OSDN Git Service

EDAC/mc: Report "unknown memory" on too many DIMM labels found
[tomoyo/tomoyo-test1.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 static int edac_report = EDAC_REPORTING_ENABLED;
47
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *      apei/ghes and i7core_edac to be used at the same time.
55  */
56 static const char *edac_mc_owner;
57
58 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
59 {
60         return container_of(e, struct mem_ctl_info, error_desc);
61 }
62
63 int edac_get_report_status(void)
64 {
65         return edac_report;
66 }
67 EXPORT_SYMBOL_GPL(edac_get_report_status);
68
69 void edac_set_report_status(int new)
70 {
71         if (new == EDAC_REPORTING_ENABLED ||
72             new == EDAC_REPORTING_DISABLED ||
73             new == EDAC_REPORTING_FORCE)
74                 edac_report = new;
75 }
76 EXPORT_SYMBOL_GPL(edac_set_report_status);
77
78 static int edac_report_set(const char *str, const struct kernel_param *kp)
79 {
80         if (!str)
81                 return -EINVAL;
82
83         if (!strncmp(str, "on", 2))
84                 edac_report = EDAC_REPORTING_ENABLED;
85         else if (!strncmp(str, "off", 3))
86                 edac_report = EDAC_REPORTING_DISABLED;
87         else if (!strncmp(str, "force", 5))
88                 edac_report = EDAC_REPORTING_FORCE;
89
90         return 0;
91 }
92
93 static int edac_report_get(char *buffer, const struct kernel_param *kp)
94 {
95         int ret = 0;
96
97         switch (edac_report) {
98         case EDAC_REPORTING_ENABLED:
99                 ret = sprintf(buffer, "on");
100                 break;
101         case EDAC_REPORTING_DISABLED:
102                 ret = sprintf(buffer, "off");
103                 break;
104         case EDAC_REPORTING_FORCE:
105                 ret = sprintf(buffer, "force");
106                 break;
107         default:
108                 ret = -EINVAL;
109                 break;
110         }
111
112         return ret;
113 }
114
115 static const struct kernel_param_ops edac_report_ops = {
116         .set = edac_report_set,
117         .get = edac_report_get,
118 };
119
120 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
121
122 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
123                                      unsigned int len)
124 {
125         struct mem_ctl_info *mci = dimm->mci;
126         int i, n, count = 0;
127         char *p = buf;
128
129         for (i = 0; i < mci->n_layers; i++) {
130                 n = snprintf(p, len, "%s %d ",
131                               edac_layer_name[mci->layers[i].type],
132                               dimm->location[i]);
133                 p += n;
134                 len -= n;
135                 count += n;
136                 if (!len)
137                         break;
138         }
139
140         return count;
141 }
142
143 #ifdef CONFIG_EDAC_DEBUG
144
145 static void edac_mc_dump_channel(struct rank_info *chan)
146 {
147         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
148         edac_dbg(4, "    channel = %p\n", chan);
149         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
150         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
151 }
152
153 static void edac_mc_dump_dimm(struct dimm_info *dimm)
154 {
155         char location[80];
156
157         if (!dimm->nr_pages)
158                 return;
159
160         edac_dimm_info_location(dimm, location, sizeof(location));
161
162         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
163                  dimm->mci->csbased ? "rank" : "dimm",
164                  dimm->idx, location, dimm->csrow, dimm->cschannel);
165         edac_dbg(4, "  dimm = %p\n", dimm);
166         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
167         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
168         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
169         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
170 }
171
172 static void edac_mc_dump_csrow(struct csrow_info *csrow)
173 {
174         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
175         edac_dbg(4, "  csrow = %p\n", csrow);
176         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
177         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
178         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
179         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
180         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
181         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
182 }
183
184 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
185 {
186         edac_dbg(3, "\tmci = %p\n", mci);
187         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
188         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
189         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
190         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
191         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
192                  mci->nr_csrows, mci->csrows);
193         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
194                  mci->tot_dimms, mci->dimms);
195         edac_dbg(3, "\tdev = %p\n", mci->pdev);
196         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
197                  mci->mod_name, mci->ctl_name);
198         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
199 }
200
201 #endif                          /* CONFIG_EDAC_DEBUG */
202
203 const char * const edac_mem_types[] = {
204         [MEM_EMPTY]     = "Empty",
205         [MEM_RESERVED]  = "Reserved",
206         [MEM_UNKNOWN]   = "Unknown",
207         [MEM_FPM]       = "FPM",
208         [MEM_EDO]       = "EDO",
209         [MEM_BEDO]      = "BEDO",
210         [MEM_SDR]       = "Unbuffered-SDR",
211         [MEM_RDR]       = "Registered-SDR",
212         [MEM_DDR]       = "Unbuffered-DDR",
213         [MEM_RDDR]      = "Registered-DDR",
214         [MEM_RMBS]      = "RMBS",
215         [MEM_DDR2]      = "Unbuffered-DDR2",
216         [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
217         [MEM_RDDR2]     = "Registered-DDR2",
218         [MEM_XDR]       = "XDR",
219         [MEM_DDR3]      = "Unbuffered-DDR3",
220         [MEM_RDDR3]     = "Registered-DDR3",
221         [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
222         [MEM_DDR4]      = "Unbuffered-DDR4",
223         [MEM_RDDR4]     = "Registered-DDR4",
224         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
225         [MEM_NVDIMM]    = "Non-volatile-RAM",
226 };
227 EXPORT_SYMBOL_GPL(edac_mem_types);
228
229 /**
230  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
231  * @p:          pointer to a pointer with the memory offset to be used. At
232  *              return, this will be incremented to point to the next offset
233  * @size:       Size of the data structure to be reserved
234  * @n_elems:    Number of elements that should be reserved
235  *
236  * If 'size' is a constant, the compiler will optimize this whole function
237  * down to either a no-op or the addition of a constant to the value of '*p'.
238  *
239  * The 'p' pointer is absolutely needed to keep the proper advancing
240  * further in memory to the proper offsets when allocating the struct along
241  * with its embedded structs, as edac_device_alloc_ctl_info() does it
242  * above, for example.
243  *
244  * At return, the pointer 'p' will be incremented to be used on a next call
245  * to this function.
246  */
247 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
248 {
249         unsigned int align, r;
250         void *ptr = *p;
251
252         *p += size * n_elems;
253
254         /*
255          * 'p' can possibly be an unaligned item X such that sizeof(X) is
256          * 'size'.  Adjust 'p' so that its alignment is at least as
257          * stringent as what the compiler would provide for X and return
258          * the aligned result.
259          * Here we assume that the alignment of a "long long" is the most
260          * stringent alignment that the compiler will ever provide by default.
261          * As far as I know, this is a reasonable assumption.
262          */
263         if (size > sizeof(long))
264                 align = sizeof(long long);
265         else if (size > sizeof(int))
266                 align = sizeof(long);
267         else if (size > sizeof(short))
268                 align = sizeof(int);
269         else if (size > sizeof(char))
270                 align = sizeof(short);
271         else
272                 return (char *)ptr;
273
274         r = (unsigned long)p % align;
275
276         if (r == 0)
277                 return (char *)ptr;
278
279         *p += align - r;
280
281         return (void *)(((unsigned long)ptr) + align - r);
282 }
283
284 static void _edac_mc_free(struct mem_ctl_info *mci)
285 {
286         put_device(&mci->dev);
287 }
288
289 static void mci_release(struct device *dev)
290 {
291         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
292         struct csrow_info *csr;
293         int i, chn, row;
294
295         if (mci->dimms) {
296                 for (i = 0; i < mci->tot_dimms; i++)
297                         kfree(mci->dimms[i]);
298                 kfree(mci->dimms);
299         }
300
301         if (mci->csrows) {
302                 for (row = 0; row < mci->nr_csrows; row++) {
303                         csr = mci->csrows[row];
304                         if (!csr)
305                                 continue;
306
307                         if (csr->channels) {
308                                 for (chn = 0; chn < mci->num_cschannel; chn++)
309                                         kfree(csr->channels[chn]);
310                                 kfree(csr->channels);
311                         }
312                         kfree(csr);
313                 }
314                 kfree(mci->csrows);
315         }
316         kfree(mci);
317 }
318
319 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
320 {
321         unsigned int tot_channels = mci->num_cschannel;
322         unsigned int tot_csrows = mci->nr_csrows;
323         unsigned int row, chn;
324
325         /*
326          * Alocate and fill the csrow/channels structs
327          */
328         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
329         if (!mci->csrows)
330                 return -ENOMEM;
331
332         for (row = 0; row < tot_csrows; row++) {
333                 struct csrow_info *csr;
334
335                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
336                 if (!csr)
337                         return -ENOMEM;
338
339                 mci->csrows[row] = csr;
340                 csr->csrow_idx = row;
341                 csr->mci = mci;
342                 csr->nr_channels = tot_channels;
343                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
344                                         GFP_KERNEL);
345                 if (!csr->channels)
346                         return -ENOMEM;
347
348                 for (chn = 0; chn < tot_channels; chn++) {
349                         struct rank_info *chan;
350
351                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
352                         if (!chan)
353                                 return -ENOMEM;
354
355                         csr->channels[chn] = chan;
356                         chan->chan_idx = chn;
357                         chan->csrow = csr;
358                 }
359         }
360
361         return 0;
362 }
363
364 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
365 {
366         unsigned int pos[EDAC_MAX_LAYERS];
367         unsigned int row, chn, idx;
368         int layer;
369         void *p;
370
371         /*
372          * Allocate and fill the dimm structs
373          */
374         mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
375         if (!mci->dimms)
376                 return -ENOMEM;
377
378         memset(&pos, 0, sizeof(pos));
379         row = 0;
380         chn = 0;
381         for (idx = 0; idx < mci->tot_dimms; idx++) {
382                 struct dimm_info *dimm;
383                 struct rank_info *chan;
384                 int n, len;
385
386                 chan = mci->csrows[row]->channels[chn];
387
388                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
389                 if (!dimm)
390                         return -ENOMEM;
391                 mci->dimms[idx] = dimm;
392                 dimm->mci = mci;
393                 dimm->idx = idx;
394
395                 /*
396                  * Copy DIMM location and initialize it.
397                  */
398                 len = sizeof(dimm->label);
399                 p = dimm->label;
400                 n = snprintf(p, len, "mc#%u", mci->mc_idx);
401                 p += n;
402                 len -= n;
403                 for (layer = 0; layer < mci->n_layers; layer++) {
404                         n = snprintf(p, len, "%s#%u",
405                                      edac_layer_name[mci->layers[layer].type],
406                                      pos[layer]);
407                         p += n;
408                         len -= n;
409                         dimm->location[layer] = pos[layer];
410
411                         if (len <= 0)
412                                 break;
413                 }
414
415                 /* Link it to the csrows old API data */
416                 chan->dimm = dimm;
417                 dimm->csrow = row;
418                 dimm->cschannel = chn;
419
420                 /* Increment csrow location */
421                 if (mci->layers[0].is_virt_csrow) {
422                         chn++;
423                         if (chn == mci->num_cschannel) {
424                                 chn = 0;
425                                 row++;
426                         }
427                 } else {
428                         row++;
429                         if (row == mci->nr_csrows) {
430                                 row = 0;
431                                 chn++;
432                         }
433                 }
434
435                 /* Increment dimm location */
436                 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
437                         pos[layer]++;
438                         if (pos[layer] < mci->layers[layer].size)
439                                 break;
440                         pos[layer] = 0;
441                 }
442         }
443
444         return 0;
445 }
446
447 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
448                                    unsigned int n_layers,
449                                    struct edac_mc_layer *layers,
450                                    unsigned int sz_pvt)
451 {
452         struct mem_ctl_info *mci;
453         struct edac_mc_layer *layer;
454         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
455         unsigned int idx, size, tot_dimms = 1, count = 1;
456         unsigned int tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
457         void *pvt, *ptr = NULL;
458         int i;
459         bool per_rank = false;
460
461         if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
462                 return NULL;
463
464         /*
465          * Calculate the total amount of dimms and csrows/cschannels while
466          * in the old API emulation mode
467          */
468         for (idx = 0; idx < n_layers; idx++) {
469                 tot_dimms *= layers[idx].size;
470
471                 if (layers[idx].is_virt_csrow)
472                         tot_csrows *= layers[idx].size;
473                 else
474                         tot_channels *= layers[idx].size;
475
476                 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
477                         per_rank = true;
478         }
479
480         /* Figure out the offsets of the various items from the start of an mc
481          * structure.  We want the alignment of each item to be at least as
482          * stringent as what the compiler would provide if we could simply
483          * hardcode everything into a single struct.
484          */
485         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
486         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
487         for (i = 0; i < n_layers; i++) {
488                 count *= layers[i].size;
489                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
490                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
491                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
492                 tot_errcount += 2 * count;
493         }
494
495         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
496         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
497         size = ((unsigned long)pvt) + sz_pvt;
498
499         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
500                  size,
501                  tot_dimms,
502                  per_rank ? "ranks" : "dimms",
503                  tot_csrows * tot_channels);
504
505         mci = kzalloc(size, GFP_KERNEL);
506         if (mci == NULL)
507                 return NULL;
508
509         mci->dev.release = mci_release;
510         device_initialize(&mci->dev);
511
512         /* Adjust pointers so they point within the memory we just allocated
513          * rather than an imaginary chunk of memory located at address 0.
514          */
515         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
516         for (i = 0; i < n_layers; i++) {
517                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
518                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
519         }
520         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
521
522         /* setup index and various internal pointers */
523         mci->mc_idx = mc_num;
524         mci->tot_dimms = tot_dimms;
525         mci->pvt_info = pvt;
526         mci->n_layers = n_layers;
527         mci->layers = layer;
528         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
529         mci->nr_csrows = tot_csrows;
530         mci->num_cschannel = tot_channels;
531         mci->csbased = per_rank;
532
533         if (edac_mc_alloc_csrows(mci))
534                 goto error;
535
536         if (edac_mc_alloc_dimms(mci))
537                 goto error;
538
539         mci->op_state = OP_ALLOC;
540
541         return mci;
542
543 error:
544         _edac_mc_free(mci);
545
546         return NULL;
547 }
548 EXPORT_SYMBOL_GPL(edac_mc_alloc);
549
550 void edac_mc_free(struct mem_ctl_info *mci)
551 {
552         edac_dbg(1, "\n");
553
554         _edac_mc_free(mci);
555 }
556 EXPORT_SYMBOL_GPL(edac_mc_free);
557
558 bool edac_has_mcs(void)
559 {
560         bool ret;
561
562         mutex_lock(&mem_ctls_mutex);
563
564         ret = list_empty(&mc_devices);
565
566         mutex_unlock(&mem_ctls_mutex);
567
568         return !ret;
569 }
570 EXPORT_SYMBOL_GPL(edac_has_mcs);
571
572 /* Caller must hold mem_ctls_mutex */
573 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
574 {
575         struct mem_ctl_info *mci;
576         struct list_head *item;
577
578         edac_dbg(3, "\n");
579
580         list_for_each(item, &mc_devices) {
581                 mci = list_entry(item, struct mem_ctl_info, link);
582
583                 if (mci->pdev == dev)
584                         return mci;
585         }
586
587         return NULL;
588 }
589
590 /**
591  * find_mci_by_dev
592  *
593  *      scan list of controllers looking for the one that manages
594  *      the 'dev' device
595  * @dev: pointer to a struct device related with the MCI
596  */
597 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
598 {
599         struct mem_ctl_info *ret;
600
601         mutex_lock(&mem_ctls_mutex);
602         ret = __find_mci_by_dev(dev);
603         mutex_unlock(&mem_ctls_mutex);
604
605         return ret;
606 }
607 EXPORT_SYMBOL_GPL(find_mci_by_dev);
608
609 /*
610  * edac_mc_workq_function
611  *      performs the operation scheduled by a workq request
612  */
613 static void edac_mc_workq_function(struct work_struct *work_req)
614 {
615         struct delayed_work *d_work = to_delayed_work(work_req);
616         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
617
618         mutex_lock(&mem_ctls_mutex);
619
620         if (mci->op_state != OP_RUNNING_POLL) {
621                 mutex_unlock(&mem_ctls_mutex);
622                 return;
623         }
624
625         if (edac_op_state == EDAC_OPSTATE_POLL)
626                 mci->edac_check(mci);
627
628         mutex_unlock(&mem_ctls_mutex);
629
630         /* Queue ourselves again. */
631         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
632 }
633
634 /*
635  * edac_mc_reset_delay_period(unsigned long value)
636  *
637  *      user space has updated our poll period value, need to
638  *      reset our workq delays
639  */
640 void edac_mc_reset_delay_period(unsigned long value)
641 {
642         struct mem_ctl_info *mci;
643         struct list_head *item;
644
645         mutex_lock(&mem_ctls_mutex);
646
647         list_for_each(item, &mc_devices) {
648                 mci = list_entry(item, struct mem_ctl_info, link);
649
650                 if (mci->op_state == OP_RUNNING_POLL)
651                         edac_mod_work(&mci->work, value);
652         }
653         mutex_unlock(&mem_ctls_mutex);
654 }
655
656
657
658 /* Return 0 on success, 1 on failure.
659  * Before calling this function, caller must
660  * assign a unique value to mci->mc_idx.
661  *
662  *      locking model:
663  *
664  *              called with the mem_ctls_mutex lock held
665  */
666 static int add_mc_to_global_list(struct mem_ctl_info *mci)
667 {
668         struct list_head *item, *insert_before;
669         struct mem_ctl_info *p;
670
671         insert_before = &mc_devices;
672
673         p = __find_mci_by_dev(mci->pdev);
674         if (unlikely(p != NULL))
675                 goto fail0;
676
677         list_for_each(item, &mc_devices) {
678                 p = list_entry(item, struct mem_ctl_info, link);
679
680                 if (p->mc_idx >= mci->mc_idx) {
681                         if (unlikely(p->mc_idx == mci->mc_idx))
682                                 goto fail1;
683
684                         insert_before = item;
685                         break;
686                 }
687         }
688
689         list_add_tail_rcu(&mci->link, insert_before);
690         return 0;
691
692 fail0:
693         edac_printk(KERN_WARNING, EDAC_MC,
694                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
695                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
696         return 1;
697
698 fail1:
699         edac_printk(KERN_WARNING, EDAC_MC,
700                 "bug in low-level driver: attempt to assign\n"
701                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
702         return 1;
703 }
704
705 static int del_mc_from_global_list(struct mem_ctl_info *mci)
706 {
707         list_del_rcu(&mci->link);
708
709         /* these are for safe removal of devices from global list while
710          * NMI handlers may be traversing list
711          */
712         synchronize_rcu();
713         INIT_LIST_HEAD(&mci->link);
714
715         return list_empty(&mc_devices);
716 }
717
718 struct mem_ctl_info *edac_mc_find(int idx)
719 {
720         struct mem_ctl_info *mci;
721         struct list_head *item;
722
723         mutex_lock(&mem_ctls_mutex);
724
725         list_for_each(item, &mc_devices) {
726                 mci = list_entry(item, struct mem_ctl_info, link);
727                 if (mci->mc_idx == idx)
728                         goto unlock;
729         }
730
731         mci = NULL;
732 unlock:
733         mutex_unlock(&mem_ctls_mutex);
734         return mci;
735 }
736 EXPORT_SYMBOL(edac_mc_find);
737
738 const char *edac_get_owner(void)
739 {
740         return edac_mc_owner;
741 }
742 EXPORT_SYMBOL_GPL(edac_get_owner);
743
744 /* FIXME - should a warning be printed if no error detection? correction? */
745 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
746                                const struct attribute_group **groups)
747 {
748         int ret = -EINVAL;
749         edac_dbg(0, "\n");
750
751 #ifdef CONFIG_EDAC_DEBUG
752         if (edac_debug_level >= 3)
753                 edac_mc_dump_mci(mci);
754
755         if (edac_debug_level >= 4) {
756                 struct dimm_info *dimm;
757                 int i;
758
759                 for (i = 0; i < mci->nr_csrows; i++) {
760                         struct csrow_info *csrow = mci->csrows[i];
761                         u32 nr_pages = 0;
762                         int j;
763
764                         for (j = 0; j < csrow->nr_channels; j++)
765                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
766                         if (!nr_pages)
767                                 continue;
768                         edac_mc_dump_csrow(csrow);
769                         for (j = 0; j < csrow->nr_channels; j++)
770                                 if (csrow->channels[j]->dimm->nr_pages)
771                                         edac_mc_dump_channel(csrow->channels[j]);
772                 }
773
774                 mci_for_each_dimm(mci, dimm)
775                         edac_mc_dump_dimm(dimm);
776         }
777 #endif
778         mutex_lock(&mem_ctls_mutex);
779
780         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
781                 ret = -EPERM;
782                 goto fail0;
783         }
784
785         if (add_mc_to_global_list(mci))
786                 goto fail0;
787
788         /* set load time so that error rate can be tracked */
789         mci->start_time = jiffies;
790
791         mci->bus = edac_get_sysfs_subsys();
792
793         if (edac_create_sysfs_mci_device(mci, groups)) {
794                 edac_mc_printk(mci, KERN_WARNING,
795                         "failed to create sysfs device\n");
796                 goto fail1;
797         }
798
799         if (mci->edac_check) {
800                 mci->op_state = OP_RUNNING_POLL;
801
802                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
803                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
804
805         } else {
806                 mci->op_state = OP_RUNNING_INTERRUPT;
807         }
808
809         /* Report action taken */
810         edac_mc_printk(mci, KERN_INFO,
811                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
812                 mci->mod_name, mci->ctl_name, mci->dev_name,
813                 edac_op_state_to_string(mci->op_state));
814
815         edac_mc_owner = mci->mod_name;
816
817         mutex_unlock(&mem_ctls_mutex);
818         return 0;
819
820 fail1:
821         del_mc_from_global_list(mci);
822
823 fail0:
824         mutex_unlock(&mem_ctls_mutex);
825         return ret;
826 }
827 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
828
829 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
830 {
831         struct mem_ctl_info *mci;
832
833         edac_dbg(0, "\n");
834
835         mutex_lock(&mem_ctls_mutex);
836
837         /* find the requested mci struct in the global list */
838         mci = __find_mci_by_dev(dev);
839         if (mci == NULL) {
840                 mutex_unlock(&mem_ctls_mutex);
841                 return NULL;
842         }
843
844         /* mark MCI offline: */
845         mci->op_state = OP_OFFLINE;
846
847         if (del_mc_from_global_list(mci))
848                 edac_mc_owner = NULL;
849
850         mutex_unlock(&mem_ctls_mutex);
851
852         if (mci->edac_check)
853                 edac_stop_work(&mci->work);
854
855         /* remove from sysfs */
856         edac_remove_sysfs_mci_device(mci);
857
858         edac_printk(KERN_INFO, EDAC_MC,
859                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
860                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
861
862         return mci;
863 }
864 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
865
866 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
867                                 u32 size)
868 {
869         struct page *pg;
870         void *virt_addr;
871         unsigned long flags = 0;
872
873         edac_dbg(3, "\n");
874
875         /* ECC error page was not in our memory. Ignore it. */
876         if (!pfn_valid(page))
877                 return;
878
879         /* Find the actual page structure then map it and fix */
880         pg = pfn_to_page(page);
881
882         if (PageHighMem(pg))
883                 local_irq_save(flags);
884
885         virt_addr = kmap_atomic(pg);
886
887         /* Perform architecture specific atomic scrub operation */
888         edac_atomic_scrub(virt_addr + offset, size);
889
890         /* Unmap and complete */
891         kunmap_atomic(virt_addr);
892
893         if (PageHighMem(pg))
894                 local_irq_restore(flags);
895 }
896
897 /* FIXME - should return -1 */
898 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
899 {
900         struct csrow_info **csrows = mci->csrows;
901         int row, i, j, n;
902
903         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
904         row = -1;
905
906         for (i = 0; i < mci->nr_csrows; i++) {
907                 struct csrow_info *csrow = csrows[i];
908                 n = 0;
909                 for (j = 0; j < csrow->nr_channels; j++) {
910                         struct dimm_info *dimm = csrow->channels[j]->dimm;
911                         n += dimm->nr_pages;
912                 }
913                 if (n == 0)
914                         continue;
915
916                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
917                          mci->mc_idx,
918                          csrow->first_page, page, csrow->last_page,
919                          csrow->page_mask);
920
921                 if ((page >= csrow->first_page) &&
922                     (page <= csrow->last_page) &&
923                     ((page & csrow->page_mask) ==
924                      (csrow->first_page & csrow->page_mask))) {
925                         row = i;
926                         break;
927                 }
928         }
929
930         if (row == -1)
931                 edac_mc_printk(mci, KERN_ERR,
932                         "could not look up page error address %lx\n",
933                         (unsigned long)page);
934
935         return row;
936 }
937 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
938
939 const char *edac_layer_name[] = {
940         [EDAC_MC_LAYER_BRANCH] = "branch",
941         [EDAC_MC_LAYER_CHANNEL] = "channel",
942         [EDAC_MC_LAYER_SLOT] = "slot",
943         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
944         [EDAC_MC_LAYER_ALL_MEM] = "memory",
945 };
946 EXPORT_SYMBOL_GPL(edac_layer_name);
947
948 static void edac_inc_ce_error(struct mem_ctl_info *mci,
949                               bool enable_per_layer_report,
950                               const int pos[EDAC_MAX_LAYERS],
951                               const u16 count)
952 {
953         int i, index = 0;
954
955         mci->ce_mc += count;
956
957         if (!enable_per_layer_report) {
958                 mci->ce_noinfo_count += count;
959                 return;
960         }
961
962         for (i = 0; i < mci->n_layers; i++) {
963                 if (pos[i] < 0)
964                         break;
965                 index += pos[i];
966                 mci->ce_per_layer[i][index] += count;
967
968                 if (i < mci->n_layers - 1)
969                         index *= mci->layers[i + 1].size;
970         }
971 }
972
973 static void edac_inc_ue_error(struct mem_ctl_info *mci,
974                                     bool enable_per_layer_report,
975                                     const int pos[EDAC_MAX_LAYERS],
976                                     const u16 count)
977 {
978         int i, index = 0;
979
980         mci->ue_mc += count;
981
982         if (!enable_per_layer_report) {
983                 mci->ue_noinfo_count += count;
984                 return;
985         }
986
987         for (i = 0; i < mci->n_layers; i++) {
988                 if (pos[i] < 0)
989                         break;
990                 index += pos[i];
991                 mci->ue_per_layer[i][index] += count;
992
993                 if (i < mci->n_layers - 1)
994                         index *= mci->layers[i + 1].size;
995         }
996 }
997
998 static void edac_ce_error(struct mem_ctl_info *mci,
999                           const u16 error_count,
1000                           const int pos[EDAC_MAX_LAYERS],
1001                           const char *msg,
1002                           const char *location,
1003                           const char *label,
1004                           const char *detail,
1005                           const char *other_detail,
1006                           const bool enable_per_layer_report,
1007                           const unsigned long page_frame_number,
1008                           const unsigned long offset_in_page,
1009                           long grain)
1010 {
1011         unsigned long remapped_page;
1012         char *msg_aux = "";
1013
1014         if (*msg)
1015                 msg_aux = " ";
1016
1017         if (edac_mc_get_log_ce()) {
1018                 if (other_detail && *other_detail)
1019                         edac_mc_printk(mci, KERN_WARNING,
1020                                        "%d CE %s%son %s (%s %s - %s)\n",
1021                                        error_count, msg, msg_aux, label,
1022                                        location, detail, other_detail);
1023                 else
1024                         edac_mc_printk(mci, KERN_WARNING,
1025                                        "%d CE %s%son %s (%s %s)\n",
1026                                        error_count, msg, msg_aux, label,
1027                                        location, detail);
1028         }
1029         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1030
1031         if (mci->scrub_mode == SCRUB_SW_SRC) {
1032                 /*
1033                         * Some memory controllers (called MCs below) can remap
1034                         * memory so that it is still available at a different
1035                         * address when PCI devices map into memory.
1036                         * MC's that can't do this, lose the memory where PCI
1037                         * devices are mapped. This mapping is MC-dependent
1038                         * and so we call back into the MC driver for it to
1039                         * map the MC page to a physical (CPU) page which can
1040                         * then be mapped to a virtual page - which can then
1041                         * be scrubbed.
1042                         */
1043                 remapped_page = mci->ctl_page_to_phys ?
1044                         mci->ctl_page_to_phys(mci, page_frame_number) :
1045                         page_frame_number;
1046
1047                 edac_mc_scrub_block(remapped_page,
1048                                         offset_in_page, grain);
1049         }
1050 }
1051
1052 static void edac_ue_error(struct mem_ctl_info *mci,
1053                           const u16 error_count,
1054                           const int pos[EDAC_MAX_LAYERS],
1055                           const char *msg,
1056                           const char *location,
1057                           const char *label,
1058                           const char *detail,
1059                           const char *other_detail,
1060                           const bool enable_per_layer_report)
1061 {
1062         char *msg_aux = "";
1063
1064         if (*msg)
1065                 msg_aux = " ";
1066
1067         if (edac_mc_get_log_ue()) {
1068                 if (other_detail && *other_detail)
1069                         edac_mc_printk(mci, KERN_WARNING,
1070                                        "%d UE %s%son %s (%s %s - %s)\n",
1071                                        error_count, msg, msg_aux, label,
1072                                        location, detail, other_detail);
1073                 else
1074                         edac_mc_printk(mci, KERN_WARNING,
1075                                        "%d UE %s%son %s (%s %s)\n",
1076                                        error_count, msg, msg_aux, label,
1077                                        location, detail);
1078         }
1079
1080         if (edac_mc_get_panic_on_ue()) {
1081                 if (other_detail && *other_detail)
1082                         panic("UE %s%son %s (%s%s - %s)\n",
1083                               msg, msg_aux, label, location, detail, other_detail);
1084                 else
1085                         panic("UE %s%son %s (%s%s)\n",
1086                               msg, msg_aux, label, location, detail);
1087         }
1088
1089         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1090 }
1091
1092 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
1093 {
1094         struct mem_ctl_info *mci = error_desc_to_mci(e);
1095         enum hw_event_mc_err_type type = e->type;
1096         u16 count = e->error_count;
1097
1098         if (row < 0)
1099                 return;
1100
1101         edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1102
1103         if (type == HW_EVENT_ERR_CORRECTED) {
1104                 mci->csrows[row]->ce_count += count;
1105                 if (chan >= 0)
1106                         mci->csrows[row]->channels[chan]->ce_count += count;
1107         } else {
1108                 mci->csrows[row]->ue_count += count;
1109         }
1110 }
1111
1112 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
1113 {
1114         struct mem_ctl_info *mci = error_desc_to_mci(e);
1115         char detail[80];
1116         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1117         u8 grain_bits;
1118
1119         /* Sanity-check driver-supplied grain value. */
1120         if (WARN_ON_ONCE(!e->grain))
1121                 e->grain = 1;
1122
1123         grain_bits = fls_long(e->grain - 1);
1124
1125         /* Report the error via the trace interface */
1126         if (IS_ENABLED(CONFIG_RAS))
1127                 trace_mc_event(e->type, e->msg, e->label, e->error_count,
1128                                mci->mc_idx, e->top_layer, e->mid_layer,
1129                                e->low_layer,
1130                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1131                                grain_bits, e->syndrome, e->other_detail);
1132
1133         /* Memory type dependent details about the error */
1134         if (e->type == HW_EVENT_ERR_CORRECTED) {
1135                 snprintf(detail, sizeof(detail),
1136                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1137                         e->page_frame_number, e->offset_in_page,
1138                         e->grain, e->syndrome);
1139                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1140                               detail, e->other_detail, e->enable_per_layer_report,
1141                               e->page_frame_number, e->offset_in_page, e->grain);
1142         } else {
1143                 snprintf(detail, sizeof(detail),
1144                         "page:0x%lx offset:0x%lx grain:%ld",
1145                         e->page_frame_number, e->offset_in_page, e->grain);
1146
1147                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1148                               detail, e->other_detail, e->enable_per_layer_report);
1149         }
1150
1151
1152 }
1153 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1154
1155 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1156                           struct mem_ctl_info *mci,
1157                           const u16 error_count,
1158                           const unsigned long page_frame_number,
1159                           const unsigned long offset_in_page,
1160                           const unsigned long syndrome,
1161                           const int top_layer,
1162                           const int mid_layer,
1163                           const int low_layer,
1164                           const char *msg,
1165                           const char *other_detail)
1166 {
1167         struct dimm_info *dimm;
1168         char *p;
1169         int row = -1, chan = -1;
1170         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1171         int i, n_labels = 0;
1172         struct edac_raw_error_desc *e = &mci->error_desc;
1173
1174         edac_dbg(3, "MC%d\n", mci->mc_idx);
1175
1176         /* Fills the error report buffer */
1177         memset(e, 0, sizeof (*e));
1178         e->error_count = error_count;
1179         e->type = type;
1180         e->top_layer = top_layer;
1181         e->mid_layer = mid_layer;
1182         e->low_layer = low_layer;
1183         e->page_frame_number = page_frame_number;
1184         e->offset_in_page = offset_in_page;
1185         e->syndrome = syndrome;
1186         e->msg = msg;
1187         e->other_detail = other_detail;
1188
1189         /*
1190          * Check if the event report is consistent and if the memory
1191          * location is known. If it is known, enable_per_layer_report will be
1192          * true, the DIMM(s) label info will be filled and the per-layer
1193          * error counters will be incremented.
1194          */
1195         for (i = 0; i < mci->n_layers; i++) {
1196                 if (pos[i] >= (int)mci->layers[i].size) {
1197
1198                         edac_mc_printk(mci, KERN_ERR,
1199                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1200                                        edac_layer_name[mci->layers[i].type],
1201                                        pos[i], mci->layers[i].size);
1202                         /*
1203                          * Instead of just returning it, let's use what's
1204                          * known about the error. The increment routines and
1205                          * the DIMM filter logic will do the right thing by
1206                          * pointing the likely damaged DIMMs.
1207                          */
1208                         pos[i] = -1;
1209                 }
1210                 if (pos[i] >= 0)
1211                         e->enable_per_layer_report = true;
1212         }
1213
1214         /*
1215          * Get the dimm label/grain that applies to the match criteria.
1216          * As the error algorithm may not be able to point to just one memory
1217          * stick, the logic here will get all possible labels that could
1218          * pottentially be affected by the error.
1219          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1220          * to have only the MC channel and the MC dimm (also called "branch")
1221          * but the channel is not known, as the memory is arranged in pairs,
1222          * where each memory belongs to a separate channel within the same
1223          * branch.
1224          */
1225         p = e->label;
1226         *p = '\0';
1227
1228         mci_for_each_dimm(mci, dimm) {
1229                 if (top_layer >= 0 && top_layer != dimm->location[0])
1230                         continue;
1231                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1232                         continue;
1233                 if (low_layer >= 0 && low_layer != dimm->location[2])
1234                         continue;
1235
1236                 /* get the max grain, over the error match range */
1237                 if (dimm->grain > e->grain)
1238                         e->grain = dimm->grain;
1239
1240                 /*
1241                  * If the error is memory-controller wide, there's no need to
1242                  * seek for the affected DIMMs because the whole
1243                  * channel/memory controller/...  may be affected.
1244                  * Also, don't show errors for empty DIMM slots.
1245                  */
1246                 if (!dimm->nr_pages)
1247                         continue;
1248
1249                 n_labels++;
1250                 if (n_labels > EDAC_MAX_LABELS) {
1251                         p = e->label;
1252                         *p = '\0';
1253                 } else {
1254                         if (p != e->label) {
1255                                 strcpy(p, OTHER_LABEL);
1256                                 p += strlen(OTHER_LABEL);
1257                         }
1258                         strcpy(p, dimm->label);
1259                         p += strlen(p);
1260                 }
1261
1262                 /*
1263                  * get csrow/channel of the DIMM, in order to allow
1264                  * incrementing the compat API counters
1265                  */
1266                 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1267                         mci->csbased ? "rank" : "dimm",
1268                         dimm->csrow, dimm->cschannel);
1269                 if (row == -1)
1270                         row = dimm->csrow;
1271                 else if (row >= 0 && row != dimm->csrow)
1272                         row = -2;
1273
1274                 if (chan == -1)
1275                         chan = dimm->cschannel;
1276                 else if (chan >= 0 && chan != dimm->cschannel)
1277                         chan = -2;
1278         }
1279
1280         if (!e->enable_per_layer_report)
1281                 strcpy(e->label, "any memory");
1282         else if (!*e->label)
1283                 strcpy(e->label, "unknown memory");
1284
1285         edac_inc_csrow(e, row, chan);
1286
1287         /* Fill the RAM location data */
1288         p = e->location;
1289
1290         for (i = 0; i < mci->n_layers; i++) {
1291                 if (pos[i] < 0)
1292                         continue;
1293
1294                 p += sprintf(p, "%s:%d ",
1295                              edac_layer_name[mci->layers[i].type],
1296                              pos[i]);
1297         }
1298         if (p > e->location)
1299                 *(p - 1) = '\0';
1300
1301         edac_raw_mc_handle_error(e);
1302 }
1303 EXPORT_SYMBOL_GPL(edac_mc_handle_error);