OSDN Git Service

hw/cxl: Make the CXL fixed memory window setup a machine parameter.
[qmiga/qemu.git] / docs / system / devices / cxl.rst
1 Compute Express Link (CXL)
2 ==========================
3 From the view of a single host, CXL is an interconnect standard that
4 targets accelerators and memory devices attached to a CXL host.
5 This description will focus on those aspects visible either to
6 software running on a QEMU emulated host or to the internals of
7 functional emulation. As such, it will skip over many of the
8 electrical and protocol elements that would be more of interest
9 for real hardware and will dominate more general introductions to CXL.
10 It will also completely ignore the fabric management aspects of CXL
11 by considering only a single host and a static configuration.
12
13 CXL shares many concepts and much of the infrastructure of PCI Express,
14 with CXL Host Bridges, which have CXL Root Ports which may be directly
15 attached to CXL or PCI End Points. Alternatively there may be CXL Switches
16 with CXL and PCI Endpoints attached below them.  In many cases additional
17 control and capabilities are exposed via PCI Express interfaces.
18 This sharing of interfaces and hence emulation code is is reflected
19 in how the devices are emulated in QEMU. In most cases the various
20 CXL elements are built upon an equivalent PCIe devices.
21
22 CXL devices support the following interfaces:
23
24 * Most conventional PCIe interfaces
25
26   - Configuration space access
27   - BAR mapped memory accesses used for registers and mailboxes.
28   - MSI/MSI-X
29   - AER
30   - DOE mailboxes
31   - IDE
32   - Many other PCI express defined interfaces..
33
34 * Memory operations
35
36   - Equivalent of accessing DRAM / NVDIMMs. Any access / feature
37     supported by the host for normal memory should also work for
38     CXL attached memory devices.
39
40 * Cache operations. The are mostly irrelevant to QEMU emulation as
41   QEMU is not emulating a coherency protocol. Any emulation related
42   to these will be device specific and is out of the scope of this
43   document.
44
45 CXL 2.0 Device Types
46 --------------------
47 CXL 2.0 End Points are often categorized into three types.
48
49 **Type 1:** These support coherent caching of host memory.  Example might
50 be a crypto accelerators.  May also have device private memory accessible
51 via means such as PCI memory reads and writes to BARs.
52
53 **Type 2:** These support coherent caching of host memory and host
54 managed device memory (HDM) for which the coherency protocol is managed
55 by the host. This is a complex topic, so for more information on CXL
56 coherency see the CXL 2.0 specification.
57
58 **Type 3 Memory devices:**  These devices act as a means of attaching
59 additional memory (HDM) to a CXL host including both volatile and
60 persistent memory. The CXL topology may support interleaving across a
61 number of Type 3 memory devices using HDM Decoders in the host, host
62 bridge, switch upstream port and endpoints.
63
64 Scope of CXL emulation in QEMU
65 ------------------------------
66 The focus of CXL emulation is CXL revision 2.0 and later. Earlier CXL
67 revisions defined a smaller set of features, leaving much of the control
68 interface as implementation defined or device specific, making generic
69 emulation challenging with host specific firmware being responsible
70 for setup and the Endpoints being presented to operating systems
71 as Root Complex Integrated End Points. CXL rev 2.0 looks a lot
72 more like PCI Express, with fully specified discoverability
73 of the CXL topology.
74
75 CXL System components
76 ----------------------
77 A CXL system is made up a Host with a number of 'standard components'
78 the control and capabilities of which are discoverable by system software
79 using means described in the CXL 2.0 specification.
80
81 CXL Fixed Memory Windows (CFMW)
82 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
83 A CFMW consists of a particular range of Host Physical Address space
84 which is routed to particular CXL Host Bridges.  At time of generic
85 software initialization it will have a particularly interleaving
86 configuration and associated Quality of Serice Throtling Group (QTG).
87 This information is available to system software, when making
88 decisions about how to configure interleave across available CXL
89 memory devices.  It is provide as CFMW Structures (CFMWS) in
90 the CXL Early Discovery Table, an ACPI table.
91
92 Note: QTG 0 is the only one currently supported in QEMU.
93
94 CXL Host Bridge (CXL HB)
95 ~~~~~~~~~~~~~~~~~~~~~~~~
96 A CXL host bridge is similar to the PCIe equivalent, but with a
97 specification defined register interface called CXL Host Bridge
98 Component Registers (CHBCR). The location of this CHBCR MMIO
99 space is described to system software via a CXL Host Bridge
100 Structure (CHBS) in the CEDT ACPI table.  The actual interfaces
101 are identical to those used for other parts of the CXL heirarchy
102 as CXL Component Registers in PCI BARs.
103
104 Interfaces provided include:
105
106 * Configuration of HDM Decoders to route CXL Memory accesses with
107   a particularly Host Physical Address range to the target port
108   below which the CXL device servicing that address lies.  This
109   may be a mapping to a single Root Port (RP) or across a set of
110   target RPs.
111
112 CXL Root Ports (CXL RP)
113 ~~~~~~~~~~~~~~~~~~~~~~~
114 A CXL Root Port servers te same purpose as a PCIe Root Port.
115 There are a number of CXL specific Designated Vendor Specific
116 Extended Capabilities (DVSEC) in PCIe Configuration Space
117 and associated component register access via PCI bars.
118
119 CXL Switch
120 ~~~~~~~~~~
121 Not yet implemented in QEMU.
122
123 Here we consider a simple CXL switch with only a single
124 virtual hierarchy. Whilst more complex devices exist, their
125 visibility to a particular host is generally the same as for
126 a simple switch design. Hosts often have no awareness
127 of complex rerouting and device pooling, they simply see
128 devices being hot added or hot removed.
129
130 A CXL switch has a similar architecture to those in PCIe,
131 with a single upstream port, internal PCI bus and multiple
132 downstream ports.
133
134 Both the CXL upstream and downstream ports have CXL specific
135 DVSECs in configuration space, and component registers in PCI
136 BARs.  The Upstream Port has the configuration interfaces for
137 the HDM decoders which route incoming memory accesses to the
138 appropriate downstream port.
139
140 CXL Memory Devices - Type 3
141 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
142 CXL type 3 devices use a PCI class code and are intended to be supported
143 by a generic operating system driver. They have HDM decoders
144 though in these EP devices, the decoder is reponsible not for
145 routing but for translation of the incoming host physical address (HPA)
146 into a Device Physical Address (DPA).
147
148 CXL Memory Interleave
149 ---------------------
150 To understand the interaction of different CXL hardware components which
151 are emulated in QEMU, let us consider a memory read in a fully configured
152 CXL topology.  Note that system software is responsible for configuration
153 of all components with the exception of the CFMWs. System software is
154 responsible for allocating appropriate ranges from within the CFMWs
155 and exposing those via normal memory configurations as would be done
156 for system RAM.
157
158 Example system Topology. x marks the match in each decoder level::
159
160   |<------------------SYSTEM PHYSICAL ADDRESS MAP (1)----------------->|
161   |    __________   __________________________________   __________    |
162   |   |          | |                                  | |          |   |
163   |   | CFMW 0   | |  CXL Fixed Memory Window 1       | | CFMW 1   |   |
164   |   | HB0 only | |  Configured to interleave memory | | HB1 only |   |
165   |   |          | |  memory accesses across HB0/HB1  | |          |   |
166   |   |__________| |_____x____________________________| |__________|   |
167            |             |                     |             |
168            |             |                     |             |
169            |             |                     |             |
170            |       Interleave Decoder          |             |
171            |       Matches this HB             |             |
172            \_____________|                     |_____________/
173                __________|__________      _____|_______________
174               |                     |    |                     |
175        (2)    | CXL HB 0            |    | CXL HB 1            |
176               | HB IntLv Decoders   |    | HB IntLv Decoders   |
177               | PCI/CXL Root Bus 0c |    | PCI/CXL Root Bus 0d |
178               |                     |    |                     |
179               |___x_________________|    |_____________________|
180                   |                |       |               |
181                   |                |       |               |
182        A HB 0 HDM Decoder          |       |               |
183        matches this Port           |       |               |
184                   |                |       |               |
185        ___________|___   __________|__   __|_________   ___|_________
186    (3)|  Root Port 0  | | Root Port 1 | | Root Port 2| | Root Port 3 |
187       |  Appears in   | | Appears in  | | Appears in | | Appear in   |
188       |  PCI topology | | PCI Topology| | PCI Topo   | | PCI Topo    |
189       |  As 0c:00.0   | | as 0c:01.0  | | as de:00.0 | | as de:01.0  |
190       |_______________| |_____________| |____________| |_____________|
191             |                  |               |              |
192             |                  |               |              |
193        _____|_________   ______|______   ______|_____   ______|_______
194    (4)|     x         | |             | |            | |              |
195       | CXL Type3 0   | | CXL Type3 1 | | CXL type3 2| | CLX Type 3 3 |
196       |               | |             | |            | |              |
197       | PMEM0(Vol LSA)| | PMEM1 (...) | | PMEM2 (...)| | PMEM3 (...)  |
198       | Decoder to go | |             | |            | |              |
199       | from host PA  | | PCI 0e:00.0 | | PCI df:00.0| | PCI e0:00.0  |
200       | to device PA  | |             | |            | |              |
201       | PCI as 0d:00.0| |             | |            | |              |
202       |_______________| |_____________| |____________| |______________|
203
204 Notes:
205
206 (1) **3 CXL Fixed Memory Windows (CFMW)** corresponding to different
207     ranges of the system physical address map.  Each CFMW has
208     particular interleave setup across the CXL Host Bridges (HB)
209     CFMW0 provides uninterleaved access to HB0, CFW2 provides
210     uninterleaved acess to HB1. CFW1 provides interleaved memory access
211     across HB0 and HB1.
212
213 (2) **Two CXL Host Bridges**. Each of these has 2 CXL Root Ports and
214     programmable HDM decoders to route memory accesses either to
215     a single port or interleave them across multiple ports.
216     A complex configuration here, might be to use the following HDM
217     decoders in HB0. HDM0 routes CFMW0 requests to RP0 and hence
218     part of CXL Type3 0. HDM1 routes CFMW0 requests from a
219     different region of the CFMW0 PA range to RP2 and hence part
220     of CXL Type 3 1.  HDM2 routes yet another PA range from within
221     CFMW0 to be interleaved across RP0 and RP1, providing 2 way
222     interleave of part of the memory provided by CXL Type3 0 and
223     CXL Type 3 1. HDM3 routes those interleaved accesses from
224     CFMW1 that target HB0 to RP 0 and another part of the memory of
225     CXL Type 3 0 (as part of a 2 way interleave at the system level
226     across for example CXL Type3 0 and CXL Type3 2.
227     HDM4 is used to enable system wide 4 way interleave across all
228     the present CXL type3 devices, by interleaving those (interleaved)
229     requests that HB0 receives from from CFMW1 across RP 0 and
230     RP 1 and hence to yet more regions of the memory of the
231     attached Type3 devices.  Note this is a representative subset
232     of the full range of possible HDM decoder configurations in this
233     topology.
234
235 (3) **Four CXL Root Ports.** In this case the CXL Type 3 devices are
236     directly attached to these ports.
237
238 (4) **Four CXL Type3 memory expansion devices.**  These will each have
239     HDM decoders, but in this case rather than performing interleave
240     they will take the Host Physical Addresses of accesses and map
241     them to their own local Device Physical Address Space (DPA).
242
243 Example command lines
244 ---------------------
245 A very simple setup with just one directly attached CXL Type 3 device::
246
247   qemu-system-aarch64 -M virt,gic-version=3,cxl=on -m 4g,maxmem=8G,slots=8 -cpu max \
248   ...
249   -object memory-backend-file,id=cxl-mem1,share=on,mem-path=/tmp/cxltest.raw,size=256M \
250   -object memory-backend-file,id=cxl-lsa1,share=on,mem-path=/tmp/lsa.raw,size=256M \
251   -device pxb-cxl,bus_nr=12,bus=pcie.0,id=cxl.1 \
252   -device cxl-rp,port=0,bus=cxl.1,id=root_port13,chassis=0,slot=2 \
253   -device cxl-type3,bus=root_port13,memdev=cxl-mem1,lsa=cxl-lsa1,id=cxl-pmem0 \
254   -M cxl-fmw.0.targets.0=cxl.1,cxl-fmw.0.size=4G
255
256 A setup suitable for 4 way interleave. Only one fixed window provided, to enable 2 way
257 interleave across 2 CXL host bridges.  Each host bridge has 2 CXL Root Ports, with
258 the CXL Type3 device directly attached (no switches).::
259
260   qemu-system-aarch64 -M virt,gic-version=3,cxl=on -m 4g,maxmem=8G,slots=8 -cpu max \
261   ...
262   -object memory-backend-file,id=cxl-mem1,share=on,mem-path=/tmp/cxltest.raw,size=256M \
263   -object memory-backend-file,id=cxl-mem2,share=on,mem-path=/tmp/cxltest2.raw,size=256M \
264   -object memory-backend-file,id=cxl-mem3,share=on,mem-path=/tmp/cxltest3.raw,size=256M \
265   -object memory-backend-file,id=cxl-mem4,share=on,mem-path=/tmp/cxltest4.raw,size=256M \
266   -object memory-backend-file,id=cxl-lsa1,share=on,mem-path=/tmp/lsa.raw,size=256M \
267   -object memory-backend-file,id=cxl-lsa2,share=on,mem-path=/tmp/lsa2.raw,size=256M \
268   -object memory-backend-file,id=cxl-lsa3,share=on,mem-path=/tmp/lsa3.raw,size=256M \
269   -object memory-backend-file,id=cxl-lsa4,share=on,mem-path=/tmp/lsa4.raw,size=256M \
270   -device pxb-cxl,bus_nr=12,bus=pcie.0,id=cxl.1 \
271   -device pxb-cxl,bus_nr=222,bus=pcie.0,id=cxl.2 \
272   -device cxl-rp,port=0,bus=cxl.1,id=root_port13,chassis=0,slot=2 \
273   -device cxl-type3,bus=root_port13,memdev=cxl-mem1,lsa=cxl-lsa1,id=cxl-pmem0 \
274   -device cxl-rp,port=1,bus=cxl.1,id=root_port14,chassis=0,slot=3 \
275   -device cxl-type3,bus=root_port14,memdev=cxl-mem2,lsa=cxl-lsa2,id=cxl-pmem1 \
276   -device cxl-rp,port=0,bus=cxl.2,id=root_port15,chassis=0,slot=5 \
277   -device cxl-type3,bus=root_port15,memdev=cxl-mem3,lsa=cxl-lsa3,id=cxl-pmem2 \
278   -device cxl-rp,port=1,bus=cxl.2,id=root_port16,chassis=0,slot=6 \
279   -device cxl-type3,bus=root_port16,memdev=cxl-mem4,lsa=cxl-lsa4,id=cxl-pmem3 \
280   -M cxl-fmw.0.targets.0=cxl.1,cxl-fmw.0.targets.1=cxl.2,cxl-fmw.0.size=4G,cxl-fmw.0.interleave-granularity=8k
281
282 Kernel Configuration Options
283 ----------------------------
284
285 In Linux 5.18 the followings options are necessary to make use of
286 OS management of CXL memory devices as described here.
287
288 * CONFIG_CXL_BUS
289 * CONFIG_CXL_PCI
290 * CONFIG_CXL_ACPI
291 * CONFIG_CXL_PMEM
292 * CONFIG_CXL_MEM
293 * CONFIG_CXL_PORT
294 * CONFIG_CXL_REGION
295
296 References
297 ----------
298
299  - Consortium website for specifications etc:
300    http://www.computeexpresslink.org
301  - Compute Express link Revision 2 specification, October 2020
302  - CEDT CFMWS & QTG _DSM ECN May 2021