OSDN Git Service

block: Fix partition support for host aware zoned block devices
[tomoyo/tomoyo-test1.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67         return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78                               struct cpufreq_governor *new_gov,
79                               unsigned int new_pol);
80
81 /**
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94         return off;
95 }
96 void disable_cpufreq(void)
97 {
98         off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102 bool have_governor_per_policy(void)
103 {
104         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108 static struct kobject *cpufreq_global_kobject;
109
110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111 {
112         if (have_governor_per_policy())
113                 return &policy->kobj;
114         else
115                 return cpufreq_global_kobject;
116 }
117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118
119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120 {
121         struct kernel_cpustat kcpustat;
122         u64 cur_wall_time;
123         u64 idle_time;
124         u64 busy_time;
125
126         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128         kcpustat_cpu_fetch(&kcpustat, cpu);
129
130         busy_time = kcpustat.cpustat[CPUTIME_USER];
131         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135         busy_time += kcpustat.cpustat[CPUTIME_NICE];
136
137         idle_time = cur_wall_time - busy_time;
138         if (wall)
139                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140
141         return div_u64(idle_time, NSEC_PER_USEC);
142 }
143
144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145 {
146         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147
148         if (idle_time == -1ULL)
149                 return get_cpu_idle_time_jiffy(cpu, wall);
150         else if (!io_busy)
151                 idle_time += get_cpu_iowait_time_us(cpu, wall);
152
153         return idle_time;
154 }
155 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156
157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158                 unsigned long max_freq)
159 {
160 }
161 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171                 struct cpufreq_frequency_table *table,
172                 unsigned int transition_latency)
173 {
174         policy->freq_table = table;
175         policy->cpuinfo.transition_latency = transition_latency;
176
177         /*
178          * The driver only supports the SMP configuration where all processors
179          * share the clock and voltage and clock.
180          */
181         cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197         if (!policy || IS_ERR(policy->clk)) {
198                 pr_err("%s: No %s associated to cpu: %d\n",
199                        __func__, policy ? "clk" : "policy", cpu);
200                 return 0;
201         }
202
203         return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220         struct cpufreq_policy *policy = NULL;
221         unsigned long flags;
222
223         if (WARN_ON(cpu >= nr_cpu_ids))
224                 return NULL;
225
226         /* get the cpufreq driver */
227         read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229         if (cpufreq_driver) {
230                 /* get the CPU */
231                 policy = cpufreq_cpu_get_raw(cpu);
232                 if (policy)
233                         kobject_get(&policy->kobj);
234         }
235
236         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238         return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248         kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258         if (WARN_ON(!policy))
259                 return;
260
261         lockdep_assert_held(&policy->rwsem);
262
263         up_write(&policy->rwsem);
264
265         cpufreq_cpu_put(policy);
266 }
267
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284         if (!policy)
285                 return NULL;
286
287         down_write(&policy->rwsem);
288
289         if (policy_is_inactive(policy)) {
290                 cpufreq_cpu_release(policy);
291                 return NULL;
292         }
293
294         return policy;
295 }
296
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300
301 /**
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312         static unsigned long l_p_j_ref;
313         static unsigned int l_p_j_ref_freq;
314
315         if (ci->flags & CPUFREQ_CONST_LOOPS)
316                 return;
317
318         if (!l_p_j_ref_freq) {
319                 l_p_j_ref = loops_per_jiffy;
320                 l_p_j_ref_freq = ci->old;
321                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322                          l_p_j_ref, l_p_j_ref_freq);
323         }
324         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326                                                                 ci->new);
327                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328                          loops_per_jiffy, ci->new);
329         }
330 #endif
331 }
332
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344                                       struct cpufreq_freqs *freqs,
345                                       unsigned int state)
346 {
347         int cpu;
348
349         BUG_ON(irqs_disabled());
350
351         if (cpufreq_disabled())
352                 return;
353
354         freqs->policy = policy;
355         freqs->flags = cpufreq_driver->flags;
356         pr_debug("notification %u of frequency transition to %u kHz\n",
357                  state, freqs->new);
358
359         switch (state) {
360         case CPUFREQ_PRECHANGE:
361                 /*
362                  * Detect if the driver reported a value as "old frequency"
363                  * which is not equal to what the cpufreq core thinks is
364                  * "old frequency".
365                  */
366                 if (policy->cur && policy->cur != freqs->old) {
367                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368                                  freqs->old, policy->cur);
369                         freqs->old = policy->cur;
370                 }
371
372                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373                                          CPUFREQ_PRECHANGE, freqs);
374
375                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376                 break;
377
378         case CPUFREQ_POSTCHANGE:
379                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381                          cpumask_pr_args(policy->cpus));
382
383                 for_each_cpu(cpu, policy->cpus)
384                         trace_cpu_frequency(freqs->new, cpu);
385
386                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387                                          CPUFREQ_POSTCHANGE, freqs);
388
389                 cpufreq_stats_record_transition(policy, freqs->new);
390                 policy->cur = freqs->new;
391         }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396                 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399         if (!transition_failed)
400                 return;
401
402         swap(freqs->old, freqs->new);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408                 struct cpufreq_freqs *freqs)
409 {
410
411         /*
412          * Catch double invocations of _begin() which lead to self-deadlock.
413          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414          * doesn't invoke _begin() on their behalf, and hence the chances of
415          * double invocations are very low. Moreover, there are scenarios
416          * where these checks can emit false-positive warnings in these
417          * drivers; so we avoid that by skipping them altogether.
418          */
419         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420                                 && current == policy->transition_task);
421
422 wait:
423         wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425         spin_lock(&policy->transition_lock);
426
427         if (unlikely(policy->transition_ongoing)) {
428                 spin_unlock(&policy->transition_lock);
429                 goto wait;
430         }
431
432         policy->transition_ongoing = true;
433         policy->transition_task = current;
434
435         spin_unlock(&policy->transition_lock);
436
437         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442                 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444         if (WARN_ON(!policy->transition_ongoing))
445                 return;
446
447         cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449         policy->transition_ongoing = false;
450         policy->transition_task = NULL;
451
452         wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455
456 /*
457  * Fast frequency switching status count.  Positive means "enabled", negative
458  * means "disabled" and 0 means "not decided yet".
459  */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462
463 static void cpufreq_list_transition_notifiers(void)
464 {
465         struct notifier_block *nb;
466
467         pr_info("Registered transition notifiers:\n");
468
469         mutex_lock(&cpufreq_transition_notifier_list.mutex);
470
471         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472                 pr_info("%pS\n", nb->notifier_call);
473
474         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476
477 /**
478  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479  * @policy: cpufreq policy to enable fast frequency switching for.
480  *
481  * Try to enable fast frequency switching for @policy.
482  *
483  * The attempt will fail if there is at least one transition notifier registered
484  * at this point, as fast frequency switching is quite fundamentally at odds
485  * with transition notifiers.  Thus if successful, it will make registration of
486  * transition notifiers fail going forward.
487  */
488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490         lockdep_assert_held(&policy->rwsem);
491
492         if (!policy->fast_switch_possible)
493                 return;
494
495         mutex_lock(&cpufreq_fast_switch_lock);
496         if (cpufreq_fast_switch_count >= 0) {
497                 cpufreq_fast_switch_count++;
498                 policy->fast_switch_enabled = true;
499         } else {
500                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
501                         policy->cpu);
502                 cpufreq_list_transition_notifiers();
503         }
504         mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507
508 /**
509  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510  * @policy: cpufreq policy to disable fast frequency switching for.
511  */
512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514         mutex_lock(&cpufreq_fast_switch_lock);
515         if (policy->fast_switch_enabled) {
516                 policy->fast_switch_enabled = false;
517                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518                         cpufreq_fast_switch_count--;
519         }
520         mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523
524 /**
525  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526  * one.
527  * @target_freq: target frequency to resolve.
528  *
529  * The target to driver frequency mapping is cached in the policy.
530  *
531  * Return: Lowest driver-supported frequency greater than or equal to the
532  * given target_freq, subject to policy (min/max) and driver limitations.
533  */
534 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
535                                          unsigned int target_freq)
536 {
537         target_freq = clamp_val(target_freq, policy->min, policy->max);
538         policy->cached_target_freq = target_freq;
539
540         if (cpufreq_driver->target_index) {
541                 int idx;
542
543                 idx = cpufreq_frequency_table_target(policy, target_freq,
544                                                      CPUFREQ_RELATION_L);
545                 policy->cached_resolved_idx = idx;
546                 return policy->freq_table[idx].frequency;
547         }
548
549         if (cpufreq_driver->resolve_freq)
550                 return cpufreq_driver->resolve_freq(policy, target_freq);
551
552         return target_freq;
553 }
554 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
555
556 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
557 {
558         unsigned int latency;
559
560         if (policy->transition_delay_us)
561                 return policy->transition_delay_us;
562
563         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
564         if (latency) {
565                 /*
566                  * For platforms that can change the frequency very fast (< 10
567                  * us), the above formula gives a decent transition delay. But
568                  * for platforms where transition_latency is in milliseconds, it
569                  * ends up giving unrealistic values.
570                  *
571                  * Cap the default transition delay to 10 ms, which seems to be
572                  * a reasonable amount of time after which we should reevaluate
573                  * the frequency.
574                  */
575                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
576         }
577
578         return LATENCY_MULTIPLIER;
579 }
580 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
581
582 /*********************************************************************
583  *                          SYSFS INTERFACE                          *
584  *********************************************************************/
585 static ssize_t show_boost(struct kobject *kobj,
586                           struct kobj_attribute *attr, char *buf)
587 {
588         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
589 }
590
591 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
592                            const char *buf, size_t count)
593 {
594         int ret, enable;
595
596         ret = sscanf(buf, "%d", &enable);
597         if (ret != 1 || enable < 0 || enable > 1)
598                 return -EINVAL;
599
600         if (cpufreq_boost_trigger_state(enable)) {
601                 pr_err("%s: Cannot %s BOOST!\n",
602                        __func__, enable ? "enable" : "disable");
603                 return -EINVAL;
604         }
605
606         pr_debug("%s: cpufreq BOOST %s\n",
607                  __func__, enable ? "enabled" : "disabled");
608
609         return count;
610 }
611 define_one_global_rw(boost);
612
613 static struct cpufreq_governor *find_governor(const char *str_governor)
614 {
615         struct cpufreq_governor *t;
616
617         for_each_governor(t)
618                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
619                         return t;
620
621         return NULL;
622 }
623
624 static unsigned int cpufreq_parse_policy(char *str_governor)
625 {
626         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
627                 return CPUFREQ_POLICY_PERFORMANCE;
628
629         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
630                 return CPUFREQ_POLICY_POWERSAVE;
631
632         return CPUFREQ_POLICY_UNKNOWN;
633 }
634
635 /**
636  * cpufreq_parse_governor - parse a governor string only for has_target()
637  * @str_governor: Governor name.
638  */
639 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
640 {
641         struct cpufreq_governor *t;
642
643         mutex_lock(&cpufreq_governor_mutex);
644
645         t = find_governor(str_governor);
646         if (!t) {
647                 int ret;
648
649                 mutex_unlock(&cpufreq_governor_mutex);
650
651                 ret = request_module("cpufreq_%s", str_governor);
652                 if (ret)
653                         return NULL;
654
655                 mutex_lock(&cpufreq_governor_mutex);
656
657                 t = find_governor(str_governor);
658         }
659         if (t && !try_module_get(t->owner))
660                 t = NULL;
661
662         mutex_unlock(&cpufreq_governor_mutex);
663
664         return t;
665 }
666
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674
675 #define show_one(file_name, object)                     \
676 static ssize_t show_##file_name                         \
677 (struct cpufreq_policy *policy, char *buf)              \
678 {                                                       \
679         return sprintf(buf, "%u\n", policy->object);    \
680 }
681
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690         return 0;
691 }
692
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695         ssize_t ret;
696         unsigned int freq;
697
698         freq = arch_freq_get_on_cpu(policy->cpu);
699         if (freq)
700                 ret = sprintf(buf, "%u\n", freq);
701         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702                         cpufreq_driver->get)
703                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704         else
705                 ret = sprintf(buf, "%u\n", policy->cur);
706         return ret;
707 }
708
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)                    \
713 static ssize_t store_##file_name                                        \
714 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
715 {                                                                       \
716         unsigned long val;                                              \
717         int ret;                                                        \
718                                                                         \
719         ret = sscanf(buf, "%lu", &val);                                 \
720         if (ret != 1)                                                   \
721                 return -EINVAL;                                         \
722                                                                         \
723         ret = freq_qos_update_request(policy->object##_freq_req, val);\
724         return ret >= 0 ? count : ret;                                  \
725 }
726
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734                                         char *buf)
735 {
736         unsigned int cur_freq = __cpufreq_get(policy);
737
738         if (cur_freq)
739                 return sprintf(buf, "%u\n", cur_freq);
740
741         return sprintf(buf, "<unknown>\n");
742 }
743
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750                 return sprintf(buf, "powersave\n");
751         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752                 return sprintf(buf, "performance\n");
753         else if (policy->governor)
754                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755                                 policy->governor->name);
756         return -EINVAL;
757 }
758
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763                                         const char *buf, size_t count)
764 {
765         char str_governor[16];
766         int ret;
767
768         ret = sscanf(buf, "%15s", str_governor);
769         if (ret != 1)
770                 return -EINVAL;
771
772         if (cpufreq_driver->setpolicy) {
773                 unsigned int new_pol;
774
775                 new_pol = cpufreq_parse_policy(str_governor);
776                 if (!new_pol)
777                         return -EINVAL;
778
779                 ret = cpufreq_set_policy(policy, NULL, new_pol);
780         } else {
781                 struct cpufreq_governor *new_gov;
782
783                 new_gov = cpufreq_parse_governor(str_governor);
784                 if (!new_gov)
785                         return -EINVAL;
786
787                 ret = cpufreq_set_policy(policy, new_gov,
788                                          CPUFREQ_POLICY_UNKNOWN);
789
790                 module_put(new_gov->owner);
791         }
792
793         return ret ? ret : count;
794 }
795
796 /**
797  * show_scaling_driver - show the cpufreq driver currently loaded
798  */
799 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
800 {
801         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
802 }
803
804 /**
805  * show_scaling_available_governors - show the available CPUfreq governors
806  */
807 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
808                                                 char *buf)
809 {
810         ssize_t i = 0;
811         struct cpufreq_governor *t;
812
813         if (!has_target()) {
814                 i += sprintf(buf, "performance powersave");
815                 goto out;
816         }
817
818         for_each_governor(t) {
819                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
820                     - (CPUFREQ_NAME_LEN + 2)))
821                         goto out;
822                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
823         }
824 out:
825         i += sprintf(&buf[i], "\n");
826         return i;
827 }
828
829 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
830 {
831         ssize_t i = 0;
832         unsigned int cpu;
833
834         for_each_cpu(cpu, mask) {
835                 if (i)
836                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
837                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
838                 if (i >= (PAGE_SIZE - 5))
839                         break;
840         }
841         i += sprintf(&buf[i], "\n");
842         return i;
843 }
844 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
845
846 /**
847  * show_related_cpus - show the CPUs affected by each transition even if
848  * hw coordination is in use
849  */
850 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
851 {
852         return cpufreq_show_cpus(policy->related_cpus, buf);
853 }
854
855 /**
856  * show_affected_cpus - show the CPUs affected by each transition
857  */
858 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
859 {
860         return cpufreq_show_cpus(policy->cpus, buf);
861 }
862
863 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
864                                         const char *buf, size_t count)
865 {
866         unsigned int freq = 0;
867         unsigned int ret;
868
869         if (!policy->governor || !policy->governor->store_setspeed)
870                 return -EINVAL;
871
872         ret = sscanf(buf, "%u", &freq);
873         if (ret != 1)
874                 return -EINVAL;
875
876         policy->governor->store_setspeed(policy, freq);
877
878         return count;
879 }
880
881 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
882 {
883         if (!policy->governor || !policy->governor->show_setspeed)
884                 return sprintf(buf, "<unsupported>\n");
885
886         return policy->governor->show_setspeed(policy, buf);
887 }
888
889 /**
890  * show_bios_limit - show the current cpufreq HW/BIOS limitation
891  */
892 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
893 {
894         unsigned int limit;
895         int ret;
896         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
897         if (!ret)
898                 return sprintf(buf, "%u\n", limit);
899         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
900 }
901
902 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
903 cpufreq_freq_attr_ro(cpuinfo_min_freq);
904 cpufreq_freq_attr_ro(cpuinfo_max_freq);
905 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
906 cpufreq_freq_attr_ro(scaling_available_governors);
907 cpufreq_freq_attr_ro(scaling_driver);
908 cpufreq_freq_attr_ro(scaling_cur_freq);
909 cpufreq_freq_attr_ro(bios_limit);
910 cpufreq_freq_attr_ro(related_cpus);
911 cpufreq_freq_attr_ro(affected_cpus);
912 cpufreq_freq_attr_rw(scaling_min_freq);
913 cpufreq_freq_attr_rw(scaling_max_freq);
914 cpufreq_freq_attr_rw(scaling_governor);
915 cpufreq_freq_attr_rw(scaling_setspeed);
916
917 static struct attribute *default_attrs[] = {
918         &cpuinfo_min_freq.attr,
919         &cpuinfo_max_freq.attr,
920         &cpuinfo_transition_latency.attr,
921         &scaling_min_freq.attr,
922         &scaling_max_freq.attr,
923         &affected_cpus.attr,
924         &related_cpus.attr,
925         &scaling_governor.attr,
926         &scaling_driver.attr,
927         &scaling_available_governors.attr,
928         &scaling_setspeed.attr,
929         NULL
930 };
931
932 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
933 #define to_attr(a) container_of(a, struct freq_attr, attr)
934
935 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
936 {
937         struct cpufreq_policy *policy = to_policy(kobj);
938         struct freq_attr *fattr = to_attr(attr);
939         ssize_t ret;
940
941         if (!fattr->show)
942                 return -EIO;
943
944         down_read(&policy->rwsem);
945         ret = fattr->show(policy, buf);
946         up_read(&policy->rwsem);
947
948         return ret;
949 }
950
951 static ssize_t store(struct kobject *kobj, struct attribute *attr,
952                      const char *buf, size_t count)
953 {
954         struct cpufreq_policy *policy = to_policy(kobj);
955         struct freq_attr *fattr = to_attr(attr);
956         ssize_t ret = -EINVAL;
957
958         if (!fattr->store)
959                 return -EIO;
960
961         /*
962          * cpus_read_trylock() is used here to work around a circular lock
963          * dependency problem with respect to the cpufreq_register_driver().
964          */
965         if (!cpus_read_trylock())
966                 return -EBUSY;
967
968         if (cpu_online(policy->cpu)) {
969                 down_write(&policy->rwsem);
970                 ret = fattr->store(policy, buf, count);
971                 up_write(&policy->rwsem);
972         }
973
974         cpus_read_unlock();
975
976         return ret;
977 }
978
979 static void cpufreq_sysfs_release(struct kobject *kobj)
980 {
981         struct cpufreq_policy *policy = to_policy(kobj);
982         pr_debug("last reference is dropped\n");
983         complete(&policy->kobj_unregister);
984 }
985
986 static const struct sysfs_ops sysfs_ops = {
987         .show   = show,
988         .store  = store,
989 };
990
991 static struct kobj_type ktype_cpufreq = {
992         .sysfs_ops      = &sysfs_ops,
993         .default_attrs  = default_attrs,
994         .release        = cpufreq_sysfs_release,
995 };
996
997 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
998 {
999         struct device *dev = get_cpu_device(cpu);
1000
1001         if (unlikely(!dev))
1002                 return;
1003
1004         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1005                 return;
1006
1007         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1008         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1009                 dev_err(dev, "cpufreq symlink creation failed\n");
1010 }
1011
1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1013                                    struct device *dev)
1014 {
1015         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1016         sysfs_remove_link(&dev->kobj, "cpufreq");
1017 }
1018
1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1020 {
1021         struct freq_attr **drv_attr;
1022         int ret = 0;
1023
1024         /* set up files for this cpu device */
1025         drv_attr = cpufreq_driver->attr;
1026         while (drv_attr && *drv_attr) {
1027                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1028                 if (ret)
1029                         return ret;
1030                 drv_attr++;
1031         }
1032         if (cpufreq_driver->get) {
1033                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1034                 if (ret)
1035                         return ret;
1036         }
1037
1038         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1039         if (ret)
1040                 return ret;
1041
1042         if (cpufreq_driver->bios_limit) {
1043                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1044                 if (ret)
1045                         return ret;
1046         }
1047
1048         return 0;
1049 }
1050
1051 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1052 {
1053         return NULL;
1054 }
1055
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058         struct cpufreq_governor *def_gov = cpufreq_default_governor();
1059         struct cpufreq_governor *gov = NULL;
1060         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061
1062         if (has_target()) {
1063                 /* Update policy governor to the one used before hotplug. */
1064                 gov = find_governor(policy->last_governor);
1065                 if (gov) {
1066                         pr_debug("Restoring governor %s for cpu %d\n",
1067                                  policy->governor->name, policy->cpu);
1068                 } else if (def_gov) {
1069                         gov = def_gov;
1070                 } else {
1071                         return -ENODATA;
1072                 }
1073         } else {
1074                 /* Use the default policy if there is no last_policy. */
1075                 if (policy->last_policy) {
1076                         pol = policy->last_policy;
1077                 } else if (def_gov) {
1078                         pol = cpufreq_parse_policy(def_gov->name);
1079                 } else {
1080                         return -ENODATA;
1081                 }
1082         }
1083
1084         return cpufreq_set_policy(policy, gov, pol);
1085 }
1086
1087 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1088 {
1089         int ret = 0;
1090
1091         /* Has this CPU been taken care of already? */
1092         if (cpumask_test_cpu(cpu, policy->cpus))
1093                 return 0;
1094
1095         down_write(&policy->rwsem);
1096         if (has_target())
1097                 cpufreq_stop_governor(policy);
1098
1099         cpumask_set_cpu(cpu, policy->cpus);
1100
1101         if (has_target()) {
1102                 ret = cpufreq_start_governor(policy);
1103                 if (ret)
1104                         pr_err("%s: Failed to start governor\n", __func__);
1105         }
1106         up_write(&policy->rwsem);
1107         return ret;
1108 }
1109
1110 void refresh_frequency_limits(struct cpufreq_policy *policy)
1111 {
1112         if (!policy_is_inactive(policy)) {
1113                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1114
1115                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1116         }
1117 }
1118 EXPORT_SYMBOL(refresh_frequency_limits);
1119
1120 static void handle_update(struct work_struct *work)
1121 {
1122         struct cpufreq_policy *policy =
1123                 container_of(work, struct cpufreq_policy, update);
1124
1125         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1126         down_write(&policy->rwsem);
1127         refresh_frequency_limits(policy);
1128         up_write(&policy->rwsem);
1129 }
1130
1131 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1132                                 void *data)
1133 {
1134         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1135
1136         schedule_work(&policy->update);
1137         return 0;
1138 }
1139
1140 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1141                                 void *data)
1142 {
1143         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1144
1145         schedule_work(&policy->update);
1146         return 0;
1147 }
1148
1149 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1150 {
1151         struct kobject *kobj;
1152         struct completion *cmp;
1153
1154         down_write(&policy->rwsem);
1155         cpufreq_stats_free_table(policy);
1156         kobj = &policy->kobj;
1157         cmp = &policy->kobj_unregister;
1158         up_write(&policy->rwsem);
1159         kobject_put(kobj);
1160
1161         /*
1162          * We need to make sure that the underlying kobj is
1163          * actually not referenced anymore by anybody before we
1164          * proceed with unloading.
1165          */
1166         pr_debug("waiting for dropping of refcount\n");
1167         wait_for_completion(cmp);
1168         pr_debug("wait complete\n");
1169 }
1170
1171 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1172 {
1173         struct cpufreq_policy *policy;
1174         struct device *dev = get_cpu_device(cpu);
1175         int ret;
1176
1177         if (!dev)
1178                 return NULL;
1179
1180         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1181         if (!policy)
1182                 return NULL;
1183
1184         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1185                 goto err_free_policy;
1186
1187         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1188                 goto err_free_cpumask;
1189
1190         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1191                 goto err_free_rcpumask;
1192
1193         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1194                                    cpufreq_global_kobject, "policy%u", cpu);
1195         if (ret) {
1196                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1197                 /*
1198                  * The entire policy object will be freed below, but the extra
1199                  * memory allocated for the kobject name needs to be freed by
1200                  * releasing the kobject.
1201                  */
1202                 kobject_put(&policy->kobj);
1203                 goto err_free_real_cpus;
1204         }
1205
1206         freq_constraints_init(&policy->constraints);
1207
1208         policy->nb_min.notifier_call = cpufreq_notifier_min;
1209         policy->nb_max.notifier_call = cpufreq_notifier_max;
1210
1211         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1212                                     &policy->nb_min);
1213         if (ret) {
1214                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1215                         ret, cpumask_pr_args(policy->cpus));
1216                 goto err_kobj_remove;
1217         }
1218
1219         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1220                                     &policy->nb_max);
1221         if (ret) {
1222                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1223                         ret, cpumask_pr_args(policy->cpus));
1224                 goto err_min_qos_notifier;
1225         }
1226
1227         INIT_LIST_HEAD(&policy->policy_list);
1228         init_rwsem(&policy->rwsem);
1229         spin_lock_init(&policy->transition_lock);
1230         init_waitqueue_head(&policy->transition_wait);
1231         init_completion(&policy->kobj_unregister);
1232         INIT_WORK(&policy->update, handle_update);
1233
1234         policy->cpu = cpu;
1235         return policy;
1236
1237 err_min_qos_notifier:
1238         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1239                                  &policy->nb_min);
1240 err_kobj_remove:
1241         cpufreq_policy_put_kobj(policy);
1242 err_free_real_cpus:
1243         free_cpumask_var(policy->real_cpus);
1244 err_free_rcpumask:
1245         free_cpumask_var(policy->related_cpus);
1246 err_free_cpumask:
1247         free_cpumask_var(policy->cpus);
1248 err_free_policy:
1249         kfree(policy);
1250
1251         return NULL;
1252 }
1253
1254 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1255 {
1256         unsigned long flags;
1257         int cpu;
1258
1259         /* Remove policy from list */
1260         write_lock_irqsave(&cpufreq_driver_lock, flags);
1261         list_del(&policy->policy_list);
1262
1263         for_each_cpu(cpu, policy->related_cpus)
1264                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1265         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1266
1267         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1268                                  &policy->nb_max);
1269         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1270                                  &policy->nb_min);
1271
1272         /* Cancel any pending policy->update work before freeing the policy. */
1273         cancel_work_sync(&policy->update);
1274
1275         if (policy->max_freq_req) {
1276                 /*
1277                  * CPUFREQ_CREATE_POLICY notification is sent only after
1278                  * successfully adding max_freq_req request.
1279                  */
1280                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1281                                              CPUFREQ_REMOVE_POLICY, policy);
1282                 freq_qos_remove_request(policy->max_freq_req);
1283         }
1284
1285         freq_qos_remove_request(policy->min_freq_req);
1286         kfree(policy->min_freq_req);
1287
1288         cpufreq_policy_put_kobj(policy);
1289         free_cpumask_var(policy->real_cpus);
1290         free_cpumask_var(policy->related_cpus);
1291         free_cpumask_var(policy->cpus);
1292         kfree(policy);
1293 }
1294
1295 static int cpufreq_online(unsigned int cpu)
1296 {
1297         struct cpufreq_policy *policy;
1298         bool new_policy;
1299         unsigned long flags;
1300         unsigned int j;
1301         int ret;
1302
1303         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1304
1305         /* Check if this CPU already has a policy to manage it */
1306         policy = per_cpu(cpufreq_cpu_data, cpu);
1307         if (policy) {
1308                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1309                 if (!policy_is_inactive(policy))
1310                         return cpufreq_add_policy_cpu(policy, cpu);
1311
1312                 /* This is the only online CPU for the policy.  Start over. */
1313                 new_policy = false;
1314                 down_write(&policy->rwsem);
1315                 policy->cpu = cpu;
1316                 policy->governor = NULL;
1317                 up_write(&policy->rwsem);
1318         } else {
1319                 new_policy = true;
1320                 policy = cpufreq_policy_alloc(cpu);
1321                 if (!policy)
1322                         return -ENOMEM;
1323         }
1324
1325         if (!new_policy && cpufreq_driver->online) {
1326                 ret = cpufreq_driver->online(policy);
1327                 if (ret) {
1328                         pr_debug("%s: %d: initialization failed\n", __func__,
1329                                  __LINE__);
1330                         goto out_exit_policy;
1331                 }
1332
1333                 /* Recover policy->cpus using related_cpus */
1334                 cpumask_copy(policy->cpus, policy->related_cpus);
1335         } else {
1336                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1337
1338                 /*
1339                  * Call driver. From then on the cpufreq must be able
1340                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1341                  */
1342                 ret = cpufreq_driver->init(policy);
1343                 if (ret) {
1344                         pr_debug("%s: %d: initialization failed\n", __func__,
1345                                  __LINE__);
1346                         goto out_free_policy;
1347                 }
1348
1349                 ret = cpufreq_table_validate_and_sort(policy);
1350                 if (ret)
1351                         goto out_exit_policy;
1352
1353                 /* related_cpus should at least include policy->cpus. */
1354                 cpumask_copy(policy->related_cpus, policy->cpus);
1355         }
1356
1357         down_write(&policy->rwsem);
1358         /*
1359          * affected cpus must always be the one, which are online. We aren't
1360          * managing offline cpus here.
1361          */
1362         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1363
1364         if (new_policy) {
1365                 for_each_cpu(j, policy->related_cpus) {
1366                         per_cpu(cpufreq_cpu_data, j) = policy;
1367                         add_cpu_dev_symlink(policy, j);
1368                 }
1369
1370                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1371                                                GFP_KERNEL);
1372                 if (!policy->min_freq_req)
1373                         goto out_destroy_policy;
1374
1375                 ret = freq_qos_add_request(&policy->constraints,
1376                                            policy->min_freq_req, FREQ_QOS_MIN,
1377                                            policy->min);
1378                 if (ret < 0) {
1379                         /*
1380                          * So we don't call freq_qos_remove_request() for an
1381                          * uninitialized request.
1382                          */
1383                         kfree(policy->min_freq_req);
1384                         policy->min_freq_req = NULL;
1385                         goto out_destroy_policy;
1386                 }
1387
1388                 /*
1389                  * This must be initialized right here to avoid calling
1390                  * freq_qos_remove_request() on uninitialized request in case
1391                  * of errors.
1392                  */
1393                 policy->max_freq_req = policy->min_freq_req + 1;
1394
1395                 ret = freq_qos_add_request(&policy->constraints,
1396                                            policy->max_freq_req, FREQ_QOS_MAX,
1397                                            policy->max);
1398                 if (ret < 0) {
1399                         policy->max_freq_req = NULL;
1400                         goto out_destroy_policy;
1401                 }
1402
1403                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1404                                 CPUFREQ_CREATE_POLICY, policy);
1405         }
1406
1407         if (cpufreq_driver->get && has_target()) {
1408                 policy->cur = cpufreq_driver->get(policy->cpu);
1409                 if (!policy->cur) {
1410                         pr_err("%s: ->get() failed\n", __func__);
1411                         goto out_destroy_policy;
1412                 }
1413         }
1414
1415         /*
1416          * Sometimes boot loaders set CPU frequency to a value outside of
1417          * frequency table present with cpufreq core. In such cases CPU might be
1418          * unstable if it has to run on that frequency for long duration of time
1419          * and so its better to set it to a frequency which is specified in
1420          * freq-table. This also makes cpufreq stats inconsistent as
1421          * cpufreq-stats would fail to register because current frequency of CPU
1422          * isn't found in freq-table.
1423          *
1424          * Because we don't want this change to effect boot process badly, we go
1425          * for the next freq which is >= policy->cur ('cur' must be set by now,
1426          * otherwise we will end up setting freq to lowest of the table as 'cur'
1427          * is initialized to zero).
1428          *
1429          * We are passing target-freq as "policy->cur - 1" otherwise
1430          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1431          * equal to target-freq.
1432          */
1433         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1434             && has_target()) {
1435                 /* Are we running at unknown frequency ? */
1436                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1437                 if (ret == -EINVAL) {
1438                         /* Warn user and fix it */
1439                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1440                                 __func__, policy->cpu, policy->cur);
1441                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1442                                 CPUFREQ_RELATION_L);
1443
1444                         /*
1445                          * Reaching here after boot in a few seconds may not
1446                          * mean that system will remain stable at "unknown"
1447                          * frequency for longer duration. Hence, a BUG_ON().
1448                          */
1449                         BUG_ON(ret);
1450                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1451                                 __func__, policy->cpu, policy->cur);
1452                 }
1453         }
1454
1455         if (new_policy) {
1456                 ret = cpufreq_add_dev_interface(policy);
1457                 if (ret)
1458                         goto out_destroy_policy;
1459
1460                 cpufreq_stats_create_table(policy);
1461
1462                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1463                 list_add(&policy->policy_list, &cpufreq_policy_list);
1464                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1465         }
1466
1467         ret = cpufreq_init_policy(policy);
1468         if (ret) {
1469                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1470                        __func__, cpu, ret);
1471                 goto out_destroy_policy;
1472         }
1473
1474         up_write(&policy->rwsem);
1475
1476         kobject_uevent(&policy->kobj, KOBJ_ADD);
1477
1478         /* Callback for handling stuff after policy is ready */
1479         if (cpufreq_driver->ready)
1480                 cpufreq_driver->ready(policy);
1481
1482         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1483                 policy->cdev = of_cpufreq_cooling_register(policy);
1484
1485         pr_debug("initialization complete\n");
1486
1487         return 0;
1488
1489 out_destroy_policy:
1490         for_each_cpu(j, policy->real_cpus)
1491                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1492
1493         up_write(&policy->rwsem);
1494
1495 out_exit_policy:
1496         if (cpufreq_driver->exit)
1497                 cpufreq_driver->exit(policy);
1498
1499 out_free_policy:
1500         cpufreq_policy_free(policy);
1501         return ret;
1502 }
1503
1504 /**
1505  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1506  * @dev: CPU device.
1507  * @sif: Subsystem interface structure pointer (not used)
1508  */
1509 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1510 {
1511         struct cpufreq_policy *policy;
1512         unsigned cpu = dev->id;
1513         int ret;
1514
1515         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1516
1517         if (cpu_online(cpu)) {
1518                 ret = cpufreq_online(cpu);
1519                 if (ret)
1520                         return ret;
1521         }
1522
1523         /* Create sysfs link on CPU registration */
1524         policy = per_cpu(cpufreq_cpu_data, cpu);
1525         if (policy)
1526                 add_cpu_dev_symlink(policy, cpu);
1527
1528         return 0;
1529 }
1530
1531 static int cpufreq_offline(unsigned int cpu)
1532 {
1533         struct cpufreq_policy *policy;
1534         int ret;
1535
1536         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1537
1538         policy = cpufreq_cpu_get_raw(cpu);
1539         if (!policy) {
1540                 pr_debug("%s: No cpu_data found\n", __func__);
1541                 return 0;
1542         }
1543
1544         down_write(&policy->rwsem);
1545         if (has_target())
1546                 cpufreq_stop_governor(policy);
1547
1548         cpumask_clear_cpu(cpu, policy->cpus);
1549
1550         if (policy_is_inactive(policy)) {
1551                 if (has_target())
1552                         strncpy(policy->last_governor, policy->governor->name,
1553                                 CPUFREQ_NAME_LEN);
1554                 else
1555                         policy->last_policy = policy->policy;
1556         } else if (cpu == policy->cpu) {
1557                 /* Nominate new CPU */
1558                 policy->cpu = cpumask_any(policy->cpus);
1559         }
1560
1561         /* Start governor again for active policy */
1562         if (!policy_is_inactive(policy)) {
1563                 if (has_target()) {
1564                         ret = cpufreq_start_governor(policy);
1565                         if (ret)
1566                                 pr_err("%s: Failed to start governor\n", __func__);
1567                 }
1568
1569                 goto unlock;
1570         }
1571
1572         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1573                 cpufreq_cooling_unregister(policy->cdev);
1574                 policy->cdev = NULL;
1575         }
1576
1577         if (cpufreq_driver->stop_cpu)
1578                 cpufreq_driver->stop_cpu(policy);
1579
1580         if (has_target())
1581                 cpufreq_exit_governor(policy);
1582
1583         /*
1584          * Perform the ->offline() during light-weight tear-down, as
1585          * that allows fast recovery when the CPU comes back.
1586          */
1587         if (cpufreq_driver->offline) {
1588                 cpufreq_driver->offline(policy);
1589         } else if (cpufreq_driver->exit) {
1590                 cpufreq_driver->exit(policy);
1591                 policy->freq_table = NULL;
1592         }
1593
1594 unlock:
1595         up_write(&policy->rwsem);
1596         return 0;
1597 }
1598
1599 /**
1600  * cpufreq_remove_dev - remove a CPU device
1601  *
1602  * Removes the cpufreq interface for a CPU device.
1603  */
1604 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1605 {
1606         unsigned int cpu = dev->id;
1607         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1608
1609         if (!policy)
1610                 return;
1611
1612         if (cpu_online(cpu))
1613                 cpufreq_offline(cpu);
1614
1615         cpumask_clear_cpu(cpu, policy->real_cpus);
1616         remove_cpu_dev_symlink(policy, dev);
1617
1618         if (cpumask_empty(policy->real_cpus)) {
1619                 /* We did light-weight exit earlier, do full tear down now */
1620                 if (cpufreq_driver->offline)
1621                         cpufreq_driver->exit(policy);
1622
1623                 cpufreq_policy_free(policy);
1624         }
1625 }
1626
1627 /**
1628  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1629  *      in deep trouble.
1630  *      @policy: policy managing CPUs
1631  *      @new_freq: CPU frequency the CPU actually runs at
1632  *
1633  *      We adjust to current frequency first, and need to clean up later.
1634  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1635  */
1636 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1637                                 unsigned int new_freq)
1638 {
1639         struct cpufreq_freqs freqs;
1640
1641         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1642                  policy->cur, new_freq);
1643
1644         freqs.old = policy->cur;
1645         freqs.new = new_freq;
1646
1647         cpufreq_freq_transition_begin(policy, &freqs);
1648         cpufreq_freq_transition_end(policy, &freqs, 0);
1649 }
1650
1651 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1652 {
1653         unsigned int new_freq;
1654
1655         new_freq = cpufreq_driver->get(policy->cpu);
1656         if (!new_freq)
1657                 return 0;
1658
1659         /*
1660          * If fast frequency switching is used with the given policy, the check
1661          * against policy->cur is pointless, so skip it in that case.
1662          */
1663         if (policy->fast_switch_enabled || !has_target())
1664                 return new_freq;
1665
1666         if (policy->cur != new_freq) {
1667                 cpufreq_out_of_sync(policy, new_freq);
1668                 if (update)
1669                         schedule_work(&policy->update);
1670         }
1671
1672         return new_freq;
1673 }
1674
1675 /**
1676  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1677  * @cpu: CPU number
1678  *
1679  * This is the last known freq, without actually getting it from the driver.
1680  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1681  */
1682 unsigned int cpufreq_quick_get(unsigned int cpu)
1683 {
1684         struct cpufreq_policy *policy;
1685         unsigned int ret_freq = 0;
1686         unsigned long flags;
1687
1688         read_lock_irqsave(&cpufreq_driver_lock, flags);
1689
1690         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1691                 ret_freq = cpufreq_driver->get(cpu);
1692                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1693                 return ret_freq;
1694         }
1695
1696         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1697
1698         policy = cpufreq_cpu_get(cpu);
1699         if (policy) {
1700                 ret_freq = policy->cur;
1701                 cpufreq_cpu_put(policy);
1702         }
1703
1704         return ret_freq;
1705 }
1706 EXPORT_SYMBOL(cpufreq_quick_get);
1707
1708 /**
1709  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1710  * @cpu: CPU number
1711  *
1712  * Just return the max possible frequency for a given CPU.
1713  */
1714 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1715 {
1716         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1717         unsigned int ret_freq = 0;
1718
1719         if (policy) {
1720                 ret_freq = policy->max;
1721                 cpufreq_cpu_put(policy);
1722         }
1723
1724         return ret_freq;
1725 }
1726 EXPORT_SYMBOL(cpufreq_quick_get_max);
1727
1728 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1729 {
1730         if (unlikely(policy_is_inactive(policy)))
1731                 return 0;
1732
1733         return cpufreq_verify_current_freq(policy, true);
1734 }
1735
1736 /**
1737  * cpufreq_get - get the current CPU frequency (in kHz)
1738  * @cpu: CPU number
1739  *
1740  * Get the CPU current (static) CPU frequency
1741  */
1742 unsigned int cpufreq_get(unsigned int cpu)
1743 {
1744         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1745         unsigned int ret_freq = 0;
1746
1747         if (policy) {
1748                 down_read(&policy->rwsem);
1749                 if (cpufreq_driver->get)
1750                         ret_freq = __cpufreq_get(policy);
1751                 up_read(&policy->rwsem);
1752
1753                 cpufreq_cpu_put(policy);
1754         }
1755
1756         return ret_freq;
1757 }
1758 EXPORT_SYMBOL(cpufreq_get);
1759
1760 static struct subsys_interface cpufreq_interface = {
1761         .name           = "cpufreq",
1762         .subsys         = &cpu_subsys,
1763         .add_dev        = cpufreq_add_dev,
1764         .remove_dev     = cpufreq_remove_dev,
1765 };
1766
1767 /*
1768  * In case platform wants some specific frequency to be configured
1769  * during suspend..
1770  */
1771 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1772 {
1773         int ret;
1774
1775         if (!policy->suspend_freq) {
1776                 pr_debug("%s: suspend_freq not defined\n", __func__);
1777                 return 0;
1778         }
1779
1780         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1781                         policy->suspend_freq);
1782
1783         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1784                         CPUFREQ_RELATION_H);
1785         if (ret)
1786                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1787                                 __func__, policy->suspend_freq, ret);
1788
1789         return ret;
1790 }
1791 EXPORT_SYMBOL(cpufreq_generic_suspend);
1792
1793 /**
1794  * cpufreq_suspend() - Suspend CPUFreq governors
1795  *
1796  * Called during system wide Suspend/Hibernate cycles for suspending governors
1797  * as some platforms can't change frequency after this point in suspend cycle.
1798  * Because some of the devices (like: i2c, regulators, etc) they use for
1799  * changing frequency are suspended quickly after this point.
1800  */
1801 void cpufreq_suspend(void)
1802 {
1803         struct cpufreq_policy *policy;
1804
1805         if (!cpufreq_driver)
1806                 return;
1807
1808         if (!has_target() && !cpufreq_driver->suspend)
1809                 goto suspend;
1810
1811         pr_debug("%s: Suspending Governors\n", __func__);
1812
1813         for_each_active_policy(policy) {
1814                 if (has_target()) {
1815                         down_write(&policy->rwsem);
1816                         cpufreq_stop_governor(policy);
1817                         up_write(&policy->rwsem);
1818                 }
1819
1820                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1821                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1822                                 cpufreq_driver->name);
1823         }
1824
1825 suspend:
1826         cpufreq_suspended = true;
1827 }
1828
1829 /**
1830  * cpufreq_resume() - Resume CPUFreq governors
1831  *
1832  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1833  * are suspended with cpufreq_suspend().
1834  */
1835 void cpufreq_resume(void)
1836 {
1837         struct cpufreq_policy *policy;
1838         int ret;
1839
1840         if (!cpufreq_driver)
1841                 return;
1842
1843         if (unlikely(!cpufreq_suspended))
1844                 return;
1845
1846         cpufreq_suspended = false;
1847
1848         if (!has_target() && !cpufreq_driver->resume)
1849                 return;
1850
1851         pr_debug("%s: Resuming Governors\n", __func__);
1852
1853         for_each_active_policy(policy) {
1854                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1855                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1856                                 policy);
1857                 } else if (has_target()) {
1858                         down_write(&policy->rwsem);
1859                         ret = cpufreq_start_governor(policy);
1860                         up_write(&policy->rwsem);
1861
1862                         if (ret)
1863                                 pr_err("%s: Failed to start governor for policy: %p\n",
1864                                        __func__, policy);
1865                 }
1866         }
1867 }
1868
1869 /**
1870  *      cpufreq_get_current_driver - return current driver's name
1871  *
1872  *      Return the name string of the currently loaded cpufreq driver
1873  *      or NULL, if none.
1874  */
1875 const char *cpufreq_get_current_driver(void)
1876 {
1877         if (cpufreq_driver)
1878                 return cpufreq_driver->name;
1879
1880         return NULL;
1881 }
1882 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1883
1884 /**
1885  *      cpufreq_get_driver_data - return current driver data
1886  *
1887  *      Return the private data of the currently loaded cpufreq
1888  *      driver, or NULL if no cpufreq driver is loaded.
1889  */
1890 void *cpufreq_get_driver_data(void)
1891 {
1892         if (cpufreq_driver)
1893                 return cpufreq_driver->driver_data;
1894
1895         return NULL;
1896 }
1897 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1898
1899 /*********************************************************************
1900  *                     NOTIFIER LISTS INTERFACE                      *
1901  *********************************************************************/
1902
1903 /**
1904  *      cpufreq_register_notifier - register a driver with cpufreq
1905  *      @nb: notifier function to register
1906  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1907  *
1908  *      Add a driver to one of two lists: either a list of drivers that
1909  *      are notified about clock rate changes (once before and once after
1910  *      the transition), or a list of drivers that are notified about
1911  *      changes in cpufreq policy.
1912  *
1913  *      This function may sleep, and has the same return conditions as
1914  *      blocking_notifier_chain_register.
1915  */
1916 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1917 {
1918         int ret;
1919
1920         if (cpufreq_disabled())
1921                 return -EINVAL;
1922
1923         switch (list) {
1924         case CPUFREQ_TRANSITION_NOTIFIER:
1925                 mutex_lock(&cpufreq_fast_switch_lock);
1926
1927                 if (cpufreq_fast_switch_count > 0) {
1928                         mutex_unlock(&cpufreq_fast_switch_lock);
1929                         return -EBUSY;
1930                 }
1931                 ret = srcu_notifier_chain_register(
1932                                 &cpufreq_transition_notifier_list, nb);
1933                 if (!ret)
1934                         cpufreq_fast_switch_count--;
1935
1936                 mutex_unlock(&cpufreq_fast_switch_lock);
1937                 break;
1938         case CPUFREQ_POLICY_NOTIFIER:
1939                 ret = blocking_notifier_chain_register(
1940                                 &cpufreq_policy_notifier_list, nb);
1941                 break;
1942         default:
1943                 ret = -EINVAL;
1944         }
1945
1946         return ret;
1947 }
1948 EXPORT_SYMBOL(cpufreq_register_notifier);
1949
1950 /**
1951  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1952  *      @nb: notifier block to be unregistered
1953  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1954  *
1955  *      Remove a driver from the CPU frequency notifier list.
1956  *
1957  *      This function may sleep, and has the same return conditions as
1958  *      blocking_notifier_chain_unregister.
1959  */
1960 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1961 {
1962         int ret;
1963
1964         if (cpufreq_disabled())
1965                 return -EINVAL;
1966
1967         switch (list) {
1968         case CPUFREQ_TRANSITION_NOTIFIER:
1969                 mutex_lock(&cpufreq_fast_switch_lock);
1970
1971                 ret = srcu_notifier_chain_unregister(
1972                                 &cpufreq_transition_notifier_list, nb);
1973                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1974                         cpufreq_fast_switch_count++;
1975
1976                 mutex_unlock(&cpufreq_fast_switch_lock);
1977                 break;
1978         case CPUFREQ_POLICY_NOTIFIER:
1979                 ret = blocking_notifier_chain_unregister(
1980                                 &cpufreq_policy_notifier_list, nb);
1981                 break;
1982         default:
1983                 ret = -EINVAL;
1984         }
1985
1986         return ret;
1987 }
1988 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1989
1990
1991 /*********************************************************************
1992  *                              GOVERNORS                            *
1993  *********************************************************************/
1994
1995 /**
1996  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1997  * @policy: cpufreq policy to switch the frequency for.
1998  * @target_freq: New frequency to set (may be approximate).
1999  *
2000  * Carry out a fast frequency switch without sleeping.
2001  *
2002  * The driver's ->fast_switch() callback invoked by this function must be
2003  * suitable for being called from within RCU-sched read-side critical sections
2004  * and it is expected to select the minimum available frequency greater than or
2005  * equal to @target_freq (CPUFREQ_RELATION_L).
2006  *
2007  * This function must not be called if policy->fast_switch_enabled is unset.
2008  *
2009  * Governors calling this function must guarantee that it will never be invoked
2010  * twice in parallel for the same policy and that it will never be called in
2011  * parallel with either ->target() or ->target_index() for the same policy.
2012  *
2013  * Returns the actual frequency set for the CPU.
2014  *
2015  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2016  * error condition, the hardware configuration must be preserved.
2017  */
2018 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2019                                         unsigned int target_freq)
2020 {
2021         target_freq = clamp_val(target_freq, policy->min, policy->max);
2022
2023         return cpufreq_driver->fast_switch(policy, target_freq);
2024 }
2025 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2026
2027 /* Must set freqs->new to intermediate frequency */
2028 static int __target_intermediate(struct cpufreq_policy *policy,
2029                                  struct cpufreq_freqs *freqs, int index)
2030 {
2031         int ret;
2032
2033         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2034
2035         /* We don't need to switch to intermediate freq */
2036         if (!freqs->new)
2037                 return 0;
2038
2039         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2040                  __func__, policy->cpu, freqs->old, freqs->new);
2041
2042         cpufreq_freq_transition_begin(policy, freqs);
2043         ret = cpufreq_driver->target_intermediate(policy, index);
2044         cpufreq_freq_transition_end(policy, freqs, ret);
2045
2046         if (ret)
2047                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2048                        __func__, ret);
2049
2050         return ret;
2051 }
2052
2053 static int __target_index(struct cpufreq_policy *policy, int index)
2054 {
2055         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2056         unsigned int intermediate_freq = 0;
2057         unsigned int newfreq = policy->freq_table[index].frequency;
2058         int retval = -EINVAL;
2059         bool notify;
2060
2061         if (newfreq == policy->cur)
2062                 return 0;
2063
2064         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2065         if (notify) {
2066                 /* Handle switching to intermediate frequency */
2067                 if (cpufreq_driver->get_intermediate) {
2068                         retval = __target_intermediate(policy, &freqs, index);
2069                         if (retval)
2070                                 return retval;
2071
2072                         intermediate_freq = freqs.new;
2073                         /* Set old freq to intermediate */
2074                         if (intermediate_freq)
2075                                 freqs.old = freqs.new;
2076                 }
2077
2078                 freqs.new = newfreq;
2079                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2080                          __func__, policy->cpu, freqs.old, freqs.new);
2081
2082                 cpufreq_freq_transition_begin(policy, &freqs);
2083         }
2084
2085         retval = cpufreq_driver->target_index(policy, index);
2086         if (retval)
2087                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2088                        retval);
2089
2090         if (notify) {
2091                 cpufreq_freq_transition_end(policy, &freqs, retval);
2092
2093                 /*
2094                  * Failed after setting to intermediate freq? Driver should have
2095                  * reverted back to initial frequency and so should we. Check
2096                  * here for intermediate_freq instead of get_intermediate, in
2097                  * case we haven't switched to intermediate freq at all.
2098                  */
2099                 if (unlikely(retval && intermediate_freq)) {
2100                         freqs.old = intermediate_freq;
2101                         freqs.new = policy->restore_freq;
2102                         cpufreq_freq_transition_begin(policy, &freqs);
2103                         cpufreq_freq_transition_end(policy, &freqs, 0);
2104                 }
2105         }
2106
2107         return retval;
2108 }
2109
2110 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2111                             unsigned int target_freq,
2112                             unsigned int relation)
2113 {
2114         unsigned int old_target_freq = target_freq;
2115         int index;
2116
2117         if (cpufreq_disabled())
2118                 return -ENODEV;
2119
2120         /* Make sure that target_freq is within supported range */
2121         target_freq = clamp_val(target_freq, policy->min, policy->max);
2122
2123         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2124                  policy->cpu, target_freq, relation, old_target_freq);
2125
2126         /*
2127          * This might look like a redundant call as we are checking it again
2128          * after finding index. But it is left intentionally for cases where
2129          * exactly same freq is called again and so we can save on few function
2130          * calls.
2131          */
2132         if (target_freq == policy->cur)
2133                 return 0;
2134
2135         /* Save last value to restore later on errors */
2136         policy->restore_freq = policy->cur;
2137
2138         if (cpufreq_driver->target)
2139                 return cpufreq_driver->target(policy, target_freq, relation);
2140
2141         if (!cpufreq_driver->target_index)
2142                 return -EINVAL;
2143
2144         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2145
2146         return __target_index(policy, index);
2147 }
2148 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2149
2150 int cpufreq_driver_target(struct cpufreq_policy *policy,
2151                           unsigned int target_freq,
2152                           unsigned int relation)
2153 {
2154         int ret;
2155
2156         down_write(&policy->rwsem);
2157
2158         ret = __cpufreq_driver_target(policy, target_freq, relation);
2159
2160         up_write(&policy->rwsem);
2161
2162         return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2165
2166 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2167 {
2168         return NULL;
2169 }
2170
2171 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2172 {
2173         int ret;
2174
2175         /* Don't start any governor operations if we are entering suspend */
2176         if (cpufreq_suspended)
2177                 return 0;
2178         /*
2179          * Governor might not be initiated here if ACPI _PPC changed
2180          * notification happened, so check it.
2181          */
2182         if (!policy->governor)
2183                 return -EINVAL;
2184
2185         /* Platform doesn't want dynamic frequency switching ? */
2186         if (policy->governor->dynamic_switching &&
2187             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2188                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2189
2190                 if (gov) {
2191                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2192                                 policy->governor->name, gov->name);
2193                         policy->governor = gov;
2194                 } else {
2195                         return -EINVAL;
2196                 }
2197         }
2198
2199         if (!try_module_get(policy->governor->owner))
2200                 return -EINVAL;
2201
2202         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2203
2204         if (policy->governor->init) {
2205                 ret = policy->governor->init(policy);
2206                 if (ret) {
2207                         module_put(policy->governor->owner);
2208                         return ret;
2209                 }
2210         }
2211
2212         return 0;
2213 }
2214
2215 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2216 {
2217         if (cpufreq_suspended || !policy->governor)
2218                 return;
2219
2220         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2221
2222         if (policy->governor->exit)
2223                 policy->governor->exit(policy);
2224
2225         module_put(policy->governor->owner);
2226 }
2227
2228 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2229 {
2230         int ret;
2231
2232         if (cpufreq_suspended)
2233                 return 0;
2234
2235         if (!policy->governor)
2236                 return -EINVAL;
2237
2238         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2239
2240         if (cpufreq_driver->get)
2241                 cpufreq_verify_current_freq(policy, false);
2242
2243         if (policy->governor->start) {
2244                 ret = policy->governor->start(policy);
2245                 if (ret)
2246                         return ret;
2247         }
2248
2249         if (policy->governor->limits)
2250                 policy->governor->limits(policy);
2251
2252         return 0;
2253 }
2254
2255 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2256 {
2257         if (cpufreq_suspended || !policy->governor)
2258                 return;
2259
2260         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2261
2262         if (policy->governor->stop)
2263                 policy->governor->stop(policy);
2264 }
2265
2266 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2267 {
2268         if (cpufreq_suspended || !policy->governor)
2269                 return;
2270
2271         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2272
2273         if (policy->governor->limits)
2274                 policy->governor->limits(policy);
2275 }
2276
2277 int cpufreq_register_governor(struct cpufreq_governor *governor)
2278 {
2279         int err;
2280
2281         if (!governor)
2282                 return -EINVAL;
2283
2284         if (cpufreq_disabled())
2285                 return -ENODEV;
2286
2287         mutex_lock(&cpufreq_governor_mutex);
2288
2289         err = -EBUSY;
2290         if (!find_governor(governor->name)) {
2291                 err = 0;
2292                 list_add(&governor->governor_list, &cpufreq_governor_list);
2293         }
2294
2295         mutex_unlock(&cpufreq_governor_mutex);
2296         return err;
2297 }
2298 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2299
2300 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2301 {
2302         struct cpufreq_policy *policy;
2303         unsigned long flags;
2304
2305         if (!governor)
2306                 return;
2307
2308         if (cpufreq_disabled())
2309                 return;
2310
2311         /* clear last_governor for all inactive policies */
2312         read_lock_irqsave(&cpufreq_driver_lock, flags);
2313         for_each_inactive_policy(policy) {
2314                 if (!strcmp(policy->last_governor, governor->name)) {
2315                         policy->governor = NULL;
2316                         strcpy(policy->last_governor, "\0");
2317                 }
2318         }
2319         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2320
2321         mutex_lock(&cpufreq_governor_mutex);
2322         list_del(&governor->governor_list);
2323         mutex_unlock(&cpufreq_governor_mutex);
2324 }
2325 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2326
2327
2328 /*********************************************************************
2329  *                          POLICY INTERFACE                         *
2330  *********************************************************************/
2331
2332 /**
2333  * cpufreq_get_policy - get the current cpufreq_policy
2334  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2335  *      is written
2336  *
2337  * Reads the current cpufreq policy.
2338  */
2339 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2340 {
2341         struct cpufreq_policy *cpu_policy;
2342         if (!policy)
2343                 return -EINVAL;
2344
2345         cpu_policy = cpufreq_cpu_get(cpu);
2346         if (!cpu_policy)
2347                 return -EINVAL;
2348
2349         memcpy(policy, cpu_policy, sizeof(*policy));
2350
2351         cpufreq_cpu_put(cpu_policy);
2352         return 0;
2353 }
2354 EXPORT_SYMBOL(cpufreq_get_policy);
2355
2356 /**
2357  * cpufreq_set_policy - Modify cpufreq policy parameters.
2358  * @policy: Policy object to modify.
2359  * @new_gov: Policy governor pointer.
2360  * @new_pol: Policy value (for drivers with built-in governors).
2361  *
2362  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2363  * limits to be set for the policy, update @policy with the verified limits
2364  * values and either invoke the driver's ->setpolicy() callback (if present) or
2365  * carry out a governor update for @policy.  That is, run the current governor's
2366  * ->limits() callback (if @new_gov points to the same object as the one in
2367  * @policy) or replace the governor for @policy with @new_gov.
2368  *
2369  * The cpuinfo part of @policy is not updated by this function.
2370  */
2371 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2372                               struct cpufreq_governor *new_gov,
2373                               unsigned int new_pol)
2374 {
2375         struct cpufreq_policy_data new_data;
2376         struct cpufreq_governor *old_gov;
2377         int ret;
2378
2379         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2380         new_data.freq_table = policy->freq_table;
2381         new_data.cpu = policy->cpu;
2382         /*
2383          * PM QoS framework collects all the requests from users and provide us
2384          * the final aggregated value here.
2385          */
2386         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2387         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2388
2389         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2390                  new_data.cpu, new_data.min, new_data.max);
2391
2392         /*
2393          * Verify that the CPU speed can be set within these limits and make sure
2394          * that min <= max.
2395          */
2396         ret = cpufreq_driver->verify(&new_data);
2397         if (ret)
2398                 return ret;
2399
2400         policy->min = new_data.min;
2401         policy->max = new_data.max;
2402         trace_cpu_frequency_limits(policy);
2403
2404         policy->cached_target_freq = UINT_MAX;
2405
2406         pr_debug("new min and max freqs are %u - %u kHz\n",
2407                  policy->min, policy->max);
2408
2409         if (cpufreq_driver->setpolicy) {
2410                 policy->policy = new_pol;
2411                 pr_debug("setting range\n");
2412                 return cpufreq_driver->setpolicy(policy);
2413         }
2414
2415         if (new_gov == policy->governor) {
2416                 pr_debug("governor limits update\n");
2417                 cpufreq_governor_limits(policy);
2418                 return 0;
2419         }
2420
2421         pr_debug("governor switch\n");
2422
2423         /* save old, working values */
2424         old_gov = policy->governor;
2425         /* end old governor */
2426         if (old_gov) {
2427                 cpufreq_stop_governor(policy);
2428                 cpufreq_exit_governor(policy);
2429         }
2430
2431         /* start new governor */
2432         policy->governor = new_gov;
2433         ret = cpufreq_init_governor(policy);
2434         if (!ret) {
2435                 ret = cpufreq_start_governor(policy);
2436                 if (!ret) {
2437                         pr_debug("governor change\n");
2438                         sched_cpufreq_governor_change(policy, old_gov);
2439                         return 0;
2440                 }
2441                 cpufreq_exit_governor(policy);
2442         }
2443
2444         /* new governor failed, so re-start old one */
2445         pr_debug("starting governor %s failed\n", policy->governor->name);
2446         if (old_gov) {
2447                 policy->governor = old_gov;
2448                 if (cpufreq_init_governor(policy))
2449                         policy->governor = NULL;
2450                 else
2451                         cpufreq_start_governor(policy);
2452         }
2453
2454         return ret;
2455 }
2456
2457 /**
2458  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2459  * @cpu: CPU to re-evaluate the policy for.
2460  *
2461  * Update the current frequency for the cpufreq policy of @cpu and use
2462  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2463  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2464  * for the policy in question, among other things.
2465  */
2466 void cpufreq_update_policy(unsigned int cpu)
2467 {
2468         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2469
2470         if (!policy)
2471                 return;
2472
2473         /*
2474          * BIOS might change freq behind our back
2475          * -> ask driver for current freq and notify governors about a change
2476          */
2477         if (cpufreq_driver->get && has_target() &&
2478             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2479                 goto unlock;
2480
2481         refresh_frequency_limits(policy);
2482
2483 unlock:
2484         cpufreq_cpu_release(policy);
2485 }
2486 EXPORT_SYMBOL(cpufreq_update_policy);
2487
2488 /**
2489  * cpufreq_update_limits - Update policy limits for a given CPU.
2490  * @cpu: CPU to update the policy limits for.
2491  *
2492  * Invoke the driver's ->update_limits callback if present or call
2493  * cpufreq_update_policy() for @cpu.
2494  */
2495 void cpufreq_update_limits(unsigned int cpu)
2496 {
2497         if (cpufreq_driver->update_limits)
2498                 cpufreq_driver->update_limits(cpu);
2499         else
2500                 cpufreq_update_policy(cpu);
2501 }
2502 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2503
2504 /*********************************************************************
2505  *               BOOST                                               *
2506  *********************************************************************/
2507 static int cpufreq_boost_set_sw(int state)
2508 {
2509         struct cpufreq_policy *policy;
2510         int ret = -EINVAL;
2511
2512         for_each_active_policy(policy) {
2513                 if (!policy->freq_table)
2514                         continue;
2515
2516                 ret = cpufreq_frequency_table_cpuinfo(policy,
2517                                                       policy->freq_table);
2518                 if (ret) {
2519                         pr_err("%s: Policy frequency update failed\n",
2520                                __func__);
2521                         break;
2522                 }
2523
2524                 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2525                 if (ret < 0)
2526                         break;
2527         }
2528
2529         return ret;
2530 }
2531
2532 int cpufreq_boost_trigger_state(int state)
2533 {
2534         unsigned long flags;
2535         int ret = 0;
2536
2537         if (cpufreq_driver->boost_enabled == state)
2538                 return 0;
2539
2540         write_lock_irqsave(&cpufreq_driver_lock, flags);
2541         cpufreq_driver->boost_enabled = state;
2542         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2543
2544         ret = cpufreq_driver->set_boost(state);
2545         if (ret) {
2546                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2547                 cpufreq_driver->boost_enabled = !state;
2548                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2549
2550                 pr_err("%s: Cannot %s BOOST\n",
2551                        __func__, state ? "enable" : "disable");
2552         }
2553
2554         return ret;
2555 }
2556
2557 static bool cpufreq_boost_supported(void)
2558 {
2559         return cpufreq_driver->set_boost;
2560 }
2561
2562 static int create_boost_sysfs_file(void)
2563 {
2564         int ret;
2565
2566         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2567         if (ret)
2568                 pr_err("%s: cannot register global BOOST sysfs file\n",
2569                        __func__);
2570
2571         return ret;
2572 }
2573
2574 static void remove_boost_sysfs_file(void)
2575 {
2576         if (cpufreq_boost_supported())
2577                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2578 }
2579
2580 int cpufreq_enable_boost_support(void)
2581 {
2582         if (!cpufreq_driver)
2583                 return -EINVAL;
2584
2585         if (cpufreq_boost_supported())
2586                 return 0;
2587
2588         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2589
2590         /* This will get removed on driver unregister */
2591         return create_boost_sysfs_file();
2592 }
2593 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2594
2595 int cpufreq_boost_enabled(void)
2596 {
2597         return cpufreq_driver->boost_enabled;
2598 }
2599 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2600
2601 /*********************************************************************
2602  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2603  *********************************************************************/
2604 static enum cpuhp_state hp_online;
2605
2606 static int cpuhp_cpufreq_online(unsigned int cpu)
2607 {
2608         cpufreq_online(cpu);
2609
2610         return 0;
2611 }
2612
2613 static int cpuhp_cpufreq_offline(unsigned int cpu)
2614 {
2615         cpufreq_offline(cpu);
2616
2617         return 0;
2618 }
2619
2620 /**
2621  * cpufreq_register_driver - register a CPU Frequency driver
2622  * @driver_data: A struct cpufreq_driver containing the values#
2623  * submitted by the CPU Frequency driver.
2624  *
2625  * Registers a CPU Frequency driver to this core code. This code
2626  * returns zero on success, -EEXIST when another driver got here first
2627  * (and isn't unregistered in the meantime).
2628  *
2629  */
2630 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2631 {
2632         unsigned long flags;
2633         int ret;
2634
2635         if (cpufreq_disabled())
2636                 return -ENODEV;
2637
2638         /*
2639          * The cpufreq core depends heavily on the availability of device
2640          * structure, make sure they are available before proceeding further.
2641          */
2642         if (!get_cpu_device(0))
2643                 return -EPROBE_DEFER;
2644
2645         if (!driver_data || !driver_data->verify || !driver_data->init ||
2646             !(driver_data->setpolicy || driver_data->target_index ||
2647                     driver_data->target) ||
2648              (driver_data->setpolicy && (driver_data->target_index ||
2649                     driver_data->target)) ||
2650              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2651              (!driver_data->online != !driver_data->offline))
2652                 return -EINVAL;
2653
2654         pr_debug("trying to register driver %s\n", driver_data->name);
2655
2656         /* Protect against concurrent CPU online/offline. */
2657         cpus_read_lock();
2658
2659         write_lock_irqsave(&cpufreq_driver_lock, flags);
2660         if (cpufreq_driver) {
2661                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2662                 ret = -EEXIST;
2663                 goto out;
2664         }
2665         cpufreq_driver = driver_data;
2666         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2667
2668         if (driver_data->setpolicy)
2669                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2670
2671         if (cpufreq_boost_supported()) {
2672                 ret = create_boost_sysfs_file();
2673                 if (ret)
2674                         goto err_null_driver;
2675         }
2676
2677         ret = subsys_interface_register(&cpufreq_interface);
2678         if (ret)
2679                 goto err_boost_unreg;
2680
2681         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2682             list_empty(&cpufreq_policy_list)) {
2683                 /* if all ->init() calls failed, unregister */
2684                 ret = -ENODEV;
2685                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2686                          driver_data->name);
2687                 goto err_if_unreg;
2688         }
2689
2690         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2691                                                    "cpufreq:online",
2692                                                    cpuhp_cpufreq_online,
2693                                                    cpuhp_cpufreq_offline);
2694         if (ret < 0)
2695                 goto err_if_unreg;
2696         hp_online = ret;
2697         ret = 0;
2698
2699         pr_debug("driver %s up and running\n", driver_data->name);
2700         goto out;
2701
2702 err_if_unreg:
2703         subsys_interface_unregister(&cpufreq_interface);
2704 err_boost_unreg:
2705         remove_boost_sysfs_file();
2706 err_null_driver:
2707         write_lock_irqsave(&cpufreq_driver_lock, flags);
2708         cpufreq_driver = NULL;
2709         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2710 out:
2711         cpus_read_unlock();
2712         return ret;
2713 }
2714 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2715
2716 /**
2717  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2718  *
2719  * Unregister the current CPUFreq driver. Only call this if you have
2720  * the right to do so, i.e. if you have succeeded in initialising before!
2721  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2722  * currently not initialised.
2723  */
2724 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2725 {
2726         unsigned long flags;
2727
2728         if (!cpufreq_driver || (driver != cpufreq_driver))
2729                 return -EINVAL;
2730
2731         pr_debug("unregistering driver %s\n", driver->name);
2732
2733         /* Protect against concurrent cpu hotplug */
2734         cpus_read_lock();
2735         subsys_interface_unregister(&cpufreq_interface);
2736         remove_boost_sysfs_file();
2737         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2738
2739         write_lock_irqsave(&cpufreq_driver_lock, flags);
2740
2741         cpufreq_driver = NULL;
2742
2743         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2744         cpus_read_unlock();
2745
2746         return 0;
2747 }
2748 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2749
2750 static int __init cpufreq_core_init(void)
2751 {
2752         if (cpufreq_disabled())
2753                 return -ENODEV;
2754
2755         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2756         BUG_ON(!cpufreq_global_kobject);
2757
2758         return 0;
2759 }
2760 module_param(off, int, 0444);
2761 core_initcall(cpufreq_core_init);