OSDN Git Service

clk: at91: fix masterck name
[uclinux-h8/linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29
30 #include "sdma0/sdma0_4_2_offset.h"
31 #include "sdma0/sdma0_4_2_sh_mask.h"
32 #include "sdma1/sdma1_4_2_offset.h"
33 #include "sdma1/sdma1_4_2_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43
44 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
45 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
53
54 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
55 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
56
57 #define WREG32_SDMA(instance, offset, value) \
58         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
59 #define RREG32_SDMA(instance, offset) \
60         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
61
62 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
66
67 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
68         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
69         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
70         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
71         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
73         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
74         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
75         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
76         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
77         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
78         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
80         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
81         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
82         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
83         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
84         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
85         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
86         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
87         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
88         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
89         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
90         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
91         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
92         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
93         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
94 };
95
96 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
98         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
99         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
100         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
101 };
102
103 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
104         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
105         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
108 };
109
110 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
111         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
112         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
113         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
114         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
116         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
117         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
119         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
120         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
121         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
122 };
123
124 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
125         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
126 };
127
128 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
129 {
130         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
131         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
132         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
133         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
134         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
135         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
136         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
137         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
148         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
150         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
151         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
152         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
153         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
154         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
156         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000),
157 };
158
159 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
160         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
161         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
162         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
163         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
164         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
166         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
169         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
171         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
182         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
183         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
184         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
185         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
186         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000),
187 };
188
189 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
190 {
191         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
192         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
193 };
194
195 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
196 {
197         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
198         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
199 };
200
201 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
202                 u32 instance, u32 offset)
203 {
204         return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
205                         (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
206 }
207
208 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
209 {
210         switch (adev->asic_type) {
211         case CHIP_VEGA10:
212                 soc15_program_register_sequence(adev,
213                                                  golden_settings_sdma_4,
214                                                  ARRAY_SIZE(golden_settings_sdma_4));
215                 soc15_program_register_sequence(adev,
216                                                  golden_settings_sdma_vg10,
217                                                  ARRAY_SIZE(golden_settings_sdma_vg10));
218                 break;
219         case CHIP_VEGA12:
220                 soc15_program_register_sequence(adev,
221                                                 golden_settings_sdma_4,
222                                                 ARRAY_SIZE(golden_settings_sdma_4));
223                 soc15_program_register_sequence(adev,
224                                                 golden_settings_sdma_vg12,
225                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
226                 break;
227         case CHIP_VEGA20:
228                 soc15_program_register_sequence(adev,
229                                                 golden_settings_sdma0_4_2_init,
230                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
231                 soc15_program_register_sequence(adev,
232                                                 golden_settings_sdma0_4_2,
233                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
234                 soc15_program_register_sequence(adev,
235                                                 golden_settings_sdma1_4_2,
236                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
237                 break;
238         case CHIP_RAVEN:
239                 soc15_program_register_sequence(adev,
240                                                 golden_settings_sdma_4_1,
241                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
242                 if (adev->rev_id >= 8)
243                         soc15_program_register_sequence(adev,
244                                                         golden_settings_sdma_rv2,
245                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
246                 else
247                         soc15_program_register_sequence(adev,
248                                                         golden_settings_sdma_rv1,
249                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
250                 break;
251         default:
252                 break;
253         }
254 }
255
256 /**
257  * sdma_v4_0_init_microcode - load ucode images from disk
258  *
259  * @adev: amdgpu_device pointer
260  *
261  * Use the firmware interface to load the ucode images into
262  * the driver (not loaded into hw).
263  * Returns 0 on success, error on failure.
264  */
265
266 // emulation only, won't work on real chip
267 // vega10 real chip need to use PSP to load firmware
268 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
269 {
270         const char *chip_name;
271         char fw_name[30];
272         int err = 0, i;
273         struct amdgpu_firmware_info *info = NULL;
274         const struct common_firmware_header *header = NULL;
275         const struct sdma_firmware_header_v1_0 *hdr;
276
277         DRM_DEBUG("\n");
278
279         switch (adev->asic_type) {
280         case CHIP_VEGA10:
281                 chip_name = "vega10";
282                 break;
283         case CHIP_VEGA12:
284                 chip_name = "vega12";
285                 break;
286         case CHIP_VEGA20:
287                 chip_name = "vega20";
288                 break;
289         case CHIP_RAVEN:
290                 if (adev->rev_id >= 8)
291                         chip_name = "raven2";
292                 else if (adev->pdev->device == 0x15d8)
293                         chip_name = "picasso";
294                 else
295                         chip_name = "raven";
296                 break;
297         default:
298                 BUG();
299         }
300
301         for (i = 0; i < adev->sdma.num_instances; i++) {
302                 if (i == 0)
303                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
304                 else
305                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
306                 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
307                 if (err)
308                         goto out;
309                 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
310                 if (err)
311                         goto out;
312                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
313                 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
314                 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
315                 if (adev->sdma.instance[i].feature_version >= 20)
316                         adev->sdma.instance[i].burst_nop = true;
317                 DRM_DEBUG("psp_load == '%s'\n",
318                                 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
319
320                 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
321                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
322                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
323                         info->fw = adev->sdma.instance[i].fw;
324                         header = (const struct common_firmware_header *)info->fw->data;
325                         adev->firmware.fw_size +=
326                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
327                 }
328         }
329 out:
330         if (err) {
331                 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
332                 for (i = 0; i < adev->sdma.num_instances; i++) {
333                         release_firmware(adev->sdma.instance[i].fw);
334                         adev->sdma.instance[i].fw = NULL;
335                 }
336         }
337         return err;
338 }
339
340 /**
341  * sdma_v4_0_ring_get_rptr - get the current read pointer
342  *
343  * @ring: amdgpu ring pointer
344  *
345  * Get the current rptr from the hardware (VEGA10+).
346  */
347 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
348 {
349         u64 *rptr;
350
351         /* XXX check if swapping is necessary on BE */
352         rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
353
354         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
355         return ((*rptr) >> 2);
356 }
357
358 /**
359  * sdma_v4_0_ring_get_wptr - get the current write pointer
360  *
361  * @ring: amdgpu ring pointer
362  *
363  * Get the current wptr from the hardware (VEGA10+).
364  */
365 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
366 {
367         struct amdgpu_device *adev = ring->adev;
368         u64 wptr;
369
370         if (ring->use_doorbell) {
371                 /* XXX check if swapping is necessary on BE */
372                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
373                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
374         } else {
375                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
376                 wptr = wptr << 32;
377                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
378                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
379                                 ring->me, wptr);
380         }
381
382         return wptr >> 2;
383 }
384
385 /**
386  * sdma_v4_0_ring_set_wptr - commit the write pointer
387  *
388  * @ring: amdgpu ring pointer
389  *
390  * Write the wptr back to the hardware (VEGA10+).
391  */
392 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
393 {
394         struct amdgpu_device *adev = ring->adev;
395
396         DRM_DEBUG("Setting write pointer\n");
397         if (ring->use_doorbell) {
398                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
399
400                 DRM_DEBUG("Using doorbell -- "
401                                 "wptr_offs == 0x%08x "
402                                 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
403                                 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
404                                 ring->wptr_offs,
405                                 lower_32_bits(ring->wptr << 2),
406                                 upper_32_bits(ring->wptr << 2));
407                 /* XXX check if swapping is necessary on BE */
408                 WRITE_ONCE(*wb, (ring->wptr << 2));
409                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
410                                 ring->doorbell_index, ring->wptr << 2);
411                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
412         } else {
413                 DRM_DEBUG("Not using doorbell -- "
414                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
415                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
416                                 ring->me,
417                                 lower_32_bits(ring->wptr << 2),
418                                 ring->me,
419                                 upper_32_bits(ring->wptr << 2));
420                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
421                             lower_32_bits(ring->wptr << 2));
422                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
423                             upper_32_bits(ring->wptr << 2));
424         }
425 }
426
427 /**
428  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
429  *
430  * @ring: amdgpu ring pointer
431  *
432  * Get the current wptr from the hardware (VEGA10+).
433  */
434 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
435 {
436         struct amdgpu_device *adev = ring->adev;
437         u64 wptr;
438
439         if (ring->use_doorbell) {
440                 /* XXX check if swapping is necessary on BE */
441                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
442         } else {
443                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
444                 wptr = wptr << 32;
445                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
446         }
447
448         return wptr >> 2;
449 }
450
451 /**
452  * sdma_v4_0_ring_set_wptr - commit the write pointer
453  *
454  * @ring: amdgpu ring pointer
455  *
456  * Write the wptr back to the hardware (VEGA10+).
457  */
458 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
459 {
460         struct amdgpu_device *adev = ring->adev;
461
462         if (ring->use_doorbell) {
463                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
464
465                 /* XXX check if swapping is necessary on BE */
466                 WRITE_ONCE(*wb, (ring->wptr << 2));
467                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
468         } else {
469                 uint64_t wptr = ring->wptr << 2;
470
471                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
472                             lower_32_bits(wptr));
473                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
474                             upper_32_bits(wptr));
475         }
476 }
477
478 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
479 {
480         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
481         int i;
482
483         for (i = 0; i < count; i++)
484                 if (sdma && sdma->burst_nop && (i == 0))
485                         amdgpu_ring_write(ring, ring->funcs->nop |
486                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
487                 else
488                         amdgpu_ring_write(ring, ring->funcs->nop);
489 }
490
491 /**
492  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
493  *
494  * @ring: amdgpu ring pointer
495  * @ib: IB object to schedule
496  *
497  * Schedule an IB in the DMA ring (VEGA10).
498  */
499 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
500                                    struct amdgpu_job *job,
501                                    struct amdgpu_ib *ib,
502                                    bool ctx_switch)
503 {
504         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
505
506         /* IB packet must end on a 8 DW boundary */
507         sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
508
509         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
510                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
511         /* base must be 32 byte aligned */
512         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
513         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
514         amdgpu_ring_write(ring, ib->length_dw);
515         amdgpu_ring_write(ring, 0);
516         amdgpu_ring_write(ring, 0);
517
518 }
519
520 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
521                                    int mem_space, int hdp,
522                                    uint32_t addr0, uint32_t addr1,
523                                    uint32_t ref, uint32_t mask,
524                                    uint32_t inv)
525 {
526         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
527                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
528                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
529                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
530         if (mem_space) {
531                 /* memory */
532                 amdgpu_ring_write(ring, addr0);
533                 amdgpu_ring_write(ring, addr1);
534         } else {
535                 /* registers */
536                 amdgpu_ring_write(ring, addr0 << 2);
537                 amdgpu_ring_write(ring, addr1 << 2);
538         }
539         amdgpu_ring_write(ring, ref); /* reference */
540         amdgpu_ring_write(ring, mask); /* mask */
541         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
542                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
543 }
544
545 /**
546  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
547  *
548  * @ring: amdgpu ring pointer
549  *
550  * Emit an hdp flush packet on the requested DMA ring.
551  */
552 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
553 {
554         struct amdgpu_device *adev = ring->adev;
555         u32 ref_and_mask = 0;
556         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
557
558         if (ring->me == 0)
559                 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
560         else
561                 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
562
563         sdma_v4_0_wait_reg_mem(ring, 0, 1,
564                                adev->nbio_funcs->get_hdp_flush_done_offset(adev),
565                                adev->nbio_funcs->get_hdp_flush_req_offset(adev),
566                                ref_and_mask, ref_and_mask, 10);
567 }
568
569 /**
570  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
571  *
572  * @ring: amdgpu ring pointer
573  * @fence: amdgpu fence object
574  *
575  * Add a DMA fence packet to the ring to write
576  * the fence seq number and DMA trap packet to generate
577  * an interrupt if needed (VEGA10).
578  */
579 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
580                                       unsigned flags)
581 {
582         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
583         /* write the fence */
584         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
585         /* zero in first two bits */
586         BUG_ON(addr & 0x3);
587         amdgpu_ring_write(ring, lower_32_bits(addr));
588         amdgpu_ring_write(ring, upper_32_bits(addr));
589         amdgpu_ring_write(ring, lower_32_bits(seq));
590
591         /* optionally write high bits as well */
592         if (write64bit) {
593                 addr += 4;
594                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
595                 /* zero in first two bits */
596                 BUG_ON(addr & 0x3);
597                 amdgpu_ring_write(ring, lower_32_bits(addr));
598                 amdgpu_ring_write(ring, upper_32_bits(addr));
599                 amdgpu_ring_write(ring, upper_32_bits(seq));
600         }
601
602         /* generate an interrupt */
603         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
604         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
605 }
606
607
608 /**
609  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
610  *
611  * @adev: amdgpu_device pointer
612  *
613  * Stop the gfx async dma ring buffers (VEGA10).
614  */
615 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
616 {
617         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
618         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
619         u32 rb_cntl, ib_cntl;
620         int i;
621
622         if ((adev->mman.buffer_funcs_ring == sdma0) ||
623             (adev->mman.buffer_funcs_ring == sdma1))
624                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
625
626         for (i = 0; i < adev->sdma.num_instances; i++) {
627                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
628                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
629                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
630                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
631                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
632                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
633         }
634
635         sdma0->sched.ready = false;
636         sdma1->sched.ready = false;
637 }
638
639 /**
640  * sdma_v4_0_rlc_stop - stop the compute async dma engines
641  *
642  * @adev: amdgpu_device pointer
643  *
644  * Stop the compute async dma queues (VEGA10).
645  */
646 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
647 {
648         /* XXX todo */
649 }
650
651 /**
652  * sdma_v4_0_page_stop - stop the page async dma engines
653  *
654  * @adev: amdgpu_device pointer
655  *
656  * Stop the page async dma ring buffers (VEGA10).
657  */
658 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
659 {
660         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
661         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
662         u32 rb_cntl, ib_cntl;
663         int i;
664
665         if ((adev->mman.buffer_funcs_ring == sdma0) ||
666             (adev->mman.buffer_funcs_ring == sdma1))
667                 amdgpu_ttm_set_buffer_funcs_status(adev, false);
668
669         for (i = 0; i < adev->sdma.num_instances; i++) {
670                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
671                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
672                                         RB_ENABLE, 0);
673                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
674                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
675                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
676                                         IB_ENABLE, 0);
677                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
678         }
679
680         sdma0->sched.ready = false;
681         sdma1->sched.ready = false;
682 }
683
684 /**
685  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
686  *
687  * @adev: amdgpu_device pointer
688  * @enable: enable/disable the DMA MEs context switch.
689  *
690  * Halt or unhalt the async dma engines context switch (VEGA10).
691  */
692 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
693 {
694         u32 f32_cntl, phase_quantum = 0;
695         int i;
696
697         if (amdgpu_sdma_phase_quantum) {
698                 unsigned value = amdgpu_sdma_phase_quantum;
699                 unsigned unit = 0;
700
701                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
702                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
703                         value = (value + 1) >> 1;
704                         unit++;
705                 }
706                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
707                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
708                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
709                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
710                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
711                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
712                         WARN_ONCE(1,
713                         "clamping sdma_phase_quantum to %uK clock cycles\n",
714                                   value << unit);
715                 }
716                 phase_quantum =
717                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
718                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
719         }
720
721         for (i = 0; i < adev->sdma.num_instances; i++) {
722                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
723                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
724                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
725                 if (enable && amdgpu_sdma_phase_quantum) {
726                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
727                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
728                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
729                 }
730                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
731         }
732
733 }
734
735 /**
736  * sdma_v4_0_enable - stop the async dma engines
737  *
738  * @adev: amdgpu_device pointer
739  * @enable: enable/disable the DMA MEs.
740  *
741  * Halt or unhalt the async dma engines (VEGA10).
742  */
743 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
744 {
745         u32 f32_cntl;
746         int i;
747
748         if (enable == false) {
749                 sdma_v4_0_gfx_stop(adev);
750                 sdma_v4_0_rlc_stop(adev);
751                 if (adev->sdma.has_page_queue)
752                         sdma_v4_0_page_stop(adev);
753         }
754
755         for (i = 0; i < adev->sdma.num_instances; i++) {
756                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
757                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
758                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
759         }
760 }
761
762 /**
763  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
764  */
765 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
766 {
767         /* Set ring buffer size in dwords */
768         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
769
770         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
771 #ifdef __BIG_ENDIAN
772         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
773         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
774                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
775 #endif
776         return rb_cntl;
777 }
778
779 /**
780  * sdma_v4_0_gfx_resume - setup and start the async dma engines
781  *
782  * @adev: amdgpu_device pointer
783  * @i: instance to resume
784  *
785  * Set up the gfx DMA ring buffers and enable them (VEGA10).
786  * Returns 0 for success, error for failure.
787  */
788 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
789 {
790         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
791         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
792         u32 wb_offset;
793         u32 doorbell;
794         u32 doorbell_offset;
795         u64 wptr_gpu_addr;
796
797         wb_offset = (ring->rptr_offs * 4);
798
799         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
800         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
801         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
802
803         /* Initialize the ring buffer's read and write pointers */
804         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
805         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
806         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
807         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
808
809         /* set the wb address whether it's enabled or not */
810         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
811                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
812         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
813                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
814
815         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
816                                 RPTR_WRITEBACK_ENABLE, 1);
817
818         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
819         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
820
821         ring->wptr = 0;
822
823         /* before programing wptr to a less value, need set minor_ptr_update first */
824         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
825
826         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
827         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
828
829         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
830                                  ring->use_doorbell);
831         doorbell_offset = REG_SET_FIELD(doorbell_offset,
832                                         SDMA0_GFX_DOORBELL_OFFSET,
833                                         OFFSET, ring->doorbell_index);
834         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
835         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
836         adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
837                                               ring->doorbell_index);
838
839         sdma_v4_0_ring_set_wptr(ring);
840
841         /* set minor_ptr_update to 0 after wptr programed */
842         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
843
844         /* setup the wptr shadow polling */
845         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
846         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
847                     lower_32_bits(wptr_gpu_addr));
848         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
849                     upper_32_bits(wptr_gpu_addr));
850         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
851         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
852                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
853                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
854         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
855
856         /* enable DMA RB */
857         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
858         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
859
860         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
861         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
862 #ifdef __BIG_ENDIAN
863         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
864 #endif
865         /* enable DMA IBs */
866         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
867
868         ring->sched.ready = true;
869 }
870
871 /**
872  * sdma_v4_0_page_resume - setup and start the async dma engines
873  *
874  * @adev: amdgpu_device pointer
875  * @i: instance to resume
876  *
877  * Set up the page DMA ring buffers and enable them (VEGA10).
878  * Returns 0 for success, error for failure.
879  */
880 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
881 {
882         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
883         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
884         u32 wb_offset;
885         u32 doorbell;
886         u32 doorbell_offset;
887         u64 wptr_gpu_addr;
888
889         wb_offset = (ring->rptr_offs * 4);
890
891         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
892         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
893         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
894
895         /* Initialize the ring buffer's read and write pointers */
896         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
897         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
898         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
899         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
900
901         /* set the wb address whether it's enabled or not */
902         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
903                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
904         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
905                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
906
907         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
908                                 RPTR_WRITEBACK_ENABLE, 1);
909
910         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
911         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
912
913         ring->wptr = 0;
914
915         /* before programing wptr to a less value, need set minor_ptr_update first */
916         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
917
918         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
919         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
920
921         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
922                                  ring->use_doorbell);
923         doorbell_offset = REG_SET_FIELD(doorbell_offset,
924                                         SDMA0_PAGE_DOORBELL_OFFSET,
925                                         OFFSET, ring->doorbell_index);
926         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
927         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
928
929         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
930         sdma_v4_0_page_ring_set_wptr(ring);
931
932         /* set minor_ptr_update to 0 after wptr programed */
933         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
934
935         /* setup the wptr shadow polling */
936         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
937         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
938                     lower_32_bits(wptr_gpu_addr));
939         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
940                     upper_32_bits(wptr_gpu_addr));
941         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
942         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
943                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
944                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
945         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
946
947         /* enable DMA RB */
948         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
949         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
950
951         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
952         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
953 #ifdef __BIG_ENDIAN
954         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
955 #endif
956         /* enable DMA IBs */
957         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
958
959         ring->sched.ready = true;
960 }
961
962 static void
963 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
964 {
965         uint32_t def, data;
966
967         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
968                 /* enable idle interrupt */
969                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
970                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
971
972                 if (data != def)
973                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
974         } else {
975                 /* disable idle interrupt */
976                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
977                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
978                 if (data != def)
979                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
980         }
981 }
982
983 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
984 {
985         uint32_t def, data;
986
987         /* Enable HW based PG. */
988         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
989         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
990         if (data != def)
991                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
992
993         /* enable interrupt */
994         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
995         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
996         if (data != def)
997                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
998
999         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1000         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1001         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1002         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1003         /* Configure switch time for hysteresis purpose. Use default right now */
1004         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1005         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1006         if(data != def)
1007                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1008 }
1009
1010 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1011 {
1012         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1013                 return;
1014
1015         switch (adev->asic_type) {
1016         case CHIP_RAVEN:
1017                 sdma_v4_1_init_power_gating(adev);
1018                 sdma_v4_1_update_power_gating(adev, true);
1019                 break;
1020         default:
1021                 break;
1022         }
1023 }
1024
1025 /**
1026  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1027  *
1028  * @adev: amdgpu_device pointer
1029  *
1030  * Set up the compute DMA queues and enable them (VEGA10).
1031  * Returns 0 for success, error for failure.
1032  */
1033 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1034 {
1035         sdma_v4_0_init_pg(adev);
1036
1037         return 0;
1038 }
1039
1040 /**
1041  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1042  *
1043  * @adev: amdgpu_device pointer
1044  *
1045  * Loads the sDMA0/1 ucode.
1046  * Returns 0 for success, -EINVAL if the ucode is not available.
1047  */
1048 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1049 {
1050         const struct sdma_firmware_header_v1_0 *hdr;
1051         const __le32 *fw_data;
1052         u32 fw_size;
1053         int i, j;
1054
1055         /* halt the MEs */
1056         sdma_v4_0_enable(adev, false);
1057
1058         for (i = 0; i < adev->sdma.num_instances; i++) {
1059                 if (!adev->sdma.instance[i].fw)
1060                         return -EINVAL;
1061
1062                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1063                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1064                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1065
1066                 fw_data = (const __le32 *)
1067                         (adev->sdma.instance[i].fw->data +
1068                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1069
1070                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1071
1072                 for (j = 0; j < fw_size; j++)
1073                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1074                                     le32_to_cpup(fw_data++));
1075
1076                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1077                             adev->sdma.instance[i].fw_version);
1078         }
1079
1080         return 0;
1081 }
1082
1083 /**
1084  * sdma_v4_0_start - setup and start the async dma engines
1085  *
1086  * @adev: amdgpu_device pointer
1087  *
1088  * Set up the DMA engines and enable them (VEGA10).
1089  * Returns 0 for success, error for failure.
1090  */
1091 static int sdma_v4_0_start(struct amdgpu_device *adev)
1092 {
1093         struct amdgpu_ring *ring;
1094         int i, r;
1095
1096         if (amdgpu_sriov_vf(adev)) {
1097                 sdma_v4_0_ctx_switch_enable(adev, false);
1098                 sdma_v4_0_enable(adev, false);
1099         } else {
1100
1101                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1102                         r = sdma_v4_0_load_microcode(adev);
1103                         if (r)
1104                                 return r;
1105                 }
1106
1107                 /* unhalt the MEs */
1108                 sdma_v4_0_enable(adev, true);
1109                 /* enable sdma ring preemption */
1110                 sdma_v4_0_ctx_switch_enable(adev, true);
1111         }
1112
1113         /* start the gfx rings and rlc compute queues */
1114         for (i = 0; i < adev->sdma.num_instances; i++) {
1115                 uint32_t temp;
1116
1117                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1118                 sdma_v4_0_gfx_resume(adev, i);
1119                 if (adev->sdma.has_page_queue)
1120                         sdma_v4_0_page_resume(adev, i);
1121
1122                 /* set utc l1 enable flag always to 1 */
1123                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1124                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1125                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1126
1127                 if (!amdgpu_sriov_vf(adev)) {
1128                         /* unhalt engine */
1129                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1130                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1131                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1132                 }
1133         }
1134
1135         if (amdgpu_sriov_vf(adev)) {
1136                 sdma_v4_0_ctx_switch_enable(adev, true);
1137                 sdma_v4_0_enable(adev, true);
1138         } else {
1139                 r = sdma_v4_0_rlc_resume(adev);
1140                 if (r)
1141                         return r;
1142         }
1143
1144         for (i = 0; i < adev->sdma.num_instances; i++) {
1145                 ring = &adev->sdma.instance[i].ring;
1146
1147                 r = amdgpu_ring_test_helper(ring);
1148                 if (r)
1149                         return r;
1150
1151                 if (adev->sdma.has_page_queue) {
1152                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1153
1154                         r = amdgpu_ring_test_helper(page);
1155                         if (r)
1156                                 return r;
1157
1158                         if (adev->mman.buffer_funcs_ring == page)
1159                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1160                 }
1161
1162                 if (adev->mman.buffer_funcs_ring == ring)
1163                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1164         }
1165
1166         return r;
1167 }
1168
1169 /**
1170  * sdma_v4_0_ring_test_ring - simple async dma engine test
1171  *
1172  * @ring: amdgpu_ring structure holding ring information
1173  *
1174  * Test the DMA engine by writing using it to write an
1175  * value to memory. (VEGA10).
1176  * Returns 0 for success, error for failure.
1177  */
1178 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1179 {
1180         struct amdgpu_device *adev = ring->adev;
1181         unsigned i;
1182         unsigned index;
1183         int r;
1184         u32 tmp;
1185         u64 gpu_addr;
1186
1187         r = amdgpu_device_wb_get(adev, &index);
1188         if (r)
1189                 return r;
1190
1191         gpu_addr = adev->wb.gpu_addr + (index * 4);
1192         tmp = 0xCAFEDEAD;
1193         adev->wb.wb[index] = cpu_to_le32(tmp);
1194
1195         r = amdgpu_ring_alloc(ring, 5);
1196         if (r)
1197                 goto error_free_wb;
1198
1199         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1200                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1201         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1202         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1203         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1204         amdgpu_ring_write(ring, 0xDEADBEEF);
1205         amdgpu_ring_commit(ring);
1206
1207         for (i = 0; i < adev->usec_timeout; i++) {
1208                 tmp = le32_to_cpu(adev->wb.wb[index]);
1209                 if (tmp == 0xDEADBEEF)
1210                         break;
1211                 DRM_UDELAY(1);
1212         }
1213
1214         if (i >= adev->usec_timeout)
1215                 r = -ETIMEDOUT;
1216
1217 error_free_wb:
1218         amdgpu_device_wb_free(adev, index);
1219         return r;
1220 }
1221
1222 /**
1223  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1224  *
1225  * @ring: amdgpu_ring structure holding ring information
1226  *
1227  * Test a simple IB in the DMA ring (VEGA10).
1228  * Returns 0 on success, error on failure.
1229  */
1230 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1231 {
1232         struct amdgpu_device *adev = ring->adev;
1233         struct amdgpu_ib ib;
1234         struct dma_fence *f = NULL;
1235         unsigned index;
1236         long r;
1237         u32 tmp = 0;
1238         u64 gpu_addr;
1239
1240         r = amdgpu_device_wb_get(adev, &index);
1241         if (r)
1242                 return r;
1243
1244         gpu_addr = adev->wb.gpu_addr + (index * 4);
1245         tmp = 0xCAFEDEAD;
1246         adev->wb.wb[index] = cpu_to_le32(tmp);
1247         memset(&ib, 0, sizeof(ib));
1248         r = amdgpu_ib_get(adev, NULL, 256, &ib);
1249         if (r)
1250                 goto err0;
1251
1252         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1253                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1254         ib.ptr[1] = lower_32_bits(gpu_addr);
1255         ib.ptr[2] = upper_32_bits(gpu_addr);
1256         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1257         ib.ptr[4] = 0xDEADBEEF;
1258         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1259         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1260         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1261         ib.length_dw = 8;
1262
1263         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1264         if (r)
1265                 goto err1;
1266
1267         r = dma_fence_wait_timeout(f, false, timeout);
1268         if (r == 0) {
1269                 r = -ETIMEDOUT;
1270                 goto err1;
1271         } else if (r < 0) {
1272                 goto err1;
1273         }
1274         tmp = le32_to_cpu(adev->wb.wb[index]);
1275         if (tmp == 0xDEADBEEF)
1276                 r = 0;
1277         else
1278                 r = -EINVAL;
1279
1280 err1:
1281         amdgpu_ib_free(adev, &ib, NULL);
1282         dma_fence_put(f);
1283 err0:
1284         amdgpu_device_wb_free(adev, index);
1285         return r;
1286 }
1287
1288
1289 /**
1290  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1291  *
1292  * @ib: indirect buffer to fill with commands
1293  * @pe: addr of the page entry
1294  * @src: src addr to copy from
1295  * @count: number of page entries to update
1296  *
1297  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1298  */
1299 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1300                                   uint64_t pe, uint64_t src,
1301                                   unsigned count)
1302 {
1303         unsigned bytes = count * 8;
1304
1305         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1306                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1307         ib->ptr[ib->length_dw++] = bytes - 1;
1308         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1309         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1310         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1311         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1312         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1313
1314 }
1315
1316 /**
1317  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1318  *
1319  * @ib: indirect buffer to fill with commands
1320  * @pe: addr of the page entry
1321  * @addr: dst addr to write into pe
1322  * @count: number of page entries to update
1323  * @incr: increase next addr by incr bytes
1324  * @flags: access flags
1325  *
1326  * Update PTEs by writing them manually using sDMA (VEGA10).
1327  */
1328 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1329                                    uint64_t value, unsigned count,
1330                                    uint32_t incr)
1331 {
1332         unsigned ndw = count * 2;
1333
1334         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1335                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1336         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1337         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1338         ib->ptr[ib->length_dw++] = ndw - 1;
1339         for (; ndw > 0; ndw -= 2) {
1340                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1341                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1342                 value += incr;
1343         }
1344 }
1345
1346 /**
1347  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1348  *
1349  * @ib: indirect buffer to fill with commands
1350  * @pe: addr of the page entry
1351  * @addr: dst addr to write into pe
1352  * @count: number of page entries to update
1353  * @incr: increase next addr by incr bytes
1354  * @flags: access flags
1355  *
1356  * Update the page tables using sDMA (VEGA10).
1357  */
1358 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1359                                      uint64_t pe,
1360                                      uint64_t addr, unsigned count,
1361                                      uint32_t incr, uint64_t flags)
1362 {
1363         /* for physically contiguous pages (vram) */
1364         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1365         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1366         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1367         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1368         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1369         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1370         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1371         ib->ptr[ib->length_dw++] = incr; /* increment size */
1372         ib->ptr[ib->length_dw++] = 0;
1373         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1374 }
1375
1376 /**
1377  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1378  *
1379  * @ib: indirect buffer to fill with padding
1380  *
1381  */
1382 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1383 {
1384         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1385         u32 pad_count;
1386         int i;
1387
1388         pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1389         for (i = 0; i < pad_count; i++)
1390                 if (sdma && sdma->burst_nop && (i == 0))
1391                         ib->ptr[ib->length_dw++] =
1392                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1393                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1394                 else
1395                         ib->ptr[ib->length_dw++] =
1396                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1397 }
1398
1399
1400 /**
1401  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1402  *
1403  * @ring: amdgpu_ring pointer
1404  *
1405  * Make sure all previous operations are completed (CIK).
1406  */
1407 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1408 {
1409         uint32_t seq = ring->fence_drv.sync_seq;
1410         uint64_t addr = ring->fence_drv.gpu_addr;
1411
1412         /* wait for idle */
1413         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1414                                addr & 0xfffffffc,
1415                                upper_32_bits(addr) & 0xffffffff,
1416                                seq, 0xffffffff, 4);
1417 }
1418
1419
1420 /**
1421  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1422  *
1423  * @ring: amdgpu_ring pointer
1424  * @vm: amdgpu_vm pointer
1425  *
1426  * Update the page table base and flush the VM TLB
1427  * using sDMA (VEGA10).
1428  */
1429 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1430                                          unsigned vmid, uint64_t pd_addr)
1431 {
1432         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1433 }
1434
1435 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1436                                      uint32_t reg, uint32_t val)
1437 {
1438         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1439                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1440         amdgpu_ring_write(ring, reg);
1441         amdgpu_ring_write(ring, val);
1442 }
1443
1444 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1445                                          uint32_t val, uint32_t mask)
1446 {
1447         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1448 }
1449
1450 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1451 {
1452         uint fw_version = adev->sdma.instance[0].fw_version;
1453
1454         switch (adev->asic_type) {
1455         case CHIP_VEGA10:
1456                 return fw_version >= 430;
1457         case CHIP_VEGA12:
1458                 /*return fw_version >= 31;*/
1459                 return false;
1460         case CHIP_VEGA20:
1461                 return fw_version >= 123;
1462         default:
1463                 return false;
1464         }
1465 }
1466
1467 static int sdma_v4_0_early_init(void *handle)
1468 {
1469         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1470         int r;
1471
1472         if (adev->asic_type == CHIP_RAVEN)
1473                 adev->sdma.num_instances = 1;
1474         else
1475                 adev->sdma.num_instances = 2;
1476
1477         r = sdma_v4_0_init_microcode(adev);
1478         if (r) {
1479                 DRM_ERROR("Failed to load sdma firmware!\n");
1480                 return r;
1481         }
1482
1483         /* TODO: Page queue breaks driver reload under SRIOV */
1484         if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1485                 adev->sdma.has_page_queue = false;
1486         else if (sdma_v4_0_fw_support_paging_queue(adev))
1487                 adev->sdma.has_page_queue = true;
1488
1489         sdma_v4_0_set_ring_funcs(adev);
1490         sdma_v4_0_set_buffer_funcs(adev);
1491         sdma_v4_0_set_vm_pte_funcs(adev);
1492         sdma_v4_0_set_irq_funcs(adev);
1493
1494         return 0;
1495 }
1496
1497 static int sdma_v4_0_sw_init(void *handle)
1498 {
1499         struct amdgpu_ring *ring;
1500         int r, i;
1501         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1502
1503         /* SDMA trap event */
1504         r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1505                               &adev->sdma.trap_irq);
1506         if (r)
1507                 return r;
1508
1509         /* SDMA trap event */
1510         r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1511                               &adev->sdma.trap_irq);
1512         if (r)
1513                 return r;
1514
1515         for (i = 0; i < adev->sdma.num_instances; i++) {
1516                 ring = &adev->sdma.instance[i].ring;
1517                 ring->ring_obj = NULL;
1518                 ring->use_doorbell = true;
1519
1520                 DRM_INFO("use_doorbell being set to: [%s]\n",
1521                                 ring->use_doorbell?"true":"false");
1522
1523                 /* doorbell size is 2 dwords, get DWORD offset */
1524                 ring->doorbell_index = (i == 0) ?
1525                         (adev->doorbell_index.sdma_engine0 << 1)
1526                         : (adev->doorbell_index.sdma_engine1 << 1);
1527
1528                 sprintf(ring->name, "sdma%d", i);
1529                 r = amdgpu_ring_init(adev, ring, 1024,
1530                                      &adev->sdma.trap_irq,
1531                                      (i == 0) ?
1532                                      AMDGPU_SDMA_IRQ_TRAP0 :
1533                                      AMDGPU_SDMA_IRQ_TRAP1);
1534                 if (r)
1535                         return r;
1536
1537                 if (adev->sdma.has_page_queue) {
1538                         ring = &adev->sdma.instance[i].page;
1539                         ring->ring_obj = NULL;
1540                         ring->use_doorbell = true;
1541
1542                         /* paging queue use same doorbell index/routing as gfx queue
1543                          * with 0x400 (4096 dwords) offset on second doorbell page
1544                          */
1545                         ring->doorbell_index = (i == 0) ?
1546                                 (adev->doorbell_index.sdma_engine0 << 1)
1547                                 : (adev->doorbell_index.sdma_engine1 << 1);
1548                         ring->doorbell_index += 0x400;
1549
1550                         sprintf(ring->name, "page%d", i);
1551                         r = amdgpu_ring_init(adev, ring, 1024,
1552                                              &adev->sdma.trap_irq,
1553                                              (i == 0) ?
1554                                              AMDGPU_SDMA_IRQ_TRAP0 :
1555                                              AMDGPU_SDMA_IRQ_TRAP1);
1556                         if (r)
1557                                 return r;
1558                 }
1559         }
1560
1561         return r;
1562 }
1563
1564 static int sdma_v4_0_sw_fini(void *handle)
1565 {
1566         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1567         int i;
1568
1569         for (i = 0; i < adev->sdma.num_instances; i++) {
1570                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1571                 if (adev->sdma.has_page_queue)
1572                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1573         }
1574
1575         for (i = 0; i < adev->sdma.num_instances; i++) {
1576                 release_firmware(adev->sdma.instance[i].fw);
1577                 adev->sdma.instance[i].fw = NULL;
1578         }
1579
1580         return 0;
1581 }
1582
1583 static int sdma_v4_0_hw_init(void *handle)
1584 {
1585         int r;
1586         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1587
1588         if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1589                         adev->powerplay.pp_funcs->set_powergating_by_smu)
1590                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1591
1592         sdma_v4_0_init_golden_registers(adev);
1593
1594         r = sdma_v4_0_start(adev);
1595
1596         return r;
1597 }
1598
1599 static int sdma_v4_0_hw_fini(void *handle)
1600 {
1601         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1602
1603         if (amdgpu_sriov_vf(adev))
1604                 return 0;
1605
1606         sdma_v4_0_ctx_switch_enable(adev, false);
1607         sdma_v4_0_enable(adev, false);
1608
1609         if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1610                         && adev->powerplay.pp_funcs->set_powergating_by_smu)
1611                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1612
1613         return 0;
1614 }
1615
1616 static int sdma_v4_0_suspend(void *handle)
1617 {
1618         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1619
1620         return sdma_v4_0_hw_fini(adev);
1621 }
1622
1623 static int sdma_v4_0_resume(void *handle)
1624 {
1625         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1626
1627         return sdma_v4_0_hw_init(adev);
1628 }
1629
1630 static bool sdma_v4_0_is_idle(void *handle)
1631 {
1632         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1633         u32 i;
1634
1635         for (i = 0; i < adev->sdma.num_instances; i++) {
1636                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1637
1638                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1639                         return false;
1640         }
1641
1642         return true;
1643 }
1644
1645 static int sdma_v4_0_wait_for_idle(void *handle)
1646 {
1647         unsigned i;
1648         u32 sdma0, sdma1;
1649         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1650
1651         for (i = 0; i < adev->usec_timeout; i++) {
1652                 sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
1653                 sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1654
1655                 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1656                         return 0;
1657                 udelay(1);
1658         }
1659         return -ETIMEDOUT;
1660 }
1661
1662 static int sdma_v4_0_soft_reset(void *handle)
1663 {
1664         /* todo */
1665
1666         return 0;
1667 }
1668
1669 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1670                                         struct amdgpu_irq_src *source,
1671                                         unsigned type,
1672                                         enum amdgpu_interrupt_state state)
1673 {
1674         unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1;
1675         u32 sdma_cntl;
1676
1677         sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL);
1678         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1679                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1680         WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl);
1681
1682         return 0;
1683 }
1684
1685 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1686                                       struct amdgpu_irq_src *source,
1687                                       struct amdgpu_iv_entry *entry)
1688 {
1689         uint32_t instance;
1690
1691         DRM_DEBUG("IH: SDMA trap\n");
1692         switch (entry->client_id) {
1693         case SOC15_IH_CLIENTID_SDMA0:
1694                 instance = 0;
1695                 break;
1696         case SOC15_IH_CLIENTID_SDMA1:
1697                 instance = 1;
1698                 break;
1699         default:
1700                 return 0;
1701         }
1702
1703         switch (entry->ring_id) {
1704         case 0:
1705                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1706                 break;
1707         case 1:
1708                 if (adev->asic_type == CHIP_VEGA20)
1709                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
1710                 break;
1711         case 2:
1712                 /* XXX compute */
1713                 break;
1714         case 3:
1715                 if (adev->asic_type != CHIP_VEGA20)
1716                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
1717                 break;
1718         }
1719         return 0;
1720 }
1721
1722 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1723                                               struct amdgpu_irq_src *source,
1724                                               struct amdgpu_iv_entry *entry)
1725 {
1726         int instance;
1727
1728         DRM_ERROR("Illegal instruction in SDMA command stream\n");
1729
1730         switch (entry->client_id) {
1731         case SOC15_IH_CLIENTID_SDMA0:
1732                 instance = 0;
1733                 break;
1734         case SOC15_IH_CLIENTID_SDMA1:
1735                 instance = 1;
1736                 break;
1737         default:
1738                 return 0;
1739         }
1740
1741         switch (entry->ring_id) {
1742         case 0:
1743                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1744                 break;
1745         }
1746         return 0;
1747 }
1748
1749 static void sdma_v4_0_update_medium_grain_clock_gating(
1750                 struct amdgpu_device *adev,
1751                 bool enable)
1752 {
1753         uint32_t data, def;
1754
1755         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1756                 /* enable sdma0 clock gating */
1757                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1758                 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1759                           SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1760                           SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1761                           SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1762                           SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1763                           SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1764                           SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1765                           SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1766                 if (def != data)
1767                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1768
1769                 if (adev->sdma.num_instances > 1) {
1770                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1771                         data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1772                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1773                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1774                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1775                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1776                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1777                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1778                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1779                         if (def != data)
1780                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1781                 }
1782         } else {
1783                 /* disable sdma0 clock gating */
1784                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1785                 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1786                          SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1787                          SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1788                          SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1789                          SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1790                          SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1791                          SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1792                          SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1793
1794                 if (def != data)
1795                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1796
1797                 if (adev->sdma.num_instances > 1) {
1798                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1799                         data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1800                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1801                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1802                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1803                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1804                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1805                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1806                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1807                         if (def != data)
1808                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1809                 }
1810         }
1811 }
1812
1813
1814 static void sdma_v4_0_update_medium_grain_light_sleep(
1815                 struct amdgpu_device *adev,
1816                 bool enable)
1817 {
1818         uint32_t data, def;
1819
1820         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1821                 /* 1-not override: enable sdma0 mem light sleep */
1822                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1823                 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1824                 if (def != data)
1825                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1826
1827                 /* 1-not override: enable sdma1 mem light sleep */
1828                 if (adev->sdma.num_instances > 1) {
1829                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1830                         data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1831                         if (def != data)
1832                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1833                 }
1834         } else {
1835                 /* 0-override:disable sdma0 mem light sleep */
1836                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1837                 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1838                 if (def != data)
1839                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1840
1841                 /* 0-override:disable sdma1 mem light sleep */
1842                 if (adev->sdma.num_instances > 1) {
1843                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1844                         data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1845                         if (def != data)
1846                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1847                 }
1848         }
1849 }
1850
1851 static int sdma_v4_0_set_clockgating_state(void *handle,
1852                                           enum amd_clockgating_state state)
1853 {
1854         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1855
1856         if (amdgpu_sriov_vf(adev))
1857                 return 0;
1858
1859         switch (adev->asic_type) {
1860         case CHIP_VEGA10:
1861         case CHIP_VEGA12:
1862         case CHIP_VEGA20:
1863         case CHIP_RAVEN:
1864                 sdma_v4_0_update_medium_grain_clock_gating(adev,
1865                                 state == AMD_CG_STATE_GATE ? true : false);
1866                 sdma_v4_0_update_medium_grain_light_sleep(adev,
1867                                 state == AMD_CG_STATE_GATE ? true : false);
1868                 break;
1869         default:
1870                 break;
1871         }
1872         return 0;
1873 }
1874
1875 static int sdma_v4_0_set_powergating_state(void *handle,
1876                                           enum amd_powergating_state state)
1877 {
1878         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1879
1880         switch (adev->asic_type) {
1881         case CHIP_RAVEN:
1882                 sdma_v4_1_update_power_gating(adev,
1883                                 state == AMD_PG_STATE_GATE ? true : false);
1884                 break;
1885         default:
1886                 break;
1887         }
1888
1889         return 0;
1890 }
1891
1892 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1893 {
1894         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1895         int data;
1896
1897         if (amdgpu_sriov_vf(adev))
1898                 *flags = 0;
1899
1900         /* AMD_CG_SUPPORT_SDMA_MGCG */
1901         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1902         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1903                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1904
1905         /* AMD_CG_SUPPORT_SDMA_LS */
1906         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1907         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1908                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1909 }
1910
1911 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1912         .name = "sdma_v4_0",
1913         .early_init = sdma_v4_0_early_init,
1914         .late_init = NULL,
1915         .sw_init = sdma_v4_0_sw_init,
1916         .sw_fini = sdma_v4_0_sw_fini,
1917         .hw_init = sdma_v4_0_hw_init,
1918         .hw_fini = sdma_v4_0_hw_fini,
1919         .suspend = sdma_v4_0_suspend,
1920         .resume = sdma_v4_0_resume,
1921         .is_idle = sdma_v4_0_is_idle,
1922         .wait_for_idle = sdma_v4_0_wait_for_idle,
1923         .soft_reset = sdma_v4_0_soft_reset,
1924         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
1925         .set_powergating_state = sdma_v4_0_set_powergating_state,
1926         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
1927 };
1928
1929 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1930         .type = AMDGPU_RING_TYPE_SDMA,
1931         .align_mask = 0xf,
1932         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1933         .support_64bit_ptrs = true,
1934         .vmhub = AMDGPU_MMHUB,
1935         .get_rptr = sdma_v4_0_ring_get_rptr,
1936         .get_wptr = sdma_v4_0_ring_get_wptr,
1937         .set_wptr = sdma_v4_0_ring_set_wptr,
1938         .emit_frame_size =
1939                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
1940                 3 + /* hdp invalidate */
1941                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1942                 /* sdma_v4_0_ring_emit_vm_flush */
1943                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1944                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1945                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1946         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1947         .emit_ib = sdma_v4_0_ring_emit_ib,
1948         .emit_fence = sdma_v4_0_ring_emit_fence,
1949         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1950         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1951         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1952         .test_ring = sdma_v4_0_ring_test_ring,
1953         .test_ib = sdma_v4_0_ring_test_ib,
1954         .insert_nop = sdma_v4_0_ring_insert_nop,
1955         .pad_ib = sdma_v4_0_ring_pad_ib,
1956         .emit_wreg = sdma_v4_0_ring_emit_wreg,
1957         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1958         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1959 };
1960
1961 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
1962         .type = AMDGPU_RING_TYPE_SDMA,
1963         .align_mask = 0xf,
1964         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1965         .support_64bit_ptrs = true,
1966         .vmhub = AMDGPU_MMHUB,
1967         .get_rptr = sdma_v4_0_ring_get_rptr,
1968         .get_wptr = sdma_v4_0_page_ring_get_wptr,
1969         .set_wptr = sdma_v4_0_page_ring_set_wptr,
1970         .emit_frame_size =
1971                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
1972                 3 + /* hdp invalidate */
1973                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1974                 /* sdma_v4_0_ring_emit_vm_flush */
1975                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1976                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1977                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1978         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1979         .emit_ib = sdma_v4_0_ring_emit_ib,
1980         .emit_fence = sdma_v4_0_ring_emit_fence,
1981         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1982         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1983         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1984         .test_ring = sdma_v4_0_ring_test_ring,
1985         .test_ib = sdma_v4_0_ring_test_ib,
1986         .insert_nop = sdma_v4_0_ring_insert_nop,
1987         .pad_ib = sdma_v4_0_ring_pad_ib,
1988         .emit_wreg = sdma_v4_0_ring_emit_wreg,
1989         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1990         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1991 };
1992
1993 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1994 {
1995         int i;
1996
1997         for (i = 0; i < adev->sdma.num_instances; i++) {
1998                 adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1999                 adev->sdma.instance[i].ring.me = i;
2000                 if (adev->sdma.has_page_queue) {
2001                         adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
2002                         adev->sdma.instance[i].page.me = i;
2003                 }
2004         }
2005 }
2006
2007 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2008         .set = sdma_v4_0_set_trap_irq_state,
2009         .process = sdma_v4_0_process_trap_irq,
2010 };
2011
2012 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2013         .process = sdma_v4_0_process_illegal_inst_irq,
2014 };
2015
2016 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2017 {
2018         adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2019         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2020         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2021 }
2022
2023 /**
2024  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2025  *
2026  * @ring: amdgpu_ring structure holding ring information
2027  * @src_offset: src GPU address
2028  * @dst_offset: dst GPU address
2029  * @byte_count: number of bytes to xfer
2030  *
2031  * Copy GPU buffers using the DMA engine (VEGA10/12).
2032  * Used by the amdgpu ttm implementation to move pages if
2033  * registered as the asic copy callback.
2034  */
2035 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2036                                        uint64_t src_offset,
2037                                        uint64_t dst_offset,
2038                                        uint32_t byte_count)
2039 {
2040         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2041                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2042         ib->ptr[ib->length_dw++] = byte_count - 1;
2043         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2044         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2045         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2046         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2047         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2048 }
2049
2050 /**
2051  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2052  *
2053  * @ring: amdgpu_ring structure holding ring information
2054  * @src_data: value to write to buffer
2055  * @dst_offset: dst GPU address
2056  * @byte_count: number of bytes to xfer
2057  *
2058  * Fill GPU buffers using the DMA engine (VEGA10/12).
2059  */
2060 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2061                                        uint32_t src_data,
2062                                        uint64_t dst_offset,
2063                                        uint32_t byte_count)
2064 {
2065         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2066         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2067         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2068         ib->ptr[ib->length_dw++] = src_data;
2069         ib->ptr[ib->length_dw++] = byte_count - 1;
2070 }
2071
2072 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2073         .copy_max_bytes = 0x400000,
2074         .copy_num_dw = 7,
2075         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2076
2077         .fill_max_bytes = 0x400000,
2078         .fill_num_dw = 5,
2079         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2080 };
2081
2082 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2083 {
2084         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2085         if (adev->sdma.has_page_queue)
2086                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2087         else
2088                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2089 }
2090
2091 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2092         .copy_pte_num_dw = 7,
2093         .copy_pte = sdma_v4_0_vm_copy_pte,
2094
2095         .write_pte = sdma_v4_0_vm_write_pte,
2096         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2097 };
2098
2099 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2100 {
2101         struct drm_gpu_scheduler *sched;
2102         unsigned i;
2103
2104         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2105         for (i = 0; i < adev->sdma.num_instances; i++) {
2106                 if (adev->sdma.has_page_queue)
2107                         sched = &adev->sdma.instance[i].page.sched;
2108                 else
2109                         sched = &adev->sdma.instance[i].ring.sched;
2110                 adev->vm_manager.vm_pte_rqs[i] =
2111                         &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2112         }
2113         adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2114 }
2115
2116 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2117         .type = AMD_IP_BLOCK_TYPE_SDMA,
2118         .major = 4,
2119         .minor = 0,
2120         .rev = 0,
2121         .funcs = &sdma_v4_0_ip_funcs,
2122 };