OSDN Git Service

cpufreq: governor: name pointer to cpu_dbs_info as 'cdbs'
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27         if (have_governor_per_policy())
28                 return dbs_data->cdata->attr_group_gov_pol;
29         else
30                 return dbs_data->cdata->attr_group_gov_sys;
31 }
32
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38         struct cpufreq_policy *policy;
39         unsigned int sampling_rate;
40         unsigned int max_load = 0;
41         unsigned int ignore_nice;
42         unsigned int j;
43
44         if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45                 struct od_cpu_dbs_info_s *od_dbs_info =
46                                 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48                 /*
49                  * Sometimes, the ondemand governor uses an additional
50                  * multiplier to give long delays. So apply this multiplier to
51                  * the 'sampling_rate', so as to keep the wake-up-from-idle
52                  * detection logic a bit conservative.
53                  */
54                 sampling_rate = od_tuners->sampling_rate;
55                 sampling_rate *= od_dbs_info->rate_mult;
56
57                 ignore_nice = od_tuners->ignore_nice_load;
58         } else {
59                 sampling_rate = cs_tuners->sampling_rate;
60                 ignore_nice = cs_tuners->ignore_nice_load;
61         }
62
63         policy = cdbs->cur_policy;
64
65         /* Get Absolute Load */
66         for_each_cpu(j, policy->cpus) {
67                 struct cpu_dbs_info *j_cdbs;
68                 u64 cur_wall_time, cur_idle_time;
69                 unsigned int idle_time, wall_time;
70                 unsigned int load;
71                 int io_busy = 0;
72
73                 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
74
75                 /*
76                  * For the purpose of ondemand, waiting for disk IO is
77                  * an indication that you're performance critical, and
78                  * not that the system is actually idle. So do not add
79                  * the iowait time to the cpu idle time.
80                  */
81                 if (dbs_data->cdata->governor == GOV_ONDEMAND)
82                         io_busy = od_tuners->io_is_busy;
83                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
84
85                 wall_time = (unsigned int)
86                         (cur_wall_time - j_cdbs->prev_cpu_wall);
87                 j_cdbs->prev_cpu_wall = cur_wall_time;
88
89                 idle_time = (unsigned int)
90                         (cur_idle_time - j_cdbs->prev_cpu_idle);
91                 j_cdbs->prev_cpu_idle = cur_idle_time;
92
93                 if (ignore_nice) {
94                         u64 cur_nice;
95                         unsigned long cur_nice_jiffies;
96
97                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
98                                          cdbs->prev_cpu_nice;
99                         /*
100                          * Assumption: nice time between sampling periods will
101                          * be less than 2^32 jiffies for 32 bit sys
102                          */
103                         cur_nice_jiffies = (unsigned long)
104                                         cputime64_to_jiffies64(cur_nice);
105
106                         cdbs->prev_cpu_nice =
107                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
108                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
109                 }
110
111                 if (unlikely(!wall_time || wall_time < idle_time))
112                         continue;
113
114                 /*
115                  * If the CPU had gone completely idle, and a task just woke up
116                  * on this CPU now, it would be unfair to calculate 'load' the
117                  * usual way for this elapsed time-window, because it will show
118                  * near-zero load, irrespective of how CPU intensive that task
119                  * actually is. This is undesirable for latency-sensitive bursty
120                  * workloads.
121                  *
122                  * To avoid this, we reuse the 'load' from the previous
123                  * time-window and give this task a chance to start with a
124                  * reasonably high CPU frequency. (However, we shouldn't over-do
125                  * this copy, lest we get stuck at a high load (high frequency)
126                  * for too long, even when the current system load has actually
127                  * dropped down. So we perform the copy only once, upon the
128                  * first wake-up from idle.)
129                  *
130                  * Detecting this situation is easy: the governor's deferrable
131                  * timer would not have fired during CPU-idle periods. Hence
132                  * an unusually large 'wall_time' (as compared to the sampling
133                  * rate) indicates this scenario.
134                  *
135                  * prev_load can be zero in two cases and we must recalculate it
136                  * for both cases:
137                  * - during long idle intervals
138                  * - explicitly set to zero
139                  */
140                 if (unlikely(wall_time > (2 * sampling_rate) &&
141                              j_cdbs->prev_load)) {
142                         load = j_cdbs->prev_load;
143
144                         /*
145                          * Perform a destructive copy, to ensure that we copy
146                          * the previous load only once, upon the first wake-up
147                          * from idle.
148                          */
149                         j_cdbs->prev_load = 0;
150                 } else {
151                         load = 100 * (wall_time - idle_time) / wall_time;
152                         j_cdbs->prev_load = load;
153                 }
154
155                 if (load > max_load)
156                         max_load = load;
157         }
158
159         dbs_data->cdata->gov_check_cpu(cpu, max_load);
160 }
161 EXPORT_SYMBOL_GPL(dbs_check_cpu);
162
163 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
164                 unsigned int delay)
165 {
166         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
167
168         mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
169 }
170
171 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
172                 unsigned int delay, bool all_cpus)
173 {
174         int i;
175
176         mutex_lock(&cpufreq_governor_lock);
177         if (!policy->governor_enabled)
178                 goto out_unlock;
179
180         if (!all_cpus) {
181                 /*
182                  * Use raw_smp_processor_id() to avoid preemptible warnings.
183                  * We know that this is only called with all_cpus == false from
184                  * works that have been queued with *_work_on() functions and
185                  * those works are canceled during CPU_DOWN_PREPARE so they
186                  * can't possibly run on any other CPU.
187                  */
188                 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
189         } else {
190                 for_each_cpu(i, policy->cpus)
191                         __gov_queue_work(i, dbs_data, delay);
192         }
193
194 out_unlock:
195         mutex_unlock(&cpufreq_governor_lock);
196 }
197 EXPORT_SYMBOL_GPL(gov_queue_work);
198
199 static inline void gov_cancel_work(struct dbs_data *dbs_data,
200                 struct cpufreq_policy *policy)
201 {
202         struct cpu_dbs_info *cdbs;
203         int i;
204
205         for_each_cpu(i, policy->cpus) {
206                 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
207                 cancel_delayed_work_sync(&cdbs->dwork);
208         }
209 }
210
211 /* Will return if we need to evaluate cpu load again or not */
212 bool need_load_eval(struct cpu_dbs_info *cdbs, unsigned int sampling_rate)
213 {
214         if (policy_is_shared(cdbs->cur_policy)) {
215                 ktime_t time_now = ktime_get();
216                 s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
217
218                 /* Do nothing if we recently have sampled */
219                 if (delta_us < (s64)(sampling_rate / 2))
220                         return false;
221                 else
222                         cdbs->time_stamp = time_now;
223         }
224
225         return true;
226 }
227 EXPORT_SYMBOL_GPL(need_load_eval);
228
229 static void set_sampling_rate(struct dbs_data *dbs_data,
230                 unsigned int sampling_rate)
231 {
232         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
233                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
234                 cs_tuners->sampling_rate = sampling_rate;
235         } else {
236                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
237                 od_tuners->sampling_rate = sampling_rate;
238         }
239 }
240
241 static int cpufreq_governor_init(struct cpufreq_policy *policy,
242                                  struct dbs_data *dbs_data,
243                                  struct common_dbs_data *cdata)
244 {
245         unsigned int latency;
246         int ret;
247
248         if (dbs_data) {
249                 if (WARN_ON(have_governor_per_policy()))
250                         return -EINVAL;
251                 dbs_data->usage_count++;
252                 policy->governor_data = dbs_data;
253                 return 0;
254         }
255
256         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
257         if (!dbs_data)
258                 return -ENOMEM;
259
260         dbs_data->cdata = cdata;
261         dbs_data->usage_count = 1;
262
263         ret = cdata->init(dbs_data, !policy->governor->initialized);
264         if (ret)
265                 goto free_dbs_data;
266
267         /* policy latency is in ns. Convert it to us first */
268         latency = policy->cpuinfo.transition_latency / 1000;
269         if (latency == 0)
270                 latency = 1;
271
272         /* Bring kernel and HW constraints together */
273         dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
274                                           MIN_LATENCY_MULTIPLIER * latency);
275         set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
276                                         latency * LATENCY_MULTIPLIER));
277
278         if (!have_governor_per_policy()) {
279                 if (WARN_ON(cpufreq_get_global_kobject())) {
280                         ret = -EINVAL;
281                         goto cdata_exit;
282                 }
283                 cdata->gdbs_data = dbs_data;
284         }
285
286         ret = sysfs_create_group(get_governor_parent_kobj(policy),
287                                  get_sysfs_attr(dbs_data));
288         if (ret)
289                 goto put_kobj;
290
291         policy->governor_data = dbs_data;
292
293         return 0;
294
295 put_kobj:
296         if (!have_governor_per_policy()) {
297                 cdata->gdbs_data = NULL;
298                 cpufreq_put_global_kobject();
299         }
300 cdata_exit:
301         cdata->exit(dbs_data, !policy->governor->initialized);
302 free_dbs_data:
303         kfree(dbs_data);
304         return ret;
305 }
306
307 static void cpufreq_governor_exit(struct cpufreq_policy *policy,
308                                   struct dbs_data *dbs_data)
309 {
310         struct common_dbs_data *cdata = dbs_data->cdata;
311
312         policy->governor_data = NULL;
313         if (!--dbs_data->usage_count) {
314                 sysfs_remove_group(get_governor_parent_kobj(policy),
315                                    get_sysfs_attr(dbs_data));
316
317                 if (!have_governor_per_policy()) {
318                         cdata->gdbs_data = NULL;
319                         cpufreq_put_global_kobject();
320                 }
321
322                 cdata->exit(dbs_data, policy->governor->initialized == 1);
323                 kfree(dbs_data);
324         }
325 }
326
327 static int cpufreq_governor_start(struct cpufreq_policy *policy,
328                                   struct dbs_data *dbs_data)
329 {
330         struct common_dbs_data *cdata = dbs_data->cdata;
331         unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
332         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
333         int io_busy = 0;
334
335         if (!policy->cur)
336                 return -EINVAL;
337
338         if (cdata->governor == GOV_CONSERVATIVE) {
339                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
340
341                 sampling_rate = cs_tuners->sampling_rate;
342                 ignore_nice = cs_tuners->ignore_nice_load;
343         } else {
344                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
345
346                 sampling_rate = od_tuners->sampling_rate;
347                 ignore_nice = od_tuners->ignore_nice_load;
348                 io_busy = od_tuners->io_is_busy;
349         }
350
351         for_each_cpu(j, policy->cpus) {
352                 struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
353                 unsigned int prev_load;
354
355                 j_cdbs->cur_policy = policy;
356                 j_cdbs->prev_cpu_idle =
357                         get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
358
359                 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
360                                             j_cdbs->prev_cpu_idle);
361                 j_cdbs->prev_load = 100 * prev_load /
362                                     (unsigned int)j_cdbs->prev_cpu_wall;
363
364                 if (ignore_nice)
365                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
366
367                 mutex_init(&j_cdbs->timer_mutex);
368                 INIT_DEFERRABLE_WORK(&j_cdbs->dwork, cdata->gov_dbs_timer);
369         }
370
371         if (cdata->governor == GOV_CONSERVATIVE) {
372                 struct cs_cpu_dbs_info_s *cs_dbs_info =
373                         cdata->get_cpu_dbs_info_s(cpu);
374
375                 cs_dbs_info->down_skip = 0;
376                 cs_dbs_info->enable = 1;
377                 cs_dbs_info->requested_freq = policy->cur;
378         } else {
379                 struct od_ops *od_ops = cdata->gov_ops;
380                 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
381
382                 od_dbs_info->rate_mult = 1;
383                 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
384                 od_ops->powersave_bias_init_cpu(cpu);
385         }
386
387         /* Initiate timer time stamp */
388         cdbs->time_stamp = ktime_get();
389
390         gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
391                        true);
392         return 0;
393 }
394
395 static void cpufreq_governor_stop(struct cpufreq_policy *policy,
396                                   struct dbs_data *dbs_data)
397 {
398         struct common_dbs_data *cdata = dbs_data->cdata;
399         unsigned int cpu = policy->cpu;
400         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
401
402         if (cdata->governor == GOV_CONSERVATIVE) {
403                 struct cs_cpu_dbs_info_s *cs_dbs_info =
404                         cdata->get_cpu_dbs_info_s(cpu);
405
406                 cs_dbs_info->enable = 0;
407         }
408
409         gov_cancel_work(dbs_data, policy);
410
411         mutex_destroy(&cdbs->timer_mutex);
412         cdbs->cur_policy = NULL;
413 }
414
415 static void cpufreq_governor_limits(struct cpufreq_policy *policy,
416                                     struct dbs_data *dbs_data)
417 {
418         struct common_dbs_data *cdata = dbs_data->cdata;
419         unsigned int cpu = policy->cpu;
420         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
421
422         if (!cdbs->cur_policy)
423                 return;
424
425         mutex_lock(&cdbs->timer_mutex);
426         if (policy->max < cdbs->cur_policy->cur)
427                 __cpufreq_driver_target(cdbs->cur_policy, policy->max,
428                                         CPUFREQ_RELATION_H);
429         else if (policy->min > cdbs->cur_policy->cur)
430                 __cpufreq_driver_target(cdbs->cur_policy, policy->min,
431                                         CPUFREQ_RELATION_L);
432         dbs_check_cpu(dbs_data, cpu);
433         mutex_unlock(&cdbs->timer_mutex);
434 }
435
436 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
437                          struct common_dbs_data *cdata, unsigned int event)
438 {
439         struct dbs_data *dbs_data;
440         int ret = 0;
441
442         /* Lock governor to block concurrent initialization of governor */
443         mutex_lock(&cdata->mutex);
444
445         if (have_governor_per_policy())
446                 dbs_data = policy->governor_data;
447         else
448                 dbs_data = cdata->gdbs_data;
449
450         if (WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT))) {
451                 ret = -EINVAL;
452                 goto unlock;
453         }
454
455         switch (event) {
456         case CPUFREQ_GOV_POLICY_INIT:
457                 ret = cpufreq_governor_init(policy, dbs_data, cdata);
458                 break;
459         case CPUFREQ_GOV_POLICY_EXIT:
460                 cpufreq_governor_exit(policy, dbs_data);
461                 break;
462         case CPUFREQ_GOV_START:
463                 ret = cpufreq_governor_start(policy, dbs_data);
464                 break;
465         case CPUFREQ_GOV_STOP:
466                 cpufreq_governor_stop(policy, dbs_data);
467                 break;
468         case CPUFREQ_GOV_LIMITS:
469                 cpufreq_governor_limits(policy, dbs_data);
470                 break;
471         }
472
473 unlock:
474         mutex_unlock(&cdata->mutex);
475
476         return ret;
477 }
478 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);