OSDN Git Service

DMAENGINE: ste_dma40: fix resource leaks in error paths.
[android-x86/kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) ST-Ericsson SA 2007-2010
3  * Author: Per Friden <per.friden@stericsson.com> for ST-Ericsson
4  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
5  * License terms: GNU General Public License (GPL) version 2
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/dmaengine.h>
11 #include <linux/platform_device.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/err.h>
15
16 #include <plat/ste_dma40.h>
17
18 #include "ste_dma40_ll.h"
19
20 #define D40_NAME "dma40"
21
22 #define D40_PHY_CHAN -1
23
24 /* For masking out/in 2 bit channel positions */
25 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
26 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
27
28 /* Maximum iterations taken before giving up suspending a channel */
29 #define D40_SUSPEND_MAX_IT 500
30
31 /* Hardware requirement on LCLA alignment */
32 #define LCLA_ALIGNMENT 0x40000
33
34 /* Max number of links per event group */
35 #define D40_LCLA_LINK_PER_EVENT_GRP 128
36 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
37
38 /* Attempts before giving up to trying to get pages that are aligned */
39 #define MAX_LCLA_ALLOC_ATTEMPTS 256
40
41 /* Bit markings for allocation map */
42 #define D40_ALLOC_FREE          (1 << 31)
43 #define D40_ALLOC_PHY           (1 << 30)
44 #define D40_ALLOC_LOG_FREE      0
45
46 /* Hardware designer of the block */
47 #define D40_HW_DESIGNER 0x8
48
49 /**
50  * enum 40_command - The different commands and/or statuses.
51  *
52  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
56  */
57 enum d40_command {
58         D40_DMA_STOP            = 0,
59         D40_DMA_RUN             = 1,
60         D40_DMA_SUSPEND_REQ     = 2,
61         D40_DMA_SUSPENDED       = 3
62 };
63
64 /**
65  * struct d40_lli_pool - Structure for keeping LLIs in memory
66  *
67  * @base: Pointer to memory area when the pre_alloc_lli's are not large
68  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69  * pre_alloc_lli is used.
70  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
71  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
72  * one buffer to one buffer.
73  */
74 struct d40_lli_pool {
75         void    *base;
76         int      size;
77         /* Space for dst and src, plus an extra for padding */
78         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
79 };
80
81 /**
82  * struct d40_desc - A descriptor is one DMA job.
83  *
84  * @lli_phy: LLI settings for physical channel. Both src and dst=
85  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
86  * lli_len equals one.
87  * @lli_log: Same as above but for logical channels.
88  * @lli_pool: The pool with two entries pre-allocated.
89  * @lli_len: Number of llis of current descriptor.
90  * @lli_current: Number of transfered llis.
91  * @lcla_alloc: Number of LCLA entries allocated.
92  * @txd: DMA engine struct. Used for among other things for communication
93  * during a transfer.
94  * @node: List entry.
95  * @is_in_client_list: true if the client owns this descriptor.
96  * @is_hw_linked: true if this job will automatically be continued for
97  * the previous one.
98  *
99  * This descriptor is used for both logical and physical transfers.
100  */
101 struct d40_desc {
102         /* LLI physical */
103         struct d40_phy_lli_bidir         lli_phy;
104         /* LLI logical */
105         struct d40_log_lli_bidir         lli_log;
106
107         struct d40_lli_pool              lli_pool;
108         int                              lli_len;
109         int                              lli_current;
110         int                              lcla_alloc;
111
112         struct dma_async_tx_descriptor   txd;
113         struct list_head                 node;
114
115         bool                             is_in_client_list;
116         bool                             is_hw_linked;
117 };
118
119 /**
120  * struct d40_lcla_pool - LCLA pool settings and data.
121  *
122  * @base: The virtual address of LCLA. 18 bit aligned.
123  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
124  * This pointer is only there for clean-up on error.
125  * @pages: The number of pages needed for all physical channels.
126  * Only used later for clean-up on error
127  * @lock: Lock to protect the content in this struct.
128  * @alloc_map: big map over which LCLA entry is own by which job.
129  */
130 struct d40_lcla_pool {
131         void            *base;
132         void            *base_unaligned;
133         int              pages;
134         spinlock_t       lock;
135         struct d40_desc **alloc_map;
136 };
137
138 /**
139  * struct d40_phy_res - struct for handling eventlines mapped to physical
140  * channels.
141  *
142  * @lock: A lock protection this entity.
143  * @num: The physical channel number of this entity.
144  * @allocated_src: Bit mapped to show which src event line's are mapped to
145  * this physical channel. Can also be free or physically allocated.
146  * @allocated_dst: Same as for src but is dst.
147  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
148  * event line number.
149  */
150 struct d40_phy_res {
151         spinlock_t lock;
152         int        num;
153         u32        allocated_src;
154         u32        allocated_dst;
155 };
156
157 struct d40_base;
158
159 /**
160  * struct d40_chan - Struct that describes a channel.
161  *
162  * @lock: A spinlock to protect this struct.
163  * @log_num: The logical number, if any of this channel.
164  * @completed: Starts with 1, after first interrupt it is set to dma engine's
165  * current cookie.
166  * @pending_tx: The number of pending transfers. Used between interrupt handler
167  * and tasklet.
168  * @busy: Set to true when transfer is ongoing on this channel.
169  * @phy_chan: Pointer to physical channel which this instance runs on. If this
170  * point is NULL, then the channel is not allocated.
171  * @chan: DMA engine handle.
172  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
173  * transfer and call client callback.
174  * @client: Cliented owned descriptor list.
175  * @active: Active descriptor.
176  * @queue: Queued jobs.
177  * @dma_cfg: The client configuration of this dma channel.
178  * @base: Pointer to the device instance struct.
179  * @src_def_cfg: Default cfg register setting for src.
180  * @dst_def_cfg: Default cfg register setting for dst.
181  * @log_def: Default logical channel settings.
182  * @lcla: Space for one dst src pair for logical channel transfers.
183  * @lcpa: Pointer to dst and src lcpa settings.
184  *
185  * This struct can either "be" a logical or a physical channel.
186  */
187 struct d40_chan {
188         spinlock_t                       lock;
189         int                              log_num;
190         /* ID of the most recent completed transfer */
191         int                              completed;
192         int                              pending_tx;
193         bool                             busy;
194         struct d40_phy_res              *phy_chan;
195         struct dma_chan                  chan;
196         struct tasklet_struct            tasklet;
197         struct list_head                 client;
198         struct list_head                 active;
199         struct list_head                 queue;
200         struct stedma40_chan_cfg         dma_cfg;
201         struct d40_base                 *base;
202         /* Default register configurations */
203         u32                              src_def_cfg;
204         u32                              dst_def_cfg;
205         struct d40_def_lcsp              log_def;
206         struct d40_log_lli_full         *lcpa;
207         /* Runtime reconfiguration */
208         dma_addr_t                      runtime_addr;
209         enum dma_data_direction         runtime_direction;
210 };
211
212 /**
213  * struct d40_base - The big global struct, one for each probe'd instance.
214  *
215  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
216  * @execmd_lock: Lock for execute command usage since several channels share
217  * the same physical register.
218  * @dev: The device structure.
219  * @virtbase: The virtual base address of the DMA's register.
220  * @rev: silicon revision detected.
221  * @clk: Pointer to the DMA clock structure.
222  * @phy_start: Physical memory start of the DMA registers.
223  * @phy_size: Size of the DMA register map.
224  * @irq: The IRQ number.
225  * @num_phy_chans: The number of physical channels. Read from HW. This
226  * is the number of available channels for this driver, not counting "Secure
227  * mode" allocated physical channels.
228  * @num_log_chans: The number of logical channels. Calculated from
229  * num_phy_chans.
230  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
231  * @dma_slave: dma_device channels that can do only do slave transfers.
232  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
233  * @log_chans: Room for all possible logical channels in system.
234  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
235  * to log_chans entries.
236  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
237  * to phy_chans entries.
238  * @plat_data: Pointer to provided platform_data which is the driver
239  * configuration.
240  * @phy_res: Vector containing all physical channels.
241  * @lcla_pool: lcla pool settings and data.
242  * @lcpa_base: The virtual mapped address of LCPA.
243  * @phy_lcpa: The physical address of the LCPA.
244  * @lcpa_size: The size of the LCPA area.
245  * @desc_slab: cache for descriptors.
246  */
247 struct d40_base {
248         spinlock_t                       interrupt_lock;
249         spinlock_t                       execmd_lock;
250         struct device                    *dev;
251         void __iomem                     *virtbase;
252         u8                                rev:4;
253         struct clk                       *clk;
254         phys_addr_t                       phy_start;
255         resource_size_t                   phy_size;
256         int                               irq;
257         int                               num_phy_chans;
258         int                               num_log_chans;
259         struct dma_device                 dma_both;
260         struct dma_device                 dma_slave;
261         struct dma_device                 dma_memcpy;
262         struct d40_chan                  *phy_chans;
263         struct d40_chan                  *log_chans;
264         struct d40_chan                 **lookup_log_chans;
265         struct d40_chan                 **lookup_phy_chans;
266         struct stedma40_platform_data    *plat_data;
267         /* Physical half channels */
268         struct d40_phy_res               *phy_res;
269         struct d40_lcla_pool              lcla_pool;
270         void                             *lcpa_base;
271         dma_addr_t                        phy_lcpa;
272         resource_size_t                   lcpa_size;
273         struct kmem_cache                *desc_slab;
274 };
275
276 /**
277  * struct d40_interrupt_lookup - lookup table for interrupt handler
278  *
279  * @src: Interrupt mask register.
280  * @clr: Interrupt clear register.
281  * @is_error: true if this is an error interrupt.
282  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
283  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
284  */
285 struct d40_interrupt_lookup {
286         u32 src;
287         u32 clr;
288         bool is_error;
289         int offset;
290 };
291
292 /**
293  * struct d40_reg_val - simple lookup struct
294  *
295  * @reg: The register.
296  * @val: The value that belongs to the register in reg.
297  */
298 struct d40_reg_val {
299         unsigned int reg;
300         unsigned int val;
301 };
302
303 static int d40_pool_lli_alloc(struct d40_desc *d40d,
304                               int lli_len, bool is_log)
305 {
306         u32 align;
307         void *base;
308
309         if (is_log)
310                 align = sizeof(struct d40_log_lli);
311         else
312                 align = sizeof(struct d40_phy_lli);
313
314         if (lli_len == 1) {
315                 base = d40d->lli_pool.pre_alloc_lli;
316                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
317                 d40d->lli_pool.base = NULL;
318         } else {
319                 d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
320
321                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
322                 d40d->lli_pool.base = base;
323
324                 if (d40d->lli_pool.base == NULL)
325                         return -ENOMEM;
326         }
327
328         if (is_log) {
329                 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
330                                               align);
331                 d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
332                                               align);
333         } else {
334                 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
335                                               align);
336                 d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
337                                               align);
338         }
339
340         return 0;
341 }
342
343 static void d40_pool_lli_free(struct d40_desc *d40d)
344 {
345         kfree(d40d->lli_pool.base);
346         d40d->lli_pool.base = NULL;
347         d40d->lli_pool.size = 0;
348         d40d->lli_log.src = NULL;
349         d40d->lli_log.dst = NULL;
350         d40d->lli_phy.src = NULL;
351         d40d->lli_phy.dst = NULL;
352 }
353
354 static int d40_lcla_alloc_one(struct d40_chan *d40c,
355                               struct d40_desc *d40d)
356 {
357         unsigned long flags;
358         int i;
359         int ret = -EINVAL;
360         int p;
361
362         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
363
364         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
365
366         /*
367          * Allocate both src and dst at the same time, therefore the half
368          * start on 1 since 0 can't be used since zero is used as end marker.
369          */
370         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
371                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
372                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
373                         d40d->lcla_alloc++;
374                         ret = i;
375                         break;
376                 }
377         }
378
379         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
380
381         return ret;
382 }
383
384 static int d40_lcla_free_all(struct d40_chan *d40c,
385                              struct d40_desc *d40d)
386 {
387         unsigned long flags;
388         int i;
389         int ret = -EINVAL;
390
391         if (d40c->log_num == D40_PHY_CHAN)
392                 return 0;
393
394         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
395
396         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
397                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
398                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
399                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
400                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
401                         d40d->lcla_alloc--;
402                         if (d40d->lcla_alloc == 0) {
403                                 ret = 0;
404                                 break;
405                         }
406                 }
407         }
408
409         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
410
411         return ret;
412
413 }
414
415 static void d40_desc_remove(struct d40_desc *d40d)
416 {
417         list_del(&d40d->node);
418 }
419
420 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
421 {
422         struct d40_desc *desc = NULL;
423
424         if (!list_empty(&d40c->client)) {
425                 struct d40_desc *d;
426                 struct d40_desc *_d;
427
428                 list_for_each_entry_safe(d, _d, &d40c->client, node)
429                         if (async_tx_test_ack(&d->txd)) {
430                                 d40_pool_lli_free(d);
431                                 d40_desc_remove(d);
432                                 desc = d;
433                                 memset(desc, 0, sizeof(*desc));
434                                 break;
435                         }
436         }
437
438         if (!desc)
439                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
440
441         if (desc)
442                 INIT_LIST_HEAD(&desc->node);
443
444         return desc;
445 }
446
447 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
448 {
449
450         d40_lcla_free_all(d40c, d40d);
451         kmem_cache_free(d40c->base->desc_slab, d40d);
452 }
453
454 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
455 {
456         list_add_tail(&desc->node, &d40c->active);
457 }
458
459 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
460 {
461         int curr_lcla = -EINVAL, next_lcla;
462
463         if (d40c->log_num == D40_PHY_CHAN) {
464                 d40_phy_lli_write(d40c->base->virtbase,
465                                   d40c->phy_chan->num,
466                                   d40d->lli_phy.dst,
467                                   d40d->lli_phy.src);
468                 d40d->lli_current = d40d->lli_len;
469         } else {
470
471                 if ((d40d->lli_len - d40d->lli_current) > 1)
472                         curr_lcla = d40_lcla_alloc_one(d40c, d40d);
473
474                 d40_log_lli_lcpa_write(d40c->lcpa,
475                                        &d40d->lli_log.dst[d40d->lli_current],
476                                        &d40d->lli_log.src[d40d->lli_current],
477                                        curr_lcla);
478
479                 d40d->lli_current++;
480                 for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
481                         struct d40_log_lli *lcla;
482
483                         if (d40d->lli_current + 1 < d40d->lli_len)
484                                 next_lcla = d40_lcla_alloc_one(d40c, d40d);
485                         else
486                                 next_lcla = -EINVAL;
487
488                         lcla = d40c->base->lcla_pool.base +
489                                 d40c->phy_chan->num * 1024 +
490                                 8 * curr_lcla * 2;
491
492                         d40_log_lli_lcla_write(lcla,
493                                                &d40d->lli_log.dst[d40d->lli_current],
494                                                &d40d->lli_log.src[d40d->lli_current],
495                                                next_lcla);
496
497                         (void) dma_map_single(d40c->base->dev, lcla,
498                                               2 * sizeof(struct d40_log_lli),
499                                               DMA_TO_DEVICE);
500
501                         curr_lcla = next_lcla;
502
503                         if (curr_lcla == -EINVAL) {
504                                 d40d->lli_current++;
505                                 break;
506                         }
507
508                 }
509         }
510 }
511
512 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
513 {
514         struct d40_desc *d;
515
516         if (list_empty(&d40c->active))
517                 return NULL;
518
519         d = list_first_entry(&d40c->active,
520                              struct d40_desc,
521                              node);
522         return d;
523 }
524
525 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
526 {
527         list_add_tail(&desc->node, &d40c->queue);
528 }
529
530 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
531 {
532         struct d40_desc *d;
533
534         if (list_empty(&d40c->queue))
535                 return NULL;
536
537         d = list_first_entry(&d40c->queue,
538                              struct d40_desc,
539                              node);
540         return d;
541 }
542
543 static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
544 {
545         struct d40_desc *d;
546
547         if (list_empty(&d40c->queue))
548                 return NULL;
549         list_for_each_entry(d, &d40c->queue, node)
550                 if (list_is_last(&d->node, &d40c->queue))
551                         break;
552         return d;
553 }
554
555 /* Support functions for logical channels */
556
557
558 static int d40_channel_execute_command(struct d40_chan *d40c,
559                                        enum d40_command command)
560 {
561         u32 status;
562         int i;
563         void __iomem *active_reg;
564         int ret = 0;
565         unsigned long flags;
566         u32 wmask;
567
568         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
569
570         if (d40c->phy_chan->num % 2 == 0)
571                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
572         else
573                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
574
575         if (command == D40_DMA_SUSPEND_REQ) {
576                 status = (readl(active_reg) &
577                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
578                         D40_CHAN_POS(d40c->phy_chan->num);
579
580                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
581                         goto done;
582         }
583
584         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
585         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
586                active_reg);
587
588         if (command == D40_DMA_SUSPEND_REQ) {
589
590                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
591                         status = (readl(active_reg) &
592                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
593                                 D40_CHAN_POS(d40c->phy_chan->num);
594
595                         cpu_relax();
596                         /*
597                          * Reduce the number of bus accesses while
598                          * waiting for the DMA to suspend.
599                          */
600                         udelay(3);
601
602                         if (status == D40_DMA_STOP ||
603                             status == D40_DMA_SUSPENDED)
604                                 break;
605                 }
606
607                 if (i == D40_SUSPEND_MAX_IT) {
608                         dev_err(&d40c->chan.dev->device,
609                                 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
610                                 __func__, d40c->phy_chan->num, d40c->log_num,
611                                 status);
612                         dump_stack();
613                         ret = -EBUSY;
614                 }
615
616         }
617 done:
618         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
619         return ret;
620 }
621
622 static void d40_term_all(struct d40_chan *d40c)
623 {
624         struct d40_desc *d40d;
625
626         /* Release active descriptors */
627         while ((d40d = d40_first_active_get(d40c))) {
628                 d40_desc_remove(d40d);
629                 d40_desc_free(d40c, d40d);
630         }
631
632         /* Release queued descriptors waiting for transfer */
633         while ((d40d = d40_first_queued(d40c))) {
634                 d40_desc_remove(d40d);
635                 d40_desc_free(d40c, d40d);
636         }
637
638
639         d40c->pending_tx = 0;
640         d40c->busy = false;
641 }
642
643 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
644 {
645         u32 val;
646         unsigned long flags;
647
648         /* Notice, that disable requires the physical channel to be stopped */
649         if (do_enable)
650                 val = D40_ACTIVATE_EVENTLINE;
651         else
652                 val = D40_DEACTIVATE_EVENTLINE;
653
654         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
655
656         /* Enable event line connected to device (or memcpy) */
657         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
658             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
659                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
660
661                 writel((val << D40_EVENTLINE_POS(event)) |
662                        ~D40_EVENTLINE_MASK(event),
663                        d40c->base->virtbase + D40_DREG_PCBASE +
664                        d40c->phy_chan->num * D40_DREG_PCDELTA +
665                        D40_CHAN_REG_SSLNK);
666         }
667         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
668                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
669
670                 writel((val << D40_EVENTLINE_POS(event)) |
671                        ~D40_EVENTLINE_MASK(event),
672                        d40c->base->virtbase + D40_DREG_PCBASE +
673                        d40c->phy_chan->num * D40_DREG_PCDELTA +
674                        D40_CHAN_REG_SDLNK);
675         }
676
677         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
678 }
679
680 static u32 d40_chan_has_events(struct d40_chan *d40c)
681 {
682         u32 val;
683
684         val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
685                     d40c->phy_chan->num * D40_DREG_PCDELTA +
686                     D40_CHAN_REG_SSLNK);
687
688         val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
689                      d40c->phy_chan->num * D40_DREG_PCDELTA +
690                      D40_CHAN_REG_SDLNK);
691         return val;
692 }
693
694 static void d40_config_write(struct d40_chan *d40c)
695 {
696         u32 addr_base;
697         u32 var;
698
699         /* Odd addresses are even addresses + 4 */
700         addr_base = (d40c->phy_chan->num % 2) * 4;
701         /* Setup channel mode to logical or physical */
702         var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
703                 D40_CHAN_POS(d40c->phy_chan->num);
704         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
705
706         /* Setup operational mode option register */
707         var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
708                0x3) << D40_CHAN_POS(d40c->phy_chan->num);
709
710         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
711
712         if (d40c->log_num != D40_PHY_CHAN) {
713                 /* Set default config for CFG reg */
714                 writel(d40c->src_def_cfg,
715                        d40c->base->virtbase + D40_DREG_PCBASE +
716                        d40c->phy_chan->num * D40_DREG_PCDELTA +
717                        D40_CHAN_REG_SSCFG);
718                 writel(d40c->dst_def_cfg,
719                        d40c->base->virtbase + D40_DREG_PCBASE +
720                        d40c->phy_chan->num * D40_DREG_PCDELTA +
721                        D40_CHAN_REG_SDCFG);
722
723                 /* Set LIDX for lcla */
724                 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
725                        D40_SREG_ELEM_LOG_LIDX_MASK,
726                        d40c->base->virtbase + D40_DREG_PCBASE +
727                        d40c->phy_chan->num * D40_DREG_PCDELTA +
728                        D40_CHAN_REG_SDELT);
729
730                 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
731                        D40_SREG_ELEM_LOG_LIDX_MASK,
732                        d40c->base->virtbase + D40_DREG_PCBASE +
733                        d40c->phy_chan->num * D40_DREG_PCDELTA +
734                        D40_CHAN_REG_SSELT);
735
736         }
737 }
738
739 static u32 d40_residue(struct d40_chan *d40c)
740 {
741         u32 num_elt;
742
743         if (d40c->log_num != D40_PHY_CHAN)
744                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
745                         >> D40_MEM_LCSP2_ECNT_POS;
746         else
747                 num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
748                                  d40c->phy_chan->num * D40_DREG_PCDELTA +
749                                  D40_CHAN_REG_SDELT) &
750                            D40_SREG_ELEM_PHY_ECNT_MASK) >>
751                         D40_SREG_ELEM_PHY_ECNT_POS;
752         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
753 }
754
755 static bool d40_tx_is_linked(struct d40_chan *d40c)
756 {
757         bool is_link;
758
759         if (d40c->log_num != D40_PHY_CHAN)
760                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
761         else
762                 is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
763                                 d40c->phy_chan->num * D40_DREG_PCDELTA +
764                                 D40_CHAN_REG_SDLNK) &
765                         D40_SREG_LNK_PHYS_LNK_MASK;
766         return is_link;
767 }
768
769 static int d40_pause(struct dma_chan *chan)
770 {
771         struct d40_chan *d40c =
772                 container_of(chan, struct d40_chan, chan);
773         int res = 0;
774         unsigned long flags;
775
776         if (!d40c->busy)
777                 return 0;
778
779         spin_lock_irqsave(&d40c->lock, flags);
780
781         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
782         if (res == 0) {
783                 if (d40c->log_num != D40_PHY_CHAN) {
784                         d40_config_set_event(d40c, false);
785                         /* Resume the other logical channels if any */
786                         if (d40_chan_has_events(d40c))
787                                 res = d40_channel_execute_command(d40c,
788                                                                   D40_DMA_RUN);
789                 }
790         }
791
792         spin_unlock_irqrestore(&d40c->lock, flags);
793         return res;
794 }
795
796 static int d40_resume(struct dma_chan *chan)
797 {
798         struct d40_chan *d40c =
799                 container_of(chan, struct d40_chan, chan);
800         int res = 0;
801         unsigned long flags;
802
803         if (!d40c->busy)
804                 return 0;
805
806         spin_lock_irqsave(&d40c->lock, flags);
807
808         if (d40c->base->rev == 0)
809                 if (d40c->log_num != D40_PHY_CHAN) {
810                         res = d40_channel_execute_command(d40c,
811                                                           D40_DMA_SUSPEND_REQ);
812                         goto no_suspend;
813                 }
814
815         /* If bytes left to transfer or linked tx resume job */
816         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
817
818                 if (d40c->log_num != D40_PHY_CHAN)
819                         d40_config_set_event(d40c, true);
820
821                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
822         }
823
824 no_suspend:
825         spin_unlock_irqrestore(&d40c->lock, flags);
826         return res;
827 }
828
829 static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
830 {
831         /* TODO: Write */
832 }
833
834 static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
835 {
836         struct d40_desc *d40d_prev = NULL;
837         int i;
838         u32 val;
839
840         if (!list_empty(&d40c->queue))
841                 d40d_prev = d40_last_queued(d40c);
842         else if (!list_empty(&d40c->active))
843                 d40d_prev = d40_first_active_get(d40c);
844
845         if (!d40d_prev)
846                 return;
847
848         /* Here we try to join this job with previous jobs */
849         val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
850                     d40c->phy_chan->num * D40_DREG_PCDELTA +
851                     D40_CHAN_REG_SSLNK);
852
853         /* Figure out which link we're currently transmitting */
854         for (i = 0; i < d40d_prev->lli_len; i++)
855                 if (val == d40d_prev->lli_phy.src[i].reg_lnk)
856                         break;
857
858         val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
859                     d40c->phy_chan->num * D40_DREG_PCDELTA +
860                     D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
861
862         if (i == (d40d_prev->lli_len - 1) && val > 0) {
863                 /* Change the current one */
864                 writel(virt_to_phys(d40d->lli_phy.src),
865                        d40c->base->virtbase + D40_DREG_PCBASE +
866                        d40c->phy_chan->num * D40_DREG_PCDELTA +
867                        D40_CHAN_REG_SSLNK);
868                 writel(virt_to_phys(d40d->lli_phy.dst),
869                        d40c->base->virtbase + D40_DREG_PCBASE +
870                        d40c->phy_chan->num * D40_DREG_PCDELTA +
871                        D40_CHAN_REG_SDLNK);
872
873                 d40d->is_hw_linked = true;
874
875         } else if (i < d40d_prev->lli_len) {
876                 (void) dma_unmap_single(d40c->base->dev,
877                                         virt_to_phys(d40d_prev->lli_phy.src),
878                                         d40d_prev->lli_pool.size,
879                                         DMA_TO_DEVICE);
880
881                 /* Keep the settings */
882                 val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
883                         ~D40_SREG_LNK_PHYS_LNK_MASK;
884                 d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
885                         val | virt_to_phys(d40d->lli_phy.src);
886
887                 val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
888                         ~D40_SREG_LNK_PHYS_LNK_MASK;
889                 d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
890                         val | virt_to_phys(d40d->lli_phy.dst);
891
892                 (void) dma_map_single(d40c->base->dev,
893                                       d40d_prev->lli_phy.src,
894                                       d40d_prev->lli_pool.size,
895                                       DMA_TO_DEVICE);
896                 d40d->is_hw_linked = true;
897         }
898 }
899
900 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
901 {
902         struct d40_chan *d40c = container_of(tx->chan,
903                                              struct d40_chan,
904                                              chan);
905         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
906         unsigned long flags;
907
908         (void) d40_pause(&d40c->chan);
909
910         spin_lock_irqsave(&d40c->lock, flags);
911
912         d40c->chan.cookie++;
913
914         if (d40c->chan.cookie < 0)
915                 d40c->chan.cookie = 1;
916
917         d40d->txd.cookie = d40c->chan.cookie;
918
919         if (d40c->log_num == D40_PHY_CHAN)
920                 d40_tx_submit_phy(d40c, d40d);
921         else
922                 d40_tx_submit_log(d40c, d40d);
923
924         d40_desc_queue(d40c, d40d);
925
926         spin_unlock_irqrestore(&d40c->lock, flags);
927
928         (void) d40_resume(&d40c->chan);
929
930         return tx->cookie;
931 }
932
933 static int d40_start(struct d40_chan *d40c)
934 {
935         if (d40c->base->rev == 0) {
936                 int err;
937
938                 if (d40c->log_num != D40_PHY_CHAN) {
939                         err = d40_channel_execute_command(d40c,
940                                                           D40_DMA_SUSPEND_REQ);
941                         if (err)
942                                 return err;
943                 }
944         }
945
946         if (d40c->log_num != D40_PHY_CHAN)
947                 d40_config_set_event(d40c, true);
948
949         return d40_channel_execute_command(d40c, D40_DMA_RUN);
950 }
951
952 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
953 {
954         struct d40_desc *d40d;
955         int err;
956
957         /* Start queued jobs, if any */
958         d40d = d40_first_queued(d40c);
959
960         if (d40d != NULL) {
961                 d40c->busy = true;
962
963                 /* Remove from queue */
964                 d40_desc_remove(d40d);
965
966                 /* Add to active queue */
967                 d40_desc_submit(d40c, d40d);
968
969                 /*
970                  * If this job is already linked in hw,
971                  * do not submit it.
972                  */
973
974                 if (!d40d->is_hw_linked) {
975                         /* Initiate DMA job */
976                         d40_desc_load(d40c, d40d);
977
978                         /* Start dma job */
979                         err = d40_start(d40c);
980
981                         if (err)
982                                 return NULL;
983                 }
984         }
985
986         return d40d;
987 }
988
989 /* called from interrupt context */
990 static void dma_tc_handle(struct d40_chan *d40c)
991 {
992         struct d40_desc *d40d;
993
994         /* Get first active entry from list */
995         d40d = d40_first_active_get(d40c);
996
997         if (d40d == NULL)
998                 return;
999
1000         d40_lcla_free_all(d40c, d40d);
1001
1002         if (d40d->lli_current < d40d->lli_len) {
1003                 d40_desc_load(d40c, d40d);
1004                 /* Start dma job */
1005                 (void) d40_start(d40c);
1006                 return;
1007         }
1008
1009         if (d40_queue_start(d40c) == NULL)
1010                 d40c->busy = false;
1011
1012         d40c->pending_tx++;
1013         tasklet_schedule(&d40c->tasklet);
1014
1015 }
1016
1017 static void dma_tasklet(unsigned long data)
1018 {
1019         struct d40_chan *d40c = (struct d40_chan *) data;
1020         struct d40_desc *d40d;
1021         unsigned long flags;
1022         dma_async_tx_callback callback;
1023         void *callback_param;
1024
1025         spin_lock_irqsave(&d40c->lock, flags);
1026
1027         /* Get first active entry from list */
1028         d40d = d40_first_active_get(d40c);
1029
1030         if (d40d == NULL)
1031                 goto err;
1032
1033         d40c->completed = d40d->txd.cookie;
1034
1035         /*
1036          * If terminating a channel pending_tx is set to zero.
1037          * This prevents any finished active jobs to return to the client.
1038          */
1039         if (d40c->pending_tx == 0) {
1040                 spin_unlock_irqrestore(&d40c->lock, flags);
1041                 return;
1042         }
1043
1044         /* Callback to client */
1045         callback = d40d->txd.callback;
1046         callback_param = d40d->txd.callback_param;
1047
1048         if (async_tx_test_ack(&d40d->txd)) {
1049                 d40_pool_lli_free(d40d);
1050                 d40_desc_remove(d40d);
1051                 d40_desc_free(d40c, d40d);
1052         } else {
1053                 if (!d40d->is_in_client_list) {
1054                         d40_desc_remove(d40d);
1055                         d40_lcla_free_all(d40c, d40d);
1056                         list_add_tail(&d40d->node, &d40c->client);
1057                         d40d->is_in_client_list = true;
1058                 }
1059         }
1060
1061         d40c->pending_tx--;
1062
1063         if (d40c->pending_tx)
1064                 tasklet_schedule(&d40c->tasklet);
1065
1066         spin_unlock_irqrestore(&d40c->lock, flags);
1067
1068         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1069                 callback(callback_param);
1070
1071         return;
1072
1073  err:
1074         /* Rescue manouver if receiving double interrupts */
1075         if (d40c->pending_tx > 0)
1076                 d40c->pending_tx--;
1077         spin_unlock_irqrestore(&d40c->lock, flags);
1078 }
1079
1080 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1081 {
1082         static const struct d40_interrupt_lookup il[] = {
1083                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1084                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1085                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1086                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1087                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1088                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1089                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1090                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1091                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1092                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1093         };
1094
1095         int i;
1096         u32 regs[ARRAY_SIZE(il)];
1097         u32 idx;
1098         u32 row;
1099         long chan = -1;
1100         struct d40_chan *d40c;
1101         unsigned long flags;
1102         struct d40_base *base = data;
1103
1104         spin_lock_irqsave(&base->interrupt_lock, flags);
1105
1106         /* Read interrupt status of both logical and physical channels */
1107         for (i = 0; i < ARRAY_SIZE(il); i++)
1108                 regs[i] = readl(base->virtbase + il[i].src);
1109
1110         for (;;) {
1111
1112                 chan = find_next_bit((unsigned long *)regs,
1113                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1114
1115                 /* No more set bits found? */
1116                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1117                         break;
1118
1119                 row = chan / BITS_PER_LONG;
1120                 idx = chan & (BITS_PER_LONG - 1);
1121
1122                 /* ACK interrupt */
1123                 writel(1 << idx, base->virtbase + il[row].clr);
1124
1125                 if (il[row].offset == D40_PHY_CHAN)
1126                         d40c = base->lookup_phy_chans[idx];
1127                 else
1128                         d40c = base->lookup_log_chans[il[row].offset + idx];
1129                 spin_lock(&d40c->lock);
1130
1131                 if (!il[row].is_error)
1132                         dma_tc_handle(d40c);
1133                 else
1134                         dev_err(base->dev,
1135                                 "[%s] IRQ chan: %ld offset %d idx %d\n",
1136                                 __func__, chan, il[row].offset, idx);
1137
1138                 spin_unlock(&d40c->lock);
1139         }
1140
1141         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1142
1143         return IRQ_HANDLED;
1144 }
1145
1146 static int d40_validate_conf(struct d40_chan *d40c,
1147                              struct stedma40_chan_cfg *conf)
1148 {
1149         int res = 0;
1150         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1151         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1152         bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
1153                 == STEDMA40_CHANNEL_IN_LOG_MODE;
1154
1155         if (!conf->dir) {
1156                 dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
1157                         __func__);
1158                 res = -EINVAL;
1159         }
1160
1161         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1162             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1163             d40c->runtime_addr == 0) {
1164
1165                 dev_err(&d40c->chan.dev->device,
1166                         "[%s] Invalid TX channel address (%d)\n",
1167                         __func__, conf->dst_dev_type);
1168                 res = -EINVAL;
1169         }
1170
1171         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1172             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1173             d40c->runtime_addr == 0) {
1174                 dev_err(&d40c->chan.dev->device,
1175                         "[%s] Invalid RX channel address (%d)\n",
1176                         __func__, conf->src_dev_type);
1177                 res = -EINVAL;
1178         }
1179
1180         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1181             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1182                 dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
1183                         __func__);
1184                 res = -EINVAL;
1185         }
1186
1187         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1188             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1189                 dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
1190                         __func__);
1191                 res = -EINVAL;
1192         }
1193
1194         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1195             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1196                 dev_err(&d40c->chan.dev->device,
1197                         "[%s] No event line\n", __func__);
1198                 res = -EINVAL;
1199         }
1200
1201         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1202             (src_event_group != dst_event_group)) {
1203                 dev_err(&d40c->chan.dev->device,
1204                         "[%s] Invalid event group\n", __func__);
1205                 res = -EINVAL;
1206         }
1207
1208         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1209                 /*
1210                  * DMAC HW supports it. Will be added to this driver,
1211                  * in case any dma client requires it.
1212                  */
1213                 dev_err(&d40c->chan.dev->device,
1214                         "[%s] periph to periph not supported\n",
1215                         __func__);
1216                 res = -EINVAL;
1217         }
1218
1219         return res;
1220 }
1221
1222 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1223                                int log_event_line, bool is_log)
1224 {
1225         unsigned long flags;
1226         spin_lock_irqsave(&phy->lock, flags);
1227         if (!is_log) {
1228                 /* Physical interrupts are masked per physical full channel */
1229                 if (phy->allocated_src == D40_ALLOC_FREE &&
1230                     phy->allocated_dst == D40_ALLOC_FREE) {
1231                         phy->allocated_dst = D40_ALLOC_PHY;
1232                         phy->allocated_src = D40_ALLOC_PHY;
1233                         goto found;
1234                 } else
1235                         goto not_found;
1236         }
1237
1238         /* Logical channel */
1239         if (is_src) {
1240                 if (phy->allocated_src == D40_ALLOC_PHY)
1241                         goto not_found;
1242
1243                 if (phy->allocated_src == D40_ALLOC_FREE)
1244                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1245
1246                 if (!(phy->allocated_src & (1 << log_event_line))) {
1247                         phy->allocated_src |= 1 << log_event_line;
1248                         goto found;
1249                 } else
1250                         goto not_found;
1251         } else {
1252                 if (phy->allocated_dst == D40_ALLOC_PHY)
1253                         goto not_found;
1254
1255                 if (phy->allocated_dst == D40_ALLOC_FREE)
1256                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1257
1258                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1259                         phy->allocated_dst |= 1 << log_event_line;
1260                         goto found;
1261                 } else
1262                         goto not_found;
1263         }
1264
1265 not_found:
1266         spin_unlock_irqrestore(&phy->lock, flags);
1267         return false;
1268 found:
1269         spin_unlock_irqrestore(&phy->lock, flags);
1270         return true;
1271 }
1272
1273 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1274                                int log_event_line)
1275 {
1276         unsigned long flags;
1277         bool is_free = false;
1278
1279         spin_lock_irqsave(&phy->lock, flags);
1280         if (!log_event_line) {
1281                 phy->allocated_dst = D40_ALLOC_FREE;
1282                 phy->allocated_src = D40_ALLOC_FREE;
1283                 is_free = true;
1284                 goto out;
1285         }
1286
1287         /* Logical channel */
1288         if (is_src) {
1289                 phy->allocated_src &= ~(1 << log_event_line);
1290                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1291                         phy->allocated_src = D40_ALLOC_FREE;
1292         } else {
1293                 phy->allocated_dst &= ~(1 << log_event_line);
1294                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1295                         phy->allocated_dst = D40_ALLOC_FREE;
1296         }
1297
1298         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1299                    D40_ALLOC_FREE);
1300
1301 out:
1302         spin_unlock_irqrestore(&phy->lock, flags);
1303
1304         return is_free;
1305 }
1306
1307 static int d40_allocate_channel(struct d40_chan *d40c)
1308 {
1309         int dev_type;
1310         int event_group;
1311         int event_line;
1312         struct d40_phy_res *phys;
1313         int i;
1314         int j;
1315         int log_num;
1316         bool is_src;
1317         bool is_log = (d40c->dma_cfg.channel_type &
1318                        STEDMA40_CHANNEL_IN_OPER_MODE)
1319                 == STEDMA40_CHANNEL_IN_LOG_MODE;
1320
1321
1322         phys = d40c->base->phy_res;
1323
1324         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1325                 dev_type = d40c->dma_cfg.src_dev_type;
1326                 log_num = 2 * dev_type;
1327                 is_src = true;
1328         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1329                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1330                 /* dst event lines are used for logical memcpy */
1331                 dev_type = d40c->dma_cfg.dst_dev_type;
1332                 log_num = 2 * dev_type + 1;
1333                 is_src = false;
1334         } else
1335                 return -EINVAL;
1336
1337         event_group = D40_TYPE_TO_GROUP(dev_type);
1338         event_line = D40_TYPE_TO_EVENT(dev_type);
1339
1340         if (!is_log) {
1341                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1342                         /* Find physical half channel */
1343                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1344
1345                                 if (d40_alloc_mask_set(&phys[i], is_src,
1346                                                        0, is_log))
1347                                         goto found_phy;
1348                         }
1349                 } else
1350                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1351                                 int phy_num = j  + event_group * 2;
1352                                 for (i = phy_num; i < phy_num + 2; i++) {
1353                                         if (d40_alloc_mask_set(&phys[i],
1354                                                                is_src,
1355                                                                0,
1356                                                                is_log))
1357                                                 goto found_phy;
1358                                 }
1359                         }
1360                 return -EINVAL;
1361 found_phy:
1362                 d40c->phy_chan = &phys[i];
1363                 d40c->log_num = D40_PHY_CHAN;
1364                 goto out;
1365         }
1366         if (dev_type == -1)
1367                 return -EINVAL;
1368
1369         /* Find logical channel */
1370         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1371                 int phy_num = j + event_group * 2;
1372                 /*
1373                  * Spread logical channels across all available physical rather
1374                  * than pack every logical channel at the first available phy
1375                  * channels.
1376                  */
1377                 if (is_src) {
1378                         for (i = phy_num; i < phy_num + 2; i++) {
1379                                 if (d40_alloc_mask_set(&phys[i], is_src,
1380                                                        event_line, is_log))
1381                                         goto found_log;
1382                         }
1383                 } else {
1384                         for (i = phy_num + 1; i >= phy_num; i--) {
1385                                 if (d40_alloc_mask_set(&phys[i], is_src,
1386                                                        event_line, is_log))
1387                                         goto found_log;
1388                         }
1389                 }
1390         }
1391         return -EINVAL;
1392
1393 found_log:
1394         d40c->phy_chan = &phys[i];
1395         d40c->log_num = log_num;
1396 out:
1397
1398         if (is_log)
1399                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1400         else
1401                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1402
1403         return 0;
1404
1405 }
1406
1407 static int d40_config_memcpy(struct d40_chan *d40c)
1408 {
1409         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1410
1411         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1412                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1413                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1414                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1415                         memcpy[d40c->chan.chan_id];
1416
1417         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1418                    dma_has_cap(DMA_SLAVE, cap)) {
1419                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1420         } else {
1421                 dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1422                         __func__);
1423                 return -EINVAL;
1424         }
1425
1426         return 0;
1427 }
1428
1429
1430 static int d40_free_dma(struct d40_chan *d40c)
1431 {
1432
1433         int res = 0;
1434         u32 event;
1435         struct d40_phy_res *phy = d40c->phy_chan;
1436         bool is_src;
1437         struct d40_desc *d;
1438         struct d40_desc *_d;
1439
1440
1441         /* Terminate all queued and active transfers */
1442         d40_term_all(d40c);
1443
1444         /* Release client owned descriptors */
1445         if (!list_empty(&d40c->client))
1446                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1447                         d40_pool_lli_free(d);
1448                         d40_desc_remove(d);
1449                         d40_desc_free(d40c, d);
1450                 }
1451
1452         if (phy == NULL) {
1453                 dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1454                         __func__);
1455                 return -EINVAL;
1456         }
1457
1458         if (phy->allocated_src == D40_ALLOC_FREE &&
1459             phy->allocated_dst == D40_ALLOC_FREE) {
1460                 dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1461                         __func__);
1462                 return -EINVAL;
1463         }
1464
1465         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1466             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1467                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1468                 is_src = false;
1469         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1470                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1471                 is_src = true;
1472         } else {
1473                 dev_err(&d40c->chan.dev->device,
1474                         "[%s] Unknown direction\n", __func__);
1475                 return -EINVAL;
1476         }
1477
1478         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1479         if (res) {
1480                 dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1481                         __func__);
1482                 return res;
1483         }
1484
1485         if (d40c->log_num != D40_PHY_CHAN) {
1486                 /* Release logical channel, deactivate the event line */
1487
1488                 d40_config_set_event(d40c, false);
1489                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1490
1491                 /*
1492                  * Check if there are more logical allocation
1493                  * on this phy channel.
1494                  */
1495                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1496                         /* Resume the other logical channels if any */
1497                         if (d40_chan_has_events(d40c)) {
1498                                 res = d40_channel_execute_command(d40c,
1499                                                                   D40_DMA_RUN);
1500                                 if (res) {
1501                                         dev_err(&d40c->chan.dev->device,
1502                                                 "[%s] Executing RUN command\n",
1503                                                 __func__);
1504                                         return res;
1505                                 }
1506                         }
1507                         return 0;
1508                 }
1509         } else {
1510                 (void) d40_alloc_mask_free(phy, is_src, 0);
1511         }
1512
1513         /* Release physical channel */
1514         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1515         if (res) {
1516                 dev_err(&d40c->chan.dev->device,
1517                         "[%s] Failed to stop channel\n", __func__);
1518                 return res;
1519         }
1520         d40c->phy_chan = NULL;
1521         /* Invalidate channel type */
1522         d40c->dma_cfg.channel_type = 0;
1523         d40c->base->lookup_phy_chans[phy->num] = NULL;
1524
1525         return 0;
1526 }
1527
1528 static bool d40_is_paused(struct d40_chan *d40c)
1529 {
1530         bool is_paused = false;
1531         unsigned long flags;
1532         void __iomem *active_reg;
1533         u32 status;
1534         u32 event;
1535
1536         spin_lock_irqsave(&d40c->lock, flags);
1537
1538         if (d40c->log_num == D40_PHY_CHAN) {
1539                 if (d40c->phy_chan->num % 2 == 0)
1540                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1541                 else
1542                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1543
1544                 status = (readl(active_reg) &
1545                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1546                         D40_CHAN_POS(d40c->phy_chan->num);
1547                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1548                         is_paused = true;
1549
1550                 goto _exit;
1551         }
1552
1553         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1554             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1555                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1556                 status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1557                                d40c->phy_chan->num * D40_DREG_PCDELTA +
1558                                D40_CHAN_REG_SDLNK);
1559         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1560                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1561                 status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1562                                d40c->phy_chan->num * D40_DREG_PCDELTA +
1563                                D40_CHAN_REG_SSLNK);
1564         } else {
1565                 dev_err(&d40c->chan.dev->device,
1566                         "[%s] Unknown direction\n", __func__);
1567                 goto _exit;
1568         }
1569
1570         status = (status & D40_EVENTLINE_MASK(event)) >>
1571                 D40_EVENTLINE_POS(event);
1572
1573         if (status != D40_DMA_RUN)
1574                 is_paused = true;
1575 _exit:
1576         spin_unlock_irqrestore(&d40c->lock, flags);
1577         return is_paused;
1578
1579 }
1580
1581
1582 static u32 stedma40_residue(struct dma_chan *chan)
1583 {
1584         struct d40_chan *d40c =
1585                 container_of(chan, struct d40_chan, chan);
1586         u32 bytes_left;
1587         unsigned long flags;
1588
1589         spin_lock_irqsave(&d40c->lock, flags);
1590         bytes_left = d40_residue(d40c);
1591         spin_unlock_irqrestore(&d40c->lock, flags);
1592
1593         return bytes_left;
1594 }
1595
1596 /* Public DMA functions in addition to the DMA engine framework */
1597
1598 int stedma40_set_psize(struct dma_chan *chan,
1599                        int src_psize,
1600                        int dst_psize)
1601 {
1602         struct d40_chan *d40c =
1603                 container_of(chan, struct d40_chan, chan);
1604         unsigned long flags;
1605
1606         spin_lock_irqsave(&d40c->lock, flags);
1607
1608         if (d40c->log_num != D40_PHY_CHAN) {
1609                 d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1610                 d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1611                 d40c->log_def.lcsp1 |= src_psize <<
1612                         D40_MEM_LCSP1_SCFG_PSIZE_POS;
1613                 d40c->log_def.lcsp3 |= dst_psize <<
1614                         D40_MEM_LCSP1_SCFG_PSIZE_POS;
1615                 goto out;
1616         }
1617
1618         if (src_psize == STEDMA40_PSIZE_PHY_1)
1619                 d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1620         else {
1621                 d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1622                 d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1623                                        D40_SREG_CFG_PSIZE_POS);
1624                 d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1625         }
1626
1627         if (dst_psize == STEDMA40_PSIZE_PHY_1)
1628                 d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1629         else {
1630                 d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1631                 d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1632                                        D40_SREG_CFG_PSIZE_POS);
1633                 d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1634         }
1635 out:
1636         spin_unlock_irqrestore(&d40c->lock, flags);
1637         return 0;
1638 }
1639 EXPORT_SYMBOL(stedma40_set_psize);
1640
1641 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1642                                                    struct scatterlist *sgl_dst,
1643                                                    struct scatterlist *sgl_src,
1644                                                    unsigned int sgl_len,
1645                                                    unsigned long dma_flags)
1646 {
1647         int res;
1648         struct d40_desc *d40d;
1649         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1650                                              chan);
1651         unsigned long flags;
1652
1653         if (d40c->phy_chan == NULL) {
1654                 dev_err(&d40c->chan.dev->device,
1655                         "[%s] Unallocated channel.\n", __func__);
1656                 return ERR_PTR(-EINVAL);
1657         }
1658
1659         spin_lock_irqsave(&d40c->lock, flags);
1660         d40d = d40_desc_get(d40c);
1661
1662         if (d40d == NULL)
1663                 goto err;
1664
1665         d40d->lli_len = sgl_len;
1666         d40d->lli_current = 0;
1667         d40d->txd.flags = dma_flags;
1668
1669         if (d40c->log_num != D40_PHY_CHAN) {
1670
1671                 if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1672                         dev_err(&d40c->chan.dev->device,
1673                                 "[%s] Out of memory\n", __func__);
1674                         goto err;
1675                 }
1676
1677                 (void) d40_log_sg_to_lli(sgl_src,
1678                                          sgl_len,
1679                                          d40d->lli_log.src,
1680                                          d40c->log_def.lcsp1,
1681                                          d40c->dma_cfg.src_info.data_width);
1682
1683                 (void) d40_log_sg_to_lli(sgl_dst,
1684                                          sgl_len,
1685                                          d40d->lli_log.dst,
1686                                          d40c->log_def.lcsp3,
1687                                          d40c->dma_cfg.dst_info.data_width);
1688         } else {
1689                 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1690                         dev_err(&d40c->chan.dev->device,
1691                                 "[%s] Out of memory\n", __func__);
1692                         goto err;
1693                 }
1694
1695                 res = d40_phy_sg_to_lli(sgl_src,
1696                                         sgl_len,
1697                                         0,
1698                                         d40d->lli_phy.src,
1699                                         virt_to_phys(d40d->lli_phy.src),
1700                                         d40c->src_def_cfg,
1701                                         d40c->dma_cfg.src_info.data_width,
1702                                         d40c->dma_cfg.src_info.psize);
1703
1704                 if (res < 0)
1705                         goto err;
1706
1707                 res = d40_phy_sg_to_lli(sgl_dst,
1708                                         sgl_len,
1709                                         0,
1710                                         d40d->lli_phy.dst,
1711                                         virt_to_phys(d40d->lli_phy.dst),
1712                                         d40c->dst_def_cfg,
1713                                         d40c->dma_cfg.dst_info.data_width,
1714                                         d40c->dma_cfg.dst_info.psize);
1715
1716                 if (res < 0)
1717                         goto err;
1718
1719                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1720                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1721         }
1722
1723         dma_async_tx_descriptor_init(&d40d->txd, chan);
1724
1725         d40d->txd.tx_submit = d40_tx_submit;
1726
1727         spin_unlock_irqrestore(&d40c->lock, flags);
1728
1729         return &d40d->txd;
1730 err:
1731         if (d40d)
1732                 d40_desc_free(d40c, d40d);
1733         spin_unlock_irqrestore(&d40c->lock, flags);
1734         return NULL;
1735 }
1736 EXPORT_SYMBOL(stedma40_memcpy_sg);
1737
1738 bool stedma40_filter(struct dma_chan *chan, void *data)
1739 {
1740         struct stedma40_chan_cfg *info = data;
1741         struct d40_chan *d40c =
1742                 container_of(chan, struct d40_chan, chan);
1743         int err;
1744
1745         if (data) {
1746                 err = d40_validate_conf(d40c, info);
1747                 if (!err)
1748                         d40c->dma_cfg = *info;
1749         } else
1750                 err = d40_config_memcpy(d40c);
1751
1752         return err == 0;
1753 }
1754 EXPORT_SYMBOL(stedma40_filter);
1755
1756 /* DMA ENGINE functions */
1757 static int d40_alloc_chan_resources(struct dma_chan *chan)
1758 {
1759         int err;
1760         unsigned long flags;
1761         struct d40_chan *d40c =
1762                 container_of(chan, struct d40_chan, chan);
1763         bool is_free_phy;
1764         spin_lock_irqsave(&d40c->lock, flags);
1765
1766         d40c->completed = chan->cookie = 1;
1767
1768         /*
1769          * If no dma configuration is set (channel_type == 0)
1770          * use default configuration (memcpy)
1771          */
1772         if (d40c->dma_cfg.channel_type == 0) {
1773
1774                 err = d40_config_memcpy(d40c);
1775                 if (err) {
1776                         dev_err(&d40c->chan.dev->device,
1777                                 "[%s] Failed to configure memcpy channel\n",
1778                                 __func__);
1779                         goto fail;
1780                 }
1781         }
1782         is_free_phy = (d40c->phy_chan == NULL);
1783
1784         err = d40_allocate_channel(d40c);
1785         if (err) {
1786                 dev_err(&d40c->chan.dev->device,
1787                         "[%s] Failed to allocate channel\n", __func__);
1788                 goto fail;
1789         }
1790
1791         /* Fill in basic CFG register values */
1792         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1793                     &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1794
1795         if (d40c->log_num != D40_PHY_CHAN) {
1796                 d40_log_cfg(&d40c->dma_cfg,
1797                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1798
1799                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1800                         d40c->lcpa = d40c->base->lcpa_base +
1801                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1802                 else
1803                         d40c->lcpa = d40c->base->lcpa_base +
1804                           d40c->dma_cfg.dst_dev_type *
1805                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1806         }
1807
1808         /*
1809          * Only write channel configuration to the DMA if the physical
1810          * resource is free. In case of multiple logical channels
1811          * on the same physical resource, only the first write is necessary.
1812          */
1813         if (is_free_phy)
1814                 d40_config_write(d40c);
1815 fail:
1816         spin_unlock_irqrestore(&d40c->lock, flags);
1817         return err;
1818 }
1819
1820 static void d40_free_chan_resources(struct dma_chan *chan)
1821 {
1822         struct d40_chan *d40c =
1823                 container_of(chan, struct d40_chan, chan);
1824         int err;
1825         unsigned long flags;
1826
1827         if (d40c->phy_chan == NULL) {
1828                 dev_err(&d40c->chan.dev->device,
1829                         "[%s] Cannot free unallocated channel\n", __func__);
1830                 return;
1831         }
1832
1833
1834         spin_lock_irqsave(&d40c->lock, flags);
1835
1836         err = d40_free_dma(d40c);
1837
1838         if (err)
1839                 dev_err(&d40c->chan.dev->device,
1840                         "[%s] Failed to free channel\n", __func__);
1841         spin_unlock_irqrestore(&d40c->lock, flags);
1842 }
1843
1844 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1845                                                        dma_addr_t dst,
1846                                                        dma_addr_t src,
1847                                                        size_t size,
1848                                                        unsigned long dma_flags)
1849 {
1850         struct d40_desc *d40d;
1851         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1852                                              chan);
1853         unsigned long flags;
1854         int err = 0;
1855
1856         if (d40c->phy_chan == NULL) {
1857                 dev_err(&d40c->chan.dev->device,
1858                         "[%s] Channel is not allocated.\n", __func__);
1859                 return ERR_PTR(-EINVAL);
1860         }
1861
1862         spin_lock_irqsave(&d40c->lock, flags);
1863         d40d = d40_desc_get(d40c);
1864
1865         if (d40d == NULL) {
1866                 dev_err(&d40c->chan.dev->device,
1867                         "[%s] Descriptor is NULL\n", __func__);
1868                 goto err;
1869         }
1870
1871         d40d->txd.flags = dma_flags;
1872
1873         dma_async_tx_descriptor_init(&d40d->txd, chan);
1874
1875         d40d->txd.tx_submit = d40_tx_submit;
1876
1877         if (d40c->log_num != D40_PHY_CHAN) {
1878
1879                 if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1880                         dev_err(&d40c->chan.dev->device,
1881                                 "[%s] Out of memory\n", __func__);
1882                         goto err;
1883                 }
1884                 d40d->lli_len = 1;
1885                 d40d->lli_current = 0;
1886
1887                 d40_log_fill_lli(d40d->lli_log.src,
1888                                  src,
1889                                  size,
1890                                  d40c->log_def.lcsp1,
1891                                  d40c->dma_cfg.src_info.data_width,
1892                                  true);
1893
1894                 d40_log_fill_lli(d40d->lli_log.dst,
1895                                  dst,
1896                                  size,
1897                                  d40c->log_def.lcsp3,
1898                                  d40c->dma_cfg.dst_info.data_width,
1899                                  true);
1900
1901         } else {
1902
1903                 if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1904                         dev_err(&d40c->chan.dev->device,
1905                                 "[%s] Out of memory\n", __func__);
1906                         goto err;
1907                 }
1908
1909                 err = d40_phy_fill_lli(d40d->lli_phy.src,
1910                                        src,
1911                                        size,
1912                                        d40c->dma_cfg.src_info.psize,
1913                                        0,
1914                                        d40c->src_def_cfg,
1915                                        true,
1916                                        d40c->dma_cfg.src_info.data_width,
1917                                        false);
1918                 if (err)
1919                         goto err_fill_lli;
1920
1921                 err = d40_phy_fill_lli(d40d->lli_phy.dst,
1922                                        dst,
1923                                        size,
1924                                        d40c->dma_cfg.dst_info.psize,
1925                                        0,
1926                                        d40c->dst_def_cfg,
1927                                        true,
1928                                        d40c->dma_cfg.dst_info.data_width,
1929                                        false);
1930
1931                 if (err)
1932                         goto err_fill_lli;
1933
1934                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1935                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1936         }
1937
1938         spin_unlock_irqrestore(&d40c->lock, flags);
1939         return &d40d->txd;
1940
1941 err_fill_lli:
1942         dev_err(&d40c->chan.dev->device,
1943                 "[%s] Failed filling in PHY LLI\n", __func__);
1944 err:
1945         if (d40d)
1946                 d40_desc_free(d40c, d40d);
1947         spin_unlock_irqrestore(&d40c->lock, flags);
1948         return NULL;
1949 }
1950
1951 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1952                                  struct d40_chan *d40c,
1953                                  struct scatterlist *sgl,
1954                                  unsigned int sg_len,
1955                                  enum dma_data_direction direction,
1956                                  unsigned long dma_flags)
1957 {
1958         dma_addr_t dev_addr = 0;
1959         int total_size;
1960
1961         if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1962                 dev_err(&d40c->chan.dev->device,
1963                         "[%s] Out of memory\n", __func__);
1964                 return -ENOMEM;
1965         }
1966
1967         d40d->lli_len = sg_len;
1968         d40d->lli_current = 0;
1969
1970         if (direction == DMA_FROM_DEVICE)
1971                 if (d40c->runtime_addr)
1972                         dev_addr = d40c->runtime_addr;
1973                 else
1974                         dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1975         else if (direction == DMA_TO_DEVICE)
1976                 if (d40c->runtime_addr)
1977                         dev_addr = d40c->runtime_addr;
1978                 else
1979                         dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1980
1981         else
1982                 return -EINVAL;
1983
1984         total_size = d40_log_sg_to_dev(sgl, sg_len,
1985                                        &d40d->lli_log,
1986                                        &d40c->log_def,
1987                                        d40c->dma_cfg.src_info.data_width,
1988                                        d40c->dma_cfg.dst_info.data_width,
1989                                        direction,
1990                                        dev_addr);
1991
1992         if (total_size < 0)
1993                 return -EINVAL;
1994
1995         return 0;
1996 }
1997
1998 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1999                                  struct d40_chan *d40c,
2000                                  struct scatterlist *sgl,
2001                                  unsigned int sgl_len,
2002                                  enum dma_data_direction direction,
2003                                  unsigned long dma_flags)
2004 {
2005         dma_addr_t src_dev_addr;
2006         dma_addr_t dst_dev_addr;
2007         int res;
2008
2009         if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
2010                 dev_err(&d40c->chan.dev->device,
2011                         "[%s] Out of memory\n", __func__);
2012                 return -ENOMEM;
2013         }
2014
2015         d40d->lli_len = sgl_len;
2016         d40d->lli_current = 0;
2017
2018         if (direction == DMA_FROM_DEVICE) {
2019                 dst_dev_addr = 0;
2020                 if (d40c->runtime_addr)
2021                         src_dev_addr = d40c->runtime_addr;
2022                 else
2023                         src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2024         } else if (direction == DMA_TO_DEVICE) {
2025                 if (d40c->runtime_addr)
2026                         dst_dev_addr = d40c->runtime_addr;
2027                 else
2028                         dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2029                 src_dev_addr = 0;
2030         } else
2031                 return -EINVAL;
2032
2033         res = d40_phy_sg_to_lli(sgl,
2034                                 sgl_len,
2035                                 src_dev_addr,
2036                                 d40d->lli_phy.src,
2037                                 virt_to_phys(d40d->lli_phy.src),
2038                                 d40c->src_def_cfg,
2039                                 d40c->dma_cfg.src_info.data_width,
2040                                 d40c->dma_cfg.src_info.psize);
2041         if (res < 0)
2042                 return res;
2043
2044         res = d40_phy_sg_to_lli(sgl,
2045                                 sgl_len,
2046                                 dst_dev_addr,
2047                                 d40d->lli_phy.dst,
2048                                 virt_to_phys(d40d->lli_phy.dst),
2049                                 d40c->dst_def_cfg,
2050                                 d40c->dma_cfg.dst_info.data_width,
2051                                 d40c->dma_cfg.dst_info.psize);
2052         if (res < 0)
2053                 return res;
2054
2055         (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2056                               d40d->lli_pool.size, DMA_TO_DEVICE);
2057         return 0;
2058 }
2059
2060 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2061                                                          struct scatterlist *sgl,
2062                                                          unsigned int sg_len,
2063                                                          enum dma_data_direction direction,
2064                                                          unsigned long dma_flags)
2065 {
2066         struct d40_desc *d40d;
2067         struct d40_chan *d40c = container_of(chan, struct d40_chan,
2068                                              chan);
2069         unsigned long flags;
2070         int err;
2071
2072         if (d40c->phy_chan == NULL) {
2073                 dev_err(&d40c->chan.dev->device,
2074                         "[%s] Cannot prepare unallocated channel\n", __func__);
2075                 return ERR_PTR(-EINVAL);
2076         }
2077
2078         if (d40c->dma_cfg.pre_transfer)
2079                 d40c->dma_cfg.pre_transfer(chan,
2080                                            d40c->dma_cfg.pre_transfer_data,
2081                                            sg_dma_len(sgl));
2082
2083         spin_lock_irqsave(&d40c->lock, flags);
2084         d40d = d40_desc_get(d40c);
2085
2086         if (d40d == NULL)
2087                 goto err;
2088
2089         if (d40c->log_num != D40_PHY_CHAN)
2090                 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2091                                             direction, dma_flags);
2092         else
2093                 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2094                                             direction, dma_flags);
2095         if (err) {
2096                 dev_err(&d40c->chan.dev->device,
2097                         "[%s] Failed to prepare %s slave sg job: %d\n",
2098                         __func__,
2099                         d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2100                 goto err;
2101         }
2102
2103         d40d->txd.flags = dma_flags;
2104
2105         dma_async_tx_descriptor_init(&d40d->txd, chan);
2106
2107         d40d->txd.tx_submit = d40_tx_submit;
2108
2109         spin_unlock_irqrestore(&d40c->lock, flags);
2110         return &d40d->txd;
2111
2112 err:
2113         if (d40d)
2114                 d40_desc_free(d40c, d40d);
2115         spin_unlock_irqrestore(&d40c->lock, flags);
2116         return NULL;
2117 }
2118
2119 static enum dma_status d40_tx_status(struct dma_chan *chan,
2120                                      dma_cookie_t cookie,
2121                                      struct dma_tx_state *txstate)
2122 {
2123         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2124         dma_cookie_t last_used;
2125         dma_cookie_t last_complete;
2126         int ret;
2127
2128         if (d40c->phy_chan == NULL) {
2129                 dev_err(&d40c->chan.dev->device,
2130                         "[%s] Cannot read status of unallocated channel\n",
2131                         __func__);
2132                 return -EINVAL;
2133         }
2134
2135         last_complete = d40c->completed;
2136         last_used = chan->cookie;
2137
2138         if (d40_is_paused(d40c))
2139                 ret = DMA_PAUSED;
2140         else
2141                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2142
2143         dma_set_tx_state(txstate, last_complete, last_used,
2144                          stedma40_residue(chan));
2145
2146         return ret;
2147 }
2148
2149 static void d40_issue_pending(struct dma_chan *chan)
2150 {
2151         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2152         unsigned long flags;
2153
2154         if (d40c->phy_chan == NULL) {
2155                 dev_err(&d40c->chan.dev->device,
2156                         "[%s] Channel is not allocated!\n", __func__);
2157                 return;
2158         }
2159
2160         spin_lock_irqsave(&d40c->lock, flags);
2161
2162         /* Busy means that pending jobs are already being processed */
2163         if (!d40c->busy)
2164                 (void) d40_queue_start(d40c);
2165
2166         spin_unlock_irqrestore(&d40c->lock, flags);
2167 }
2168
2169 /* Runtime reconfiguration extension */
2170 static void d40_set_runtime_config(struct dma_chan *chan,
2171                                struct dma_slave_config *config)
2172 {
2173         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2174         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2175         enum dma_slave_buswidth config_addr_width;
2176         dma_addr_t config_addr;
2177         u32 config_maxburst;
2178         enum stedma40_periph_data_width addr_width;
2179         int psize;
2180
2181         if (config->direction == DMA_FROM_DEVICE) {
2182                 dma_addr_t dev_addr_rx =
2183                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2184
2185                 config_addr = config->src_addr;
2186                 if (dev_addr_rx)
2187                         dev_dbg(d40c->base->dev,
2188                                 "channel has a pre-wired RX address %08x "
2189                                 "overriding with %08x\n",
2190                                 dev_addr_rx, config_addr);
2191                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2192                         dev_dbg(d40c->base->dev,
2193                                 "channel was not configured for peripheral "
2194                                 "to memory transfer (%d) overriding\n",
2195                                 cfg->dir);
2196                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2197
2198                 config_addr_width = config->src_addr_width;
2199                 config_maxburst = config->src_maxburst;
2200
2201         } else if (config->direction == DMA_TO_DEVICE) {
2202                 dma_addr_t dev_addr_tx =
2203                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2204
2205                 config_addr = config->dst_addr;
2206                 if (dev_addr_tx)
2207                         dev_dbg(d40c->base->dev,
2208                                 "channel has a pre-wired TX address %08x "
2209                                 "overriding with %08x\n",
2210                                 dev_addr_tx, config_addr);
2211                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2212                         dev_dbg(d40c->base->dev,
2213                                 "channel was not configured for memory "
2214                                 "to peripheral transfer (%d) overriding\n",
2215                                 cfg->dir);
2216                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2217
2218                 config_addr_width = config->dst_addr_width;
2219                 config_maxburst = config->dst_maxburst;
2220
2221         } else {
2222                 dev_err(d40c->base->dev,
2223                         "unrecognized channel direction %d\n",
2224                         config->direction);
2225                 return;
2226         }
2227
2228         switch (config_addr_width) {
2229         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2230                 addr_width = STEDMA40_BYTE_WIDTH;
2231                 break;
2232         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2233                 addr_width = STEDMA40_HALFWORD_WIDTH;
2234                 break;
2235         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2236                 addr_width = STEDMA40_WORD_WIDTH;
2237                 break;
2238         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2239                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2240                 break;
2241         default:
2242                 dev_err(d40c->base->dev,
2243                         "illegal peripheral address width "
2244                         "requested (%d)\n",
2245                         config->src_addr_width);
2246                 return;
2247         }
2248
2249         if (config_maxburst >= 16)
2250                 psize = STEDMA40_PSIZE_LOG_16;
2251         else if (config_maxburst >= 8)
2252                 psize = STEDMA40_PSIZE_LOG_8;
2253         else if (config_maxburst >= 4)
2254                 psize = STEDMA40_PSIZE_LOG_4;
2255         else
2256                 psize = STEDMA40_PSIZE_LOG_1;
2257
2258         /* Set up all the endpoint configs */
2259         cfg->src_info.data_width = addr_width;
2260         cfg->src_info.psize = psize;
2261         cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
2262         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2263         cfg->dst_info.data_width = addr_width;
2264         cfg->dst_info.psize = psize;
2265         cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
2266         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2267
2268         /* These settings will take precedence later */
2269         d40c->runtime_addr = config_addr;
2270         d40c->runtime_direction = config->direction;
2271         dev_dbg(d40c->base->dev,
2272                 "configured channel %s for %s, data width %d, "
2273                 "maxburst %d bytes, LE, no flow control\n",
2274                 dma_chan_name(chan),
2275                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2276                 config_addr_width,
2277                 config_maxburst);
2278 }
2279
2280 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2281                        unsigned long arg)
2282 {
2283         unsigned long flags;
2284         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2285
2286         if (d40c->phy_chan == NULL) {
2287                 dev_err(&d40c->chan.dev->device,
2288                         "[%s] Channel is not allocated!\n", __func__);
2289                 return -EINVAL;
2290         }
2291
2292         switch (cmd) {
2293         case DMA_TERMINATE_ALL:
2294                 spin_lock_irqsave(&d40c->lock, flags);
2295                 d40_term_all(d40c);
2296                 spin_unlock_irqrestore(&d40c->lock, flags);
2297                 return 0;
2298         case DMA_PAUSE:
2299                 return d40_pause(chan);
2300         case DMA_RESUME:
2301                 return d40_resume(chan);
2302         case DMA_SLAVE_CONFIG:
2303                 d40_set_runtime_config(chan,
2304                         (struct dma_slave_config *) arg);
2305                 return 0;
2306         default:
2307                 break;
2308         }
2309
2310         /* Other commands are unimplemented */
2311         return -ENXIO;
2312 }
2313
2314 /* Initialization functions */
2315
2316 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2317                                  struct d40_chan *chans, int offset,
2318                                  int num_chans)
2319 {
2320         int i = 0;
2321         struct d40_chan *d40c;
2322
2323         INIT_LIST_HEAD(&dma->channels);
2324
2325         for (i = offset; i < offset + num_chans; i++) {
2326                 d40c = &chans[i];
2327                 d40c->base = base;
2328                 d40c->chan.device = dma;
2329
2330                 spin_lock_init(&d40c->lock);
2331
2332                 d40c->log_num = D40_PHY_CHAN;
2333
2334                 INIT_LIST_HEAD(&d40c->active);
2335                 INIT_LIST_HEAD(&d40c->queue);
2336                 INIT_LIST_HEAD(&d40c->client);
2337
2338                 tasklet_init(&d40c->tasklet, dma_tasklet,
2339                              (unsigned long) d40c);
2340
2341                 list_add_tail(&d40c->chan.device_node,
2342                               &dma->channels);
2343         }
2344 }
2345
2346 static int __init d40_dmaengine_init(struct d40_base *base,
2347                                      int num_reserved_chans)
2348 {
2349         int err ;
2350
2351         d40_chan_init(base, &base->dma_slave, base->log_chans,
2352                       0, base->num_log_chans);
2353
2354         dma_cap_zero(base->dma_slave.cap_mask);
2355         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2356
2357         base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2358         base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2359         base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2360         base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2361         base->dma_slave.device_tx_status = d40_tx_status;
2362         base->dma_slave.device_issue_pending = d40_issue_pending;
2363         base->dma_slave.device_control = d40_control;
2364         base->dma_slave.dev = base->dev;
2365
2366         err = dma_async_device_register(&base->dma_slave);
2367
2368         if (err) {
2369                 dev_err(base->dev,
2370                         "[%s] Failed to register slave channels\n",
2371                         __func__);
2372                 goto failure1;
2373         }
2374
2375         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2376                       base->num_log_chans, base->plat_data->memcpy_len);
2377
2378         dma_cap_zero(base->dma_memcpy.cap_mask);
2379         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2380
2381         base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2382         base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2383         base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2384         base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2385         base->dma_memcpy.device_tx_status = d40_tx_status;
2386         base->dma_memcpy.device_issue_pending = d40_issue_pending;
2387         base->dma_memcpy.device_control = d40_control;
2388         base->dma_memcpy.dev = base->dev;
2389         /*
2390          * This controller can only access address at even
2391          * 32bit boundaries, i.e. 2^2
2392          */
2393         base->dma_memcpy.copy_align = 2;
2394
2395         err = dma_async_device_register(&base->dma_memcpy);
2396
2397         if (err) {
2398                 dev_err(base->dev,
2399                         "[%s] Failed to regsiter memcpy only channels\n",
2400                         __func__);
2401                 goto failure2;
2402         }
2403
2404         d40_chan_init(base, &base->dma_both, base->phy_chans,
2405                       0, num_reserved_chans);
2406
2407         dma_cap_zero(base->dma_both.cap_mask);
2408         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2409         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2410
2411         base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2412         base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2413         base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2414         base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2415         base->dma_both.device_tx_status = d40_tx_status;
2416         base->dma_both.device_issue_pending = d40_issue_pending;
2417         base->dma_both.device_control = d40_control;
2418         base->dma_both.dev = base->dev;
2419         base->dma_both.copy_align = 2;
2420         err = dma_async_device_register(&base->dma_both);
2421
2422         if (err) {
2423                 dev_err(base->dev,
2424                         "[%s] Failed to register logical and physical capable channels\n",
2425                         __func__);
2426                 goto failure3;
2427         }
2428         return 0;
2429 failure3:
2430         dma_async_device_unregister(&base->dma_memcpy);
2431 failure2:
2432         dma_async_device_unregister(&base->dma_slave);
2433 failure1:
2434         return err;
2435 }
2436
2437 /* Initialization functions. */
2438
2439 static int __init d40_phy_res_init(struct d40_base *base)
2440 {
2441         int i;
2442         int num_phy_chans_avail = 0;
2443         u32 val[2];
2444         int odd_even_bit = -2;
2445
2446         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2447         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2448
2449         for (i = 0; i < base->num_phy_chans; i++) {
2450                 base->phy_res[i].num = i;
2451                 odd_even_bit += 2 * ((i % 2) == 0);
2452                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2453                         /* Mark security only channels as occupied */
2454                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2455                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2456                 } else {
2457                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2458                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2459                         num_phy_chans_avail++;
2460                 }
2461                 spin_lock_init(&base->phy_res[i].lock);
2462         }
2463
2464         /* Mark disabled channels as occupied */
2465         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2466                 int chan = base->plat_data->disabled_channels[i];
2467
2468                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2469                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2470                 num_phy_chans_avail--;
2471         }
2472
2473         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2474                  num_phy_chans_avail, base->num_phy_chans);
2475
2476         /* Verify settings extended vs standard */
2477         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2478
2479         for (i = 0; i < base->num_phy_chans; i++) {
2480
2481                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2482                     (val[0] & 0x3) != 1)
2483                         dev_info(base->dev,
2484                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2485                                  __func__, i, val[0] & 0x3);
2486
2487                 val[0] = val[0] >> 2;
2488         }
2489
2490         return num_phy_chans_avail;
2491 }
2492
2493 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2494 {
2495         static const struct d40_reg_val dma_id_regs[] = {
2496                 /* Peripheral Id */
2497                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2498                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2499                 /*
2500                  * D40_DREG_PERIPHID2 Depends on HW revision:
2501                  *  MOP500/HREF ED has 0x0008,
2502                  *  ? has 0x0018,
2503                  *  HREF V1 has 0x0028
2504                  */
2505                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2506
2507                 /* PCell Id */
2508                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2509                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2510                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2511                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2512         };
2513         struct stedma40_platform_data *plat_data;
2514         struct clk *clk = NULL;
2515         void __iomem *virtbase = NULL;
2516         struct resource *res = NULL;
2517         struct d40_base *base = NULL;
2518         int num_log_chans = 0;
2519         int num_phy_chans;
2520         int i;
2521         u32 val;
2522         u32 rev;
2523
2524         clk = clk_get(&pdev->dev, NULL);
2525
2526         if (IS_ERR(clk)) {
2527                 dev_err(&pdev->dev, "[%s] No matching clock found\n",
2528                         __func__);
2529                 goto failure;
2530         }
2531
2532         clk_enable(clk);
2533
2534         /* Get IO for DMAC base address */
2535         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2536         if (!res)
2537                 goto failure;
2538
2539         if (request_mem_region(res->start, resource_size(res),
2540                                D40_NAME " I/O base") == NULL)
2541                 goto failure;
2542
2543         virtbase = ioremap(res->start, resource_size(res));
2544         if (!virtbase)
2545                 goto failure;
2546
2547         /* HW version check */
2548         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2549                 if (dma_id_regs[i].val !=
2550                     readl(virtbase + dma_id_regs[i].reg)) {
2551                         dev_err(&pdev->dev,
2552                                 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2553                                 __func__,
2554                                 dma_id_regs[i].val,
2555                                 dma_id_regs[i].reg,
2556                                 readl(virtbase + dma_id_regs[i].reg));
2557                         goto failure;
2558                 }
2559         }
2560
2561         /* Get silicon revision and designer */
2562         val = readl(virtbase + D40_DREG_PERIPHID2);
2563
2564         if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2565             D40_HW_DESIGNER) {
2566                 dev_err(&pdev->dev,
2567                         "[%s] Unknown designer! Got %x wanted %x\n",
2568                         __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2569                         D40_HW_DESIGNER);
2570                 goto failure;
2571         }
2572
2573         rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2574                 D40_DREG_PERIPHID2_REV_POS;
2575
2576         /* The number of physical channels on this HW */
2577         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2578
2579         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2580                  rev, res->start);
2581
2582         plat_data = pdev->dev.platform_data;
2583
2584         /* Count the number of logical channels in use */
2585         for (i = 0; i < plat_data->dev_len; i++)
2586                 if (plat_data->dev_rx[i] != 0)
2587                         num_log_chans++;
2588
2589         for (i = 0; i < plat_data->dev_len; i++)
2590                 if (plat_data->dev_tx[i] != 0)
2591                         num_log_chans++;
2592
2593         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2594                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2595                        sizeof(struct d40_chan), GFP_KERNEL);
2596
2597         if (base == NULL) {
2598                 dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2599                 goto failure;
2600         }
2601
2602         base->rev = rev;
2603         base->clk = clk;
2604         base->num_phy_chans = num_phy_chans;
2605         base->num_log_chans = num_log_chans;
2606         base->phy_start = res->start;
2607         base->phy_size = resource_size(res);
2608         base->virtbase = virtbase;
2609         base->plat_data = plat_data;
2610         base->dev = &pdev->dev;
2611         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2612         base->log_chans = &base->phy_chans[num_phy_chans];
2613
2614         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2615                                 GFP_KERNEL);
2616         if (!base->phy_res)
2617                 goto failure;
2618
2619         base->lookup_phy_chans = kzalloc(num_phy_chans *
2620                                          sizeof(struct d40_chan *),
2621                                          GFP_KERNEL);
2622         if (!base->lookup_phy_chans)
2623                 goto failure;
2624
2625         if (num_log_chans + plat_data->memcpy_len) {
2626                 /*
2627                  * The max number of logical channels are event lines for all
2628                  * src devices and dst devices
2629                  */
2630                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2631                                                  sizeof(struct d40_chan *),
2632                                                  GFP_KERNEL);
2633                 if (!base->lookup_log_chans)
2634                         goto failure;
2635         }
2636
2637         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2638                                             sizeof(struct d40_desc *) *
2639                                             D40_LCLA_LINK_PER_EVENT_GRP,
2640                                             GFP_KERNEL);
2641         if (!base->lcla_pool.alloc_map)
2642                 goto failure;
2643
2644         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2645                                             0, SLAB_HWCACHE_ALIGN,
2646                                             NULL);
2647         if (base->desc_slab == NULL)
2648                 goto failure;
2649
2650         return base;
2651
2652 failure:
2653         if (!IS_ERR(clk)) {
2654                 clk_disable(clk);
2655                 clk_put(clk);
2656         }
2657         if (virtbase)
2658                 iounmap(virtbase);
2659         if (res)
2660                 release_mem_region(res->start,
2661                                    resource_size(res));
2662         if (virtbase)
2663                 iounmap(virtbase);
2664
2665         if (base) {
2666                 kfree(base->lcla_pool.alloc_map);
2667                 kfree(base->lookup_log_chans);
2668                 kfree(base->lookup_phy_chans);
2669                 kfree(base->phy_res);
2670                 kfree(base);
2671         }
2672
2673         return NULL;
2674 }
2675
2676 static void __init d40_hw_init(struct d40_base *base)
2677 {
2678
2679         static const struct d40_reg_val dma_init_reg[] = {
2680                 /* Clock every part of the DMA block from start */
2681                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2682
2683                 /* Interrupts on all logical channels */
2684                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2685                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2686                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2687                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2688                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2689                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2690                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2691                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2692                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2693                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2694                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2695                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2696         };
2697         int i;
2698         u32 prmseo[2] = {0, 0};
2699         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2700         u32 pcmis = 0;
2701         u32 pcicr = 0;
2702
2703         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2704                 writel(dma_init_reg[i].val,
2705                        base->virtbase + dma_init_reg[i].reg);
2706
2707         /* Configure all our dma channels to default settings */
2708         for (i = 0; i < base->num_phy_chans; i++) {
2709
2710                 activeo[i % 2] = activeo[i % 2] << 2;
2711
2712                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2713                     == D40_ALLOC_PHY) {
2714                         activeo[i % 2] |= 3;
2715                         continue;
2716                 }
2717
2718                 /* Enable interrupt # */
2719                 pcmis = (pcmis << 1) | 1;
2720
2721                 /* Clear interrupt # */
2722                 pcicr = (pcicr << 1) | 1;
2723
2724                 /* Set channel to physical mode */
2725                 prmseo[i % 2] = prmseo[i % 2] << 2;
2726                 prmseo[i % 2] |= 1;
2727
2728         }
2729
2730         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2731         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2732         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2733         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2734
2735         /* Write which interrupt to enable */
2736         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2737
2738         /* Write which interrupt to clear */
2739         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2740
2741 }
2742
2743 static int __init d40_lcla_allocate(struct d40_base *base)
2744 {
2745         unsigned long *page_list;
2746         int i, j;
2747         int ret = 0;
2748
2749         /*
2750          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2751          * To full fill this hardware requirement without wasting 256 kb
2752          * we allocate pages until we get an aligned one.
2753          */
2754         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2755                             GFP_KERNEL);
2756
2757         if (!page_list) {
2758                 ret = -ENOMEM;
2759                 goto failure;
2760         }
2761
2762         /* Calculating how many pages that are required */
2763         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2764
2765         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2766                 page_list[i] = __get_free_pages(GFP_KERNEL,
2767                                                 base->lcla_pool.pages);
2768                 if (!page_list[i]) {
2769
2770                         dev_err(base->dev,
2771                                 "[%s] Failed to allocate %d pages.\n",
2772                                 __func__, base->lcla_pool.pages);
2773
2774                         for (j = 0; j < i; j++)
2775                                 free_pages(page_list[j], base->lcla_pool.pages);
2776                         goto failure;
2777                 }
2778
2779                 if ((virt_to_phys((void *)page_list[i]) &
2780                      (LCLA_ALIGNMENT - 1)) == 0)
2781                         break;
2782         }
2783
2784         for (j = 0; j < i; j++)
2785                 free_pages(page_list[j], base->lcla_pool.pages);
2786
2787         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2788                 base->lcla_pool.base = (void *)page_list[i];
2789         } else {
2790                 /*
2791                  * After many attempts and no succees with finding the correct
2792                  * alignment, try with allocating a big buffer.
2793                  */
2794                 dev_warn(base->dev,
2795                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2796                          __func__, base->lcla_pool.pages);
2797                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2798                                                          base->num_phy_chans +
2799                                                          LCLA_ALIGNMENT,
2800                                                          GFP_KERNEL);
2801                 if (!base->lcla_pool.base_unaligned) {
2802                         ret = -ENOMEM;
2803                         goto failure;
2804                 }
2805
2806                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2807                                                  LCLA_ALIGNMENT);
2808         }
2809
2810         writel(virt_to_phys(base->lcla_pool.base),
2811                base->virtbase + D40_DREG_LCLA);
2812 failure:
2813         kfree(page_list);
2814         return ret;
2815 }
2816
2817 static int __init d40_probe(struct platform_device *pdev)
2818 {
2819         int err;
2820         int ret = -ENOENT;
2821         struct d40_base *base;
2822         struct resource *res = NULL;
2823         int num_reserved_chans;
2824         u32 val;
2825
2826         base = d40_hw_detect_init(pdev);
2827
2828         if (!base)
2829                 goto failure;
2830
2831         num_reserved_chans = d40_phy_res_init(base);
2832
2833         platform_set_drvdata(pdev, base);
2834
2835         spin_lock_init(&base->interrupt_lock);
2836         spin_lock_init(&base->execmd_lock);
2837
2838         /* Get IO for logical channel parameter address */
2839         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2840         if (!res) {
2841                 ret = -ENOENT;
2842                 dev_err(&pdev->dev,
2843                         "[%s] No \"lcpa\" memory resource\n",
2844                         __func__);
2845                 goto failure;
2846         }
2847         base->lcpa_size = resource_size(res);
2848         base->phy_lcpa = res->start;
2849
2850         if (request_mem_region(res->start, resource_size(res),
2851                                D40_NAME " I/O lcpa") == NULL) {
2852                 ret = -EBUSY;
2853                 dev_err(&pdev->dev,
2854                         "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2855                         __func__, res->start, res->end);
2856                 goto failure;
2857         }
2858
2859         /* We make use of ESRAM memory for this. */
2860         val = readl(base->virtbase + D40_DREG_LCPA);
2861         if (res->start != val && val != 0) {
2862                 dev_warn(&pdev->dev,
2863                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2864                          __func__, val, res->start);
2865         } else
2866                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2867
2868         base->lcpa_base = ioremap(res->start, resource_size(res));
2869         if (!base->lcpa_base) {
2870                 ret = -ENOMEM;
2871                 dev_err(&pdev->dev,
2872                         "[%s] Failed to ioremap LCPA region\n",
2873                         __func__);
2874                 goto failure;
2875         }
2876
2877         ret = d40_lcla_allocate(base);
2878         if (ret) {
2879                 dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2880                         __func__);
2881                 goto failure;
2882         }
2883
2884         spin_lock_init(&base->lcla_pool.lock);
2885
2886         base->irq = platform_get_irq(pdev, 0);
2887
2888         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2889
2890         if (ret) {
2891                 dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2892                 goto failure;
2893         }
2894
2895         err = d40_dmaengine_init(base, num_reserved_chans);
2896         if (err)
2897                 goto failure;
2898
2899         d40_hw_init(base);
2900
2901         dev_info(base->dev, "initialized\n");
2902         return 0;
2903
2904 failure:
2905         if (base) {
2906                 if (base->desc_slab)
2907                         kmem_cache_destroy(base->desc_slab);
2908                 if (base->virtbase)
2909                         iounmap(base->virtbase);
2910                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2911                         free_pages((unsigned long)base->lcla_pool.base,
2912                                    base->lcla_pool.pages);
2913
2914                 kfree(base->lcla_pool.base_unaligned);
2915
2916                 if (base->phy_lcpa)
2917                         release_mem_region(base->phy_lcpa,
2918                                            base->lcpa_size);
2919                 if (base->phy_start)
2920                         release_mem_region(base->phy_start,
2921                                            base->phy_size);
2922                 if (base->clk) {
2923                         clk_disable(base->clk);
2924                         clk_put(base->clk);
2925                 }
2926
2927                 kfree(base->lcla_pool.alloc_map);
2928                 kfree(base->lookup_log_chans);
2929                 kfree(base->lookup_phy_chans);
2930                 kfree(base->phy_res);
2931                 kfree(base);
2932         }
2933
2934         dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2935         return ret;
2936 }
2937
2938 static struct platform_driver d40_driver = {
2939         .driver = {
2940                 .owner = THIS_MODULE,
2941                 .name  = D40_NAME,
2942         },
2943 };
2944
2945 int __init stedma40_init(void)
2946 {
2947         return platform_driver_probe(&d40_driver, d40_probe);
2948 }
2949 arch_initcall(stedma40_init);