OSDN Git Service

Retire VS2015 Support
[android-x86/external-llvm.git] / docs / SourceLevelDebugging.rst
1 ================================
2 Source Level Debugging with LLVM
3 ================================
4
5 .. contents::
6    :local:
7
8 Introduction
9 ============
10
11 This document is the central repository for all information pertaining to debug
12 information in LLVM.  It describes the :ref:`actual format that the LLVM debug
13 information takes <format>`, which is useful for those interested in creating
14 front-ends or dealing directly with the information.  Further, this document
15 provides specific examples of what debug information for C/C++ looks like.
16
17 Philosophy behind LLVM debugging information
18 --------------------------------------------
19
20 The idea of the LLVM debugging information is to capture how the important
21 pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22 Several design aspects have shaped the solution that appears here.  The
23 important ones are:
24
25 * Debugging information should have very little impact on the rest of the
26   compiler.  No transformations, analyses, or code generators should need to
27   be modified because of debugging information.
28
29 * LLVM optimizations should interact in :ref:`well-defined and easily described
30   ways <intro_debugopt>` with the debugging information.
31
32 * Because LLVM is designed to support arbitrary programming languages,
33   LLVM-to-LLVM tools should not need to know anything about the semantics of
34   the source-level-language.
35
36 * Source-level languages are often **widely** different from one another.
37   LLVM should not put any restrictions of the flavor of the source-language,
38   and the debugging information should work with any language.
39
40 * With code generator support, it should be possible to use an LLVM compiler
41   to compile a program to native machine code and standard debugging
42   formats.  This allows compatibility with traditional machine-code level
43   debuggers, like GDB or DBX.
44
45 The approach used by the LLVM implementation is to use a small set of
46 :ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47 between LLVM program objects and the source-level objects.  The description of
48 the source-level program is maintained in LLVM metadata in an
49 :ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50 currently uses working draft 7 of the `DWARF 3 standard
51 <http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53 When a program is being debugged, a debugger interacts with the user and turns
54 the stored debug information into source-language specific information.  As
55 such, a debugger must be aware of the source-language, and is thus tied to a
56 specific language or family of languages.
57
58 Debug information consumers
59 ---------------------------
60
61 The role of debug information is to provide meta information normally stripped
62 away during the compilation process.  This meta information provides an LLVM
63 user a relationship between generated code and the original program source
64 code.
65
66 Currently, there are two backend consumers of debug info: DwarfDebug and
67 CodeViewDebug. DwarfDebug produces DWARF suitable for use with GDB, LLDB, and
68 other DWARF-based debuggers. :ref:`CodeViewDebug <codeview>` produces CodeView,
69 the Microsoft debug info format, which is usable with Microsoft debuggers such
70 as Visual Studio and WinDBG. LLVM's debug information format is mostly derived
71 from and inspired by DWARF, but it is feasible to translate into other target
72 debug info formats such as STABS.
73
74 It would also be reasonable to use debug information to feed profiling tools
75 for analysis of generated code, or, tools for reconstructing the original
76 source from generated code.
77
78 .. _intro_debugopt:
79
80 Debug information and optimizations
81 -----------------------------------
82
83 An extremely high priority of LLVM debugging information is to make it interact
84 well with optimizations and analysis.  In particular, the LLVM debug
85 information provides the following guarantees:
86
87 * LLVM debug information **always provides information to accurately read
88   the source-level state of the program**, regardless of which LLVM
89   optimizations have been run, and without any modification to the
90   optimizations themselves.  However, some optimizations may impact the
91   ability to modify the current state of the program with a debugger, such
92   as setting program variables, or calling functions that have been
93   deleted.
94
95 * As desired, LLVM optimizations can be upgraded to be aware of debugging
96   information, allowing them to update the debugging information as they
97   perform aggressive optimizations.  This means that, with effort, the LLVM
98   optimizers could optimize debug code just as well as non-debug code.
99
100 * LLVM debug information does not prevent optimizations from
101   happening (for example inlining, basic block reordering/merging/cleanup,
102   tail duplication, etc).
103
104 * LLVM debug information is automatically optimized along with the rest of
105   the program, using existing facilities.  For example, duplicate
106   information is automatically merged by the linker, and unused information
107   is automatically removed.
108
109 Basically, the debug information allows you to compile a program with
110 "``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
111 the program as it executes from a debugger.  Compiling a program with
112 "``-O3 -g``" gives you full debug information that is always available and
113 accurate for reading (e.g., you get accurate stack traces despite tail call
114 elimination and inlining), but you might lose the ability to modify the program
115 and call functions which were optimized out of the program, or inlined away
116 completely.
117
118 The :doc:`LLVM test-suite <TestSuiteMakefileGuide>` provides a framework to
119 test the optimizer's handling of debugging information.  It can be run like
120 this:
121
122 .. code-block:: bash
123
124   % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
125   % make TEST=dbgopt
126
127 This will test impact of debugging information on optimization passes.  If
128 debugging information influences optimization passes then it will be reported
129 as a failure.  See :doc:`TestingGuide` for more information on LLVM test
130 infrastructure and how to run various tests.
131
132 .. _format:
133
134 Debugging information format
135 ============================
136
137 LLVM debugging information has been carefully designed to make it possible for
138 the optimizer to optimize the program and debugging information without
139 necessarily having to know anything about debugging information.  In
140 particular, the use of metadata avoids duplicated debugging information from
141 the beginning, and the global dead code elimination pass automatically deletes
142 debugging information for a function if it decides to delete the function.
143
144 To do this, most of the debugging information (descriptors for types,
145 variables, functions, source files, etc) is inserted by the language front-end
146 in the form of LLVM metadata.
147
148 Debug information is designed to be agnostic about the target debugger and
149 debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
150 pass to decode the information that represents variables, types, functions,
151 namespaces, etc: this allows for arbitrary source-language semantics and
152 type-systems to be used, as long as there is a module written for the target
153 debugger to interpret the information.
154
155 To provide basic functionality, the LLVM debugger does have to make some
156 assumptions about the source-level language being debugged, though it keeps
157 these to a minimum.  The only common features that the LLVM debugger assumes
158 exist are `source files <LangRef.html#difile>`_, and `program objects
159 <LangRef.html#diglobalvariable>`_.  These abstract objects are used by a
160 debugger to form stack traces, show information about local variables, etc.
161
162 This section of the documentation first describes the representation aspects
163 common to any source-language.  :ref:`ccxx_frontend` describes the data layout
164 conventions used by the C and C++ front-ends.
165
166 Debug information descriptors are `specialized metadata nodes
167 <LangRef.html#specialized-metadata>`_, first-class subclasses of ``Metadata``.
168
169 .. _format_common_intrinsics:
170
171 Debugger intrinsic functions
172 ----------------------------
173
174 LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
175 track source local variables through optimization and code generation.
176
177 ``llvm.dbg.addr``
178 ^^^^^^^^^^^^^^^^^^^^
179
180 .. code-block:: llvm
181
182   void @llvm.dbg.addr(metadata, metadata, metadata)
183
184 This intrinsic provides information about a local element (e.g., variable).
185 The first argument is metadata holding the address of variable, typically a
186 static alloca in the function entry block.  The second argument is a
187 `local variable <LangRef.html#dilocalvariable>`_ containing a description of
188 the variable.  The third argument is a `complex expression
189 <LangRef.html#diexpression>`_.  An `llvm.dbg.addr` intrinsic describes the
190 *address* of a source variable.
191
192 .. code-block:: text
193
194     %i.addr = alloca i32, align 4
195     call void @llvm.dbg.addr(metadata i32* %i.addr, metadata !1,
196                              metadata !DIExpression()), !dbg !2
197     !1 = !DILocalVariable(name: "i", ...) ; int i
198     !2 = !DILocation(...)
199     ...
200     %buffer = alloca [256 x i8], align 8
201     ; The address of i is buffer+64.
202     call void @llvm.dbg.addr(metadata [256 x i8]* %buffer, metadata !3,
203                              metadata !DIExpression(DW_OP_plus, 64)), !dbg !4
204     !3 = !DILocalVariable(name: "i", ...) ; int i
205     !4 = !DILocation(...)
206
207 A frontend should generate exactly one call to ``llvm.dbg.addr`` at the point
208 of declaration of a source variable. Optimization passes that fully promote the
209 variable from memory to SSA values will replace this call with possibly
210 multiple calls to `llvm.dbg.value`. Passes that delete stores are effectively
211 partial promotion, and they will insert a mix of calls to ``llvm.dbg.value``
212 and ``llvm.dbg.addr`` to track the source variable value when it is available.
213 After optimization, there may be multiple calls to ``llvm.dbg.addr`` describing
214 the program points where the variables lives in memory. All calls for the same
215 concrete source variable must agree on the memory location.
216
217
218 ``llvm.dbg.declare``
219 ^^^^^^^^^^^^^^^^^^^^
220
221 .. code-block:: llvm
222
223   void @llvm.dbg.declare(metadata, metadata, metadata)
224
225 This intrinsic is identical to `llvm.dbg.addr`, except that there can only be
226 one call to `llvm.dbg.declare` for a given concrete `local variable
227 <LangRef.html#dilocalvariable>`_. It is not control-dependent, meaning that if
228 a call to `llvm.dbg.declare` exists and has a valid location argument, that
229 address is considered to be the true home of the variable across its entire
230 lifetime. This makes it hard for optimizations to preserve accurate debug info
231 in the presence of ``llvm.dbg.declare``, so we are transitioning away from it,
232 and we plan to deprecate it in future LLVM releases.
233
234
235 ``llvm.dbg.value``
236 ^^^^^^^^^^^^^^^^^^
237
238 .. code-block:: llvm
239
240   void @llvm.dbg.value(metadata, metadata, metadata)
241
242 This intrinsic provides information when a user source variable is set to a new
243 value.  The first argument is the new value (wrapped as metadata).  The second
244 argument is a `local variable <LangRef.html#dilocalvariable>`_ containing a
245 description of the variable.  The third argument is a `complex expression
246 <LangRef.html#diexpression>`_.
247
248 An `llvm.dbg.value` intrinsic describes the *value* of a source variable
249 directly, not its address.  Note that the value operand of this intrinsic may
250 be indirect (i.e, a pointer to the source variable), provided that interpreting
251 the complex expression derives the direct value.
252
253 Object lifetimes and scoping
254 ============================
255
256 In many languages, the local variables in functions can have their lifetimes or
257 scopes limited to a subset of a function.  In the C family of languages, for
258 example, variables are only live (readable and writable) within the source
259 block that they are defined in.  In functional languages, values are only
260 readable after they have been defined.  Though this is a very obvious concept,
261 it is non-trivial to model in LLVM, because it has no notion of scoping in this
262 sense, and does not want to be tied to a language's scoping rules.
263
264 In order to handle this, the LLVM debug format uses the metadata attached to
265 llvm instructions to encode line number and scoping information.  Consider the
266 following C fragment, for example:
267
268 .. code-block:: c
269
270   1.  void foo() {
271   2.    int X = 21;
272   3.    int Y = 22;
273   4.    {
274   5.      int Z = 23;
275   6.      Z = X;
276   7.    }
277   8.    X = Y;
278   9.  }
279
280 .. FIXME: Update the following example to use llvm.dbg.addr once that is the
281    default in clang.
282
283 Compiled to LLVM, this function would be represented like this:
284
285 .. code-block:: text
286
287   ; Function Attrs: nounwind ssp uwtable
288   define void @foo() #0 !dbg !4 {
289   entry:
290     %X = alloca i32, align 4
291     %Y = alloca i32, align 4
292     %Z = alloca i32, align 4
293     call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
294     store i32 21, i32* %X, align 4, !dbg !14
295     call void @llvm.dbg.declare(metadata i32* %Y, metadata !15, metadata !13), !dbg !16
296     store i32 22, i32* %Y, align 4, !dbg !16
297     call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
298     store i32 23, i32* %Z, align 4, !dbg !19
299     %0 = load i32, i32* %X, align 4, !dbg !20
300     store i32 %0, i32* %Z, align 4, !dbg !21
301     %1 = load i32, i32* %Y, align 4, !dbg !22
302     store i32 %1, i32* %X, align 4, !dbg !23
303     ret void, !dbg !24
304   }
305
306   ; Function Attrs: nounwind readnone
307   declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
308
309   attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
310   attributes #1 = { nounwind readnone }
311
312   !llvm.dbg.cu = !{!0}
313   !llvm.module.flags = !{!7, !8, !9}
314   !llvm.ident = !{!10}
315
316   !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, retainedTypes: !2, subprograms: !3, globals: !2, imports: !2)
317   !1 = !DIFile(filename: "/dev/stdin", directory: "/Users/dexonsmith/data/llvm/debug-info")
318   !2 = !{}
319   !3 = !{!4}
320   !4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, variables: !2)
321   !5 = !DISubroutineType(types: !6)
322   !6 = !{null}
323   !7 = !{i32 2, !"Dwarf Version", i32 2}
324   !8 = !{i32 2, !"Debug Info Version", i32 3}
325   !9 = !{i32 1, !"PIC Level", i32 2}
326   !10 = !{!"clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)"}
327   !11 = !DILocalVariable(name: "X", scope: !4, file: !1, line: 2, type: !12)
328   !12 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)
329   !13 = !DIExpression()
330   !14 = !DILocation(line: 2, column: 9, scope: !4)
331   !15 = !DILocalVariable(name: "Y", scope: !4, file: !1, line: 3, type: !12)
332   !16 = !DILocation(line: 3, column: 9, scope: !4)
333   !17 = !DILocalVariable(name: "Z", scope: !18, file: !1, line: 5, type: !12)
334   !18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
335   !19 = !DILocation(line: 5, column: 11, scope: !18)
336   !20 = !DILocation(line: 6, column: 11, scope: !18)
337   !21 = !DILocation(line: 6, column: 9, scope: !18)
338   !22 = !DILocation(line: 8, column: 9, scope: !4)
339   !23 = !DILocation(line: 8, column: 7, scope: !4)
340   !24 = !DILocation(line: 9, column: 3, scope: !4)
341
342
343 This example illustrates a few important details about LLVM debugging
344 information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
345 location information, which are attached to an instruction, are applied
346 together to allow a debugger to analyze the relationship between statements,
347 variable definitions, and the code used to implement the function.
348
349 .. code-block:: llvm
350
351   call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
352     ; [debug line = 2:7] [debug variable = X]
353
354 The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
355 variable ``X``.  The metadata ``!dbg !14`` attached to the intrinsic provides
356 scope information for the variable ``X``.
357
358 .. code-block:: text
359
360   !14 = !DILocation(line: 2, column: 9, scope: !4)
361   !4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5,
362                               isLocal: false, isDefinition: true, scopeLine: 1,
363                               isOptimized: false, variables: !2)
364
365 Here ``!14`` is metadata providing `location information
366 <LangRef.html#dilocation>`_.  In this example, scope is encoded by ``!4``, a
367 `subprogram descriptor <LangRef.html#disubprogram>`_.  This way the location
368 information attached to the intrinsics indicates that the variable ``X`` is
369 declared at line number 2 at a function level scope in function ``foo``.
370
371 Now lets take another example.
372
373 .. code-block:: llvm
374
375   call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
376     ; [debug line = 5:9] [debug variable = Z]
377
378 The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
379 variable ``Z``.  The metadata ``!dbg !19`` attached to the intrinsic provides
380 scope information for the variable ``Z``.
381
382 .. code-block:: text
383
384   !18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
385   !19 = !DILocation(line: 5, column: 11, scope: !18)
386
387 Here ``!19`` indicates that ``Z`` is declared at line number 5 and column
388 number 11 inside of lexical scope ``!18``.  The lexical scope itself resides
389 inside of subprogram ``!4`` described above.
390
391 The scope information attached with each instruction provides a straightforward
392 way to find instructions covered by a scope.
393
394 Object lifetime in optimized code
395 =================================
396
397 In the example above, every variable assignment uniquely corresponds to a
398 memory store to the variable's position on the stack. However in heavily
399 optimized code LLVM promotes most variables into SSA values, which can
400 eventually be placed in physical registers or memory locations. To track SSA
401 values through compilation, when objects are promoted to SSA values an
402 ``llvm.dbg.value`` intrinsic is created for each assignment, recording the
403 variable's new location. Compared with the ``llvm.dbg.declare`` intrinsic:
404
405 * A dbg.value terminates the effect of any preceeding dbg.values for (any
406   overlapping fragments of) the specified variable.
407 * The dbg.value's position in the IR defines where in the instruction stream
408   the variable's value changes.
409 * Operands can be constants, indicating the variable is assigned a
410   constant value.
411
412 Care must be taken to update ``llvm.dbg.value`` intrinsics when optimization
413 passes alter or move instructions and blocks -- the developer could observe such
414 changes reflected in the value of variables when debugging the program. For any
415 execution of the optimized program, the set of variable values presented to the
416 developer by the debugger should not show a state that would never have existed
417 in the execution of the unoptimized program, given the same input. Doing so
418 risks misleading the developer by reporting a state that does not exist,
419 damaging their understanding of the optimized program and undermining their
420 trust in the debugger.
421
422 Sometimes perfectly preserving variable locations is not possible, often when a
423 redundant calculation is optimized out. In such cases, a ``llvm.dbg.value``
424 with operand ``undef`` should be used, to terminate earlier variable locations
425 and let the debugger present ``optimized out`` to the developer. Withholding
426 these potentially stale variable values from the developer diminishes the
427 amount of available debug information, but increases the reliability of the
428 remaining information.
429  
430 To illustrate some potential issues, consider the following example:
431
432 .. code-block:: llvm
433
434   define i32 @foo(i32 %bar, i1 %cond) {
435   entry:
436     call @llvm.dbg.value(metadata i32 0, metadata !1, metadata !2)
437     br i1 %cond, label %truebr, label %falsebr
438   truebr:
439     %tval = add i32 %bar, 1
440     call @llvm.dbg.value(metadata i32 %tval, metadata !1, metadata !2)
441     %g1 = call i32 @gazonk()
442     br label %exit
443   falsebr:
444     %fval = add i32 %bar, 2
445     call @llvm.dbg.value(metadata i32 %fval, metadata !1, metadata !2)
446     %g2 = call i32 @gazonk()
447     br label %exit
448   exit:
449     %merge = phi [ %tval, %truebr ], [ %fval, %falsebr ]
450     %g = phi [ %g1, %truebr ], [ %g2, %falsebr ]
451     call @llvm.dbg.value(metadata i32 %merge, metadata !1, metadata !2)
452     call @llvm.dbg.value(metadata i32 %g, metadata !3, metadata !2)
453     %plusten = add i32 %merge, 10
454     %toret = add i32 %plusten, %g
455     call @llvm.dbg.value(metadata i32 %toret, metadata !1, metadata !2)
456     ret i32 %toret
457   }
458
459 Containing two source-level variables in ``!1`` and ``!3``. The function could,
460 perhaps, be optimized into the following code:
461
462 .. code-block:: llvm
463
464   define i32 @foo(i32 %bar, i1 %cond) {
465   entry:
466     %g = call i32 @gazonk()
467     %addoper = select i1 %cond, i32 11, i32 12
468     %plusten = add i32 %bar, %addoper
469     %toret = add i32 %plusten, %g
470     ret i32 %toret
471   }
472
473 What ``llvm.dbg.value`` intrinsics should be placed to represent the original variable
474 locations in this code? Unfortunately the the second, third and fourth
475 dbg.values for ``!1`` in the source function have had their operands
476 (%tval, %fval, %merge) optimized out. Assuming we cannot recover them, we
477 might consider this placement of dbg.values:
478
479 .. code-block:: llvm
480
481   define i32 @foo(i32 %bar, i1 %cond) {
482   entry:
483     call @llvm.dbg.value(metadata i32 0, metadata !1, metadata !2)
484     %g = call i32 @gazonk()
485     call @llvm.dbg.value(metadata i32 %g, metadata !3, metadata !2)
486     %addoper = select i1 %cond, i32 11, i32 12
487     %plusten = add i32 %bar, %addoper
488     %toret = add i32 %plusten, %g
489     call @llvm.dbg.value(metadata i32 %toret, metadata !1, metadata !2)
490     ret i32 %toret
491   }
492
493 However, this will cause ``!3`` to have the return value of ``@gazonk()`` at
494 the same time as ``!1`` has the constant value zero -- a pair of assignments
495 that never occurred in the unoptimized program. To avoid this, we must terminate
496 the range that ``!1`` has the constant value assignment by inserting an undef
497 dbg.value before the dbg.value for ``!3``:
498
499 .. code-block:: llvm
500
501   define i32 @foo(i32 %bar, i1 %cond) {
502   entry:
503     call @llvm.dbg.value(metadata i32 0, metadata !1, metadata !2)
504     %g = call i32 @gazonk()
505     call @llvm.dbg.value(metadata i32 undef, metadata !1, metadata !2)
506     call @llvm.dbg.value(metadata i32 %g, metadata !3, metadata !2)
507     %addoper = select i1 %cond, i32 11, i32 12
508     %plusten = add i32 %bar, %addoper
509     %toret = add i32 %plusten, %g
510     call @llvm.dbg.value(metadata i32 %toret, metadata !1, metadata !2)
511     ret i32 %toret
512   }
513
514 In general, if any dbg.value has its operand optimized out and cannot be
515 recovered, then an undef dbg.value is necessary to terminate earlier variable
516 locations. Additional undef dbg.values may be necessary when the debugger can
517 observe re-ordering of assignments.
518
519 How variable location metadata is transformed during CodeGen
520 ============================================================
521
522 LLVM preserves debug information throughout mid-level and backend passes,
523 ultimately producing a mapping between source-level information and
524 instruction ranges. This
525 is relatively straightforwards for line number information, as mapping
526 instructions to line numbers is a simple association. For variable locations
527 however the story is more complex. As each ``llvm.dbg.value`` intrinsic
528 represents a source-level assignment of a value to a source variable, the
529 variable location intrinsics effectively embed a small imperative program
530 within the LLVM IR. By the end of CodeGen, this becomes a mapping from each
531 variable to their machine locations over ranges of instructions.
532 From IR to object emission, the major transformations which affect variable
533 location fidelity are:
534
535 1. Instruction Selection
536 2. Register allocation
537 3. Block layout
538
539 each of which are discussed below. In addition, instruction scheduling can
540 significantly change the ordering of the program, and occurs in a number of
541 different passes.
542
543 Some variable locations are not transformed during CodeGen. Stack locations
544 specified by ``llvm.dbg.declare`` are valid and unchanging for the entire
545 duration of the function, and are recorded in a simple MachineFunction table.
546 Location changes in the prologue and epilogue of a function are also ignored:
547 frame setup and destruction may take several instructions, require a
548 disproportionate amount of debugging information in the output binary to
549 describe, and should be stepped over by debuggers anyway.
550
551 Variable locations in Instruction Selection and MIR
552 ---------------------------------------------------
553
554 Instruction selection creates a MIR function from an IR function, and just as
555 it transforms ``intermediate`` instructions into machine instructions, so must
556 ``intermediate`` variable locations become machine variable locations.
557 Within IR, variable locations are always identified by a Value, but in MIR
558 there can be different types of variable locations. In addition, some IR
559 locations become unavailable, for example if the operation of multiple IR
560 instructions are combined into one machine instruction (such as
561 multiply-and-accumulate) then intermediate Values are lost. To track variable
562 locations through instruction selection, they are first separated into
563 locations that do not depend on code generation (constants, stack locations,
564 allocated virtual registers) and those that do. For those that do, debug
565 metadata is attached to SDNodes in SelectionDAGs. After instruction selection
566 has occurred and a MIR function is created, if the SDNode associated with debug
567 metadata is allocated a virtual register, that virtual register is used as the
568 variable location. If the SDNode is folded into a machine instruction or
569 otherwise transformed into a non-register, the variable location becomes
570 unavailable.
571
572 Locations that are unavailable are treated as if they have been optimized out:
573 in IR the location would be assigned ``undef`` by a debug intrinsic, and in MIR
574 the equivalent location is used.
575
576 After MIR locations are assigned to each variable, machine pseudo-instructions
577 corresponding to each ``llvm.dbg.value`` and ``llvm.dbg.addr`` intrinsic are
578 inserted. These ``DBG_VALUE`` instructions appear thus:
579
580 .. code-block:: text
581
582   DBG_VALUE %1, $noreg, !123, !DIExpression()
583
584 And have the following operands:
585  * The first operand can record the variable location as a register,
586    a frame index, an immediate, or the base address register if the original
587    debug intrinsic referred to memory. ``$noreg`` indicates the variable
588    location is undefined, equivalent to an ``undef`` dbg.value operand.
589  * The type of the second operand indicates whether the variable location is
590    directly referred to by the DBG_VALUE, or whether it is indirect. The
591    ``$noreg`` register signifies the former, an immediate operand (0) the
592    latter.
593  * Operand 3 is the Variable field of the original debug intrinsic.
594  * Operand 4 is the Expression field of the original debug intrinsic.
595
596 The position at which the DBG_VALUEs are inserted should correspond to the
597 positions of their matching ``llvm.dbg.value`` intrinsics in the IR block.  As
598 with optimization, LLVM aims to preserve the order in which variable
599 assignments occurred in the source program. However SelectionDAG performs some
600 instruction scheduling, which can reorder assignments (discussed below).
601 Function parameter locations are moved to the beginning of the function if
602 they're not already, to ensure they're immediately available on function entry.
603
604 To demonstrate variable locations during instruction selection, consider
605 the following example:
606
607 .. code-block:: llvm
608
609   define i32 @foo(i32* %addr) {
610   entry:
611     call void @llvm.dbg.value(metadata i32 0, metadata !3, metadata !DIExpression()), !dbg !5
612     br label %bb1, !dbg !5
613
614   bb1:                                              ; preds = %bb1, %entry
615     %bar.0 = phi i32 [ 0, %entry ], [ %add, %bb1 ]
616     call void @llvm.dbg.value(metadata i32 %bar.0, metadata !3, metadata !DIExpression()), !dbg !5
617     %addr1 = getelementptr i32, i32 *%addr, i32 1, !dbg !5
618     call void @llvm.dbg.value(metadata i32 *%addr1, metadata !3, metadata !DIExpression()), !dbg !5
619     %loaded1 = load i32, i32* %addr1, !dbg !5
620     %addr2 = getelementptr i32, i32 *%addr, i32 %bar.0, !dbg !5
621     call void @llvm.dbg.value(metadata i32 *%addr2, metadata !3, metadata !DIExpression()), !dbg !5
622     %loaded2 = load i32, i32* %addr2, !dbg !5
623     %add = add i32 %bar.0, 1, !dbg !5
624     call void @llvm.dbg.value(metadata i32 %add, metadata !3, metadata !DIExpression()), !dbg !5
625     %added = add i32 %loaded1, %loaded2
626     %cond = icmp ult i32 %added, %bar.0, !dbg !5
627     br i1 %cond, label %bb1, label %bb2, !dbg !5
628
629   bb2:                                              ; preds = %bb1
630     ret i32 0, !dbg !5
631   }
632
633 If one compiles this IR with ``llc -o - -start-after=codegen-prepare -stop-after=expand-isel-pseudos -mtriple=x86_64--``, the following MIR is produced:
634
635 .. code-block:: text
636
637   bb.0.entry:
638     successors: %bb.1(0x80000000)
639     liveins: $rdi
640
641     %2:gr64 = COPY $rdi
642     %3:gr32 = MOV32r0 implicit-def dead $eflags
643     DBG_VALUE 0, $noreg, !3, !DIExpression(), debug-location !5
644
645   bb.1.bb1:
646     successors: %bb.1(0x7c000000), %bb.2(0x04000000)
647
648     %0:gr32 = PHI %3, %bb.0, %1, %bb.1
649     DBG_VALUE %0, $noreg, !3, !DIExpression(), debug-location !5
650     DBG_VALUE %2, $noreg, !3, !DIExpression(DW_OP_plus_uconst, 4, DW_OP_stack_value), debug-location !5
651     %4:gr32 = MOV32rm %2, 1, $noreg, 4, $noreg, debug-location !5 :: (load 4 from %ir.addr1)
652     %5:gr64_nosp = MOVSX64rr32 %0, debug-location !5
653     DBG_VALUE $noreg, $noreg, !3, !DIExpression(), debug-location !5
654     %1:gr32 = INC32r %0, implicit-def dead $eflags, debug-location !5
655     DBG_VALUE %1, $noreg, !3, !DIExpression(), debug-location !5
656     %6:gr32 = ADD32rm %4, %2, 4, killed %5, 0, $noreg, implicit-def dead $eflags :: (load 4 from %ir.addr2)
657     %7:gr32 = SUB32rr %6, %0, implicit-def $eflags, debug-location !5
658     JB_1 %bb.1, implicit $eflags, debug-location !5
659     JMP_1 %bb.2, debug-location !5
660
661   bb.2.bb2:
662     %8:gr32 = MOV32r0 implicit-def dead $eflags
663     $eax = COPY %8, debug-location !5
664     RET 0, $eax, debug-location !5
665
666 Observe first that there is a DBG_VALUE instruction for every ``llvm.dbg.value``
667 intrinsic in the source IR, ensuring no source level assignments go missing.
668 Then consider the different ways in which variable locations have been recorded:
669
670 * For the first dbg.value an immediate operand is used to record a zero value.
671 * The dbg.value of the PHI instruction leads to a DBG_VALUE of virtual register
672   ``%0``.
673 * The first GEP has its effect folded into the first load instruction
674   (as a 4-byte offset), but the variable location is salvaged by folding
675   the GEPs effect into the DIExpression.
676 * The second GEP is also folded into the corresponding load. However, it is
677   insufficiently simple to be salvaged, and is emitted as a ``$noreg``
678   DBG_VALUE, indicating that the variable takes on an undefined location.
679 * The final dbg.value has its Value placed in virtual register ``%1``.
680
681 Instruction Scheduling
682 ----------------------
683
684 A number of passes can reschedule instructions, notably instruction selection
685 and the pre-and-post RA machine schedulers. Instruction scheduling can
686 significantly change the nature of the program -- in the (very unlikely) worst
687 case the instruction sequence could be completely reversed. In such
688 circumstances LLVM follows the principle applied to optimizations, that it is
689 better for the debugger not to display any state than a misleading state.
690 Thus, whenever instructions are advanced in order of execution, any
691 corresponding DBG_VALUE is kept in its original position, and if an instruction
692 is delayed then the variable is given an undefined location for the duration
693 of the delay. To illustrate, consider this pseudo-MIR:
694
695 .. code-block:: text
696
697   %1:gr32 = MOV32rm %0, 1, $noreg, 4, $noreg, debug-location !5 :: (load 4 from %ir.addr1)
698   DBG_VALUE %1, $noreg, !1, !2
699   %4:gr32 = ADD32rr %3, %2, implicit-def dead $eflags
700   DBG_VALUE %4, $noreg, !3, !4
701   %7:gr32 = SUB32rr %6, %5, implicit-def dead $eflags
702   DBG_VALUE %7, $noreg, !5, !6
703
704 Imagine that the SUB32rr were moved forward to give us the following MIR:
705
706 .. code-block:: text
707
708   %7:gr32 = SUB32rr %6, %5, implicit-def dead $eflags
709   %1:gr32 = MOV32rm %0, 1, $noreg, 4, $noreg, debug-location !5 :: (load 4 from %ir.addr1)
710   DBG_VALUE %1, $noreg, !1, !2
711   %4:gr32 = ADD32rr %3, %2, implicit-def dead $eflags
712   DBG_VALUE %4, $noreg, !3, !4
713   DBG_VALUE %7, $noreg, !5, !6
714
715 In this circumstance LLVM would leave the MIR as shown above. Were we to move
716 the DBG_VALUE of virtual register %7 upwards with the SUB32rr, we would re-order
717 assignments and introduce a new state of the program. Wheras with the solution
718 above, the debugger will see one fewer combination of variable values, because
719 ``!3`` and ``!5`` will change value at the same time. This is preferred over
720 misrepresenting the original program.
721
722 In comparison, if one sunk the MOV32rm, LLVM would produce the following:
723
724 .. code-block:: text
725
726   DBG_VALUE $noreg, $noreg, !1, !2
727   %4:gr32 = ADD32rr %3, %2, implicit-def dead $eflags
728   DBG_VALUE %4, $noreg, !3, !4
729   %7:gr32 = SUB32rr %6, %5, implicit-def dead $eflags
730   DBG_VALUE %7, $noreg, !5, !6
731   %1:gr32 = MOV32rm %0, 1, $noreg, 4, $noreg, debug-location !5 :: (load 4 from %ir.addr1)
732   DBG_VALUE %1, $noreg, !1, !2
733
734 Here, to avoid presenting a state in which the first assignment to ``!1``
735 disappears, the DBG_VALUE at the top of the block assigns the variable the
736 undefined location, until its value is available at the end of the block where
737 an additional DBG_VALUE is added. Were any other DBG_VALUE for ``!1`` to occur
738 in the instructions that the MOV32rm was sunk past, the DBG_VALUE for ``%1``
739 would be dropped and the debugger would never observe it in the variable. This
740 accurately reflects that the value is not available during the corresponding
741 portion of the original program.
742
743 Variable locations during Register Allocation
744 ---------------------------------------------
745
746 To avoid debug instructions interfering with the register allocator, the
747 LiveDebugVariables pass extracts variable locations from a MIR function and
748 deletes the corresponding DBG_VALUE instructions. Some localized copy
749 propagation is performed within blocks. After register allocation, the
750 VirtRegRewriter pass re-inserts DBG_VALUE instructions in their orignal
751 positions, translating virtual register references into their physical
752 machine locations. To avoid encoding incorrect variable locations, in this
753 pass any DBG_VALUE of a virtual register that is not live, is replaced by
754 the undefined location.
755
756 LiveDebugValues expansion of variable locations
757 -----------------------------------------------
758
759 After all optimizations have run and shortly before emission, the
760 LiveDebugValues pass runs to achieve two aims:
761
762 * To propagate the location of variables through copies and register spills,
763 * For every block, to record every valid variable location in that block.
764
765 After this pass the DBG_VALUE instruction changes meaning: rather than
766 corresponding to a source-level assignment where the variable may change value,
767 it asserts the location of a variable in a block, and loses effect outside the
768 block. Propagating variable locations through copies and spills is
769 straightforwards: determining the variable location in every basic block
770 requries the consideraton of control flow. Consider the following IR, which
771 presents several difficulties:
772
773 .. code-block:: text
774
775   define dso_local i32 @foo(i1 %cond, i32 %input) !dbg !12 {
776   entry:
777     br i1 %cond, label %truebr, label %falsebr
778
779   bb1: 
780     %value = phi i32 [ %value1, %truebr ], [ %value2, %falsebr ]
781     br label %exit, !dbg !26
782
783   truebr:
784     call void @llvm.dbg.value(metadata i32 %input, metadata !30, metadata !DIExpression()), !dbg !24
785     call void @llvm.dbg.value(metadata i32 1, metadata !23, metadata !DIExpression()), !dbg !24
786     %value1 = add i32 %input, 1
787     br label %bb1
788
789   falsebr:
790     call void @llvm.dbg.value(metadata i32 %input, metadata !30, metadata !DIExpression()), !dbg !24
791     call void @llvm.dbg.value(metadata i32 2, metadata !23, metadata !DIExpression()), !dbg !24
792     %value = add i32 %input, 2
793     br label %bb1
794
795   exit: 
796     ret i32 %value, !dbg !30
797   }
798
799 Here the difficulties are:
800
801 * The control flow is roughly the opposite of basic block order
802 * The value of the ``!23`` variable merges into ``%bb1``, but there is no PHI
803   node
804
805 As mentioned above, the ``llvm.dbg.value`` intrinsics essentially form an
806 imperative program embedded in the IR, with each intrinsic defining a variable
807 location. This *could* be converted to an SSA form by mem2reg, in the same way
808 that it uses use-def chains to identify control flow merges and insert phi
809 nodes for IR Values. However, because debug variable locations are defined for
810 every machine instruction, in effect every IR instruction uses every variable
811 location, which would lead to a large number of debugging intrinsics being
812 generated.
813
814 Examining the example above, variable ``!30`` is assigned ``%input`` on both
815 conditional paths through the function, while ``!23`` is assigned differing
816 constant values on either path. Where control flow merges in ``%bb1`` we would
817 want ``!30`` to keep its location (``%input``), but ``!23`` to become undefined
818 as we cannot determine at runtime what value it should have in %bb1 without
819 inserting a PHI node. mem2reg does not insert the PHI node to avoid changing
820 codegen when debugging is enabled, and does not insert the other dbg.values
821 to avoid adding very large numbers of intrinsics.
822
823 Instead, LiveDebugValues determines variable locations when control
824 flow merges. A dataflow analysis is used to propagate locations between blocks:
825 when control flow merges, if a variable has the same location in all
826 predecessors then that location is propagated into the successor. If the
827 predecessor locations disagree, the location becomes undefined.
828
829 Once LiveDebugValues has run, every block should have all valid variable
830 locations described by DBG_VALUE instructions within the block. Very little
831 effort is then required by supporting classes (such as
832 DbgEntityHistoryCalculator) to build a map of each instruction to every
833 valid variable location, without the need to consider control flow. From
834 the example above, it is otherwise difficult to determine that the location
835 of variable ``!30`` should flow "up" into block ``%bb1``, but that the location
836 of variable ``!23`` should not flow "down" into the ``%exit`` block.
837
838 .. _ccxx_frontend:
839
840 C/C++ front-end specific debug information
841 ==========================================
842
843 The C and C++ front-ends represent information about the program in a format
844 that is effectively identical to `DWARF 3.0
845 <http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
846 content.  This allows code generators to trivially support native debuggers by
847 generating standard dwarf information, and contains enough information for
848 non-dwarf targets to translate it as needed.
849
850 This section describes the forms used to represent C and C++ programs.  Other
851 languages could pattern themselves after this (which itself is tuned to
852 representing programs in the same way that DWARF 3 does), or they could choose
853 to provide completely different forms if they don't fit into the DWARF model.
854 As support for debugging information gets added to the various LLVM
855 source-language front-ends, the information used should be documented here.
856
857 The following sections provide examples of a few C/C++ constructs and the debug
858 information that would best describe those constructs.  The canonical
859 references are the ``DIDescriptor`` classes defined in
860 ``include/llvm/IR/DebugInfo.h`` and the implementations of the helper functions
861 in ``lib/IR/DIBuilder.cpp``.
862
863 C/C++ source file information
864 -----------------------------
865
866 ``llvm::Instruction`` provides easy access to metadata attached with an
867 instruction.  One can extract line number information encoded in LLVM IR using
868 ``Instruction::getDebugLoc()`` and ``DILocation::getLine()``.
869
870 .. code-block:: c++
871
872   if (DILocation *Loc = I->getDebugLoc()) { // Here I is an LLVM instruction
873     unsigned Line = Loc->getLine();
874     StringRef File = Loc->getFilename();
875     StringRef Dir = Loc->getDirectory();
876     bool ImplicitCode = Loc->isImplicitCode();
877   }
878
879 When the flag ImplicitCode is true then it means that the Instruction has been
880 added by the front-end but doesn't correspond to source code written by the user. For example
881
882 .. code-block:: c++
883
884   if (MyBoolean) {
885     MyObject MO;
886     ...
887   }
888
889 At the end of the scope the MyObject's destructor is called but it isn't written
890 explicitly. This information is useful to avoid to have counters on brackets when
891 making code coverage.
892
893 C/C++ global variable information
894 ---------------------------------
895
896 Given an integer global variable declared as follows:
897
898 .. code-block:: c
899
900   _Alignas(8) int MyGlobal = 100;
901
902 a C/C++ front-end would generate the following descriptors:
903
904 .. code-block:: text
905
906   ;;
907   ;; Define the global itself.
908   ;;
909   @MyGlobal = global i32 100, align 8, !dbg !0
910
911   ;;
912   ;; List of debug info of globals
913   ;;
914   !llvm.dbg.cu = !{!1}
915
916   ;; Some unrelated metadata.
917   !llvm.module.flags = !{!6, !7}
918   !llvm.ident = !{!8}
919
920   ;; Define the global variable itself
921   !0 = distinct !DIGlobalVariable(name: "MyGlobal", scope: !1, file: !2, line: 1, type: !5, isLocal: false, isDefinition: true, align: 64)
922
923   ;; Define the compile unit.
924   !1 = distinct !DICompileUnit(language: DW_LANG_C99, file: !2,
925                                producer: "clang version 4.0.0",
926                                isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug,
927                                enums: !3, globals: !4)
928
929   ;;
930   ;; Define the file
931   ;;
932   !2 = !DIFile(filename: "/dev/stdin",
933                directory: "/Users/dexonsmith/data/llvm/debug-info")
934
935   ;; An empty array.
936   !3 = !{}
937
938   ;; The Array of Global Variables
939   !4 = !{!0}
940
941   ;;
942   ;; Define the type
943   ;;
944   !5 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
945
946   ;; Dwarf version to output.
947   !6 = !{i32 2, !"Dwarf Version", i32 4}
948
949   ;; Debug info schema version.
950   !7 = !{i32 2, !"Debug Info Version", i32 3}
951
952   ;; Compiler identification
953   !8 = !{!"clang version 4.0.0"}
954
955
956 The align value in DIGlobalVariable description specifies variable alignment in
957 case it was forced by C11 _Alignas(), C++11 alignas() keywords or compiler
958 attribute __attribute__((aligned ())). In other case (when this field is missing)
959 alignment is considered default. This is used when producing DWARF output
960 for DW_AT_alignment value.
961
962 C/C++ function information
963 --------------------------
964
965 Given a function declared as follows:
966
967 .. code-block:: c
968
969   int main(int argc, char *argv[]) {
970     return 0;
971   }
972
973 a C/C++ front-end would generate the following descriptors:
974
975 .. code-block:: text
976
977   ;;
978   ;; Define the anchor for subprograms.
979   ;;
980   !4 = !DISubprogram(name: "main", scope: !1, file: !1, line: 1, type: !5,
981                      isLocal: false, isDefinition: true, scopeLine: 1,
982                      flags: DIFlagPrototyped, isOptimized: false,
983                      variables: !2)
984
985   ;;
986   ;; Define the subprogram itself.
987   ;;
988   define i32 @main(i32 %argc, i8** %argv) !dbg !4 {
989   ...
990   }
991
992 Fortran specific debug information
993 ==================================
994
995 Fortran function information
996 ----------------------------
997
998 There are a few DWARF attributes defined to support client debugging of Fortran programs.  LLVM can generate (or omit) the appropriate DWARF attributes for the prefix-specs of ELEMENTAL, PURE, IMPURE, RECURSIVE, and NON_RECURSIVE.  This is done by using the spFlags values: DISPFlagElemental, DISPFlagPure, and DISPFlagRecursive.
999
1000 .. code-block:: fortran
1001
1002   elemental function elem_func(a)
1003
1004 a Fortran front-end would generate the following descriptors:
1005
1006 .. code-block:: text
1007
1008   !11 = distinct !DISubprogram(name: "subroutine2", scope: !1, file: !1,
1009           line: 5, type: !8, scopeLine: 6,
1010           spFlags: DISPFlagDefinition | DISPFlagElemental, unit: !0,
1011           retainedNodes: !2)
1012
1013 and this will materialize an additional DWARF attribute as:
1014
1015 .. code-block:: text
1016
1017   DW_TAG_subprogram [3]  
1018      DW_AT_low_pc [DW_FORM_addr]     (0x0000000000000010 ".text")
1019      DW_AT_high_pc [DW_FORM_data4]   (0x00000001)
1020      ...
1021      DW_AT_elemental [DW_FORM_flag_present]  (true)
1022
1023 Debugging information format
1024 ============================
1025
1026 Debugging Information Extension for Objective C Properties
1027 ----------------------------------------------------------
1028
1029 Introduction
1030 ^^^^^^^^^^^^
1031
1032 Objective C provides a simpler way to declare and define accessor methods using
1033 declared properties.  The language provides features to declare a property and
1034 to let compiler synthesize accessor methods.
1035
1036 The debugger lets developer inspect Objective C interfaces and their instance
1037 variables and class variables.  However, the debugger does not know anything
1038 about the properties defined in Objective C interfaces.  The debugger consumes
1039 information generated by compiler in DWARF format.  The format does not support
1040 encoding of Objective C properties.  This proposal describes DWARF extensions to
1041 encode Objective C properties, which the debugger can use to let developers
1042 inspect Objective C properties.
1043
1044 Proposal
1045 ^^^^^^^^
1046
1047 Objective C properties exist separately from class members.  A property can be
1048 defined only by "setter" and "getter" selectors, and be calculated anew on each
1049 access.  Or a property can just be a direct access to some declared ivar.
1050 Finally it can have an ivar "automatically synthesized" for it by the compiler,
1051 in which case the property can be referred to in user code directly using the
1052 standard C dereference syntax as well as through the property "dot" syntax, but
1053 there is no entry in the ``@interface`` declaration corresponding to this ivar.
1054
1055 To facilitate debugging, these properties we will add a new DWARF TAG into the
1056 ``DW_TAG_structure_type`` definition for the class to hold the description of a
1057 given property, and a set of DWARF attributes that provide said description.
1058 The property tag will also contain the name and declared type of the property.
1059
1060 If there is a related ivar, there will also be a DWARF property attribute placed
1061 in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1062 for that property.  And in the case where the compiler synthesizes the ivar
1063 directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1064 ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1065 to access this ivar directly in code, and with the property attribute pointing
1066 back to the property it is backing.
1067
1068 The following examples will serve as illustration for our discussion:
1069
1070 .. code-block:: objc
1071
1072   @interface I1 {
1073     int n2;
1074   }
1075
1076   @property int p1;
1077   @property int p2;
1078   @end
1079
1080   @implementation I1
1081   @synthesize p1;
1082   @synthesize p2 = n2;
1083   @end
1084
1085 This produces the following DWARF (this is a "pseudo dwarfdump" output):
1086
1087 .. code-block:: none
1088
1089   0x00000100:  TAG_structure_type [7] *
1090                  AT_APPLE_runtime_class( 0x10 )
1091                  AT_name( "I1" )
1092                  AT_decl_file( "Objc_Property.m" )
1093                  AT_decl_line( 3 )
1094
1095   0x00000110    TAG_APPLE_property
1096                   AT_name ( "p1" )
1097                   AT_type ( {0x00000150} ( int ) )
1098
1099   0x00000120:   TAG_APPLE_property
1100                   AT_name ( "p2" )
1101                   AT_type ( {0x00000150} ( int ) )
1102
1103   0x00000130:   TAG_member [8]
1104                   AT_name( "_p1" )
1105                   AT_APPLE_property ( {0x00000110} "p1" )
1106                   AT_type( {0x00000150} ( int ) )
1107                   AT_artificial ( 0x1 )
1108
1109   0x00000140:    TAG_member [8]
1110                    AT_name( "n2" )
1111                    AT_APPLE_property ( {0x00000120} "p2" )
1112                    AT_type( {0x00000150} ( int ) )
1113
1114   0x00000150:  AT_type( ( int ) )
1115
1116 Note, the current convention is that the name of the ivar for an
1117 auto-synthesized property is the name of the property from which it derives
1118 with an underscore prepended, as is shown in the example.  But we actually
1119 don't need to know this convention, since we are given the name of the ivar
1120 directly.
1121
1122 Also, it is common practice in ObjC to have different property declarations in
1123 the @interface and @implementation - e.g. to provide a read-only property in
1124 the interface,and a read-write interface in the implementation.  In that case,
1125 the compiler should emit whichever property declaration will be in force in the
1126 current translation unit.
1127
1128 Developers can decorate a property with attributes which are encoded using
1129 ``DW_AT_APPLE_property_attribute``.
1130
1131 .. code-block:: objc
1132
1133   @property (readonly, nonatomic) int pr;
1134
1135 .. code-block:: none
1136
1137   TAG_APPLE_property [8]
1138     AT_name( "pr" )
1139     AT_type ( {0x00000147} (int) )
1140     AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1141
1142 The setter and getter method names are attached to the property using
1143 ``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1144
1145 .. code-block:: objc
1146
1147   @interface I1
1148   @property (setter=myOwnP3Setter:) int p3;
1149   -(void)myOwnP3Setter:(int)a;
1150   @end
1151
1152   @implementation I1
1153   @synthesize p3;
1154   -(void)myOwnP3Setter:(int)a{ }
1155   @end
1156
1157 The DWARF for this would be:
1158
1159 .. code-block:: none
1160
1161   0x000003bd: TAG_structure_type [7] *
1162                 AT_APPLE_runtime_class( 0x10 )
1163                 AT_name( "I1" )
1164                 AT_decl_file( "Objc_Property.m" )
1165                 AT_decl_line( 3 )
1166
1167   0x000003cd      TAG_APPLE_property
1168                     AT_name ( "p3" )
1169                     AT_APPLE_property_setter ( "myOwnP3Setter:" )
1170                     AT_type( {0x00000147} ( int ) )
1171
1172   0x000003f3:     TAG_member [8]
1173                     AT_name( "_p3" )
1174                     AT_type ( {0x00000147} ( int ) )
1175                     AT_APPLE_property ( {0x000003cd} )
1176                     AT_artificial ( 0x1 )
1177
1178 New DWARF Tags
1179 ^^^^^^^^^^^^^^
1180
1181 +-----------------------+--------+
1182 | TAG                   | Value  |
1183 +=======================+========+
1184 | DW_TAG_APPLE_property | 0x4200 |
1185 +-----------------------+--------+
1186
1187 New DWARF Attributes
1188 ^^^^^^^^^^^^^^^^^^^^
1189
1190 +--------------------------------+--------+-----------+
1191 | Attribute                      | Value  | Classes   |
1192 +================================+========+===========+
1193 | DW_AT_APPLE_property           | 0x3fed | Reference |
1194 +--------------------------------+--------+-----------+
1195 | DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
1196 +--------------------------------+--------+-----------+
1197 | DW_AT_APPLE_property_setter    | 0x3fea | String    |
1198 +--------------------------------+--------+-----------+
1199 | DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
1200 +--------------------------------+--------+-----------+
1201
1202 New DWARF Constants
1203 ^^^^^^^^^^^^^^^^^^^
1204
1205 +--------------------------------------+-------+
1206 | Name                                 | Value |
1207 +======================================+=======+
1208 | DW_APPLE_PROPERTY_readonly           | 0x01  |
1209 +--------------------------------------+-------+
1210 | DW_APPLE_PROPERTY_getter             | 0x02  |
1211 +--------------------------------------+-------+
1212 | DW_APPLE_PROPERTY_assign             | 0x04  |
1213 +--------------------------------------+-------+
1214 | DW_APPLE_PROPERTY_readwrite          | 0x08  |
1215 +--------------------------------------+-------+
1216 | DW_APPLE_PROPERTY_retain             | 0x10  |
1217 +--------------------------------------+-------+
1218 | DW_APPLE_PROPERTY_copy               | 0x20  |
1219 +--------------------------------------+-------+
1220 | DW_APPLE_PROPERTY_nonatomic          | 0x40  |
1221 +--------------------------------------+-------+
1222 | DW_APPLE_PROPERTY_setter             | 0x80  |
1223 +--------------------------------------+-------+
1224 | DW_APPLE_PROPERTY_atomic             | 0x100 |
1225 +--------------------------------------+-------+
1226 | DW_APPLE_PROPERTY_weak               | 0x200 |
1227 +--------------------------------------+-------+
1228 | DW_APPLE_PROPERTY_strong             | 0x400 |
1229 +--------------------------------------+-------+
1230 | DW_APPLE_PROPERTY_unsafe_unretained  | 0x800 |
1231 +--------------------------------------+-------+
1232 | DW_APPLE_PROPERTY_nullability        | 0x1000|
1233 +--------------------------------------+-------+
1234 | DW_APPLE_PROPERTY_null_resettable    | 0x2000|
1235 +--------------------------------------+-------+
1236 | DW_APPLE_PROPERTY_class              | 0x4000|
1237 +--------------------------------------+-------+
1238
1239 Name Accelerator Tables
1240 -----------------------
1241
1242 Introduction
1243 ^^^^^^^^^^^^
1244
1245 The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1246 debugger needs.  The "``pub``" in the section name indicates that the entries
1247 in the table are publicly visible names only.  This means no static or hidden
1248 functions show up in the "``.debug_pubnames``".  No static variables or private
1249 class variables are in the "``.debug_pubtypes``".  Many compilers add different
1250 things to these tables, so we can't rely upon the contents between gcc, icc, or
1251 clang.
1252
1253 The typical query given by users tends not to match up with the contents of
1254 these tables.  For example, the DWARF spec states that "In the case of the name
1255 of a function member or static data member of a C++ structure, class or union,
1256 the name presented in the "``.debug_pubnames``" section is not the simple name
1257 given by the ``DW_AT_name attribute`` of the referenced debugging information
1258 entry, but rather the fully qualified name of the data or function member."
1259 So the only names in these tables for complex C++ entries is a fully
1260 qualified name.  Debugger users tend not to enter their search strings as
1261 "``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1262 "``a::b::c``".  So the name entered in the name table must be demangled in
1263 order to chop it up appropriately and additional names must be manually entered
1264 into the table to make it effective as a name lookup table for debuggers to
1265 use.
1266
1267 All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1268 its inconsistent and useless public-only name content making it a waste of
1269 space in the object file.  These tables, when they are written to disk, are not
1270 sorted in any way, leaving every debugger to do its own parsing and sorting.
1271 These tables also include an inlined copy of the string values in the table
1272 itself making the tables much larger than they need to be on disk, especially
1273 for large C++ programs.
1274
1275 Can't we just fix the sections by adding all of the names we need to this
1276 table? No, because that is not what the tables are defined to contain and we
1277 won't know the difference between the old bad tables and the new good tables.
1278 At best we could make our own renamed sections that contain all of the data we
1279 need.
1280
1281 These tables are also insufficient for what a debugger like LLDB needs.  LLDB
1282 uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
1283 often asked to look for type "``foo``" or namespace "``bar``", or list items in
1284 namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
1285 tables.  Since clang asks a lot of questions when it is parsing an expression,
1286 we need to be very fast when looking up names, as it happens a lot.  Having new
1287 accelerator tables that are optimized for very quick lookups will benefit this
1288 type of debugging experience greatly.
1289
1290 We would like to generate name lookup tables that can be mapped into memory
1291 from disk, and used as is, with little or no up-front parsing.  We would also
1292 be able to control the exact content of these different tables so they contain
1293 exactly what we need.  The Name Accelerator Tables were designed to fix these
1294 issues.  In order to solve these issues we need to:
1295
1296 * Have a format that can be mapped into memory from disk and used as is
1297 * Lookups should be very fast
1298 * Extensible table format so these tables can be made by many producers
1299 * Contain all of the names needed for typical lookups out of the box
1300 * Strict rules for the contents of tables
1301
1302 Table size is important and the accelerator table format should allow the reuse
1303 of strings from common string tables so the strings for the names are not
1304 duplicated.  We also want to make sure the table is ready to be used as-is by
1305 simply mapping the table into memory with minimal header parsing.
1306
1307 The name lookups need to be fast and optimized for the kinds of lookups that
1308 debuggers tend to do.  Optimally we would like to touch as few parts of the
1309 mapped table as possible when doing a name lookup and be able to quickly find
1310 the name entry we are looking for, or discover there are no matches.  In the
1311 case of debuggers we optimized for lookups that fail most of the time.
1312
1313 Each table that is defined should have strict rules on exactly what is in the
1314 accelerator tables and documented so clients can rely on the content.
1315
1316 Hash Tables
1317 ^^^^^^^^^^^
1318
1319 Standard Hash Tables
1320 """"""""""""""""""""
1321
1322 Typical hash tables have a header, buckets, and each bucket points to the
1323 bucket contents:
1324
1325 .. code-block:: none
1326
1327   .------------.
1328   |  HEADER    |
1329   |------------|
1330   |  BUCKETS   |
1331   |------------|
1332   |  DATA      |
1333   `------------'
1334
1335 The BUCKETS are an array of offsets to DATA for each hash:
1336
1337 .. code-block:: none
1338
1339   .------------.
1340   | 0x00001000 | BUCKETS[0]
1341   | 0x00002000 | BUCKETS[1]
1342   | 0x00002200 | BUCKETS[2]
1343   | 0x000034f0 | BUCKETS[3]
1344   |            | ...
1345   | 0xXXXXXXXX | BUCKETS[n_buckets]
1346   '------------'
1347
1348 So for ``bucket[3]`` in the example above, we have an offset into the table
1349 0x000034f0 which points to a chain of entries for the bucket.  Each bucket must
1350 contain a next pointer, full 32 bit hash value, the string itself, and the data
1351 for the current string value.
1352
1353 .. code-block:: none
1354
1355               .------------.
1356   0x000034f0: | 0x00003500 | next pointer
1357               | 0x12345678 | 32 bit hash
1358               | "erase"    | string value
1359               | data[n]    | HashData for this bucket
1360               |------------|
1361   0x00003500: | 0x00003550 | next pointer
1362               | 0x29273623 | 32 bit hash
1363               | "dump"     | string value
1364               | data[n]    | HashData for this bucket
1365               |------------|
1366   0x00003550: | 0x00000000 | next pointer
1367               | 0x82638293 | 32 bit hash
1368               | "main"     | string value
1369               | data[n]    | HashData for this bucket
1370               `------------'
1371
1372 The problem with this layout for debuggers is that we need to optimize for the
1373 negative lookup case where the symbol we're searching for is not present.  So
1374 if we were to lookup "``printf``" in the table above, we would make a 32-bit
1375 hash for "``printf``", it might match ``bucket[3]``.  We would need to go to
1376 the offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To
1377 do so, we need to read the next pointer, then read the hash, compare it, and
1378 skip to the next bucket.  Each time we are skipping many bytes in memory and
1379 touching new pages just to do the compare on the full 32 bit hash.  All of
1380 these accesses then tell us that we didn't have a match.
1381
1382 Name Hash Tables
1383 """"""""""""""""
1384
1385 To solve the issues mentioned above we have structured the hash tables a bit
1386 differently: a header, buckets, an array of all unique 32 bit hash values,
1387 followed by an array of hash value data offsets, one for each hash value, then
1388 the data for all hash values:
1389
1390 .. code-block:: none
1391
1392   .-------------.
1393   |  HEADER     |
1394   |-------------|
1395   |  BUCKETS    |
1396   |-------------|
1397   |  HASHES     |
1398   |-------------|
1399   |  OFFSETS    |
1400   |-------------|
1401   |  DATA       |
1402   `-------------'
1403
1404 The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
1405 making all of the full 32 bit hash values contiguous in memory, we allow
1406 ourselves to efficiently check for a match while touching as little memory as
1407 possible.  Most often checking the 32 bit hash values is as far as the lookup
1408 goes.  If it does match, it usually is a match with no collisions.  So for a
1409 table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1410 values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1411 ``OFFSETS`` as:
1412
1413 .. code-block:: none
1414
1415   .-------------------------.
1416   |  HEADER.magic           | uint32_t
1417   |  HEADER.version         | uint16_t
1418   |  HEADER.hash_function   | uint16_t
1419   |  HEADER.bucket_count    | uint32_t
1420   |  HEADER.hashes_count    | uint32_t
1421   |  HEADER.header_data_len | uint32_t
1422   |  HEADER_DATA            | HeaderData
1423   |-------------------------|
1424   |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
1425   |-------------------------|
1426   |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
1427   |-------------------------|
1428   |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
1429   |-------------------------|
1430   |  ALL HASH DATA          |
1431   `-------------------------'
1432
1433 So taking the exact same data from the standard hash example above we end up
1434 with:
1435
1436 .. code-block:: none
1437
1438               .------------.
1439               | HEADER     |
1440               |------------|
1441               |          0 | BUCKETS[0]
1442               |          2 | BUCKETS[1]
1443               |          5 | BUCKETS[2]
1444               |          6 | BUCKETS[3]
1445               |            | ...
1446               |        ... | BUCKETS[n_buckets]
1447               |------------|
1448               | 0x........ | HASHES[0]
1449               | 0x........ | HASHES[1]
1450               | 0x........ | HASHES[2]
1451               | 0x........ | HASHES[3]
1452               | 0x........ | HASHES[4]
1453               | 0x........ | HASHES[5]
1454               | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
1455               | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
1456               | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
1457               | 0x........ | HASHES[9]
1458               | 0x........ | HASHES[10]
1459               | 0x........ | HASHES[11]
1460               | 0x........ | HASHES[12]
1461               | 0x........ | HASHES[13]
1462               | 0x........ | HASHES[n_hashes]
1463               |------------|
1464               | 0x........ | OFFSETS[0]
1465               | 0x........ | OFFSETS[1]
1466               | 0x........ | OFFSETS[2]
1467               | 0x........ | OFFSETS[3]
1468               | 0x........ | OFFSETS[4]
1469               | 0x........ | OFFSETS[5]
1470               | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
1471               | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
1472               | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
1473               | 0x........ | OFFSETS[9]
1474               | 0x........ | OFFSETS[10]
1475               | 0x........ | OFFSETS[11]
1476               | 0x........ | OFFSETS[12]
1477               | 0x........ | OFFSETS[13]
1478               | 0x........ | OFFSETS[n_hashes]
1479               |------------|
1480               |            |
1481               |            |
1482               |            |
1483               |            |
1484               |            |
1485               |------------|
1486   0x000034f0: | 0x00001203 | .debug_str ("erase")
1487               | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1488               | 0x........ | HashData[0]
1489               | 0x........ | HashData[1]
1490               | 0x........ | HashData[2]
1491               | 0x........ | HashData[3]
1492               | 0x00000000 | String offset into .debug_str (terminate data for hash)
1493               |------------|
1494   0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1495               | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1496               | 0x........ | HashData[0]
1497               | 0x........ | HashData[1]
1498               | 0x00001203 | String offset into .debug_str ("dump")
1499               | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1500               | 0x........ | HashData[0]
1501               | 0x........ | HashData[1]
1502               | 0x........ | HashData[2]
1503               | 0x00000000 | String offset into .debug_str (terminate data for hash)
1504               |------------|
1505   0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1506               | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1507               | 0x........ | HashData[0]
1508               | 0x........ | HashData[1]
1509               | 0x........ | HashData[2]
1510               | 0x........ | HashData[3]
1511               | 0x........ | HashData[4]
1512               | 0x........ | HashData[5]
1513               | 0x........ | HashData[6]
1514               | 0x........ | HashData[7]
1515               | 0x........ | HashData[8]
1516               | 0x00000000 | String offset into .debug_str (terminate data for hash)
1517               `------------'
1518
1519 So we still have all of the same data, we just organize it more efficiently for
1520 debugger lookup.  If we repeat the same "``printf``" lookup from above, we
1521 would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1522 hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
1523 is the index into the ``HASHES`` table.  We would then compare any consecutive
1524 32 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1525 ``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
1526 ``n_buckets`` is still 3.  In the case of a failed lookup we would access the
1527 memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1528 before we know that we have no match.  We don't end up marching through
1529 multiple words of memory and we really keep the number of processor data cache
1530 lines being accessed as small as possible.
1531
1532 The string hash that is used for these lookup tables is the Daniel J.
1533 Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
1534 very good hash for all kinds of names in programs with very few hash
1535 collisions.
1536
1537 Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1538
1539 Details
1540 ^^^^^^^
1541
1542 These name hash tables are designed to be generic where specializations of the
1543 table get to define additional data that goes into the header ("``HeaderData``"),
1544 how the string value is stored ("``KeyType``") and the content of the data for each
1545 hash value.
1546
1547 Header Layout
1548 """""""""""""
1549
1550 The header has a fixed part, and the specialized part.  The exact format of the
1551 header is:
1552
1553 .. code-block:: c
1554
1555   struct Header
1556   {
1557     uint32_t   magic;           // 'HASH' magic value to allow endian detection
1558     uint16_t   version;         // Version number
1559     uint16_t   hash_function;   // The hash function enumeration that was used
1560     uint32_t   bucket_count;    // The number of buckets in this hash table
1561     uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
1562     uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1563                                 // Specifically the length of the following HeaderData field - this does not
1564                                 // include the size of the preceding fields
1565     HeaderData header_data;     // Implementation specific header data
1566   };
1567
1568 The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1569 encoded as an ASCII integer.  This allows the detection of the start of the
1570 hash table and also allows the table's byte order to be determined so the table
1571 can be correctly extracted.  The "``magic``" value is followed by a 16 bit
1572 ``version`` number which allows the table to be revised and modified in the
1573 future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
1574 enumeration that specifies which hash function was used to produce this table.
1575 The current values for the hash function enumerations include:
1576
1577 .. code-block:: c
1578
1579   enum HashFunctionType
1580   {
1581     eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1582   };
1583
1584 ``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1585 are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
1586 hash values that are in the ``HASHES`` array, and is the same number of offsets
1587 are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
1588 in bytes of the ``HeaderData`` that is filled in by specialized versions of
1589 this table.
1590
1591 Fixed Lookup
1592 """"""""""""
1593
1594 The header is followed by the buckets, hashes, offsets, and hash value data.
1595
1596 .. code-block:: c
1597
1598   struct FixedTable
1599   {
1600     uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
1601     uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
1602     uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
1603   };
1604
1605 ``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
1606 ``hashes`` array contains all of the 32 bit hash values for all names in the
1607 hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
1608 array that points to the data for the hash value.
1609
1610 This table setup makes it very easy to repurpose these tables to contain
1611 different data, while keeping the lookup mechanism the same for all tables.
1612 This layout also makes it possible to save the table to disk and map it in
1613 later and do very efficient name lookups with little or no parsing.
1614
1615 DWARF lookup tables can be implemented in a variety of ways and can store a lot
1616 of information for each name.  We want to make the DWARF tables extensible and
1617 able to store the data efficiently so we have used some of the DWARF features
1618 that enable efficient data storage to define exactly what kind of data we store
1619 for each name.
1620
1621 The ``HeaderData`` contains a definition of the contents of each HashData chunk.
1622 We might want to store an offset to all of the debug information entries (DIEs)
1623 for each name.  To keep things extensible, we create a list of items, or
1624 Atoms, that are contained in the data for each name.  First comes the type of
1625 the data in each atom:
1626
1627 .. code-block:: c
1628
1629   enum AtomType
1630   {
1631     eAtomTypeNULL       = 0u,
1632     eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
1633     eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
1634     eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
1635     eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
1636     eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
1637   };
1638
1639 The enumeration values and their meanings are:
1640
1641 .. code-block:: none
1642
1643   eAtomTypeNULL       - a termination atom that specifies the end of the atom list
1644   eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
1645   eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
1646   eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
1647   eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
1648   eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
1649
1650 Then we allow each atom type to define the atom type and how the data for each
1651 atom type data is encoded:
1652
1653 .. code-block:: c
1654
1655   struct Atom
1656   {
1657     uint16_t type;  // AtomType enum value
1658     uint16_t form;  // DWARF DW_FORM_XXX defines
1659   };
1660
1661 The ``form`` type above is from the DWARF specification and defines the exact
1662 encoding of the data for the Atom type.  See the DWARF specification for the
1663 ``DW_FORM_`` definitions.
1664
1665 .. code-block:: c
1666
1667   struct HeaderData
1668   {
1669     uint32_t die_offset_base;
1670     uint32_t atom_count;
1671     Atoms    atoms[atom_count0];
1672   };
1673
1674 ``HeaderData`` defines the base DIE offset that should be added to any atoms
1675 that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
1676 ``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
1677 what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
1678 each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
1679 should be interpreted.
1680
1681 For the current implementations of the "``.apple_names``" (all functions +
1682 globals), the "``.apple_types``" (names of all types that are defined), and
1683 the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
1684 array to be:
1685
1686 .. code-block:: c
1687
1688   HeaderData.atom_count = 1;
1689   HeaderData.atoms[0].type = eAtomTypeDIEOffset;
1690   HeaderData.atoms[0].form = DW_FORM_data4;
1691
1692 This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
1693 encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
1694 multiple matching DIEs in a single file, which could come up with an inlined
1695 function for instance.  Future tables could include more information about the
1696 DIE such as flags indicating if the DIE is a function, method, block,
1697 or inlined.
1698
1699 The KeyType for the DWARF table is a 32 bit string table offset into the
1700 ".debug_str" table.  The ".debug_str" is the string table for the DWARF which
1701 may already contain copies of all of the strings.  This helps make sure, with
1702 help from the compiler, that we reuse the strings between all of the DWARF
1703 sections and keeps the hash table size down.  Another benefit to having the
1704 compiler generate all strings as DW_FORM_strp in the debug info, is that
1705 DWARF parsing can be made much faster.
1706
1707 After a lookup is made, we get an offset into the hash data.  The hash data
1708 needs to be able to deal with 32 bit hash collisions, so the chunk of data
1709 at the offset in the hash data consists of a triple:
1710
1711 .. code-block:: c
1712
1713   uint32_t str_offset
1714   uint32_t hash_data_count
1715   HashData[hash_data_count]
1716
1717 If "str_offset" is zero, then the bucket contents are done. 99.9% of the
1718 hash data chunks contain a single item (no 32 bit hash collision):
1719
1720 .. code-block:: none
1721
1722   .------------.
1723   | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1724   | 0x00000004 | uint32_t HashData count
1725   | 0x........ | uint32_t HashData[0] DIE offset
1726   | 0x........ | uint32_t HashData[1] DIE offset
1727   | 0x........ | uint32_t HashData[2] DIE offset
1728   | 0x........ | uint32_t HashData[3] DIE offset
1729   | 0x00000000 | uint32_t KeyType (end of hash chain)
1730   `------------'
1731
1732 If there are collisions, you will have multiple valid string offsets:
1733
1734 .. code-block:: none
1735
1736   .------------.
1737   | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1738   | 0x00000004 | uint32_t HashData count
1739   | 0x........ | uint32_t HashData[0] DIE offset
1740   | 0x........ | uint32_t HashData[1] DIE offset
1741   | 0x........ | uint32_t HashData[2] DIE offset
1742   | 0x........ | uint32_t HashData[3] DIE offset
1743   | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
1744   | 0x00000002 | uint32_t HashData count
1745   | 0x........ | uint32_t HashData[0] DIE offset
1746   | 0x........ | uint32_t HashData[1] DIE offset
1747   | 0x00000000 | uint32_t KeyType (end of hash chain)
1748   `------------'
1749
1750 Current testing with real world C++ binaries has shown that there is around 1
1751 32 bit hash collision per 100,000 name entries.
1752
1753 Contents
1754 ^^^^^^^^
1755
1756 As we said, we want to strictly define exactly what is included in the
1757 different tables.  For DWARF, we have 3 tables: "``.apple_names``",
1758 "``.apple_types``", and "``.apple_namespaces``".
1759
1760 "``.apple_names``" sections should contain an entry for each DWARF DIE whose
1761 ``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
1762 ``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
1763 ``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
1764 ``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
1765 static variables).  All global and static variables should be included,
1766 including those scoped within functions and classes.  For example using the
1767 following code:
1768
1769 .. code-block:: c
1770
1771   static int var = 0;
1772
1773   void f ()
1774   {
1775     static int var = 0;
1776   }
1777
1778 Both of the static ``var`` variables would be included in the table.  All
1779 functions should emit both their full names and their basenames.  For C or C++,
1780 the full name is the mangled name (if available) which is usually in the
1781 ``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
1782 function basename.  If global or static variables have a mangled name in a
1783 ``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
1784 simple name found in the ``DW_AT_name`` attribute.
1785
1786 "``.apple_types``" sections should contain an entry for each DWARF DIE whose
1787 tag is one of:
1788
1789 * DW_TAG_array_type
1790 * DW_TAG_class_type
1791 * DW_TAG_enumeration_type
1792 * DW_TAG_pointer_type
1793 * DW_TAG_reference_type
1794 * DW_TAG_string_type
1795 * DW_TAG_structure_type
1796 * DW_TAG_subroutine_type
1797 * DW_TAG_typedef
1798 * DW_TAG_union_type
1799 * DW_TAG_ptr_to_member_type
1800 * DW_TAG_set_type
1801 * DW_TAG_subrange_type
1802 * DW_TAG_base_type
1803 * DW_TAG_const_type
1804 * DW_TAG_file_type
1805 * DW_TAG_namelist
1806 * DW_TAG_packed_type
1807 * DW_TAG_volatile_type
1808 * DW_TAG_restrict_type
1809 * DW_TAG_atomic_type
1810 * DW_TAG_interface_type
1811 * DW_TAG_unspecified_type
1812 * DW_TAG_shared_type
1813
1814 Only entries with a ``DW_AT_name`` attribute are included, and the entry must
1815 not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
1816 value).  For example, using the following code:
1817
1818 .. code-block:: c
1819
1820   int main ()
1821   {
1822     int *b = 0;
1823     return *b;
1824   }
1825
1826 We get a few type DIEs:
1827
1828 .. code-block:: none
1829
1830   0x00000067:     TAG_base_type [5]
1831                   AT_encoding( DW_ATE_signed )
1832                   AT_name( "int" )
1833                   AT_byte_size( 0x04 )
1834
1835   0x0000006e:     TAG_pointer_type [6]
1836                   AT_type( {0x00000067} ( int ) )
1837                   AT_byte_size( 0x08 )
1838
1839 The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
1840
1841 "``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
1842 If we run into a namespace that has no name this is an anonymous namespace, and
1843 the name should be output as "``(anonymous namespace)``" (without the quotes).
1844 Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
1845 standard C++ library that demangles mangled names.
1846
1847
1848 Language Extensions and File Format Changes
1849 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1850
1851 Objective-C Extensions
1852 """"""""""""""""""""""
1853
1854 "``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
1855 Objective-C class.  The name used in the hash table is the name of the
1856 Objective-C class itself.  If the Objective-C class has a category, then an
1857 entry is made for both the class name without the category, and for the class
1858 name with the category.  So if we have a DIE at offset 0x1234 with a name of
1859 method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
1860 an entry for "``NSString``" that points to DIE 0x1234, and an entry for
1861 "``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
1862 track down all Objective-C methods for an Objective-C class when doing
1863 expressions.  It is needed because of the dynamic nature of Objective-C where
1864 anyone can add methods to a class.  The DWARF for Objective-C methods is also
1865 emitted differently from C++ classes where the methods are not usually
1866 contained in the class definition, they are scattered about across one or more
1867 compile units.  Categories can also be defined in different shared libraries.
1868 So we need to be able to quickly find all of the methods and class functions
1869 given the Objective-C class name, or quickly find all methods and class
1870 functions for a class + category name.  This table does not contain any
1871 selector names, it just maps Objective-C class names (or class names +
1872 category) to all of the methods and class functions.  The selectors are added
1873 as function basenames in the "``.debug_names``" section.
1874
1875 In the "``.apple_names``" section for Objective-C functions, the full name is
1876 the entire function name with the brackets ("``-[NSString
1877 stringWithCString:]``") and the basename is the selector only
1878 ("``stringWithCString:``").
1879
1880 Mach-O Changes
1881 """"""""""""""
1882
1883 The sections names for the apple hash tables are for non-mach-o files.  For
1884 mach-o files, the sections should be contained in the ``__DWARF`` segment with
1885 names as follows:
1886
1887 * "``.apple_names``" -> "``__apple_names``"
1888 * "``.apple_types``" -> "``__apple_types``"
1889 * "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
1890 * "``.apple_objc``" -> "``__apple_objc``"
1891
1892 .. _codeview:
1893
1894 CodeView Debug Info Format
1895 ==========================
1896
1897 LLVM supports emitting CodeView, the Microsoft debug info format, and this
1898 section describes the design and implementation of that support.
1899
1900 Format Background
1901 -----------------
1902
1903 CodeView as a format is clearly oriented around C++ debugging, and in C++, the
1904 majority of debug information tends to be type information. Therefore, the
1905 overriding design constraint of CodeView is the separation of type information
1906 from other "symbol" information so that type information can be efficiently
1907 merged across translation units. Both type information and symbol information is
1908 generally stored as a sequence of records, where each record begins with a
1909 16-bit record size and a 16-bit record kind.
1910
1911 Type information is usually stored in the ``.debug$T`` section of the object
1912 file.  All other debug info, such as line info, string table, symbol info, and
1913 inlinee info, is stored in one or more ``.debug$S`` sections. There may only be
1914 one ``.debug$T`` section per object file, since all other debug info refers to
1915 it. If a PDB (enabled by the ``/Zi`` MSVC option) was used during compilation,
1916 the ``.debug$T`` section will contain only an ``LF_TYPESERVER2`` record pointing
1917 to the PDB. When using PDBs, symbol information appears to remain in the object
1918 file ``.debug$S`` sections.
1919
1920 Type records are referred to by their index, which is the number of records in
1921 the stream before a given record plus ``0x1000``. Many common basic types, such
1922 as the basic integral types and unqualified pointers to them, are represented
1923 using type indices less than ``0x1000``. Such basic types are built in to
1924 CodeView consumers and do not require type records.
1925
1926 Each type record may only contain type indices that are less than its own type
1927 index. This ensures that the graph of type stream references is acyclic. While
1928 the source-level type graph may contain cycles through pointer types (consider a
1929 linked list struct), these cycles are removed from the type stream by always
1930 referring to the forward declaration record of user-defined record types. Only
1931 "symbol" records in the ``.debug$S`` streams may refer to complete,
1932 non-forward-declaration type records.
1933
1934 Working with CodeView
1935 ---------------------
1936
1937 These are instructions for some common tasks for developers working to improve
1938 LLVM's CodeView support. Most of them revolve around using the CodeView dumper
1939 embedded in ``llvm-readobj``.
1940
1941 * Testing MSVC's output::
1942
1943     $ cl -c -Z7 foo.cpp # Use /Z7 to keep types in the object file
1944     $ llvm-readobj --codeview foo.obj
1945
1946 * Getting LLVM IR debug info out of Clang::
1947
1948     $ clang -g -gcodeview --target=x86_64-windows-msvc foo.cpp -S -emit-llvm
1949
1950   Use this to generate LLVM IR for LLVM test cases.
1951
1952 * Generate and dump CodeView from LLVM IR metadata::
1953
1954     $ llc foo.ll -filetype=obj -o foo.obj
1955     $ llvm-readobj --codeview foo.obj > foo.txt
1956
1957   Use this pattern in lit test cases and FileCheck the output of llvm-readobj
1958
1959 Improving LLVM's CodeView support is a process of finding interesting type
1960 records, constructing a C++ test case that makes MSVC emit those records,
1961 dumping the records, understanding them, and then generating equivalent records
1962 in LLVM's backend.
1963
1964 Testing Debug Info Preservation in Optimizations
1965 ================================================
1966
1967 The following paragraphs are an introduction to the debugify utility
1968 and examples of how to use it in regression tests to check debug info
1969 preservation after optimizations.
1970
1971 The ``debugify`` utility
1972 ------------------------
1973
1974 The ``debugify`` synthetic debug info testing utility consists of two
1975 main parts. The ``debugify`` pass and the ``check-debugify`` one. They are
1976 meant to be used with ``opt`` for development purposes.
1977
1978 The first applies synthetic debug information to every instruction of the module,
1979 while the latter checks that this DI is still available after an optimization
1980 has occurred, reporting any errors/warnings while doing so.
1981
1982 The instructions are assigned sequentially increasing line locations,
1983 and are immediately used by debug value intrinsics when possible.
1984
1985 For example, here is a module before:
1986
1987 .. code-block:: llvm
1988
1989    define void @f(i32* %x) {
1990    entry:
1991      %x.addr = alloca i32*, align 8
1992      store i32* %x, i32** %x.addr, align 8
1993      %0 = load i32*, i32** %x.addr, align 8
1994      store i32 10, i32* %0, align 4
1995      ret void
1996    }
1997
1998 and after running ``opt -debugify``  on it we get:
1999
2000 .. code-block:: text
2001
2002    define void @f(i32* %x) !dbg !6 {
2003    entry:
2004      %x.addr = alloca i32*, align 8, !dbg !12
2005      call void @llvm.dbg.value(metadata i32** %x.addr, metadata !9, metadata !DIExpression()), !dbg !12
2006      store i32* %x, i32** %x.addr, align 8, !dbg !13
2007      %0 = load i32*, i32** %x.addr, align 8, !dbg !14
2008      call void @llvm.dbg.value(metadata i32* %0, metadata !11, metadata !DIExpression()), !dbg !14
2009      store i32 10, i32* %0, align 4, !dbg !15
2010      ret void, !dbg !16
2011    }
2012
2013    !llvm.dbg.cu = !{!0}
2014    !llvm.debugify = !{!3, !4}
2015    !llvm.module.flags = !{!5}
2016
2017    !0 = distinct !DICompileUnit(language: DW_LANG_C, file: !1, producer: "debugify", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
2018    !1 = !DIFile(filename: "debugify-sample.ll", directory: "/")
2019    !2 = !{}
2020    !3 = !{i32 5}
2021    !4 = !{i32 2}
2022    !5 = !{i32 2, !"Debug Info Version", i32 3}
2023    !6 = distinct !DISubprogram(name: "f", linkageName: "f", scope: null, file: !1, line: 1, type: !7, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: true, unit: !0, retainedNodes: !8)
2024    !7 = !DISubroutineType(types: !2)
2025    !8 = !{!9, !11}
2026    !9 = !DILocalVariable(name: "1", scope: !6, file: !1, line: 1, type: !10)
2027    !10 = !DIBasicType(name: "ty64", size: 64, encoding: DW_ATE_unsigned)
2028    !11 = !DILocalVariable(name: "2", scope: !6, file: !1, line: 3, type: !10)
2029    !12 = !DILocation(line: 1, column: 1, scope: !6)
2030    !13 = !DILocation(line: 2, column: 1, scope: !6)
2031    !14 = !DILocation(line: 3, column: 1, scope: !6)
2032    !15 = !DILocation(line: 4, column: 1, scope: !6)
2033    !16 = !DILocation(line: 5, column: 1, scope: !6)
2034
2035 The following is an example of the -check-debugify output:
2036
2037 .. code-block:: none
2038
2039    $ opt -enable-debugify -loop-vectorize llvm/test/Transforms/LoopVectorize/i8-induction.ll -disable-output
2040    ERROR: Instruction with empty DebugLoc in function f --  %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
2041
2042 Errors/warnings can range from instructions with empty debug location to an
2043 instruction having a type that's incompatible with the source variable it describes,
2044 all the way to missing lines and missing debug value intrinsics.
2045
2046 Fixing errors
2047 ^^^^^^^^^^^^^
2048
2049 Each of the errors above has a relevant API available to fix it.
2050
2051 * In the case of missing debug location, ``Instruction::setDebugLoc`` or possibly
2052   ``IRBuilder::setCurrentDebugLocation`` when using a Builder and the new location
2053   should be reused.
2054
2055 * When a debug value has incompatible type ``llvm::replaceAllDbgUsesWith`` can be used.
2056   After a RAUW call an incompatible type error can occur because RAUW does not handle
2057   widening and narrowing of variables while ``llvm::replaceAllDbgUsesWith`` does. It is
2058   also capable of changing the DWARF expression used by the debugger to describe the variable.
2059   It also prevents use-before-def by salvaging or deleting invalid debug values.
2060
2061 * When a debug value is missing ``llvm::salvageDebugInfo`` can be used when no replacement
2062   exists, or ``llvm::replaceAllDbgUsesWith`` when a replacement exists.
2063
2064 Using ``debugify``
2065 ------------------
2066
2067 In order for ``check-debugify`` to work, the DI must be coming from
2068 ``debugify``. Thus, modules with existing DI will be skipped.
2069
2070 The most straightforward way to use ``debugify`` is as follows::
2071
2072   $ opt -debugify -pass-to-test -check-debugify sample.ll
2073
2074 This will inject synthetic DI to ``sample.ll`` run the ``pass-to-test``
2075 and then check for missing DI.
2076
2077 Some other ways to run debugify are avaliable:
2078
2079 .. code-block:: bash
2080
2081    # Same as the above example.
2082    $ opt -enable-debugify -pass-to-test sample.ll
2083
2084    # Suppresses verbose debugify output.
2085    $ opt -enable-debugify -debugify-quiet -pass-to-test sample.ll
2086
2087    # Prepend -debugify before and append -check-debugify -strip after
2088    # each pass on the pipeline (similar to -verify-each).
2089    $ opt -debugify-each -O2 sample.ll
2090
2091 ``debugify`` can also be used to test a backend, e.g:
2092
2093 .. code-block:: bash
2094
2095    $ opt -debugify < sample.ll | llc -o -
2096
2097 ``debugify`` in regression tests
2098 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2099
2100 The ``-debugify`` pass is especially helpful when it comes to testing that
2101 a given pass preserves DI while transforming the module. For this to work,
2102 the ``-debugify`` output must be stable enough to use in regression tests.
2103 Changes to this pass are not allowed to break existing tests.
2104
2105 It allows us to test for DI loss in the same tests we check that the
2106 transformation is actually doing what it should.
2107
2108 Here is an example from ``test/Transforms/InstCombine/cast-mul-select.ll``:
2109
2110 .. code-block:: llvm
2111
2112    ; RUN: opt < %s -debugify -instcombine -S | FileCheck %s --check-prefix=DEBUGINFO
2113
2114    define i32 @mul(i32 %x, i32 %y) {
2115    ; DBGINFO-LABEL: @mul(
2116    ; DBGINFO-NEXT:    [[C:%.*]] = mul i32 {{.*}}
2117    ; DBGINFO-NEXT:    call void @llvm.dbg.value(metadata i32 [[C]]
2118    ; DBGINFO-NEXT:    [[D:%.*]] = and i32 {{.*}}
2119    ; DBGINFO-NEXT:    call void @llvm.dbg.value(metadata i32 [[D]]
2120
2121      %A = trunc i32 %x to i8
2122      %B = trunc i32 %y to i8
2123      %C = mul i8 %A, %B
2124      %D = zext i8 %C to i32
2125      ret i32 %D
2126    }
2127
2128 Here we test that the two ``dbg.value`` instrinsics are preserved and
2129 are correctly pointing to the ``[[C]]`` and ``[[D]]`` variables.
2130
2131 .. note::
2132
2133    Note, that when writing this kind of regression tests, it is important
2134    to make them as robust as possible. That's why we should try to avoid
2135    hardcoding line/variable numbers in check lines. If for example you test
2136    for a ``DILocation`` to have a specific line number, and someone later adds
2137    an instruction before the one we check the test will fail. In the cases this
2138    can't be avoided (say, if a test wouldn't be precise enough), moving the
2139    test to its own file is preferred.