360 Some examples:
361
362 .. code-block:: c++
363
364    __host__ void foo();
365    __device__ void foo();
366
367    __host__ void bar();
368    __host__ __device__ void bar();
369
370    __host__ void test_host() {
371      foo();  // calls H overload
372      bar();  // calls H overload
373    }
374
375    __device__ void test_device() {
376      foo();  // calls D overload
377      bar();  // calls HD overload
378    }
379
380    __host__ __device__ void test_hd() {
381      foo();  // calls H overload when compiling for host, otherwise D overload
382      bar();  // always calls HD overload
383    }
384
385 Wrong-side rule example:
386
387 .. code-block:: c++
388
389   __host__ void host_only();
390
391   // We don't codegen inline functions unless they're referenced by a
392   // non-inline function.  inline_hd1() is called only from the host side, so
393   // does not generate an error.  inline_hd2() is called from the device side,
394   // so it generates an error.
395   inline __host__ __device__ void inline_hd1() { host_only(); }  // no error
396   inline __host__ __device__ void inline_hd2() { host_only(); }  // error
397
398   __host__ void host_fn() { inline_hd1(); }
399   __device__ void device_fn() { inline_hd2(); }
400
401   // This function is not inline, so it's always codegen'ed on both the host
402   // and the device.  Therefore, it generates an error.
403   __host__ __device__ void not_inline_hd() { host_only(); }
404
405 For the purposes of the wrong-side rule, templated functions also behave like
406 ``inline`` functions: They aren't codegen'ed unless they're instantiated
407 (usually as part of the process of invoking them).
408
409 clang's behavior with respect to the wrong-side rule matches nvcc's, except
410 nvcc only emits a warning for ``not_inline_hd``; device code is allowed to call
411 ``not_inline_hd``.  In its generated code, nvcc may omit ``not_inline_hd``'s
412 call to ``host_only`` entirely, or it may try to generate code for
413 ``host_only`` on the device.  What you get seems to depend on whether or not
414 the compiler chooses to inline ``host_only``.
415
416 Member functions, including constructors, may be overloaded using H and D
417 attributes.  However, destructors cannot be overloaded.
418
419 Using a Different Class on Host/Device
420 --------------------------------------
421
422 Occasionally you may want to have a class with different host/device versions.
423
424 If all of the class's members are the same on the host and device, you can just
425 provide overloads for the class's member functions.
426
427 However, if you want your class to have different members on host/device, you
428 won't be able to provide working H and D overloads in both classes. In this
429 case, clang is likely to be unhappy with you.
430
431 .. code-block:: c++
432
433   #ifdef __CUDA_ARCH__
434   struct S {
435     __device__ void foo() { /* use device_only */ }
436     int device_only;
437   };
438   #else
439   struct S {
440     __host__ void foo() { /* use host_only */ }
441     double host_only;
442   };
443
444   __device__ void test() {
445     S s;
446     // clang generates an error here, because during host compilation, we
447     // have ifdef'ed away the __device__ overload of S::foo().  The __device__
448     // overload must be present *even during host compilation*.
449     S.foo();
450   }
451   #endif
452
453 We posit that you don't really want to have classes with different members on H
454 and D.  For example, if you were to pass one of these as a parameter to a
455 kernel, it would have a different layout on H and D, so would not work
456 properly.
457
458 To make code like this compatible with clang, we recommend you separate it out
459 into two classes.  If you need to write code that works on both host and
460 device, consider writing an overloaded wrapper function that returns different
461 types on host and device.
462
463 .. code-block:: c++
464
465   struct HostS { ... };
466   struct DeviceS { ... };
467
468   __host__ HostS MakeStruct() { return HostS(); }
469   __device__ DeviceS MakeStruct() { return DeviceS(); }
470
471   // Now host and device code can call MakeStruct().
472
473 Unfortunately, this idiom isn't compatible with nvcc, because it doesn't allow
474 you to overload based on the H/D attributes.  Here's an idiom that works with
475 both clang and nvcc:
476
477 .. code-block:: c++
478
479   struct HostS { ... };
480   struct DeviceS { ... };
481
482   #ifdef __NVCC__
483     #ifndef __CUDA_ARCH__
484       __host__ HostS MakeStruct() { return HostS(); }
485     #else
486       __device__ DeviceS MakeStruct() { return DeviceS(); }
487     #endif
488   #else
489     __host__ HostS MakeStruct() { return HostS(); }
490     __device__ DeviceS MakeStruct() { return DeviceS(); }
491   #endif
492
493   // Now host and device code can call MakeStruct().
494
495 Hopefully you don't have to do this sort of thing often.
496
497 Optimizations
498 =============
499
500 Modern CPUs and GPUs are architecturally quite different, so code that's fast
501 on a CPU isn't necessarily fast on a GPU.  We've made a number of changes to
502 LLVM to make it generate good GPU code.  Among these changes are:
503
504 * `Straight-line scalar optimizations <https://goo.gl/4Rb9As>`_ -- These
505   reduce redundancy within straight-line code.
506
507 * `Aggressive speculative execution
508   <http://llvm.org/docs/doxygen/html/SpeculativeExecution_8cpp_source.html>`_
509   -- This is mainly for promoting straight-line scalar optimizations, which are
510   most effective on code along dominator paths.
511
512 * `Memory space inference
513   <http://llvm.org/doxygen/NVPTXInferAddressSpaces_8cpp_source.html>`_ --
514   In PTX, we can operate on pointers that are in a paricular "address space"
515   (global, shared, constant, or local), or we can operate on pointers in the
516   "generic" address space, which can point to anything.  Operations in a
517   non-generic address space are faster, but pointers in CUDA are not explicitly
518   annotated with their address space, so it's up to LLVM to infer it where
519   possible.
520
521 * `Bypassing 64-bit divides
522   <http://llvm.org/docs/doxygen/html/BypassSlowDivision_8cpp_source.html>`_ --
523   This was an existing optimization that we enabled for the PTX backend.
524
525   64-bit integer divides are much slower than 32-bit ones on NVIDIA GPUs.
526   Many of the 64-bit divides in our benchmarks have a divisor and dividend
527   which fit in 32-bits at runtime. This optimization provides a fast path for
528   this common case.
529
530 * Aggressive loop unrooling and function inlining -- Loop unrolling and
531   function inlining need to be more aggressive for GPUs than for CPUs because
532   control flow transfer in GPU is more expensive. More aggressive unrolling and
533   inlining also promote other optimizations, such as constant propagation and
534   SROA, which sometimes speed up code by over 10x.
535
536   (Programmers can force unrolling and inline using clang's `loop unrolling pragmas
537   <http://clang.llvm.org/docs/AttributeReference.html#pragma-unroll-pragma-nounroll>`_
538   and ``__attribute__((always_inline))``.)
539
540 Publication
541 ===========
542
543 The team at Google published a paper in CGO 2016 detailing the optimizations
544 they'd made to clang/LLVM.  Note that "gpucc" is no longer a meaningful name:
545 The relevant tools are now just vanilla clang/LLVM.
546
547 | `gpucc: An Open-Source GPGPU Compiler <http://dl.acm.org/citation.cfm?id=2854041>`_
548 | Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, Robert Hundt
549 | *Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO 2016)*
550 |
551 | `Slides from the CGO talk <http://wujingyue.com/docs/gpucc-talk.pdf>`_
552 |
553 | `Tutorial given at CGO <http://wujingyue.com/docs/gpucc-tutorial.pdf>`_
554
555 Obtaining Help
556 ==============
557
558 To obtain help on LLVM in general and its CUDA support, see `the LLVM
559 community <http://llvm.org/docs/#mailing-lists>`_.