OSDN Git Service

Merge tag 'v4.14-rockchip-dts64fixes-2' of git://git.kernel.org/pub/scm/linux/kernel...
[uclinux-h8/linux.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
26
27 static DEFINE_MUTEX(gov_dbs_data_mutex);
28
29 /* Common sysfs tunables */
30 /**
31  * store_sampling_rate - update sampling rate effective immediately if needed.
32  *
33  * If new rate is smaller than the old, simply updating
34  * dbs.sampling_rate might not be appropriate. For example, if the
35  * original sampling_rate was 1 second and the requested new sampling rate is 10
36  * ms because the user needs immediate reaction from ondemand governor, but not
37  * sure if higher frequency will be required or not, then, the governor may
38  * change the sampling rate too late; up to 1 second later. Thus, if we are
39  * reducing the sampling rate, we need to make the new value effective
40  * immediately.
41  *
42  * This must be called with dbs_data->mutex held, otherwise traversing
43  * policy_dbs_list isn't safe.
44  */
45 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
46                             size_t count)
47 {
48         struct dbs_data *dbs_data = to_dbs_data(attr_set);
49         struct policy_dbs_info *policy_dbs;
50         int ret;
51         ret = sscanf(buf, "%u", &dbs_data->sampling_rate);
52         if (ret != 1)
53                 return -EINVAL;
54
55         /*
56          * We are operating under dbs_data->mutex and so the list and its
57          * entries can't be freed concurrently.
58          */
59         list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
60                 mutex_lock(&policy_dbs->update_mutex);
61                 /*
62                  * On 32-bit architectures this may race with the
63                  * sample_delay_ns read in dbs_update_util_handler(), but that
64                  * really doesn't matter.  If the read returns a value that's
65                  * too big, the sample will be skipped, but the next invocation
66                  * of dbs_update_util_handler() (when the update has been
67                  * completed) will take a sample.
68                  *
69                  * If this runs in parallel with dbs_work_handler(), we may end
70                  * up overwriting the sample_delay_ns value that it has just
71                  * written, but it will be corrected next time a sample is
72                  * taken, so it shouldn't be significant.
73                  */
74                 gov_update_sample_delay(policy_dbs, 0);
75                 mutex_unlock(&policy_dbs->update_mutex);
76         }
77
78         return count;
79 }
80 EXPORT_SYMBOL_GPL(store_sampling_rate);
81
82 /**
83  * gov_update_cpu_data - Update CPU load data.
84  * @dbs_data: Top-level governor data pointer.
85  *
86  * Update CPU load data for all CPUs in the domain governed by @dbs_data
87  * (that may be a single policy or a bunch of them if governor tunables are
88  * system-wide).
89  *
90  * Call under the @dbs_data mutex.
91  */
92 void gov_update_cpu_data(struct dbs_data *dbs_data)
93 {
94         struct policy_dbs_info *policy_dbs;
95
96         list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
97                 unsigned int j;
98
99                 for_each_cpu(j, policy_dbs->policy->cpus) {
100                         struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
101
102                         j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
103                                                                   dbs_data->io_is_busy);
104                         if (dbs_data->ignore_nice_load)
105                                 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
106                 }
107         }
108 }
109 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
110
111 unsigned int dbs_update(struct cpufreq_policy *policy)
112 {
113         struct policy_dbs_info *policy_dbs = policy->governor_data;
114         struct dbs_data *dbs_data = policy_dbs->dbs_data;
115         unsigned int ignore_nice = dbs_data->ignore_nice_load;
116         unsigned int max_load = 0, idle_periods = UINT_MAX;
117         unsigned int sampling_rate, io_busy, j;
118
119         /*
120          * Sometimes governors may use an additional multiplier to increase
121          * sample delays temporarily.  Apply that multiplier to sampling_rate
122          * so as to keep the wake-up-from-idle detection logic a bit
123          * conservative.
124          */
125         sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
126         /*
127          * For the purpose of ondemand, waiting for disk IO is an indication
128          * that you're performance critical, and not that the system is actually
129          * idle, so do not add the iowait time to the CPU idle time then.
130          */
131         io_busy = dbs_data->io_is_busy;
132
133         /* Get Absolute Load */
134         for_each_cpu(j, policy->cpus) {
135                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
136                 u64 update_time, cur_idle_time;
137                 unsigned int idle_time, time_elapsed;
138                 unsigned int load;
139
140                 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
141
142                 time_elapsed = update_time - j_cdbs->prev_update_time;
143                 j_cdbs->prev_update_time = update_time;
144
145                 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
146                 j_cdbs->prev_cpu_idle = cur_idle_time;
147
148                 if (ignore_nice) {
149                         u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
150
151                         idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
152                         j_cdbs->prev_cpu_nice = cur_nice;
153                 }
154
155                 if (unlikely(!time_elapsed)) {
156                         /*
157                          * That can only happen when this function is called
158                          * twice in a row with a very short interval between the
159                          * calls, so the previous load value can be used then.
160                          */
161                         load = j_cdbs->prev_load;
162                 } else if (unlikely(time_elapsed > 2 * sampling_rate &&
163                                     j_cdbs->prev_load)) {
164                         /*
165                          * If the CPU had gone completely idle and a task has
166                          * just woken up on this CPU now, it would be unfair to
167                          * calculate 'load' the usual way for this elapsed
168                          * time-window, because it would show near-zero load,
169                          * irrespective of how CPU intensive that task actually
170                          * was. This is undesirable for latency-sensitive bursty
171                          * workloads.
172                          *
173                          * To avoid this, reuse the 'load' from the previous
174                          * time-window and give this task a chance to start with
175                          * a reasonably high CPU frequency. However, that
176                          * shouldn't be over-done, lest we get stuck at a high
177                          * load (high frequency) for too long, even when the
178                          * current system load has actually dropped down, so
179                          * clear prev_load to guarantee that the load will be
180                          * computed again next time.
181                          *
182                          * Detecting this situation is easy: the governor's
183                          * utilization update handler would not have run during
184                          * CPU-idle periods.  Hence, an unusually large
185                          * 'time_elapsed' (as compared to the sampling rate)
186                          * indicates this scenario.
187                          */
188                         load = j_cdbs->prev_load;
189                         j_cdbs->prev_load = 0;
190                 } else {
191                         if (time_elapsed >= idle_time) {
192                                 load = 100 * (time_elapsed - idle_time) / time_elapsed;
193                         } else {
194                                 /*
195                                  * That can happen if idle_time is returned by
196                                  * get_cpu_idle_time_jiffy().  In that case
197                                  * idle_time is roughly equal to the difference
198                                  * between time_elapsed and "busy time" obtained
199                                  * from CPU statistics.  Then, the "busy time"
200                                  * can end up being greater than time_elapsed
201                                  * (for example, if jiffies_64 and the CPU
202                                  * statistics are updated by different CPUs),
203                                  * so idle_time may in fact be negative.  That
204                                  * means, though, that the CPU was busy all
205                                  * the time (on the rough average) during the
206                                  * last sampling interval and 100 can be
207                                  * returned as the load.
208                                  */
209                                 load = (int)idle_time < 0 ? 100 : 0;
210                         }
211                         j_cdbs->prev_load = load;
212                 }
213
214                 if (time_elapsed > 2 * sampling_rate) {
215                         unsigned int periods = time_elapsed / sampling_rate;
216
217                         if (periods < idle_periods)
218                                 idle_periods = periods;
219                 }
220
221                 if (load > max_load)
222                         max_load = load;
223         }
224
225         policy_dbs->idle_periods = idle_periods;
226
227         return max_load;
228 }
229 EXPORT_SYMBOL_GPL(dbs_update);
230
231 static void dbs_work_handler(struct work_struct *work)
232 {
233         struct policy_dbs_info *policy_dbs;
234         struct cpufreq_policy *policy;
235         struct dbs_governor *gov;
236
237         policy_dbs = container_of(work, struct policy_dbs_info, work);
238         policy = policy_dbs->policy;
239         gov = dbs_governor_of(policy);
240
241         /*
242          * Make sure cpufreq_governor_limits() isn't evaluating load or the
243          * ondemand governor isn't updating the sampling rate in parallel.
244          */
245         mutex_lock(&policy_dbs->update_mutex);
246         gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
247         mutex_unlock(&policy_dbs->update_mutex);
248
249         /* Allow the utilization update handler to queue up more work. */
250         atomic_set(&policy_dbs->work_count, 0);
251         /*
252          * If the update below is reordered with respect to the sample delay
253          * modification, the utilization update handler may end up using a stale
254          * sample delay value.
255          */
256         smp_wmb();
257         policy_dbs->work_in_progress = false;
258 }
259
260 static void dbs_irq_work(struct irq_work *irq_work)
261 {
262         struct policy_dbs_info *policy_dbs;
263
264         policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
265         schedule_work_on(smp_processor_id(), &policy_dbs->work);
266 }
267
268 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
269                                     unsigned int flags)
270 {
271         struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
272         struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
273         u64 delta_ns, lst;
274
275         if (!cpufreq_can_do_remote_dvfs(policy_dbs->policy))
276                 return;
277
278         /*
279          * The work may not be allowed to be queued up right now.
280          * Possible reasons:
281          * - Work has already been queued up or is in progress.
282          * - It is too early (too little time from the previous sample).
283          */
284         if (policy_dbs->work_in_progress)
285                 return;
286
287         /*
288          * If the reads below are reordered before the check above, the value
289          * of sample_delay_ns used in the computation may be stale.
290          */
291         smp_rmb();
292         lst = READ_ONCE(policy_dbs->last_sample_time);
293         delta_ns = time - lst;
294         if ((s64)delta_ns < policy_dbs->sample_delay_ns)
295                 return;
296
297         /*
298          * If the policy is not shared, the irq_work may be queued up right away
299          * at this point.  Otherwise, we need to ensure that only one of the
300          * CPUs sharing the policy will do that.
301          */
302         if (policy_dbs->is_shared) {
303                 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
304                         return;
305
306                 /*
307                  * If another CPU updated last_sample_time in the meantime, we
308                  * shouldn't be here, so clear the work counter and bail out.
309                  */
310                 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
311                         atomic_set(&policy_dbs->work_count, 0);
312                         return;
313                 }
314         }
315
316         policy_dbs->last_sample_time = time;
317         policy_dbs->work_in_progress = true;
318         irq_work_queue(&policy_dbs->irq_work);
319 }
320
321 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
322                                 unsigned int delay_us)
323 {
324         struct cpufreq_policy *policy = policy_dbs->policy;
325         int cpu;
326
327         gov_update_sample_delay(policy_dbs, delay_us);
328         policy_dbs->last_sample_time = 0;
329
330         for_each_cpu(cpu, policy->cpus) {
331                 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
332
333                 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
334                                              dbs_update_util_handler);
335         }
336 }
337
338 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
339 {
340         int i;
341
342         for_each_cpu(i, policy->cpus)
343                 cpufreq_remove_update_util_hook(i);
344
345         synchronize_sched();
346 }
347
348 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
349                                                      struct dbs_governor *gov)
350 {
351         struct policy_dbs_info *policy_dbs;
352         int j;
353
354         /* Allocate memory for per-policy governor data. */
355         policy_dbs = gov->alloc();
356         if (!policy_dbs)
357                 return NULL;
358
359         policy_dbs->policy = policy;
360         mutex_init(&policy_dbs->update_mutex);
361         atomic_set(&policy_dbs->work_count, 0);
362         init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
363         INIT_WORK(&policy_dbs->work, dbs_work_handler);
364
365         /* Set policy_dbs for all CPUs, online+offline */
366         for_each_cpu(j, policy->related_cpus) {
367                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
368
369                 j_cdbs->policy_dbs = policy_dbs;
370         }
371         return policy_dbs;
372 }
373
374 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
375                                  struct dbs_governor *gov)
376 {
377         int j;
378
379         mutex_destroy(&policy_dbs->update_mutex);
380
381         for_each_cpu(j, policy_dbs->policy->related_cpus) {
382                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
383
384                 j_cdbs->policy_dbs = NULL;
385                 j_cdbs->update_util.func = NULL;
386         }
387         gov->free(policy_dbs);
388 }
389
390 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
391 {
392         struct dbs_governor *gov = dbs_governor_of(policy);
393         struct dbs_data *dbs_data;
394         struct policy_dbs_info *policy_dbs;
395         int ret = 0;
396
397         /* State should be equivalent to EXIT */
398         if (policy->governor_data)
399                 return -EBUSY;
400
401         policy_dbs = alloc_policy_dbs_info(policy, gov);
402         if (!policy_dbs)
403                 return -ENOMEM;
404
405         /* Protect gov->gdbs_data against concurrent updates. */
406         mutex_lock(&gov_dbs_data_mutex);
407
408         dbs_data = gov->gdbs_data;
409         if (dbs_data) {
410                 if (WARN_ON(have_governor_per_policy())) {
411                         ret = -EINVAL;
412                         goto free_policy_dbs_info;
413                 }
414                 policy_dbs->dbs_data = dbs_data;
415                 policy->governor_data = policy_dbs;
416
417                 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
418                 goto out;
419         }
420
421         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
422         if (!dbs_data) {
423                 ret = -ENOMEM;
424                 goto free_policy_dbs_info;
425         }
426
427         gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
428
429         ret = gov->init(dbs_data);
430         if (ret)
431                 goto free_policy_dbs_info;
432
433         dbs_data->sampling_rate = cpufreq_policy_transition_delay_us(policy);
434
435         if (!have_governor_per_policy())
436                 gov->gdbs_data = dbs_data;
437
438         policy_dbs->dbs_data = dbs_data;
439         policy->governor_data = policy_dbs;
440
441         gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
442         ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
443                                    get_governor_parent_kobj(policy),
444                                    "%s", gov->gov.name);
445         if (!ret)
446                 goto out;
447
448         /* Failure, so roll back. */
449         pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
450
451         policy->governor_data = NULL;
452
453         if (!have_governor_per_policy())
454                 gov->gdbs_data = NULL;
455         gov->exit(dbs_data);
456         kfree(dbs_data);
457
458 free_policy_dbs_info:
459         free_policy_dbs_info(policy_dbs, gov);
460
461 out:
462         mutex_unlock(&gov_dbs_data_mutex);
463         return ret;
464 }
465 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
466
467 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
468 {
469         struct dbs_governor *gov = dbs_governor_of(policy);
470         struct policy_dbs_info *policy_dbs = policy->governor_data;
471         struct dbs_data *dbs_data = policy_dbs->dbs_data;
472         unsigned int count;
473
474         /* Protect gov->gdbs_data against concurrent updates. */
475         mutex_lock(&gov_dbs_data_mutex);
476
477         count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
478
479         policy->governor_data = NULL;
480
481         if (!count) {
482                 if (!have_governor_per_policy())
483                         gov->gdbs_data = NULL;
484
485                 gov->exit(dbs_data);
486                 kfree(dbs_data);
487         }
488
489         free_policy_dbs_info(policy_dbs, gov);
490
491         mutex_unlock(&gov_dbs_data_mutex);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
494
495 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
496 {
497         struct dbs_governor *gov = dbs_governor_of(policy);
498         struct policy_dbs_info *policy_dbs = policy->governor_data;
499         struct dbs_data *dbs_data = policy_dbs->dbs_data;
500         unsigned int sampling_rate, ignore_nice, j;
501         unsigned int io_busy;
502
503         if (!policy->cur)
504                 return -EINVAL;
505
506         policy_dbs->is_shared = policy_is_shared(policy);
507         policy_dbs->rate_mult = 1;
508
509         sampling_rate = dbs_data->sampling_rate;
510         ignore_nice = dbs_data->ignore_nice_load;
511         io_busy = dbs_data->io_is_busy;
512
513         for_each_cpu(j, policy->cpus) {
514                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
515
516                 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
517                 /*
518                  * Make the first invocation of dbs_update() compute the load.
519                  */
520                 j_cdbs->prev_load = 0;
521
522                 if (ignore_nice)
523                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
524         }
525
526         gov->start(policy);
527
528         gov_set_update_util(policy_dbs, sampling_rate);
529         return 0;
530 }
531 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
532
533 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
534 {
535         struct policy_dbs_info *policy_dbs = policy->governor_data;
536
537         gov_clear_update_util(policy_dbs->policy);
538         irq_work_sync(&policy_dbs->irq_work);
539         cancel_work_sync(&policy_dbs->work);
540         atomic_set(&policy_dbs->work_count, 0);
541         policy_dbs->work_in_progress = false;
542 }
543 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
544
545 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
546 {
547         struct policy_dbs_info *policy_dbs = policy->governor_data;
548
549         mutex_lock(&policy_dbs->update_mutex);
550         cpufreq_policy_apply_limits(policy);
551         gov_update_sample_delay(policy_dbs, 0);
552
553         mutex_unlock(&policy_dbs->update_mutex);
554 }
555 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);