OSDN Git Service

Merge cpufreq fixes going into v4.6.
[android-x86/kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38
39 #define ATOM_RATIOS             0x66a
40 #define ATOM_VIDS               0x66b
41 #define ATOM_TURBO_RATIOS       0x66c
42 #define ATOM_TURBO_VIDS         0x66d
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 static inline int32_t mul_fp(int32_t x, int32_t y)
53 {
54         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
55 }
56
57 static inline int32_t div_fp(s64 x, s64 y)
58 {
59         return div64_s64((int64_t)x << FRAC_BITS, y);
60 }
61
62 static inline int ceiling_fp(int32_t x)
63 {
64         int mask, ret;
65
66         ret = fp_toint(x);
67         mask = (1 << FRAC_BITS) - 1;
68         if (x & mask)
69                 ret += 1;
70         return ret;
71 }
72
73 /**
74  * struct sample -      Store performance sample
75  * @core_pct_busy:      Ratio of APERF/MPERF in percent, which is actual
76  *                      performance during last sample period
77  * @busy_scaled:        Scaled busy value which is used to calculate next
78  *                      P state. This can be different than core_pct_busy
79  *                      to account for cpu idle period
80  * @aperf:              Difference of actual performance frequency clock count
81  *                      read from APERF MSR between last and current sample
82  * @mperf:              Difference of maximum performance frequency clock count
83  *                      read from MPERF MSR between last and current sample
84  * @tsc:                Difference of time stamp counter between last and
85  *                      current sample
86  * @freq:               Effective frequency calculated from APERF/MPERF
87  * @time:               Current time from scheduler
88  *
89  * This structure is used in the cpudata structure to store performance sample
90  * data for choosing next P State.
91  */
92 struct sample {
93         int32_t core_pct_busy;
94         int32_t busy_scaled;
95         u64 aperf;
96         u64 mperf;
97         u64 tsc;
98         int freq;
99         u64 time;
100 };
101
102 /**
103  * struct pstate_data - Store P state data
104  * @current_pstate:     Current requested P state
105  * @min_pstate:         Min P state possible for this platform
106  * @max_pstate:         Max P state possible for this platform
107  * @max_pstate_physical:This is physical Max P state for a processor
108  *                      This can be higher than the max_pstate which can
109  *                      be limited by platform thermal design power limits
110  * @scaling:            Scaling factor to  convert frequency to cpufreq
111  *                      frequency units
112  * @turbo_pstate:       Max Turbo P state possible for this platform
113  *
114  * Stores the per cpu model P state limits and current P state.
115  */
116 struct pstate_data {
117         int     current_pstate;
118         int     min_pstate;
119         int     max_pstate;
120         int     max_pstate_physical;
121         int     scaling;
122         int     turbo_pstate;
123 };
124
125 /**
126  * struct vid_data -    Stores voltage information data
127  * @min:                VID data for this platform corresponding to
128  *                      the lowest P state
129  * @max:                VID data corresponding to the highest P State.
130  * @turbo:              VID data for turbo P state
131  * @ratio:              Ratio of (vid max - vid min) /
132  *                      (max P state - Min P State)
133  *
134  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
135  * This data is used in Atom platforms, where in addition to target P state,
136  * the voltage data needs to be specified to select next P State.
137  */
138 struct vid_data {
139         int min;
140         int max;
141         int turbo;
142         int32_t ratio;
143 };
144
145 /**
146  * struct _pid -        Stores PID data
147  * @setpoint:           Target set point for busyness or performance
148  * @integral:           Storage for accumulated error values
149  * @p_gain:             PID proportional gain
150  * @i_gain:             PID integral gain
151  * @d_gain:             PID derivative gain
152  * @deadband:           PID deadband
153  * @last_err:           Last error storage for integral part of PID calculation
154  *
155  * Stores PID coefficients and last error for PID controller.
156  */
157 struct _pid {
158         int setpoint;
159         int32_t integral;
160         int32_t p_gain;
161         int32_t i_gain;
162         int32_t d_gain;
163         int deadband;
164         int32_t last_err;
165 };
166
167 /**
168  * struct cpudata -     Per CPU instance data storage
169  * @cpu:                CPU number for this instance data
170  * @update_util:        CPUFreq utility callback information
171  * @pstate:             Stores P state limits for this CPU
172  * @vid:                Stores VID limits for this CPU
173  * @pid:                Stores PID parameters for this CPU
174  * @last_sample_time:   Last Sample time
175  * @prev_aperf:         Last APERF value read from APERF MSR
176  * @prev_mperf:         Last MPERF value read from MPERF MSR
177  * @prev_tsc:           Last timestamp counter (TSC) value
178  * @prev_cummulative_iowait: IO Wait time difference from last and
179  *                      current sample
180  * @sample:             Storage for storing last Sample data
181  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
182  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
183  *
184  * This structure stores per CPU instance data for all CPUs.
185  */
186 struct cpudata {
187         int cpu;
188
189         struct update_util_data update_util;
190
191         struct pstate_data pstate;
192         struct vid_data vid;
193         struct _pid pid;
194
195         u64     last_sample_time;
196         u64     prev_aperf;
197         u64     prev_mperf;
198         u64     prev_tsc;
199         u64     prev_cummulative_iowait;
200         struct sample sample;
201 #ifdef CONFIG_ACPI
202         struct acpi_processor_performance acpi_perf_data;
203         bool valid_pss_table;
204 #endif
205 };
206
207 static struct cpudata **all_cpu_data;
208
209 /**
210  * struct pid_adjust_policy - Stores static PID configuration data
211  * @sample_rate_ms:     PID calculation sample rate in ms
212  * @sample_rate_ns:     Sample rate calculation in ns
213  * @deadband:           PID deadband
214  * @setpoint:           PID Setpoint
215  * @p_gain_pct:         PID proportional gain
216  * @i_gain_pct:         PID integral gain
217  * @d_gain_pct:         PID derivative gain
218  *
219  * Stores per CPU model static PID configuration data.
220  */
221 struct pstate_adjust_policy {
222         int sample_rate_ms;
223         s64 sample_rate_ns;
224         int deadband;
225         int setpoint;
226         int p_gain_pct;
227         int d_gain_pct;
228         int i_gain_pct;
229 };
230
231 /**
232  * struct pstate_funcs - Per CPU model specific callbacks
233  * @get_max:            Callback to get maximum non turbo effective P state
234  * @get_max_physical:   Callback to get maximum non turbo physical P state
235  * @get_min:            Callback to get minimum P state
236  * @get_turbo:          Callback to get turbo P state
237  * @get_scaling:        Callback to get frequency scaling factor
238  * @get_val:            Callback to convert P state to actual MSR write value
239  * @get_vid:            Callback to get VID data for Atom platforms
240  * @get_target_pstate:  Callback to a function to calculate next P state to use
241  *
242  * Core and Atom CPU models have different way to get P State limits. This
243  * structure is used to store those callbacks.
244  */
245 struct pstate_funcs {
246         int (*get_max)(void);
247         int (*get_max_physical)(void);
248         int (*get_min)(void);
249         int (*get_turbo)(void);
250         int (*get_scaling)(void);
251         u64 (*get_val)(struct cpudata*, int pstate);
252         void (*get_vid)(struct cpudata *);
253         int32_t (*get_target_pstate)(struct cpudata *);
254 };
255
256 /**
257  * struct cpu_defaults- Per CPU model default config data
258  * @pid_policy: PID config data
259  * @funcs:              Callback function data
260  */
261 struct cpu_defaults {
262         struct pstate_adjust_policy pid_policy;
263         struct pstate_funcs funcs;
264 };
265
266 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
267 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
268
269 static struct pstate_adjust_policy pid_params;
270 static struct pstate_funcs pstate_funcs;
271 static int hwp_active;
272
273 #ifdef CONFIG_ACPI
274 static bool acpi_ppc;
275 #endif
276
277 /**
278  * struct perf_limits - Store user and policy limits
279  * @no_turbo:           User requested turbo state from intel_pstate sysfs
280  * @turbo_disabled:     Platform turbo status either from msr
281  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
282  *                      matches the maximum turbo pstate
283  * @max_perf_pct:       Effective maximum performance limit in percentage, this
284  *                      is minimum of either limits enforced by cpufreq policy
285  *                      or limits from user set limits via intel_pstate sysfs
286  * @min_perf_pct:       Effective minimum performance limit in percentage, this
287  *                      is maximum of either limits enforced by cpufreq policy
288  *                      or limits from user set limits via intel_pstate sysfs
289  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
290  *                      This value is used to limit max pstate
291  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
292  *                      This value is used to limit min pstate
293  * @max_policy_pct:     The maximum performance in percentage enforced by
294  *                      cpufreq setpolicy interface
295  * @max_sysfs_pct:      The maximum performance in percentage enforced by
296  *                      intel pstate sysfs interface
297  * @min_policy_pct:     The minimum performance in percentage enforced by
298  *                      cpufreq setpolicy interface
299  * @min_sysfs_pct:      The minimum performance in percentage enforced by
300  *                      intel pstate sysfs interface
301  *
302  * Storage for user and policy defined limits.
303  */
304 struct perf_limits {
305         int no_turbo;
306         int turbo_disabled;
307         int max_perf_pct;
308         int min_perf_pct;
309         int32_t max_perf;
310         int32_t min_perf;
311         int max_policy_pct;
312         int max_sysfs_pct;
313         int min_policy_pct;
314         int min_sysfs_pct;
315 };
316
317 static struct perf_limits performance_limits = {
318         .no_turbo = 0,
319         .turbo_disabled = 0,
320         .max_perf_pct = 100,
321         .max_perf = int_tofp(1),
322         .min_perf_pct = 100,
323         .min_perf = int_tofp(1),
324         .max_policy_pct = 100,
325         .max_sysfs_pct = 100,
326         .min_policy_pct = 0,
327         .min_sysfs_pct = 0,
328 };
329
330 static struct perf_limits powersave_limits = {
331         .no_turbo = 0,
332         .turbo_disabled = 0,
333         .max_perf_pct = 100,
334         .max_perf = int_tofp(1),
335         .min_perf_pct = 0,
336         .min_perf = 0,
337         .max_policy_pct = 100,
338         .max_sysfs_pct = 100,
339         .min_policy_pct = 0,
340         .min_sysfs_pct = 0,
341 };
342
343 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
344 static struct perf_limits *limits = &performance_limits;
345 #else
346 static struct perf_limits *limits = &powersave_limits;
347 #endif
348
349 #ifdef CONFIG_ACPI
350
351 static bool intel_pstate_get_ppc_enable_status(void)
352 {
353         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
354             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
355                 return true;
356
357         return acpi_ppc;
358 }
359
360 /*
361  * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
362  * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
363  * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
364  * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
365  * target ratio 0x17. The _PSS control value stores in a format which can be
366  * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
367  * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
368  * This function converts the _PSS control value to intel pstate driver format
369  * for comparison and assignment.
370  */
371 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
372 {
373         return cpu->acpi_perf_data.states[index].control >> 8;
374 }
375
376 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377 {
378         struct cpudata *cpu;
379         int turbo_pss_ctl;
380         int ret;
381         int i;
382
383         if (hwp_active)
384                 return;
385
386         if (!intel_pstate_get_ppc_enable_status())
387                 return;
388
389         cpu = all_cpu_data[policy->cpu];
390
391         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
392                                                   policy->cpu);
393         if (ret)
394                 return;
395
396         /*
397          * Check if the control value in _PSS is for PERF_CTL MSR, which should
398          * guarantee that the states returned by it map to the states in our
399          * list directly.
400          */
401         if (cpu->acpi_perf_data.control_register.space_id !=
402                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
403                 goto err;
404
405         /*
406          * If there is only one entry _PSS, simply ignore _PSS and continue as
407          * usual without taking _PSS into account
408          */
409         if (cpu->acpi_perf_data.state_count < 2)
410                 goto err;
411
412         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
413         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
414                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
415                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
416                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
417                          (u32) cpu->acpi_perf_data.states[i].power,
418                          (u32) cpu->acpi_perf_data.states[i].control);
419         }
420
421         /*
422          * The _PSS table doesn't contain whole turbo frequency range.
423          * This just contains +1 MHZ above the max non turbo frequency,
424          * with control value corresponding to max turbo ratio. But
425          * when cpufreq set policy is called, it will call with this
426          * max frequency, which will cause a reduced performance as
427          * this driver uses real max turbo frequency as the max
428          * frequency. So correct this frequency in _PSS table to
429          * correct max turbo frequency based on the turbo ratio.
430          * Also need to convert to MHz as _PSS freq is in MHz.
431          */
432         turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
433         if (turbo_pss_ctl > cpu->pstate.max_pstate)
434                 cpu->acpi_perf_data.states[0].core_frequency =
435                                         policy->cpuinfo.max_freq / 1000;
436         cpu->valid_pss_table = true;
437         pr_info("_PPC limits will be enforced\n");
438
439         return;
440
441  err:
442         cpu->valid_pss_table = false;
443         acpi_processor_unregister_performance(policy->cpu);
444 }
445
446 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
447 {
448         struct cpudata *cpu;
449
450         cpu = all_cpu_data[policy->cpu];
451         if (!cpu->valid_pss_table)
452                 return;
453
454         acpi_processor_unregister_performance(policy->cpu);
455 }
456
457 #else
458 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461
462 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463 {
464 }
465 #endif
466
467 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
468                              int deadband, int integral) {
469         pid->setpoint = int_tofp(setpoint);
470         pid->deadband  = int_tofp(deadband);
471         pid->integral  = int_tofp(integral);
472         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
473 }
474
475 static inline void pid_p_gain_set(struct _pid *pid, int percent)
476 {
477         pid->p_gain = div_fp(percent, 100);
478 }
479
480 static inline void pid_i_gain_set(struct _pid *pid, int percent)
481 {
482         pid->i_gain = div_fp(percent, 100);
483 }
484
485 static inline void pid_d_gain_set(struct _pid *pid, int percent)
486 {
487         pid->d_gain = div_fp(percent, 100);
488 }
489
490 static signed int pid_calc(struct _pid *pid, int32_t busy)
491 {
492         signed int result;
493         int32_t pterm, dterm, fp_error;
494         int32_t integral_limit;
495
496         fp_error = pid->setpoint - busy;
497
498         if (abs(fp_error) <= pid->deadband)
499                 return 0;
500
501         pterm = mul_fp(pid->p_gain, fp_error);
502
503         pid->integral += fp_error;
504
505         /*
506          * We limit the integral here so that it will never
507          * get higher than 30.  This prevents it from becoming
508          * too large an input over long periods of time and allows
509          * it to get factored out sooner.
510          *
511          * The value of 30 was chosen through experimentation.
512          */
513         integral_limit = int_tofp(30);
514         if (pid->integral > integral_limit)
515                 pid->integral = integral_limit;
516         if (pid->integral < -integral_limit)
517                 pid->integral = -integral_limit;
518
519         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
520         pid->last_err = fp_error;
521
522         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
523         result = result + (1 << (FRAC_BITS-1));
524         return (signed int)fp_toint(result);
525 }
526
527 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
528 {
529         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
530         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
531         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
532
533         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
534 }
535
536 static inline void intel_pstate_reset_all_pid(void)
537 {
538         unsigned int cpu;
539
540         for_each_online_cpu(cpu) {
541                 if (all_cpu_data[cpu])
542                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
543         }
544 }
545
546 static inline void update_turbo_state(void)
547 {
548         u64 misc_en;
549         struct cpudata *cpu;
550
551         cpu = all_cpu_data[0];
552         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
553         limits->turbo_disabled =
554                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
555                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
556 }
557
558 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
559 {
560         int min, hw_min, max, hw_max, cpu, range, adj_range;
561         u64 value, cap;
562
563         rdmsrl(MSR_HWP_CAPABILITIES, cap);
564         hw_min = HWP_LOWEST_PERF(cap);
565         hw_max = HWP_HIGHEST_PERF(cap);
566         range = hw_max - hw_min;
567
568         for_each_cpu(cpu, cpumask) {
569                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
570                 adj_range = limits->min_perf_pct * range / 100;
571                 min = hw_min + adj_range;
572                 value &= ~HWP_MIN_PERF(~0L);
573                 value |= HWP_MIN_PERF(min);
574
575                 adj_range = limits->max_perf_pct * range / 100;
576                 max = hw_min + adj_range;
577                 if (limits->no_turbo) {
578                         hw_max = HWP_GUARANTEED_PERF(cap);
579                         if (hw_max < max)
580                                 max = hw_max;
581                 }
582
583                 value &= ~HWP_MAX_PERF(~0L);
584                 value |= HWP_MAX_PERF(max);
585                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
586         }
587 }
588
589 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
590 {
591         if (hwp_active)
592                 intel_pstate_hwp_set(policy->cpus);
593
594         return 0;
595 }
596
597 static void intel_pstate_hwp_set_online_cpus(void)
598 {
599         get_online_cpus();
600         intel_pstate_hwp_set(cpu_online_mask);
601         put_online_cpus();
602 }
603
604 /************************** debugfs begin ************************/
605 static int pid_param_set(void *data, u64 val)
606 {
607         *(u32 *)data = val;
608         intel_pstate_reset_all_pid();
609         return 0;
610 }
611
612 static int pid_param_get(void *data, u64 *val)
613 {
614         *val = *(u32 *)data;
615         return 0;
616 }
617 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
618
619 struct pid_param {
620         char *name;
621         void *value;
622 };
623
624 static struct pid_param pid_files[] = {
625         {"sample_rate_ms", &pid_params.sample_rate_ms},
626         {"d_gain_pct", &pid_params.d_gain_pct},
627         {"i_gain_pct", &pid_params.i_gain_pct},
628         {"deadband", &pid_params.deadband},
629         {"setpoint", &pid_params.setpoint},
630         {"p_gain_pct", &pid_params.p_gain_pct},
631         {NULL, NULL}
632 };
633
634 static void __init intel_pstate_debug_expose_params(void)
635 {
636         struct dentry *debugfs_parent;
637         int i = 0;
638
639         if (hwp_active)
640                 return;
641         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
642         if (IS_ERR_OR_NULL(debugfs_parent))
643                 return;
644         while (pid_files[i].name) {
645                 debugfs_create_file(pid_files[i].name, 0660,
646                                     debugfs_parent, pid_files[i].value,
647                                     &fops_pid_param);
648                 i++;
649         }
650 }
651
652 /************************** debugfs end ************************/
653
654 /************************** sysfs begin ************************/
655 #define show_one(file_name, object)                                     \
656         static ssize_t show_##file_name                                 \
657         (struct kobject *kobj, struct attribute *attr, char *buf)       \
658         {                                                               \
659                 return sprintf(buf, "%u\n", limits->object);            \
660         }
661
662 static ssize_t show_turbo_pct(struct kobject *kobj,
663                                 struct attribute *attr, char *buf)
664 {
665         struct cpudata *cpu;
666         int total, no_turbo, turbo_pct;
667         uint32_t turbo_fp;
668
669         cpu = all_cpu_data[0];
670
671         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
672         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
673         turbo_fp = div_fp(no_turbo, total);
674         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
675         return sprintf(buf, "%u\n", turbo_pct);
676 }
677
678 static ssize_t show_num_pstates(struct kobject *kobj,
679                                 struct attribute *attr, char *buf)
680 {
681         struct cpudata *cpu;
682         int total;
683
684         cpu = all_cpu_data[0];
685         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
686         return sprintf(buf, "%u\n", total);
687 }
688
689 static ssize_t show_no_turbo(struct kobject *kobj,
690                              struct attribute *attr, char *buf)
691 {
692         ssize_t ret;
693
694         update_turbo_state();
695         if (limits->turbo_disabled)
696                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
697         else
698                 ret = sprintf(buf, "%u\n", limits->no_turbo);
699
700         return ret;
701 }
702
703 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
704                               const char *buf, size_t count)
705 {
706         unsigned int input;
707         int ret;
708
709         ret = sscanf(buf, "%u", &input);
710         if (ret != 1)
711                 return -EINVAL;
712
713         update_turbo_state();
714         if (limits->turbo_disabled) {
715                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
716                 return -EPERM;
717         }
718
719         limits->no_turbo = clamp_t(int, input, 0, 1);
720
721         if (hwp_active)
722                 intel_pstate_hwp_set_online_cpus();
723
724         return count;
725 }
726
727 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
728                                   const char *buf, size_t count)
729 {
730         unsigned int input;
731         int ret;
732
733         ret = sscanf(buf, "%u", &input);
734         if (ret != 1)
735                 return -EINVAL;
736
737         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
738         limits->max_perf_pct = min(limits->max_policy_pct,
739                                    limits->max_sysfs_pct);
740         limits->max_perf_pct = max(limits->min_policy_pct,
741                                    limits->max_perf_pct);
742         limits->max_perf_pct = max(limits->min_perf_pct,
743                                    limits->max_perf_pct);
744         limits->max_perf = div_fp(limits->max_perf_pct, 100);
745
746         if (hwp_active)
747                 intel_pstate_hwp_set_online_cpus();
748         return count;
749 }
750
751 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
752                                   const char *buf, size_t count)
753 {
754         unsigned int input;
755         int ret;
756
757         ret = sscanf(buf, "%u", &input);
758         if (ret != 1)
759                 return -EINVAL;
760
761         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
762         limits->min_perf_pct = max(limits->min_policy_pct,
763                                    limits->min_sysfs_pct);
764         limits->min_perf_pct = min(limits->max_policy_pct,
765                                    limits->min_perf_pct);
766         limits->min_perf_pct = min(limits->max_perf_pct,
767                                    limits->min_perf_pct);
768         limits->min_perf = div_fp(limits->min_perf_pct, 100);
769
770         if (hwp_active)
771                 intel_pstate_hwp_set_online_cpus();
772         return count;
773 }
774
775 show_one(max_perf_pct, max_perf_pct);
776 show_one(min_perf_pct, min_perf_pct);
777
778 define_one_global_rw(no_turbo);
779 define_one_global_rw(max_perf_pct);
780 define_one_global_rw(min_perf_pct);
781 define_one_global_ro(turbo_pct);
782 define_one_global_ro(num_pstates);
783
784 static struct attribute *intel_pstate_attributes[] = {
785         &no_turbo.attr,
786         &max_perf_pct.attr,
787         &min_perf_pct.attr,
788         &turbo_pct.attr,
789         &num_pstates.attr,
790         NULL
791 };
792
793 static struct attribute_group intel_pstate_attr_group = {
794         .attrs = intel_pstate_attributes,
795 };
796
797 static void __init intel_pstate_sysfs_expose_params(void)
798 {
799         struct kobject *intel_pstate_kobject;
800         int rc;
801
802         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
803                                                 &cpu_subsys.dev_root->kobj);
804         BUG_ON(!intel_pstate_kobject);
805         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
806         BUG_ON(rc);
807 }
808 /************************** sysfs end ************************/
809
810 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
811 {
812         /* First disable HWP notification interrupt as we don't process them */
813         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
814
815         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
816 }
817
818 static int atom_get_min_pstate(void)
819 {
820         u64 value;
821
822         rdmsrl(ATOM_RATIOS, value);
823         return (value >> 8) & 0x7F;
824 }
825
826 static int atom_get_max_pstate(void)
827 {
828         u64 value;
829
830         rdmsrl(ATOM_RATIOS, value);
831         return (value >> 16) & 0x7F;
832 }
833
834 static int atom_get_turbo_pstate(void)
835 {
836         u64 value;
837
838         rdmsrl(ATOM_TURBO_RATIOS, value);
839         return value & 0x7F;
840 }
841
842 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
843 {
844         u64 val;
845         int32_t vid_fp;
846         u32 vid;
847
848         val = (u64)pstate << 8;
849         if (limits->no_turbo && !limits->turbo_disabled)
850                 val |= (u64)1 << 32;
851
852         vid_fp = cpudata->vid.min + mul_fp(
853                 int_tofp(pstate - cpudata->pstate.min_pstate),
854                 cpudata->vid.ratio);
855
856         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
857         vid = ceiling_fp(vid_fp);
858
859         if (pstate > cpudata->pstate.max_pstate)
860                 vid = cpudata->vid.turbo;
861
862         return val | vid;
863 }
864
865 static int silvermont_get_scaling(void)
866 {
867         u64 value;
868         int i;
869         /* Defined in Table 35-6 from SDM (Sept 2015) */
870         static int silvermont_freq_table[] = {
871                 83300, 100000, 133300, 116700, 80000};
872
873         rdmsrl(MSR_FSB_FREQ, value);
874         i = value & 0x7;
875         WARN_ON(i > 4);
876
877         return silvermont_freq_table[i];
878 }
879
880 static int airmont_get_scaling(void)
881 {
882         u64 value;
883         int i;
884         /* Defined in Table 35-10 from SDM (Sept 2015) */
885         static int airmont_freq_table[] = {
886                 83300, 100000, 133300, 116700, 80000,
887                 93300, 90000, 88900, 87500};
888
889         rdmsrl(MSR_FSB_FREQ, value);
890         i = value & 0xF;
891         WARN_ON(i > 8);
892
893         return airmont_freq_table[i];
894 }
895
896 static void atom_get_vid(struct cpudata *cpudata)
897 {
898         u64 value;
899
900         rdmsrl(ATOM_VIDS, value);
901         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
902         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
903         cpudata->vid.ratio = div_fp(
904                 cpudata->vid.max - cpudata->vid.min,
905                 int_tofp(cpudata->pstate.max_pstate -
906                         cpudata->pstate.min_pstate));
907
908         rdmsrl(ATOM_TURBO_VIDS, value);
909         cpudata->vid.turbo = value & 0x7f;
910 }
911
912 static int core_get_min_pstate(void)
913 {
914         u64 value;
915
916         rdmsrl(MSR_PLATFORM_INFO, value);
917         return (value >> 40) & 0xFF;
918 }
919
920 static int core_get_max_pstate_physical(void)
921 {
922         u64 value;
923
924         rdmsrl(MSR_PLATFORM_INFO, value);
925         return (value >> 8) & 0xFF;
926 }
927
928 static int core_get_max_pstate(void)
929 {
930         u64 tar;
931         u64 plat_info;
932         int max_pstate;
933         int err;
934
935         rdmsrl(MSR_PLATFORM_INFO, plat_info);
936         max_pstate = (plat_info >> 8) & 0xFF;
937
938         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
939         if (!err) {
940                 /* Do some sanity checking for safety */
941                 if (plat_info & 0x600000000) {
942                         u64 tdp_ctrl;
943                         u64 tdp_ratio;
944                         int tdp_msr;
945
946                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
947                         if (err)
948                                 goto skip_tar;
949
950                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
951                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
952                         if (err)
953                                 goto skip_tar;
954
955                         /* For level 1 and 2, bits[23:16] contain the ratio */
956                         if (tdp_ctrl)
957                                 tdp_ratio >>= 16;
958
959                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
960                         if (tdp_ratio - 1 == tar) {
961                                 max_pstate = tar;
962                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
963                         } else {
964                                 goto skip_tar;
965                         }
966                 }
967         }
968
969 skip_tar:
970         return max_pstate;
971 }
972
973 static int core_get_turbo_pstate(void)
974 {
975         u64 value;
976         int nont, ret;
977
978         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
979         nont = core_get_max_pstate();
980         ret = (value) & 255;
981         if (ret <= nont)
982                 ret = nont;
983         return ret;
984 }
985
986 static inline int core_get_scaling(void)
987 {
988         return 100000;
989 }
990
991 static u64 core_get_val(struct cpudata *cpudata, int pstate)
992 {
993         u64 val;
994
995         val = (u64)pstate << 8;
996         if (limits->no_turbo && !limits->turbo_disabled)
997                 val |= (u64)1 << 32;
998
999         return val;
1000 }
1001
1002 static int knl_get_turbo_pstate(void)
1003 {
1004         u64 value;
1005         int nont, ret;
1006
1007         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1008         nont = core_get_max_pstate();
1009         ret = (((value) >> 8) & 0xFF);
1010         if (ret <= nont)
1011                 ret = nont;
1012         return ret;
1013 }
1014
1015 static struct cpu_defaults core_params = {
1016         .pid_policy = {
1017                 .sample_rate_ms = 10,
1018                 .deadband = 0,
1019                 .setpoint = 97,
1020                 .p_gain_pct = 20,
1021                 .d_gain_pct = 0,
1022                 .i_gain_pct = 0,
1023         },
1024         .funcs = {
1025                 .get_max = core_get_max_pstate,
1026                 .get_max_physical = core_get_max_pstate_physical,
1027                 .get_min = core_get_min_pstate,
1028                 .get_turbo = core_get_turbo_pstate,
1029                 .get_scaling = core_get_scaling,
1030                 .get_val = core_get_val,
1031                 .get_target_pstate = get_target_pstate_use_performance,
1032         },
1033 };
1034
1035 static struct cpu_defaults silvermont_params = {
1036         .pid_policy = {
1037                 .sample_rate_ms = 10,
1038                 .deadband = 0,
1039                 .setpoint = 60,
1040                 .p_gain_pct = 14,
1041                 .d_gain_pct = 0,
1042                 .i_gain_pct = 4,
1043         },
1044         .funcs = {
1045                 .get_max = atom_get_max_pstate,
1046                 .get_max_physical = atom_get_max_pstate,
1047                 .get_min = atom_get_min_pstate,
1048                 .get_turbo = atom_get_turbo_pstate,
1049                 .get_val = atom_get_val,
1050                 .get_scaling = silvermont_get_scaling,
1051                 .get_vid = atom_get_vid,
1052                 .get_target_pstate = get_target_pstate_use_cpu_load,
1053         },
1054 };
1055
1056 static struct cpu_defaults airmont_params = {
1057         .pid_policy = {
1058                 .sample_rate_ms = 10,
1059                 .deadband = 0,
1060                 .setpoint = 60,
1061                 .p_gain_pct = 14,
1062                 .d_gain_pct = 0,
1063                 .i_gain_pct = 4,
1064         },
1065         .funcs = {
1066                 .get_max = atom_get_max_pstate,
1067                 .get_max_physical = atom_get_max_pstate,
1068                 .get_min = atom_get_min_pstate,
1069                 .get_turbo = atom_get_turbo_pstate,
1070                 .get_val = atom_get_val,
1071                 .get_scaling = airmont_get_scaling,
1072                 .get_vid = atom_get_vid,
1073                 .get_target_pstate = get_target_pstate_use_cpu_load,
1074         },
1075 };
1076
1077 static struct cpu_defaults knl_params = {
1078         .pid_policy = {
1079                 .sample_rate_ms = 10,
1080                 .deadband = 0,
1081                 .setpoint = 97,
1082                 .p_gain_pct = 20,
1083                 .d_gain_pct = 0,
1084                 .i_gain_pct = 0,
1085         },
1086         .funcs = {
1087                 .get_max = core_get_max_pstate,
1088                 .get_max_physical = core_get_max_pstate_physical,
1089                 .get_min = core_get_min_pstate,
1090                 .get_turbo = knl_get_turbo_pstate,
1091                 .get_scaling = core_get_scaling,
1092                 .get_val = core_get_val,
1093                 .get_target_pstate = get_target_pstate_use_performance,
1094         },
1095 };
1096
1097 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1098 {
1099         int max_perf = cpu->pstate.turbo_pstate;
1100         int max_perf_adj;
1101         int min_perf;
1102
1103         if (limits->no_turbo || limits->turbo_disabled)
1104                 max_perf = cpu->pstate.max_pstate;
1105
1106         /*
1107          * performance can be limited by user through sysfs, by cpufreq
1108          * policy, or by cpu specific default values determined through
1109          * experimentation.
1110          */
1111         max_perf_adj = fp_toint(max_perf * limits->max_perf);
1112         *max = clamp_t(int, max_perf_adj,
1113                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1114
1115         min_perf = fp_toint(max_perf * limits->min_perf);
1116         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1117 }
1118
1119 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1120 {
1121         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1122         cpu->pstate.current_pstate = pstate;
1123 }
1124
1125 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1126 {
1127         int pstate = cpu->pstate.min_pstate;
1128
1129         intel_pstate_record_pstate(cpu, pstate);
1130         /*
1131          * Generally, there is no guarantee that this code will always run on
1132          * the CPU being updated, so force the register update to run on the
1133          * right CPU.
1134          */
1135         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1136                       pstate_funcs.get_val(cpu, pstate));
1137 }
1138
1139 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1140 {
1141         cpu->pstate.min_pstate = pstate_funcs.get_min();
1142         cpu->pstate.max_pstate = pstate_funcs.get_max();
1143         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1144         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1145         cpu->pstate.scaling = pstate_funcs.get_scaling();
1146
1147         if (pstate_funcs.get_vid)
1148                 pstate_funcs.get_vid(cpu);
1149
1150         intel_pstate_set_min_pstate(cpu);
1151 }
1152
1153 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1154 {
1155         struct sample *sample = &cpu->sample;
1156         int64_t core_pct;
1157
1158         core_pct = sample->aperf * int_tofp(100);
1159         core_pct = div64_u64(core_pct, sample->mperf);
1160
1161         sample->core_pct_busy = (int32_t)core_pct;
1162 }
1163
1164 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1165 {
1166         u64 aperf, mperf;
1167         unsigned long flags;
1168         u64 tsc;
1169
1170         local_irq_save(flags);
1171         rdmsrl(MSR_IA32_APERF, aperf);
1172         rdmsrl(MSR_IA32_MPERF, mperf);
1173         tsc = rdtsc();
1174         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1175                 local_irq_restore(flags);
1176                 return false;
1177         }
1178         local_irq_restore(flags);
1179
1180         cpu->last_sample_time = cpu->sample.time;
1181         cpu->sample.time = time;
1182         cpu->sample.aperf = aperf;
1183         cpu->sample.mperf = mperf;
1184         cpu->sample.tsc =  tsc;
1185         cpu->sample.aperf -= cpu->prev_aperf;
1186         cpu->sample.mperf -= cpu->prev_mperf;
1187         cpu->sample.tsc -= cpu->prev_tsc;
1188
1189         cpu->prev_aperf = aperf;
1190         cpu->prev_mperf = mperf;
1191         cpu->prev_tsc = tsc;
1192         /*
1193          * First time this function is invoked in a given cycle, all of the
1194          * previous sample data fields are equal to zero or stale and they must
1195          * be populated with meaningful numbers for things to work, so assume
1196          * that sample.time will always be reset before setting the utilization
1197          * update hook and make the caller skip the sample then.
1198          */
1199         return !!cpu->last_sample_time;
1200 }
1201
1202 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1203 {
1204         return fp_toint(mul_fp(cpu->sample.core_pct_busy,
1205                                int_tofp(cpu->pstate.max_pstate_physical *
1206                                                 cpu->pstate.scaling / 100)));
1207 }
1208
1209 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1210 {
1211         return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
1212                          cpu->sample.mperf);
1213 }
1214
1215 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1216 {
1217         struct sample *sample = &cpu->sample;
1218         u64 cummulative_iowait, delta_iowait_us;
1219         u64 delta_iowait_mperf;
1220         u64 mperf, now;
1221         int32_t cpu_load;
1222
1223         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1224
1225         /*
1226          * Convert iowait time into number of IO cycles spent at max_freq.
1227          * IO is considered as busy only for the cpu_load algorithm. For
1228          * performance this is not needed since we always try to reach the
1229          * maximum P-State, so we are already boosting the IOs.
1230          */
1231         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1232         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1233                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1234
1235         mperf = cpu->sample.mperf + delta_iowait_mperf;
1236         cpu->prev_cummulative_iowait = cummulative_iowait;
1237
1238         /*
1239          * The load can be estimated as the ratio of the mperf counter
1240          * running at a constant frequency during active periods
1241          * (C0) and the time stamp counter running at the same frequency
1242          * also during C-states.
1243          */
1244         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1245         cpu->sample.busy_scaled = cpu_load;
1246
1247         return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1248 }
1249
1250 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1251 {
1252         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1253         u64 duration_ns;
1254
1255         /*
1256          * core_busy is the ratio of actual performance to max
1257          * max_pstate is the max non turbo pstate available
1258          * current_pstate was the pstate that was requested during
1259          *      the last sample period.
1260          *
1261          * We normalize core_busy, which was our actual percent
1262          * performance to what we requested during the last sample
1263          * period. The result will be a percentage of busy at a
1264          * specified pstate.
1265          */
1266         core_busy = cpu->sample.core_pct_busy;
1267         max_pstate = cpu->pstate.max_pstate_physical;
1268         current_pstate = cpu->pstate.current_pstate;
1269         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1270
1271         /*
1272          * Since our utilization update callback will not run unless we are
1273          * in C0, check if the actual elapsed time is significantly greater (3x)
1274          * than our sample interval.  If it is, then we were idle for a long
1275          * enough period of time to adjust our busyness.
1276          */
1277         duration_ns = cpu->sample.time - cpu->last_sample_time;
1278         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1279                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1280                 core_busy = mul_fp(core_busy, sample_ratio);
1281         } else {
1282                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1283                 if (sample_ratio < int_tofp(1))
1284                         core_busy = 0;
1285         }
1286
1287         cpu->sample.busy_scaled = core_busy;
1288         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1289 }
1290
1291 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1292 {
1293         int max_perf, min_perf;
1294
1295         update_turbo_state();
1296
1297         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1298         pstate = clamp_t(int, pstate, min_perf, max_perf);
1299         if (pstate == cpu->pstate.current_pstate)
1300                 return;
1301
1302         intel_pstate_record_pstate(cpu, pstate);
1303         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1304 }
1305
1306 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1307 {
1308         int from, target_pstate;
1309         struct sample *sample;
1310
1311         from = cpu->pstate.current_pstate;
1312
1313         target_pstate = pstate_funcs.get_target_pstate(cpu);
1314
1315         intel_pstate_update_pstate(cpu, target_pstate);
1316
1317         sample = &cpu->sample;
1318         trace_pstate_sample(fp_toint(sample->core_pct_busy),
1319                 fp_toint(sample->busy_scaled),
1320                 from,
1321                 cpu->pstate.current_pstate,
1322                 sample->mperf,
1323                 sample->aperf,
1324                 sample->tsc,
1325                 get_avg_frequency(cpu));
1326 }
1327
1328 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1329                                      unsigned long util, unsigned long max)
1330 {
1331         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1332         u64 delta_ns = time - cpu->sample.time;
1333
1334         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1335                 bool sample_taken = intel_pstate_sample(cpu, time);
1336
1337                 if (sample_taken) {
1338                         intel_pstate_calc_busy(cpu);
1339                         if (!hwp_active)
1340                                 intel_pstate_adjust_busy_pstate(cpu);
1341                 }
1342         }
1343 }
1344
1345 #define ICPU(model, policy) \
1346         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1347                         (unsigned long)&policy }
1348
1349 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1350         ICPU(0x2a, core_params),
1351         ICPU(0x2d, core_params),
1352         ICPU(0x37, silvermont_params),
1353         ICPU(0x3a, core_params),
1354         ICPU(0x3c, core_params),
1355         ICPU(0x3d, core_params),
1356         ICPU(0x3e, core_params),
1357         ICPU(0x3f, core_params),
1358         ICPU(0x45, core_params),
1359         ICPU(0x46, core_params),
1360         ICPU(0x47, core_params),
1361         ICPU(0x4c, airmont_params),
1362         ICPU(0x4e, core_params),
1363         ICPU(0x4f, core_params),
1364         ICPU(0x5e, core_params),
1365         ICPU(0x56, core_params),
1366         ICPU(0x57, knl_params),
1367         {}
1368 };
1369 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1370
1371 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1372         ICPU(0x56, core_params),
1373         {}
1374 };
1375
1376 static int intel_pstate_init_cpu(unsigned int cpunum)
1377 {
1378         struct cpudata *cpu;
1379
1380         if (!all_cpu_data[cpunum])
1381                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1382                                                GFP_KERNEL);
1383         if (!all_cpu_data[cpunum])
1384                 return -ENOMEM;
1385
1386         cpu = all_cpu_data[cpunum];
1387
1388         cpu->cpu = cpunum;
1389
1390         if (hwp_active) {
1391                 intel_pstate_hwp_enable(cpu);
1392                 pid_params.sample_rate_ms = 50;
1393                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1394         }
1395
1396         intel_pstate_get_cpu_pstates(cpu);
1397
1398         intel_pstate_busy_pid_reset(cpu);
1399
1400         pr_debug("controlling: cpu %d\n", cpunum);
1401
1402         return 0;
1403 }
1404
1405 static unsigned int intel_pstate_get(unsigned int cpu_num)
1406 {
1407         struct sample *sample;
1408         struct cpudata *cpu;
1409
1410         cpu = all_cpu_data[cpu_num];
1411         if (!cpu)
1412                 return 0;
1413         sample = &cpu->sample;
1414         return get_avg_frequency(cpu);
1415 }
1416
1417 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1418 {
1419         struct cpudata *cpu = all_cpu_data[cpu_num];
1420
1421         /* Prevent intel_pstate_update_util() from using stale data. */
1422         cpu->sample.time = 0;
1423         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1424                                      intel_pstate_update_util);
1425 }
1426
1427 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1428 {
1429         cpufreq_remove_update_util_hook(cpu);
1430         synchronize_sched();
1431 }
1432
1433 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1434 {
1435         limits->no_turbo = 0;
1436         limits->turbo_disabled = 0;
1437         limits->max_perf_pct = 100;
1438         limits->max_perf = int_tofp(1);
1439         limits->min_perf_pct = 100;
1440         limits->min_perf = int_tofp(1);
1441         limits->max_policy_pct = 100;
1442         limits->max_sysfs_pct = 100;
1443         limits->min_policy_pct = 0;
1444         limits->min_sysfs_pct = 0;
1445 }
1446
1447 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1448 {
1449         struct cpudata *cpu;
1450
1451         if (!policy->cpuinfo.max_freq)
1452                 return -ENODEV;
1453
1454         intel_pstate_clear_update_util_hook(policy->cpu);
1455
1456         cpu = all_cpu_data[0];
1457         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
1458                 if (policy->max < policy->cpuinfo.max_freq &&
1459                     policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1460                         pr_debug("policy->max > max non turbo frequency\n");
1461                         policy->max = policy->cpuinfo.max_freq;
1462                 }
1463         }
1464
1465         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1466                 limits = &performance_limits;
1467                 if (policy->max >= policy->cpuinfo.max_freq) {
1468                         pr_debug("set performance\n");
1469                         intel_pstate_set_performance_limits(limits);
1470                         goto out;
1471                 }
1472         } else {
1473                 pr_debug("set powersave\n");
1474                 limits = &powersave_limits;
1475         }
1476
1477         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1478         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1479         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1480                                               policy->cpuinfo.max_freq);
1481         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1482
1483         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1484         limits->min_perf_pct = max(limits->min_policy_pct,
1485                                    limits->min_sysfs_pct);
1486         limits->min_perf_pct = min(limits->max_policy_pct,
1487                                    limits->min_perf_pct);
1488         limits->max_perf_pct = min(limits->max_policy_pct,
1489                                    limits->max_sysfs_pct);
1490         limits->max_perf_pct = max(limits->min_policy_pct,
1491                                    limits->max_perf_pct);
1492         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1493
1494         /* Make sure min_perf_pct <= max_perf_pct */
1495         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1496
1497         limits->min_perf = div_fp(limits->min_perf_pct, 100);
1498         limits->max_perf = div_fp(limits->max_perf_pct, 100);
1499
1500  out:
1501         intel_pstate_set_update_util_hook(policy->cpu);
1502
1503         intel_pstate_hwp_set_policy(policy);
1504
1505         return 0;
1506 }
1507
1508 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1509 {
1510         cpufreq_verify_within_cpu_limits(policy);
1511
1512         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1513             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1514                 return -EINVAL;
1515
1516         return 0;
1517 }
1518
1519 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1520 {
1521         int cpu_num = policy->cpu;
1522         struct cpudata *cpu = all_cpu_data[cpu_num];
1523
1524         pr_debug("CPU %d exiting\n", cpu_num);
1525
1526         intel_pstate_clear_update_util_hook(cpu_num);
1527
1528         if (hwp_active)
1529                 return;
1530
1531         intel_pstate_set_min_pstate(cpu);
1532 }
1533
1534 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1535 {
1536         struct cpudata *cpu;
1537         int rc;
1538
1539         rc = intel_pstate_init_cpu(policy->cpu);
1540         if (rc)
1541                 return rc;
1542
1543         cpu = all_cpu_data[policy->cpu];
1544
1545         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1546                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1547         else
1548                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1549
1550         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1551         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1552
1553         /* cpuinfo and default policy values */
1554         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1555         policy->cpuinfo.max_freq =
1556                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1557         intel_pstate_init_acpi_perf_limits(policy);
1558         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1559         cpumask_set_cpu(policy->cpu, policy->cpus);
1560
1561         return 0;
1562 }
1563
1564 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1565 {
1566         intel_pstate_exit_perf_limits(policy);
1567
1568         return 0;
1569 }
1570
1571 static struct cpufreq_driver intel_pstate_driver = {
1572         .flags          = CPUFREQ_CONST_LOOPS,
1573         .verify         = intel_pstate_verify_policy,
1574         .setpolicy      = intel_pstate_set_policy,
1575         .resume         = intel_pstate_hwp_set_policy,
1576         .get            = intel_pstate_get,
1577         .init           = intel_pstate_cpu_init,
1578         .exit           = intel_pstate_cpu_exit,
1579         .stop_cpu       = intel_pstate_stop_cpu,
1580         .name           = "intel_pstate",
1581 };
1582
1583 static int __initdata no_load;
1584 static int __initdata no_hwp;
1585 static int __initdata hwp_only;
1586 static unsigned int force_load;
1587
1588 static int intel_pstate_msrs_not_valid(void)
1589 {
1590         if (!pstate_funcs.get_max() ||
1591             !pstate_funcs.get_min() ||
1592             !pstate_funcs.get_turbo())
1593                 return -ENODEV;
1594
1595         return 0;
1596 }
1597
1598 static void copy_pid_params(struct pstate_adjust_policy *policy)
1599 {
1600         pid_params.sample_rate_ms = policy->sample_rate_ms;
1601         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1602         pid_params.p_gain_pct = policy->p_gain_pct;
1603         pid_params.i_gain_pct = policy->i_gain_pct;
1604         pid_params.d_gain_pct = policy->d_gain_pct;
1605         pid_params.deadband = policy->deadband;
1606         pid_params.setpoint = policy->setpoint;
1607 }
1608
1609 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1610 {
1611         pstate_funcs.get_max   = funcs->get_max;
1612         pstate_funcs.get_max_physical = funcs->get_max_physical;
1613         pstate_funcs.get_min   = funcs->get_min;
1614         pstate_funcs.get_turbo = funcs->get_turbo;
1615         pstate_funcs.get_scaling = funcs->get_scaling;
1616         pstate_funcs.get_val   = funcs->get_val;
1617         pstate_funcs.get_vid   = funcs->get_vid;
1618         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1619
1620 }
1621
1622 #ifdef CONFIG_ACPI
1623
1624 static bool intel_pstate_no_acpi_pss(void)
1625 {
1626         int i;
1627
1628         for_each_possible_cpu(i) {
1629                 acpi_status status;
1630                 union acpi_object *pss;
1631                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1632                 struct acpi_processor *pr = per_cpu(processors, i);
1633
1634                 if (!pr)
1635                         continue;
1636
1637                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1638                 if (ACPI_FAILURE(status))
1639                         continue;
1640
1641                 pss = buffer.pointer;
1642                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1643                         kfree(pss);
1644                         return false;
1645                 }
1646
1647                 kfree(pss);
1648         }
1649
1650         return true;
1651 }
1652
1653 static bool intel_pstate_has_acpi_ppc(void)
1654 {
1655         int i;
1656
1657         for_each_possible_cpu(i) {
1658                 struct acpi_processor *pr = per_cpu(processors, i);
1659
1660                 if (!pr)
1661                         continue;
1662                 if (acpi_has_method(pr->handle, "_PPC"))
1663                         return true;
1664         }
1665         return false;
1666 }
1667
1668 enum {
1669         PSS,
1670         PPC,
1671 };
1672
1673 struct hw_vendor_info {
1674         u16  valid;
1675         char oem_id[ACPI_OEM_ID_SIZE];
1676         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1677         int  oem_pwr_table;
1678 };
1679
1680 /* Hardware vendor-specific info that has its own power management modes */
1681 static struct hw_vendor_info vendor_info[] = {
1682         {1, "HP    ", "ProLiant", PSS},
1683         {1, "ORACLE", "X4-2    ", PPC},
1684         {1, "ORACLE", "X4-2L   ", PPC},
1685         {1, "ORACLE", "X4-2B   ", PPC},
1686         {1, "ORACLE", "X3-2    ", PPC},
1687         {1, "ORACLE", "X3-2L   ", PPC},
1688         {1, "ORACLE", "X3-2B   ", PPC},
1689         {1, "ORACLE", "X4470M2 ", PPC},
1690         {1, "ORACLE", "X4270M3 ", PPC},
1691         {1, "ORACLE", "X4270M2 ", PPC},
1692         {1, "ORACLE", "X4170M2 ", PPC},
1693         {1, "ORACLE", "X4170 M3", PPC},
1694         {1, "ORACLE", "X4275 M3", PPC},
1695         {1, "ORACLE", "X6-2    ", PPC},
1696         {1, "ORACLE", "Sudbury ", PPC},
1697         {0, "", ""},
1698 };
1699
1700 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1701 {
1702         struct acpi_table_header hdr;
1703         struct hw_vendor_info *v_info;
1704         const struct x86_cpu_id *id;
1705         u64 misc_pwr;
1706
1707         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1708         if (id) {
1709                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1710                 if ( misc_pwr & (1 << 8))
1711                         return true;
1712         }
1713
1714         if (acpi_disabled ||
1715             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1716                 return false;
1717
1718         for (v_info = vendor_info; v_info->valid; v_info++) {
1719                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1720                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1721                                                 ACPI_OEM_TABLE_ID_SIZE))
1722                         switch (v_info->oem_pwr_table) {
1723                         case PSS:
1724                                 return intel_pstate_no_acpi_pss();
1725                         case PPC:
1726                                 return intel_pstate_has_acpi_ppc() &&
1727                                         (!force_load);
1728                         }
1729         }
1730
1731         return false;
1732 }
1733 #else /* CONFIG_ACPI not enabled */
1734 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1735 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1736 #endif /* CONFIG_ACPI */
1737
1738 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1739         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1740         {}
1741 };
1742
1743 static int __init intel_pstate_init(void)
1744 {
1745         int cpu, rc = 0;
1746         const struct x86_cpu_id *id;
1747         struct cpu_defaults *cpu_def;
1748
1749         if (no_load)
1750                 return -ENODEV;
1751
1752         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1753                 copy_cpu_funcs(&core_params.funcs);
1754                 hwp_active++;
1755                 goto hwp_cpu_matched;
1756         }
1757
1758         id = x86_match_cpu(intel_pstate_cpu_ids);
1759         if (!id)
1760                 return -ENODEV;
1761
1762         cpu_def = (struct cpu_defaults *)id->driver_data;
1763
1764         copy_pid_params(&cpu_def->pid_policy);
1765         copy_cpu_funcs(&cpu_def->funcs);
1766
1767         if (intel_pstate_msrs_not_valid())
1768                 return -ENODEV;
1769
1770 hwp_cpu_matched:
1771         /*
1772          * The Intel pstate driver will be ignored if the platform
1773          * firmware has its own power management modes.
1774          */
1775         if (intel_pstate_platform_pwr_mgmt_exists())
1776                 return -ENODEV;
1777
1778         pr_info("Intel P-state driver initializing\n");
1779
1780         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1781         if (!all_cpu_data)
1782                 return -ENOMEM;
1783
1784         if (!hwp_active && hwp_only)
1785                 goto out;
1786
1787         rc = cpufreq_register_driver(&intel_pstate_driver);
1788         if (rc)
1789                 goto out;
1790
1791         intel_pstate_debug_expose_params();
1792         intel_pstate_sysfs_expose_params();
1793
1794         if (hwp_active)
1795                 pr_info("HWP enabled\n");
1796
1797         return rc;
1798 out:
1799         get_online_cpus();
1800         for_each_online_cpu(cpu) {
1801                 if (all_cpu_data[cpu]) {
1802                         intel_pstate_clear_update_util_hook(cpu);
1803                         kfree(all_cpu_data[cpu]);
1804                 }
1805         }
1806
1807         put_online_cpus();
1808         vfree(all_cpu_data);
1809         return -ENODEV;
1810 }
1811 device_initcall(intel_pstate_init);
1812
1813 static int __init intel_pstate_setup(char *str)
1814 {
1815         if (!str)
1816                 return -EINVAL;
1817
1818         if (!strcmp(str, "disable"))
1819                 no_load = 1;
1820         if (!strcmp(str, "no_hwp")) {
1821                 pr_info("HWP disabled\n");
1822                 no_hwp = 1;
1823         }
1824         if (!strcmp(str, "force"))
1825                 force_load = 1;
1826         if (!strcmp(str, "hwp_only"))
1827                 hwp_only = 1;
1828
1829 #ifdef CONFIG_ACPI
1830         if (!strcmp(str, "support_acpi_ppc"))
1831                 acpi_ppc = true;
1832 #endif
1833
1834         return 0;
1835 }
1836 early_param("intel_pstate", intel_pstate_setup);
1837
1838 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1839 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1840 MODULE_LICENSE("GPL");