OSDN Git Service

Merge tag 'kbuild-fixes-v5.6-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13 #include <drm/i915_drm.h>
14
15 #include "display/intel_frontbuffer.h"
16
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_engine_pool.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_sw_fence_work.h"
29 #include "i915_trace.h"
30
31 enum {
32         FORCE_CPU_RELOC = 1,
33         FORCE_GTT_RELOC,
34         FORCE_GPU_RELOC,
35 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
36 };
37
38 #define __EXEC_OBJECT_HAS_REF           BIT(31)
39 #define __EXEC_OBJECT_HAS_PIN           BIT(30)
40 #define __EXEC_OBJECT_HAS_FENCE         BIT(29)
41 #define __EXEC_OBJECT_NEEDS_MAP         BIT(28)
42 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(27)
43 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 27) /* all of the above */
44 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
45
46 #define __EXEC_HAS_RELOC        BIT(31)
47 #define __EXEC_VALIDATED        BIT(30)
48 #define __EXEC_INTERNAL_FLAGS   (~0u << 30)
49 #define UPDATE                  PIN_OFFSET_FIXED
50
51 #define BATCH_OFFSET_BIAS (256*1024)
52
53 #define __I915_EXEC_ILLEGAL_FLAGS \
54         (__I915_EXEC_UNKNOWN_FLAGS | \
55          I915_EXEC_CONSTANTS_MASK  | \
56          I915_EXEC_RESOURCE_STREAMER)
57
58 /* Catch emission of unexpected errors for CI! */
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
60 #undef EINVAL
61 #define EINVAL ({ \
62         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
63         22; \
64 })
65 #endif
66
67 /**
68  * DOC: User command execution
69  *
70  * Userspace submits commands to be executed on the GPU as an instruction
71  * stream within a GEM object we call a batchbuffer. This instructions may
72  * refer to other GEM objects containing auxiliary state such as kernels,
73  * samplers, render targets and even secondary batchbuffers. Userspace does
74  * not know where in the GPU memory these objects reside and so before the
75  * batchbuffer is passed to the GPU for execution, those addresses in the
76  * batchbuffer and auxiliary objects are updated. This is known as relocation,
77  * or patching. To try and avoid having to relocate each object on the next
78  * execution, userspace is told the location of those objects in this pass,
79  * but this remains just a hint as the kernel may choose a new location for
80  * any object in the future.
81  *
82  * At the level of talking to the hardware, submitting a batchbuffer for the
83  * GPU to execute is to add content to a buffer from which the HW
84  * command streamer is reading.
85  *
86  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
87  *    Execlists, this command is not placed on the same buffer as the
88  *    remaining items.
89  *
90  * 2. Add a command to invalidate caches to the buffer.
91  *
92  * 3. Add a batchbuffer start command to the buffer; the start command is
93  *    essentially a token together with the GPU address of the batchbuffer
94  *    to be executed.
95  *
96  * 4. Add a pipeline flush to the buffer.
97  *
98  * 5. Add a memory write command to the buffer to record when the GPU
99  *    is done executing the batchbuffer. The memory write writes the
100  *    global sequence number of the request, ``i915_request::global_seqno``;
101  *    the i915 driver uses the current value in the register to determine
102  *    if the GPU has completed the batchbuffer.
103  *
104  * 6. Add a user interrupt command to the buffer. This command instructs
105  *    the GPU to issue an interrupt when the command, pipeline flush and
106  *    memory write are completed.
107  *
108  * 7. Inform the hardware of the additional commands added to the buffer
109  *    (by updating the tail pointer).
110  *
111  * Processing an execbuf ioctl is conceptually split up into a few phases.
112  *
113  * 1. Validation - Ensure all the pointers, handles and flags are valid.
114  * 2. Reservation - Assign GPU address space for every object
115  * 3. Relocation - Update any addresses to point to the final locations
116  * 4. Serialisation - Order the request with respect to its dependencies
117  * 5. Construction - Construct a request to execute the batchbuffer
118  * 6. Submission (at some point in the future execution)
119  *
120  * Reserving resources for the execbuf is the most complicated phase. We
121  * neither want to have to migrate the object in the address space, nor do
122  * we want to have to update any relocations pointing to this object. Ideally,
123  * we want to leave the object where it is and for all the existing relocations
124  * to match. If the object is given a new address, or if userspace thinks the
125  * object is elsewhere, we have to parse all the relocation entries and update
126  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
127  * all the target addresses in all of its objects match the value in the
128  * relocation entries and that they all match the presumed offsets given by the
129  * list of execbuffer objects. Using this knowledge, we know that if we haven't
130  * moved any buffers, all the relocation entries are valid and we can skip
131  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
132  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
133  *
134  *      The addresses written in the objects must match the corresponding
135  *      reloc.presumed_offset which in turn must match the corresponding
136  *      execobject.offset.
137  *
138  *      Any render targets written to in the batch must be flagged with
139  *      EXEC_OBJECT_WRITE.
140  *
141  *      To avoid stalling, execobject.offset should match the current
142  *      address of that object within the active context.
143  *
144  * The reservation is done is multiple phases. First we try and keep any
145  * object already bound in its current location - so as long as meets the
146  * constraints imposed by the new execbuffer. Any object left unbound after the
147  * first pass is then fitted into any available idle space. If an object does
148  * not fit, all objects are removed from the reservation and the process rerun
149  * after sorting the objects into a priority order (more difficult to fit
150  * objects are tried first). Failing that, the entire VM is cleared and we try
151  * to fit the execbuf once last time before concluding that it simply will not
152  * fit.
153  *
154  * A small complication to all of this is that we allow userspace not only to
155  * specify an alignment and a size for the object in the address space, but
156  * we also allow userspace to specify the exact offset. This objects are
157  * simpler to place (the location is known a priori) all we have to do is make
158  * sure the space is available.
159  *
160  * Once all the objects are in place, patching up the buried pointers to point
161  * to the final locations is a fairly simple job of walking over the relocation
162  * entry arrays, looking up the right address and rewriting the value into
163  * the object. Simple! ... The relocation entries are stored in user memory
164  * and so to access them we have to copy them into a local buffer. That copy
165  * has to avoid taking any pagefaults as they may lead back to a GEM object
166  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
167  * the relocation into multiple passes. First we try to do everything within an
168  * atomic context (avoid the pagefaults) which requires that we never wait. If
169  * we detect that we may wait, or if we need to fault, then we have to fallback
170  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
171  * bells yet?) Dropping the mutex means that we lose all the state we have
172  * built up so far for the execbuf and we must reset any global data. However,
173  * we do leave the objects pinned in their final locations - which is a
174  * potential issue for concurrent execbufs. Once we have left the mutex, we can
175  * allocate and copy all the relocation entries into a large array at our
176  * leisure, reacquire the mutex, reclaim all the objects and other state and
177  * then proceed to update any incorrect addresses with the objects.
178  *
179  * As we process the relocation entries, we maintain a record of whether the
180  * object is being written to. Using NORELOC, we expect userspace to provide
181  * this information instead. We also check whether we can skip the relocation
182  * by comparing the expected value inside the relocation entry with the target's
183  * final address. If they differ, we have to map the current object and rewrite
184  * the 4 or 8 byte pointer within.
185  *
186  * Serialising an execbuf is quite simple according to the rules of the GEM
187  * ABI. Execution within each context is ordered by the order of submission.
188  * Writes to any GEM object are in order of submission and are exclusive. Reads
189  * from a GEM object are unordered with respect to other reads, but ordered by
190  * writes. A write submitted after a read cannot occur before the read, and
191  * similarly any read submitted after a write cannot occur before the write.
192  * Writes are ordered between engines such that only one write occurs at any
193  * time (completing any reads beforehand) - using semaphores where available
194  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
195  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
196  * reads before starting, and any read (either using set-domain or pread) must
197  * flush all GPU writes before starting. (Note we only employ a barrier before,
198  * we currently rely on userspace not concurrently starting a new execution
199  * whilst reading or writing to an object. This may be an advantage or not
200  * depending on how much you trust userspace not to shoot themselves in the
201  * foot.) Serialisation may just result in the request being inserted into
202  * a DAG awaiting its turn, but most simple is to wait on the CPU until
203  * all dependencies are resolved.
204  *
205  * After all of that, is just a matter of closing the request and handing it to
206  * the hardware (well, leaving it in a queue to be executed). However, we also
207  * offer the ability for batchbuffers to be run with elevated privileges so
208  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
209  * Before any batch is given extra privileges we first must check that it
210  * contains no nefarious instructions, we check that each instruction is from
211  * our whitelist and all registers are also from an allowed list. We first
212  * copy the user's batchbuffer to a shadow (so that the user doesn't have
213  * access to it, either by the CPU or GPU as we scan it) and then parse each
214  * instruction. If everything is ok, we set a flag telling the hardware to run
215  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
216  */
217
218 struct i915_execbuffer {
219         struct drm_i915_private *i915; /** i915 backpointer */
220         struct drm_file *file; /** per-file lookup tables and limits */
221         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
222         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
223         struct i915_vma **vma;
224         unsigned int *flags;
225
226         struct intel_engine_cs *engine; /** engine to queue the request to */
227         struct intel_context *context; /* logical state for the request */
228         struct i915_gem_context *gem_context; /** caller's context */
229
230         struct i915_request *request; /** our request to build */
231         struct i915_vma *batch; /** identity of the batch obj/vma */
232         struct i915_vma *trampoline; /** trampoline used for chaining */
233
234         /** actual size of execobj[] as we may extend it for the cmdparser */
235         unsigned int buffer_count;
236
237         /** list of vma not yet bound during reservation phase */
238         struct list_head unbound;
239
240         /** list of vma that have execobj.relocation_count */
241         struct list_head relocs;
242
243         /**
244          * Track the most recently used object for relocations, as we
245          * frequently have to perform multiple relocations within the same
246          * obj/page
247          */
248         struct reloc_cache {
249                 struct drm_mm_node node; /** temporary GTT binding */
250                 unsigned long vaddr; /** Current kmap address */
251                 unsigned long page; /** Currently mapped page index */
252                 unsigned int gen; /** Cached value of INTEL_GEN */
253                 bool use_64bit_reloc : 1;
254                 bool has_llc : 1;
255                 bool has_fence : 1;
256                 bool needs_unfenced : 1;
257
258                 struct i915_request *rq;
259                 u32 *rq_cmd;
260                 unsigned int rq_size;
261         } reloc_cache;
262
263         u64 invalid_flags; /** Set of execobj.flags that are invalid */
264         u32 context_flags; /** Set of execobj.flags to insert from the ctx */
265
266         u32 batch_start_offset; /** Location within object of batch */
267         u32 batch_len; /** Length of batch within object */
268         u32 batch_flags; /** Flags composed for emit_bb_start() */
269
270         /**
271          * Indicate either the size of the hastable used to resolve
272          * relocation handles, or if negative that we are using a direct
273          * index into the execobj[].
274          */
275         int lut_size;
276         struct hlist_head *buckets; /** ht for relocation handles */
277 };
278
279 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
280
281 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
282 {
283         return intel_engine_requires_cmd_parser(eb->engine) ||
284                 (intel_engine_using_cmd_parser(eb->engine) &&
285                  eb->args->batch_len);
286 }
287
288 static int eb_create(struct i915_execbuffer *eb)
289 {
290         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
291                 unsigned int size = 1 + ilog2(eb->buffer_count);
292
293                 /*
294                  * Without a 1:1 association between relocation handles and
295                  * the execobject[] index, we instead create a hashtable.
296                  * We size it dynamically based on available memory, starting
297                  * first with 1:1 assocative hash and scaling back until
298                  * the allocation succeeds.
299                  *
300                  * Later on we use a positive lut_size to indicate we are
301                  * using this hashtable, and a negative value to indicate a
302                  * direct lookup.
303                  */
304                 do {
305                         gfp_t flags;
306
307                         /* While we can still reduce the allocation size, don't
308                          * raise a warning and allow the allocation to fail.
309                          * On the last pass though, we want to try as hard
310                          * as possible to perform the allocation and warn
311                          * if it fails.
312                          */
313                         flags = GFP_KERNEL;
314                         if (size > 1)
315                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
316
317                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
318                                               flags);
319                         if (eb->buckets)
320                                 break;
321                 } while (--size);
322
323                 if (unlikely(!size))
324                         return -ENOMEM;
325
326                 eb->lut_size = size;
327         } else {
328                 eb->lut_size = -eb->buffer_count;
329         }
330
331         return 0;
332 }
333
334 static bool
335 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
336                  const struct i915_vma *vma,
337                  unsigned int flags)
338 {
339         if (vma->node.size < entry->pad_to_size)
340                 return true;
341
342         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
343                 return true;
344
345         if (flags & EXEC_OBJECT_PINNED &&
346             vma->node.start != entry->offset)
347                 return true;
348
349         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
350             vma->node.start < BATCH_OFFSET_BIAS)
351                 return true;
352
353         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
354             (vma->node.start + vma->node.size - 1) >> 32)
355                 return true;
356
357         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
358             !i915_vma_is_map_and_fenceable(vma))
359                 return true;
360
361         return false;
362 }
363
364 static inline bool
365 eb_pin_vma(struct i915_execbuffer *eb,
366            const struct drm_i915_gem_exec_object2 *entry,
367            struct i915_vma *vma)
368 {
369         unsigned int exec_flags = *vma->exec_flags;
370         u64 pin_flags;
371
372         if (vma->node.size)
373                 pin_flags = vma->node.start;
374         else
375                 pin_flags = entry->offset & PIN_OFFSET_MASK;
376
377         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
378         if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
379                 pin_flags |= PIN_GLOBAL;
380
381         if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
382                 return false;
383
384         if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
385                 if (unlikely(i915_vma_pin_fence(vma))) {
386                         i915_vma_unpin(vma);
387                         return false;
388                 }
389
390                 if (vma->fence)
391                         exec_flags |= __EXEC_OBJECT_HAS_FENCE;
392         }
393
394         *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
395         return !eb_vma_misplaced(entry, vma, exec_flags);
396 }
397
398 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
399 {
400         GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
401
402         if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
403                 __i915_vma_unpin_fence(vma);
404
405         __i915_vma_unpin(vma);
406 }
407
408 static inline void
409 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
410 {
411         if (!(*flags & __EXEC_OBJECT_HAS_PIN))
412                 return;
413
414         __eb_unreserve_vma(vma, *flags);
415         *flags &= ~__EXEC_OBJECT_RESERVED;
416 }
417
418 static int
419 eb_validate_vma(struct i915_execbuffer *eb,
420                 struct drm_i915_gem_exec_object2 *entry,
421                 struct i915_vma *vma)
422 {
423         if (unlikely(entry->flags & eb->invalid_flags))
424                 return -EINVAL;
425
426         if (unlikely(entry->alignment &&
427                      !is_power_of_2_u64(entry->alignment)))
428                 return -EINVAL;
429
430         /*
431          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
432          * any non-page-aligned or non-canonical addresses.
433          */
434         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
435                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
436                 return -EINVAL;
437
438         /* pad_to_size was once a reserved field, so sanitize it */
439         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
440                 if (unlikely(offset_in_page(entry->pad_to_size)))
441                         return -EINVAL;
442         } else {
443                 entry->pad_to_size = 0;
444         }
445
446         if (unlikely(vma->exec_flags)) {
447                 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
448                           entry->handle, (int)(entry - eb->exec));
449                 return -EINVAL;
450         }
451
452         /*
453          * From drm_mm perspective address space is continuous,
454          * so from this point we're always using non-canonical
455          * form internally.
456          */
457         entry->offset = gen8_noncanonical_addr(entry->offset);
458
459         if (!eb->reloc_cache.has_fence) {
460                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
461         } else {
462                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
463                      eb->reloc_cache.needs_unfenced) &&
464                     i915_gem_object_is_tiled(vma->obj))
465                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
466         }
467
468         if (!(entry->flags & EXEC_OBJECT_PINNED))
469                 entry->flags |= eb->context_flags;
470
471         return 0;
472 }
473
474 static int
475 eb_add_vma(struct i915_execbuffer *eb,
476            unsigned int i, unsigned batch_idx,
477            struct i915_vma *vma)
478 {
479         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
480         int err;
481
482         GEM_BUG_ON(i915_vma_is_closed(vma));
483
484         if (!(eb->args->flags & __EXEC_VALIDATED)) {
485                 err = eb_validate_vma(eb, entry, vma);
486                 if (unlikely(err))
487                         return err;
488         }
489
490         if (eb->lut_size > 0) {
491                 vma->exec_handle = entry->handle;
492                 hlist_add_head(&vma->exec_node,
493                                &eb->buckets[hash_32(entry->handle,
494                                                     eb->lut_size)]);
495         }
496
497         if (entry->relocation_count)
498                 list_add_tail(&vma->reloc_link, &eb->relocs);
499
500         /*
501          * Stash a pointer from the vma to execobj, so we can query its flags,
502          * size, alignment etc as provided by the user. Also we stash a pointer
503          * to the vma inside the execobj so that we can use a direct lookup
504          * to find the right target VMA when doing relocations.
505          */
506         eb->vma[i] = vma;
507         eb->flags[i] = entry->flags;
508         vma->exec_flags = &eb->flags[i];
509
510         /*
511          * SNA is doing fancy tricks with compressing batch buffers, which leads
512          * to negative relocation deltas. Usually that works out ok since the
513          * relocate address is still positive, except when the batch is placed
514          * very low in the GTT. Ensure this doesn't happen.
515          *
516          * Note that actual hangs have only been observed on gen7, but for
517          * paranoia do it everywhere.
518          */
519         if (i == batch_idx) {
520                 if (entry->relocation_count &&
521                     !(eb->flags[i] & EXEC_OBJECT_PINNED))
522                         eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
523                 if (eb->reloc_cache.has_fence)
524                         eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
525
526                 eb->batch = vma;
527         }
528
529         err = 0;
530         if (eb_pin_vma(eb, entry, vma)) {
531                 if (entry->offset != vma->node.start) {
532                         entry->offset = vma->node.start | UPDATE;
533                         eb->args->flags |= __EXEC_HAS_RELOC;
534                 }
535         } else {
536                 eb_unreserve_vma(vma, vma->exec_flags);
537
538                 list_add_tail(&vma->exec_link, &eb->unbound);
539                 if (drm_mm_node_allocated(&vma->node))
540                         err = i915_vma_unbind(vma);
541                 if (unlikely(err))
542                         vma->exec_flags = NULL;
543         }
544         return err;
545 }
546
547 static inline int use_cpu_reloc(const struct reloc_cache *cache,
548                                 const struct drm_i915_gem_object *obj)
549 {
550         if (!i915_gem_object_has_struct_page(obj))
551                 return false;
552
553         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
554                 return true;
555
556         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
557                 return false;
558
559         return (cache->has_llc ||
560                 obj->cache_dirty ||
561                 obj->cache_level != I915_CACHE_NONE);
562 }
563
564 static int eb_reserve_vma(const struct i915_execbuffer *eb,
565                           struct i915_vma *vma)
566 {
567         struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
568         unsigned int exec_flags = *vma->exec_flags;
569         u64 pin_flags;
570         int err;
571
572         pin_flags = PIN_USER | PIN_NONBLOCK;
573         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
574                 pin_flags |= PIN_GLOBAL;
575
576         /*
577          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
578          * limit address to the first 4GBs for unflagged objects.
579          */
580         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
581                 pin_flags |= PIN_ZONE_4G;
582
583         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
584                 pin_flags |= PIN_MAPPABLE;
585
586         if (exec_flags & EXEC_OBJECT_PINNED) {
587                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
588                 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
589         } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
590                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
591         }
592
593         err = i915_vma_pin(vma,
594                            entry->pad_to_size, entry->alignment,
595                            pin_flags);
596         if (err)
597                 return err;
598
599         if (entry->offset != vma->node.start) {
600                 entry->offset = vma->node.start | UPDATE;
601                 eb->args->flags |= __EXEC_HAS_RELOC;
602         }
603
604         if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
605                 err = i915_vma_pin_fence(vma);
606                 if (unlikely(err)) {
607                         i915_vma_unpin(vma);
608                         return err;
609                 }
610
611                 if (vma->fence)
612                         exec_flags |= __EXEC_OBJECT_HAS_FENCE;
613         }
614
615         *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
616         GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
617
618         return 0;
619 }
620
621 static int eb_reserve(struct i915_execbuffer *eb)
622 {
623         const unsigned int count = eb->buffer_count;
624         struct list_head last;
625         struct i915_vma *vma;
626         unsigned int i, pass;
627         int err;
628
629         /*
630          * Attempt to pin all of the buffers into the GTT.
631          * This is done in 3 phases:
632          *
633          * 1a. Unbind all objects that do not match the GTT constraints for
634          *     the execbuffer (fenceable, mappable, alignment etc).
635          * 1b. Increment pin count for already bound objects.
636          * 2.  Bind new objects.
637          * 3.  Decrement pin count.
638          *
639          * This avoid unnecessary unbinding of later objects in order to make
640          * room for the earlier objects *unless* we need to defragment.
641          */
642
643         pass = 0;
644         err = 0;
645         do {
646                 list_for_each_entry(vma, &eb->unbound, exec_link) {
647                         err = eb_reserve_vma(eb, vma);
648                         if (err)
649                                 break;
650                 }
651                 if (err != -ENOSPC)
652                         return err;
653
654                 /* Resort *all* the objects into priority order */
655                 INIT_LIST_HEAD(&eb->unbound);
656                 INIT_LIST_HEAD(&last);
657                 for (i = 0; i < count; i++) {
658                         unsigned int flags = eb->flags[i];
659                         struct i915_vma *vma = eb->vma[i];
660
661                         if (flags & EXEC_OBJECT_PINNED &&
662                             flags & __EXEC_OBJECT_HAS_PIN)
663                                 continue;
664
665                         eb_unreserve_vma(vma, &eb->flags[i]);
666
667                         if (flags & EXEC_OBJECT_PINNED)
668                                 /* Pinned must have their slot */
669                                 list_add(&vma->exec_link, &eb->unbound);
670                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
671                                 /* Map require the lowest 256MiB (aperture) */
672                                 list_add_tail(&vma->exec_link, &eb->unbound);
673                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
674                                 /* Prioritise 4GiB region for restricted bo */
675                                 list_add(&vma->exec_link, &last);
676                         else
677                                 list_add_tail(&vma->exec_link, &last);
678                 }
679                 list_splice_tail(&last, &eb->unbound);
680
681                 switch (pass++) {
682                 case 0:
683                         break;
684
685                 case 1:
686                         /* Too fragmented, unbind everything and retry */
687                         mutex_lock(&eb->context->vm->mutex);
688                         err = i915_gem_evict_vm(eb->context->vm);
689                         mutex_unlock(&eb->context->vm->mutex);
690                         if (err)
691                                 return err;
692                         break;
693
694                 default:
695                         return -ENOSPC;
696                 }
697         } while (1);
698 }
699
700 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
701 {
702         if (eb->args->flags & I915_EXEC_BATCH_FIRST)
703                 return 0;
704         else
705                 return eb->buffer_count - 1;
706 }
707
708 static int eb_select_context(struct i915_execbuffer *eb)
709 {
710         struct i915_gem_context *ctx;
711
712         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
713         if (unlikely(!ctx))
714                 return -ENOENT;
715
716         eb->gem_context = ctx;
717         if (rcu_access_pointer(ctx->vm))
718                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
719
720         eb->context_flags = 0;
721         if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
722                 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
723
724         return 0;
725 }
726
727 static int eb_lookup_vmas(struct i915_execbuffer *eb)
728 {
729         struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
730         struct drm_i915_gem_object *obj;
731         unsigned int i, batch;
732         int err;
733
734         INIT_LIST_HEAD(&eb->relocs);
735         INIT_LIST_HEAD(&eb->unbound);
736
737         batch = eb_batch_index(eb);
738
739         mutex_lock(&eb->gem_context->mutex);
740         if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
741                 err = -ENOENT;
742                 goto err_ctx;
743         }
744
745         for (i = 0; i < eb->buffer_count; i++) {
746                 u32 handle = eb->exec[i].handle;
747                 struct i915_lut_handle *lut;
748                 struct i915_vma *vma;
749
750                 vma = radix_tree_lookup(handles_vma, handle);
751                 if (likely(vma))
752                         goto add_vma;
753
754                 obj = i915_gem_object_lookup(eb->file, handle);
755                 if (unlikely(!obj)) {
756                         err = -ENOENT;
757                         goto err_vma;
758                 }
759
760                 vma = i915_vma_instance(obj, eb->context->vm, NULL);
761                 if (IS_ERR(vma)) {
762                         err = PTR_ERR(vma);
763                         goto err_obj;
764                 }
765
766                 lut = i915_lut_handle_alloc();
767                 if (unlikely(!lut)) {
768                         err = -ENOMEM;
769                         goto err_obj;
770                 }
771
772                 err = radix_tree_insert(handles_vma, handle, vma);
773                 if (unlikely(err)) {
774                         i915_lut_handle_free(lut);
775                         goto err_obj;
776                 }
777
778                 /* transfer ref to lut */
779                 if (!atomic_fetch_inc(&vma->open_count))
780                         i915_vma_reopen(vma);
781                 lut->handle = handle;
782                 lut->ctx = eb->gem_context;
783
784                 i915_gem_object_lock(obj);
785                 list_add(&lut->obj_link, &obj->lut_list);
786                 i915_gem_object_unlock(obj);
787
788 add_vma:
789                 err = eb_add_vma(eb, i, batch, vma);
790                 if (unlikely(err))
791                         goto err_vma;
792
793                 GEM_BUG_ON(vma != eb->vma[i]);
794                 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
795                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
796                            eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
797         }
798
799         mutex_unlock(&eb->gem_context->mutex);
800
801         eb->args->flags |= __EXEC_VALIDATED;
802         return eb_reserve(eb);
803
804 err_obj:
805         i915_gem_object_put(obj);
806 err_vma:
807         eb->vma[i] = NULL;
808 err_ctx:
809         mutex_unlock(&eb->gem_context->mutex);
810         return err;
811 }
812
813 static struct i915_vma *
814 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
815 {
816         if (eb->lut_size < 0) {
817                 if (handle >= -eb->lut_size)
818                         return NULL;
819                 return eb->vma[handle];
820         } else {
821                 struct hlist_head *head;
822                 struct i915_vma *vma;
823
824                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
825                 hlist_for_each_entry(vma, head, exec_node) {
826                         if (vma->exec_handle == handle)
827                                 return vma;
828                 }
829                 return NULL;
830         }
831 }
832
833 static void eb_release_vmas(const struct i915_execbuffer *eb)
834 {
835         const unsigned int count = eb->buffer_count;
836         unsigned int i;
837
838         for (i = 0; i < count; i++) {
839                 struct i915_vma *vma = eb->vma[i];
840                 unsigned int flags = eb->flags[i];
841
842                 if (!vma)
843                         break;
844
845                 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
846                 vma->exec_flags = NULL;
847                 eb->vma[i] = NULL;
848
849                 if (flags & __EXEC_OBJECT_HAS_PIN)
850                         __eb_unreserve_vma(vma, flags);
851
852                 if (flags & __EXEC_OBJECT_HAS_REF)
853                         i915_vma_put(vma);
854         }
855 }
856
857 static void eb_reset_vmas(const struct i915_execbuffer *eb)
858 {
859         eb_release_vmas(eb);
860         if (eb->lut_size > 0)
861                 memset(eb->buckets, 0,
862                        sizeof(struct hlist_head) << eb->lut_size);
863 }
864
865 static void eb_destroy(const struct i915_execbuffer *eb)
866 {
867         GEM_BUG_ON(eb->reloc_cache.rq);
868
869         if (eb->lut_size > 0)
870                 kfree(eb->buckets);
871 }
872
873 static inline u64
874 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
875                   const struct i915_vma *target)
876 {
877         return gen8_canonical_addr((int)reloc->delta + target->node.start);
878 }
879
880 static void reloc_cache_init(struct reloc_cache *cache,
881                              struct drm_i915_private *i915)
882 {
883         cache->page = -1;
884         cache->vaddr = 0;
885         /* Must be a variable in the struct to allow GCC to unroll. */
886         cache->gen = INTEL_GEN(i915);
887         cache->has_llc = HAS_LLC(i915);
888         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
889         cache->has_fence = cache->gen < 4;
890         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
891         cache->node.flags = 0;
892         cache->rq = NULL;
893         cache->rq_size = 0;
894 }
895
896 static inline void *unmask_page(unsigned long p)
897 {
898         return (void *)(uintptr_t)(p & PAGE_MASK);
899 }
900
901 static inline unsigned int unmask_flags(unsigned long p)
902 {
903         return p & ~PAGE_MASK;
904 }
905
906 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
907
908 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
909 {
910         struct drm_i915_private *i915 =
911                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
912         return &i915->ggtt;
913 }
914
915 static void reloc_gpu_flush(struct reloc_cache *cache)
916 {
917         GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
918         cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
919
920         __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
921         i915_gem_object_unpin_map(cache->rq->batch->obj);
922
923         intel_gt_chipset_flush(cache->rq->engine->gt);
924
925         i915_request_add(cache->rq);
926         cache->rq = NULL;
927 }
928
929 static void reloc_cache_reset(struct reloc_cache *cache)
930 {
931         void *vaddr;
932
933         if (cache->rq)
934                 reloc_gpu_flush(cache);
935
936         if (!cache->vaddr)
937                 return;
938
939         vaddr = unmask_page(cache->vaddr);
940         if (cache->vaddr & KMAP) {
941                 if (cache->vaddr & CLFLUSH_AFTER)
942                         mb();
943
944                 kunmap_atomic(vaddr);
945                 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
946         } else {
947                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
948
949                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
950                 io_mapping_unmap_atomic((void __iomem *)vaddr);
951
952                 if (drm_mm_node_allocated(&cache->node)) {
953                         ggtt->vm.clear_range(&ggtt->vm,
954                                              cache->node.start,
955                                              cache->node.size);
956                         mutex_lock(&ggtt->vm.mutex);
957                         drm_mm_remove_node(&cache->node);
958                         mutex_unlock(&ggtt->vm.mutex);
959                 } else {
960                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
961                 }
962         }
963
964         cache->vaddr = 0;
965         cache->page = -1;
966 }
967
968 static void *reloc_kmap(struct drm_i915_gem_object *obj,
969                         struct reloc_cache *cache,
970                         unsigned long page)
971 {
972         void *vaddr;
973
974         if (cache->vaddr) {
975                 kunmap_atomic(unmask_page(cache->vaddr));
976         } else {
977                 unsigned int flushes;
978                 int err;
979
980                 err = i915_gem_object_prepare_write(obj, &flushes);
981                 if (err)
982                         return ERR_PTR(err);
983
984                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
985                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
986
987                 cache->vaddr = flushes | KMAP;
988                 cache->node.mm = (void *)obj;
989                 if (flushes)
990                         mb();
991         }
992
993         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
994         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
995         cache->page = page;
996
997         return vaddr;
998 }
999
1000 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1001                          struct reloc_cache *cache,
1002                          unsigned long page)
1003 {
1004         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1005         unsigned long offset;
1006         void *vaddr;
1007
1008         if (cache->vaddr) {
1009                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1010                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1011         } else {
1012                 struct i915_vma *vma;
1013                 int err;
1014
1015                 if (i915_gem_object_is_tiled(obj))
1016                         return ERR_PTR(-EINVAL);
1017
1018                 if (use_cpu_reloc(cache, obj))
1019                         return NULL;
1020
1021                 i915_gem_object_lock(obj);
1022                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1023                 i915_gem_object_unlock(obj);
1024                 if (err)
1025                         return ERR_PTR(err);
1026
1027                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1028                                                PIN_MAPPABLE |
1029                                                PIN_NONBLOCK /* NOWARN */ |
1030                                                PIN_NOEVICT);
1031                 if (IS_ERR(vma)) {
1032                         memset(&cache->node, 0, sizeof(cache->node));
1033                         mutex_lock(&ggtt->vm.mutex);
1034                         err = drm_mm_insert_node_in_range
1035                                 (&ggtt->vm.mm, &cache->node,
1036                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1037                                  0, ggtt->mappable_end,
1038                                  DRM_MM_INSERT_LOW);
1039                         mutex_unlock(&ggtt->vm.mutex);
1040                         if (err) /* no inactive aperture space, use cpu reloc */
1041                                 return NULL;
1042                 } else {
1043                         cache->node.start = vma->node.start;
1044                         cache->node.mm = (void *)vma;
1045                 }
1046         }
1047
1048         offset = cache->node.start;
1049         if (drm_mm_node_allocated(&cache->node)) {
1050                 ggtt->vm.insert_page(&ggtt->vm,
1051                                      i915_gem_object_get_dma_address(obj, page),
1052                                      offset, I915_CACHE_NONE, 0);
1053         } else {
1054                 offset += page << PAGE_SHIFT;
1055         }
1056
1057         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1058                                                          offset);
1059         cache->page = page;
1060         cache->vaddr = (unsigned long)vaddr;
1061
1062         return vaddr;
1063 }
1064
1065 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1066                          struct reloc_cache *cache,
1067                          unsigned long page)
1068 {
1069         void *vaddr;
1070
1071         if (cache->page == page) {
1072                 vaddr = unmask_page(cache->vaddr);
1073         } else {
1074                 vaddr = NULL;
1075                 if ((cache->vaddr & KMAP) == 0)
1076                         vaddr = reloc_iomap(obj, cache, page);
1077                 if (!vaddr)
1078                         vaddr = reloc_kmap(obj, cache, page);
1079         }
1080
1081         return vaddr;
1082 }
1083
1084 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1085 {
1086         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1087                 if (flushes & CLFLUSH_BEFORE) {
1088                         clflushopt(addr);
1089                         mb();
1090                 }
1091
1092                 *addr = value;
1093
1094                 /*
1095                  * Writes to the same cacheline are serialised by the CPU
1096                  * (including clflush). On the write path, we only require
1097                  * that it hits memory in an orderly fashion and place
1098                  * mb barriers at the start and end of the relocation phase
1099                  * to ensure ordering of clflush wrt to the system.
1100                  */
1101                 if (flushes & CLFLUSH_AFTER)
1102                         clflushopt(addr);
1103         } else
1104                 *addr = value;
1105 }
1106
1107 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1108 {
1109         struct drm_i915_gem_object *obj = vma->obj;
1110         int err;
1111
1112         i915_vma_lock(vma);
1113
1114         if (obj->cache_dirty & ~obj->cache_coherent)
1115                 i915_gem_clflush_object(obj, 0);
1116         obj->write_domain = 0;
1117
1118         err = i915_request_await_object(rq, vma->obj, true);
1119         if (err == 0)
1120                 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1121
1122         i915_vma_unlock(vma);
1123
1124         return err;
1125 }
1126
1127 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1128                              struct i915_vma *vma,
1129                              unsigned int len)
1130 {
1131         struct reloc_cache *cache = &eb->reloc_cache;
1132         struct intel_engine_pool_node *pool;
1133         struct i915_request *rq;
1134         struct i915_vma *batch;
1135         u32 *cmd;
1136         int err;
1137
1138         pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1139         if (IS_ERR(pool))
1140                 return PTR_ERR(pool);
1141
1142         cmd = i915_gem_object_pin_map(pool->obj,
1143                                       cache->has_llc ?
1144                                       I915_MAP_FORCE_WB :
1145                                       I915_MAP_FORCE_WC);
1146         if (IS_ERR(cmd)) {
1147                 err = PTR_ERR(cmd);
1148                 goto out_pool;
1149         }
1150
1151         batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1152         if (IS_ERR(batch)) {
1153                 err = PTR_ERR(batch);
1154                 goto err_unmap;
1155         }
1156
1157         err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1158         if (err)
1159                 goto err_unmap;
1160
1161         rq = i915_request_create(eb->context);
1162         if (IS_ERR(rq)) {
1163                 err = PTR_ERR(rq);
1164                 goto err_unpin;
1165         }
1166
1167         err = intel_engine_pool_mark_active(pool, rq);
1168         if (err)
1169                 goto err_request;
1170
1171         err = reloc_move_to_gpu(rq, vma);
1172         if (err)
1173                 goto err_request;
1174
1175         err = eb->engine->emit_bb_start(rq,
1176                                         batch->node.start, PAGE_SIZE,
1177                                         cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1178         if (err)
1179                 goto skip_request;
1180
1181         i915_vma_lock(batch);
1182         err = i915_request_await_object(rq, batch->obj, false);
1183         if (err == 0)
1184                 err = i915_vma_move_to_active(batch, rq, 0);
1185         i915_vma_unlock(batch);
1186         if (err)
1187                 goto skip_request;
1188
1189         rq->batch = batch;
1190         i915_vma_unpin(batch);
1191
1192         cache->rq = rq;
1193         cache->rq_cmd = cmd;
1194         cache->rq_size = 0;
1195
1196         /* Return with batch mapping (cmd) still pinned */
1197         goto out_pool;
1198
1199 skip_request:
1200         i915_request_skip(rq, err);
1201 err_request:
1202         i915_request_add(rq);
1203 err_unpin:
1204         i915_vma_unpin(batch);
1205 err_unmap:
1206         i915_gem_object_unpin_map(pool->obj);
1207 out_pool:
1208         intel_engine_pool_put(pool);
1209         return err;
1210 }
1211
1212 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1213                       struct i915_vma *vma,
1214                       unsigned int len)
1215 {
1216         struct reloc_cache *cache = &eb->reloc_cache;
1217         u32 *cmd;
1218
1219         if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1220                 reloc_gpu_flush(cache);
1221
1222         if (unlikely(!cache->rq)) {
1223                 int err;
1224
1225                 if (!intel_engine_can_store_dword(eb->engine))
1226                         return ERR_PTR(-ENODEV);
1227
1228                 err = __reloc_gpu_alloc(eb, vma, len);
1229                 if (unlikely(err))
1230                         return ERR_PTR(err);
1231         }
1232
1233         cmd = cache->rq_cmd + cache->rq_size;
1234         cache->rq_size += len;
1235
1236         return cmd;
1237 }
1238
1239 static u64
1240 relocate_entry(struct i915_vma *vma,
1241                const struct drm_i915_gem_relocation_entry *reloc,
1242                struct i915_execbuffer *eb,
1243                const struct i915_vma *target)
1244 {
1245         u64 offset = reloc->offset;
1246         u64 target_offset = relocation_target(reloc, target);
1247         bool wide = eb->reloc_cache.use_64bit_reloc;
1248         void *vaddr;
1249
1250         if (!eb->reloc_cache.vaddr &&
1251             (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1252              !dma_resv_test_signaled_rcu(vma->resv, true))) {
1253                 const unsigned int gen = eb->reloc_cache.gen;
1254                 unsigned int len;
1255                 u32 *batch;
1256                 u64 addr;
1257
1258                 if (wide)
1259                         len = offset & 7 ? 8 : 5;
1260                 else if (gen >= 4)
1261                         len = 4;
1262                 else
1263                         len = 3;
1264
1265                 batch = reloc_gpu(eb, vma, len);
1266                 if (IS_ERR(batch))
1267                         goto repeat;
1268
1269                 addr = gen8_canonical_addr(vma->node.start + offset);
1270                 if (wide) {
1271                         if (offset & 7) {
1272                                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1273                                 *batch++ = lower_32_bits(addr);
1274                                 *batch++ = upper_32_bits(addr);
1275                                 *batch++ = lower_32_bits(target_offset);
1276
1277                                 addr = gen8_canonical_addr(addr + 4);
1278
1279                                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1280                                 *batch++ = lower_32_bits(addr);
1281                                 *batch++ = upper_32_bits(addr);
1282                                 *batch++ = upper_32_bits(target_offset);
1283                         } else {
1284                                 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1285                                 *batch++ = lower_32_bits(addr);
1286                                 *batch++ = upper_32_bits(addr);
1287                                 *batch++ = lower_32_bits(target_offset);
1288                                 *batch++ = upper_32_bits(target_offset);
1289                         }
1290                 } else if (gen >= 6) {
1291                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1292                         *batch++ = 0;
1293                         *batch++ = addr;
1294                         *batch++ = target_offset;
1295                 } else if (gen >= 4) {
1296                         *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1297                         *batch++ = 0;
1298                         *batch++ = addr;
1299                         *batch++ = target_offset;
1300                 } else {
1301                         *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1302                         *batch++ = addr;
1303                         *batch++ = target_offset;
1304                 }
1305
1306                 goto out;
1307         }
1308
1309 repeat:
1310         vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1311         if (IS_ERR(vaddr))
1312                 return PTR_ERR(vaddr);
1313
1314         clflush_write32(vaddr + offset_in_page(offset),
1315                         lower_32_bits(target_offset),
1316                         eb->reloc_cache.vaddr);
1317
1318         if (wide) {
1319                 offset += sizeof(u32);
1320                 target_offset >>= 32;
1321                 wide = false;
1322                 goto repeat;
1323         }
1324
1325 out:
1326         return target->node.start | UPDATE;
1327 }
1328
1329 static u64
1330 eb_relocate_entry(struct i915_execbuffer *eb,
1331                   struct i915_vma *vma,
1332                   const struct drm_i915_gem_relocation_entry *reloc)
1333 {
1334         struct i915_vma *target;
1335         int err;
1336
1337         /* we've already hold a reference to all valid objects */
1338         target = eb_get_vma(eb, reloc->target_handle);
1339         if (unlikely(!target))
1340                 return -ENOENT;
1341
1342         /* Validate that the target is in a valid r/w GPU domain */
1343         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1344                 DRM_DEBUG("reloc with multiple write domains: "
1345                           "target %d offset %d "
1346                           "read %08x write %08x",
1347                           reloc->target_handle,
1348                           (int) reloc->offset,
1349                           reloc->read_domains,
1350                           reloc->write_domain);
1351                 return -EINVAL;
1352         }
1353         if (unlikely((reloc->write_domain | reloc->read_domains)
1354                      & ~I915_GEM_GPU_DOMAINS)) {
1355                 DRM_DEBUG("reloc with read/write non-GPU domains: "
1356                           "target %d offset %d "
1357                           "read %08x write %08x",
1358                           reloc->target_handle,
1359                           (int) reloc->offset,
1360                           reloc->read_domains,
1361                           reloc->write_domain);
1362                 return -EINVAL;
1363         }
1364
1365         if (reloc->write_domain) {
1366                 *target->exec_flags |= EXEC_OBJECT_WRITE;
1367
1368                 /*
1369                  * Sandybridge PPGTT errata: We need a global gtt mapping
1370                  * for MI and pipe_control writes because the gpu doesn't
1371                  * properly redirect them through the ppgtt for non_secure
1372                  * batchbuffers.
1373                  */
1374                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1375                     IS_GEN(eb->i915, 6)) {
1376                         err = i915_vma_bind(target, target->obj->cache_level,
1377                                             PIN_GLOBAL, NULL);
1378                         if (WARN_ONCE(err,
1379                                       "Unexpected failure to bind target VMA!"))
1380                                 return err;
1381                 }
1382         }
1383
1384         /*
1385          * If the relocation already has the right value in it, no
1386          * more work needs to be done.
1387          */
1388         if (!DBG_FORCE_RELOC &&
1389             gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1390                 return 0;
1391
1392         /* Check that the relocation address is valid... */
1393         if (unlikely(reloc->offset >
1394                      vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1395                 DRM_DEBUG("Relocation beyond object bounds: "
1396                           "target %d offset %d size %d.\n",
1397                           reloc->target_handle,
1398                           (int)reloc->offset,
1399                           (int)vma->size);
1400                 return -EINVAL;
1401         }
1402         if (unlikely(reloc->offset & 3)) {
1403                 DRM_DEBUG("Relocation not 4-byte aligned: "
1404                           "target %d offset %d.\n",
1405                           reloc->target_handle,
1406                           (int)reloc->offset);
1407                 return -EINVAL;
1408         }
1409
1410         /*
1411          * If we write into the object, we need to force the synchronisation
1412          * barrier, either with an asynchronous clflush or if we executed the
1413          * patching using the GPU (though that should be serialised by the
1414          * timeline). To be completely sure, and since we are required to
1415          * do relocations we are already stalling, disable the user's opt
1416          * out of our synchronisation.
1417          */
1418         *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1419
1420         /* and update the user's relocation entry */
1421         return relocate_entry(vma, reloc, eb, target);
1422 }
1423
1424 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1425 {
1426 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1427         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1428         struct drm_i915_gem_relocation_entry __user *urelocs;
1429         const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1430         unsigned int remain;
1431
1432         urelocs = u64_to_user_ptr(entry->relocs_ptr);
1433         remain = entry->relocation_count;
1434         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1435                 return -EINVAL;
1436
1437         /*
1438          * We must check that the entire relocation array is safe
1439          * to read. However, if the array is not writable the user loses
1440          * the updated relocation values.
1441          */
1442         if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1443                 return -EFAULT;
1444
1445         do {
1446                 struct drm_i915_gem_relocation_entry *r = stack;
1447                 unsigned int count =
1448                         min_t(unsigned int, remain, ARRAY_SIZE(stack));
1449                 unsigned int copied;
1450
1451                 /*
1452                  * This is the fast path and we cannot handle a pagefault
1453                  * whilst holding the struct mutex lest the user pass in the
1454                  * relocations contained within a mmaped bo. For in such a case
1455                  * we, the page fault handler would call i915_gem_fault() and
1456                  * we would try to acquire the struct mutex again. Obviously
1457                  * this is bad and so lockdep complains vehemently.
1458                  */
1459                 pagefault_disable();
1460                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1461                 pagefault_enable();
1462                 if (unlikely(copied)) {
1463                         remain = -EFAULT;
1464                         goto out;
1465                 }
1466
1467                 remain -= count;
1468                 do {
1469                         u64 offset = eb_relocate_entry(eb, vma, r);
1470
1471                         if (likely(offset == 0)) {
1472                         } else if ((s64)offset < 0) {
1473                                 remain = (int)offset;
1474                                 goto out;
1475                         } else {
1476                                 /*
1477                                  * Note that reporting an error now
1478                                  * leaves everything in an inconsistent
1479                                  * state as we have *already* changed
1480                                  * the relocation value inside the
1481                                  * object. As we have not changed the
1482                                  * reloc.presumed_offset or will not
1483                                  * change the execobject.offset, on the
1484                                  * call we may not rewrite the value
1485                                  * inside the object, leaving it
1486                                  * dangling and causing a GPU hang. Unless
1487                                  * userspace dynamically rebuilds the
1488                                  * relocations on each execbuf rather than
1489                                  * presume a static tree.
1490                                  *
1491                                  * We did previously check if the relocations
1492                                  * were writable (access_ok), an error now
1493                                  * would be a strange race with mprotect,
1494                                  * having already demonstrated that we
1495                                  * can read from this userspace address.
1496                                  */
1497                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1498                                 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1499                                         remain = -EFAULT;
1500                                         goto out;
1501                                 }
1502                         }
1503                 } while (r++, --count);
1504                 urelocs += ARRAY_SIZE(stack);
1505         } while (remain);
1506 out:
1507         reloc_cache_reset(&eb->reloc_cache);
1508         return remain;
1509 }
1510
1511 static int
1512 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1513 {
1514         const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1515         struct drm_i915_gem_relocation_entry *relocs =
1516                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1517         unsigned int i;
1518         int err;
1519
1520         for (i = 0; i < entry->relocation_count; i++) {
1521                 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1522
1523                 if ((s64)offset < 0) {
1524                         err = (int)offset;
1525                         goto err;
1526                 }
1527         }
1528         err = 0;
1529 err:
1530         reloc_cache_reset(&eb->reloc_cache);
1531         return err;
1532 }
1533
1534 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1535 {
1536         const char __user *addr, *end;
1537         unsigned long size;
1538         char __maybe_unused c;
1539
1540         size = entry->relocation_count;
1541         if (size == 0)
1542                 return 0;
1543
1544         if (size > N_RELOC(ULONG_MAX))
1545                 return -EINVAL;
1546
1547         addr = u64_to_user_ptr(entry->relocs_ptr);
1548         size *= sizeof(struct drm_i915_gem_relocation_entry);
1549         if (!access_ok(addr, size))
1550                 return -EFAULT;
1551
1552         end = addr + size;
1553         for (; addr < end; addr += PAGE_SIZE) {
1554                 int err = __get_user(c, addr);
1555                 if (err)
1556                         return err;
1557         }
1558         return __get_user(c, end - 1);
1559 }
1560
1561 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1562 {
1563         struct drm_i915_gem_relocation_entry *relocs;
1564         const unsigned int count = eb->buffer_count;
1565         unsigned int i;
1566         int err;
1567
1568         for (i = 0; i < count; i++) {
1569                 const unsigned int nreloc = eb->exec[i].relocation_count;
1570                 struct drm_i915_gem_relocation_entry __user *urelocs;
1571                 unsigned long size;
1572                 unsigned long copied;
1573
1574                 if (nreloc == 0)
1575                         continue;
1576
1577                 err = check_relocations(&eb->exec[i]);
1578                 if (err)
1579                         goto err;
1580
1581                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1582                 size = nreloc * sizeof(*relocs);
1583
1584                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1585                 if (!relocs) {
1586                         err = -ENOMEM;
1587                         goto err;
1588                 }
1589
1590                 /* copy_from_user is limited to < 4GiB */
1591                 copied = 0;
1592                 do {
1593                         unsigned int len =
1594                                 min_t(u64, BIT_ULL(31), size - copied);
1595
1596                         if (__copy_from_user((char *)relocs + copied,
1597                                              (char __user *)urelocs + copied,
1598                                              len))
1599                                 goto end;
1600
1601                         copied += len;
1602                 } while (copied < size);
1603
1604                 /*
1605                  * As we do not update the known relocation offsets after
1606                  * relocating (due to the complexities in lock handling),
1607                  * we need to mark them as invalid now so that we force the
1608                  * relocation processing next time. Just in case the target
1609                  * object is evicted and then rebound into its old
1610                  * presumed_offset before the next execbuffer - if that
1611                  * happened we would make the mistake of assuming that the
1612                  * relocations were valid.
1613                  */
1614                 if (!user_access_begin(urelocs, size))
1615                         goto end;
1616
1617                 for (copied = 0; copied < nreloc; copied++)
1618                         unsafe_put_user(-1,
1619                                         &urelocs[copied].presumed_offset,
1620                                         end_user);
1621                 user_access_end();
1622
1623                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1624         }
1625
1626         return 0;
1627
1628 end_user:
1629         user_access_end();
1630 end:
1631         kvfree(relocs);
1632         err = -EFAULT;
1633 err:
1634         while (i--) {
1635                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1636                 if (eb->exec[i].relocation_count)
1637                         kvfree(relocs);
1638         }
1639         return err;
1640 }
1641
1642 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1643 {
1644         const unsigned int count = eb->buffer_count;
1645         unsigned int i;
1646
1647         if (unlikely(i915_modparams.prefault_disable))
1648                 return 0;
1649
1650         for (i = 0; i < count; i++) {
1651                 int err;
1652
1653                 err = check_relocations(&eb->exec[i]);
1654                 if (err)
1655                         return err;
1656         }
1657
1658         return 0;
1659 }
1660
1661 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1662 {
1663         struct drm_device *dev = &eb->i915->drm;
1664         bool have_copy = false;
1665         struct i915_vma *vma;
1666         int err = 0;
1667
1668 repeat:
1669         if (signal_pending(current)) {
1670                 err = -ERESTARTSYS;
1671                 goto out;
1672         }
1673
1674         /* We may process another execbuffer during the unlock... */
1675         eb_reset_vmas(eb);
1676         mutex_unlock(&dev->struct_mutex);
1677
1678         /*
1679          * We take 3 passes through the slowpatch.
1680          *
1681          * 1 - we try to just prefault all the user relocation entries and
1682          * then attempt to reuse the atomic pagefault disabled fast path again.
1683          *
1684          * 2 - we copy the user entries to a local buffer here outside of the
1685          * local and allow ourselves to wait upon any rendering before
1686          * relocations
1687          *
1688          * 3 - we already have a local copy of the relocation entries, but
1689          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1690          */
1691         if (!err) {
1692                 err = eb_prefault_relocations(eb);
1693         } else if (!have_copy) {
1694                 err = eb_copy_relocations(eb);
1695                 have_copy = err == 0;
1696         } else {
1697                 cond_resched();
1698                 err = 0;
1699         }
1700         if (err) {
1701                 mutex_lock(&dev->struct_mutex);
1702                 goto out;
1703         }
1704
1705         /* A frequent cause for EAGAIN are currently unavailable client pages */
1706         flush_workqueue(eb->i915->mm.userptr_wq);
1707
1708         err = i915_mutex_lock_interruptible(dev);
1709         if (err) {
1710                 mutex_lock(&dev->struct_mutex);
1711                 goto out;
1712         }
1713
1714         /* reacquire the objects */
1715         err = eb_lookup_vmas(eb);
1716         if (err)
1717                 goto err;
1718
1719         GEM_BUG_ON(!eb->batch);
1720
1721         list_for_each_entry(vma, &eb->relocs, reloc_link) {
1722                 if (!have_copy) {
1723                         pagefault_disable();
1724                         err = eb_relocate_vma(eb, vma);
1725                         pagefault_enable();
1726                         if (err)
1727                                 goto repeat;
1728                 } else {
1729                         err = eb_relocate_vma_slow(eb, vma);
1730                         if (err)
1731                                 goto err;
1732                 }
1733         }
1734
1735         /*
1736          * Leave the user relocations as are, this is the painfully slow path,
1737          * and we want to avoid the complication of dropping the lock whilst
1738          * having buffers reserved in the aperture and so causing spurious
1739          * ENOSPC for random operations.
1740          */
1741
1742 err:
1743         if (err == -EAGAIN)
1744                 goto repeat;
1745
1746 out:
1747         if (have_copy) {
1748                 const unsigned int count = eb->buffer_count;
1749                 unsigned int i;
1750
1751                 for (i = 0; i < count; i++) {
1752                         const struct drm_i915_gem_exec_object2 *entry =
1753                                 &eb->exec[i];
1754                         struct drm_i915_gem_relocation_entry *relocs;
1755
1756                         if (!entry->relocation_count)
1757                                 continue;
1758
1759                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1760                         kvfree(relocs);
1761                 }
1762         }
1763
1764         return err;
1765 }
1766
1767 static int eb_relocate(struct i915_execbuffer *eb)
1768 {
1769         if (eb_lookup_vmas(eb))
1770                 goto slow;
1771
1772         /* The objects are in their final locations, apply the relocations. */
1773         if (eb->args->flags & __EXEC_HAS_RELOC) {
1774                 struct i915_vma *vma;
1775
1776                 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1777                         if (eb_relocate_vma(eb, vma))
1778                                 goto slow;
1779                 }
1780         }
1781
1782         return 0;
1783
1784 slow:
1785         return eb_relocate_slow(eb);
1786 }
1787
1788 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1789 {
1790         const unsigned int count = eb->buffer_count;
1791         struct ww_acquire_ctx acquire;
1792         unsigned int i;
1793         int err = 0;
1794
1795         ww_acquire_init(&acquire, &reservation_ww_class);
1796
1797         for (i = 0; i < count; i++) {
1798                 struct i915_vma *vma = eb->vma[i];
1799
1800                 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1801                 if (!err)
1802                         continue;
1803
1804                 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1805
1806                 if (err == -EDEADLK) {
1807                         GEM_BUG_ON(i == 0);
1808                         do {
1809                                 int j = i - 1;
1810
1811                                 ww_mutex_unlock(&eb->vma[j]->resv->lock);
1812
1813                                 swap(eb->flags[i], eb->flags[j]);
1814                                 swap(eb->vma[i],  eb->vma[j]);
1815                                 eb->vma[i]->exec_flags = &eb->flags[i];
1816                         } while (--i);
1817                         GEM_BUG_ON(vma != eb->vma[0]);
1818                         vma->exec_flags = &eb->flags[0];
1819
1820                         err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1821                                                                &acquire);
1822                 }
1823                 if (err)
1824                         break;
1825         }
1826         ww_acquire_done(&acquire);
1827
1828         while (i--) {
1829                 unsigned int flags = eb->flags[i];
1830                 struct i915_vma *vma = eb->vma[i];
1831                 struct drm_i915_gem_object *obj = vma->obj;
1832
1833                 assert_vma_held(vma);
1834
1835                 if (flags & EXEC_OBJECT_CAPTURE) {
1836                         struct i915_capture_list *capture;
1837
1838                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1839                         if (capture) {
1840                                 capture->next = eb->request->capture_list;
1841                                 capture->vma = vma;
1842                                 eb->request->capture_list = capture;
1843                         }
1844                 }
1845
1846                 /*
1847                  * If the GPU is not _reading_ through the CPU cache, we need
1848                  * to make sure that any writes (both previous GPU writes from
1849                  * before a change in snooping levels and normal CPU writes)
1850                  * caught in that cache are flushed to main memory.
1851                  *
1852                  * We want to say
1853                  *   obj->cache_dirty &&
1854                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1855                  * but gcc's optimiser doesn't handle that as well and emits
1856                  * two jumps instead of one. Maybe one day...
1857                  */
1858                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1859                         if (i915_gem_clflush_object(obj, 0))
1860                                 flags &= ~EXEC_OBJECT_ASYNC;
1861                 }
1862
1863                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1864                         err = i915_request_await_object
1865                                 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1866                 }
1867
1868                 if (err == 0)
1869                         err = i915_vma_move_to_active(vma, eb->request, flags);
1870
1871                 i915_vma_unlock(vma);
1872
1873                 __eb_unreserve_vma(vma, flags);
1874                 vma->exec_flags = NULL;
1875
1876                 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1877                         i915_vma_put(vma);
1878         }
1879         ww_acquire_fini(&acquire);
1880
1881         if (unlikely(err))
1882                 goto err_skip;
1883
1884         eb->exec = NULL;
1885
1886         /* Unconditionally flush any chipset caches (for streaming writes). */
1887         intel_gt_chipset_flush(eb->engine->gt);
1888         return 0;
1889
1890 err_skip:
1891         i915_request_skip(eb->request, err);
1892         return err;
1893 }
1894
1895 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1896 {
1897         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1898                 return -EINVAL;
1899
1900         /* Kernel clipping was a DRI1 misfeature */
1901         if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1902                 if (exec->num_cliprects || exec->cliprects_ptr)
1903                         return -EINVAL;
1904         }
1905
1906         if (exec->DR4 == 0xffffffff) {
1907                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1908                 exec->DR4 = 0;
1909         }
1910         if (exec->DR1 || exec->DR4)
1911                 return -EINVAL;
1912
1913         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1914                 return -EINVAL;
1915
1916         return 0;
1917 }
1918
1919 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1920 {
1921         u32 *cs;
1922         int i;
1923
1924         if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1925                 DRM_DEBUG("sol reset is gen7/rcs only\n");
1926                 return -EINVAL;
1927         }
1928
1929         cs = intel_ring_begin(rq, 4 * 2 + 2);
1930         if (IS_ERR(cs))
1931                 return PTR_ERR(cs);
1932
1933         *cs++ = MI_LOAD_REGISTER_IMM(4);
1934         for (i = 0; i < 4; i++) {
1935                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1936                 *cs++ = 0;
1937         }
1938         *cs++ = MI_NOOP;
1939         intel_ring_advance(rq, cs);
1940
1941         return 0;
1942 }
1943
1944 static struct i915_vma *
1945 shadow_batch_pin(struct drm_i915_gem_object *obj,
1946                  struct i915_address_space *vm,
1947                  unsigned int flags)
1948 {
1949         struct i915_vma *vma;
1950         int err;
1951
1952         vma = i915_vma_instance(obj, vm, NULL);
1953         if (IS_ERR(vma))
1954                 return vma;
1955
1956         err = i915_vma_pin(vma, 0, 0, flags);
1957         if (err)
1958                 return ERR_PTR(err);
1959
1960         return vma;
1961 }
1962
1963 struct eb_parse_work {
1964         struct dma_fence_work base;
1965         struct intel_engine_cs *engine;
1966         struct i915_vma *batch;
1967         struct i915_vma *shadow;
1968         struct i915_vma *trampoline;
1969         unsigned int batch_offset;
1970         unsigned int batch_length;
1971 };
1972
1973 static int __eb_parse(struct dma_fence_work *work)
1974 {
1975         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1976
1977         return intel_engine_cmd_parser(pw->engine,
1978                                        pw->batch,
1979                                        pw->batch_offset,
1980                                        pw->batch_length,
1981                                        pw->shadow,
1982                                        pw->trampoline);
1983 }
1984
1985 static void __eb_parse_release(struct dma_fence_work *work)
1986 {
1987         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1988
1989         if (pw->trampoline)
1990                 i915_active_release(&pw->trampoline->active);
1991         i915_active_release(&pw->shadow->active);
1992         i915_active_release(&pw->batch->active);
1993 }
1994
1995 static const struct dma_fence_work_ops eb_parse_ops = {
1996         .name = "eb_parse",
1997         .work = __eb_parse,
1998         .release = __eb_parse_release,
1999 };
2000
2001 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2002                              struct i915_vma *shadow,
2003                              struct i915_vma *trampoline)
2004 {
2005         struct eb_parse_work *pw;
2006         int err;
2007
2008         pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2009         if (!pw)
2010                 return -ENOMEM;
2011
2012         err = i915_active_acquire(&eb->batch->active);
2013         if (err)
2014                 goto err_free;
2015
2016         err = i915_active_acquire(&shadow->active);
2017         if (err)
2018                 goto err_batch;
2019
2020         if (trampoline) {
2021                 err = i915_active_acquire(&trampoline->active);
2022                 if (err)
2023                         goto err_shadow;
2024         }
2025
2026         dma_fence_work_init(&pw->base, &eb_parse_ops);
2027
2028         pw->engine = eb->engine;
2029         pw->batch = eb->batch;
2030         pw->batch_offset = eb->batch_start_offset;
2031         pw->batch_length = eb->batch_len;
2032         pw->shadow = shadow;
2033         pw->trampoline = trampoline;
2034
2035         err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
2036         if (err)
2037                 goto err_trampoline;
2038
2039         err = dma_resv_reserve_shared(pw->batch->resv, 1);
2040         if (err)
2041                 goto err_batch_unlock;
2042
2043         /* Wait for all writes (and relocs) into the batch to complete */
2044         err = i915_sw_fence_await_reservation(&pw->base.chain,
2045                                               pw->batch->resv, NULL, false,
2046                                               0, I915_FENCE_GFP);
2047         if (err < 0)
2048                 goto err_batch_unlock;
2049
2050         /* Keep the batch alive and unwritten as we parse */
2051         dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2052
2053         dma_resv_unlock(pw->batch->resv);
2054
2055         /* Force execution to wait for completion of the parser */
2056         dma_resv_lock(shadow->resv, NULL);
2057         dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2058         dma_resv_unlock(shadow->resv);
2059
2060         dma_fence_work_commit(&pw->base);
2061         return 0;
2062
2063 err_batch_unlock:
2064         dma_resv_unlock(pw->batch->resv);
2065 err_trampoline:
2066         if (trampoline)
2067                 i915_active_release(&trampoline->active);
2068 err_shadow:
2069         i915_active_release(&shadow->active);
2070 err_batch:
2071         i915_active_release(&eb->batch->active);
2072 err_free:
2073         kfree(pw);
2074         return err;
2075 }
2076
2077 static int eb_parse(struct i915_execbuffer *eb)
2078 {
2079         struct intel_engine_pool_node *pool;
2080         struct i915_vma *shadow, *trampoline;
2081         unsigned int len;
2082         int err;
2083
2084         if (!eb_use_cmdparser(eb))
2085                 return 0;
2086
2087         len = eb->batch_len;
2088         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2089                 /*
2090                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2091                  * post-scan tampering
2092                  */
2093                 if (!eb->context->vm->has_read_only) {
2094                         DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
2095                         return -EINVAL;
2096                 }
2097         } else {
2098                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2099         }
2100
2101         pool = intel_engine_get_pool(eb->engine, len);
2102         if (IS_ERR(pool))
2103                 return PTR_ERR(pool);
2104
2105         shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2106         if (IS_ERR(shadow)) {
2107                 err = PTR_ERR(shadow);
2108                 goto err;
2109         }
2110         i915_gem_object_set_readonly(shadow->obj);
2111
2112         trampoline = NULL;
2113         if (CMDPARSER_USES_GGTT(eb->i915)) {
2114                 trampoline = shadow;
2115
2116                 shadow = shadow_batch_pin(pool->obj,
2117                                           &eb->engine->gt->ggtt->vm,
2118                                           PIN_GLOBAL);
2119                 if (IS_ERR(shadow)) {
2120                         err = PTR_ERR(shadow);
2121                         shadow = trampoline;
2122                         goto err_shadow;
2123                 }
2124
2125                 eb->batch_flags |= I915_DISPATCH_SECURE;
2126         }
2127
2128         err = eb_parse_pipeline(eb, shadow, trampoline);
2129         if (err)
2130                 goto err_trampoline;
2131
2132         eb->vma[eb->buffer_count] = i915_vma_get(shadow);
2133         eb->flags[eb->buffer_count] =
2134                 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2135         shadow->exec_flags = &eb->flags[eb->buffer_count];
2136         eb->buffer_count++;
2137
2138         eb->trampoline = trampoline;
2139         eb->batch_start_offset = 0;
2140         eb->batch = shadow;
2141
2142         shadow->private = pool;
2143         return 0;
2144
2145 err_trampoline:
2146         if (trampoline)
2147                 i915_vma_unpin(trampoline);
2148 err_shadow:
2149         i915_vma_unpin(shadow);
2150 err:
2151         intel_engine_pool_put(pool);
2152         return err;
2153 }
2154
2155 static void
2156 add_to_client(struct i915_request *rq, struct drm_file *file)
2157 {
2158         struct drm_i915_file_private *file_priv = file->driver_priv;
2159
2160         rq->file_priv = file_priv;
2161
2162         spin_lock(&file_priv->mm.lock);
2163         list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2164         spin_unlock(&file_priv->mm.lock);
2165 }
2166
2167 static int eb_submit(struct i915_execbuffer *eb)
2168 {
2169         int err;
2170
2171         err = eb_move_to_gpu(eb);
2172         if (err)
2173                 return err;
2174
2175         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2176                 err = i915_reset_gen7_sol_offsets(eb->request);
2177                 if (err)
2178                         return err;
2179         }
2180
2181         /*
2182          * After we completed waiting for other engines (using HW semaphores)
2183          * then we can signal that this request/batch is ready to run. This
2184          * allows us to determine if the batch is still waiting on the GPU
2185          * or actually running by checking the breadcrumb.
2186          */
2187         if (eb->engine->emit_init_breadcrumb) {
2188                 err = eb->engine->emit_init_breadcrumb(eb->request);
2189                 if (err)
2190                         return err;
2191         }
2192
2193         err = eb->engine->emit_bb_start(eb->request,
2194                                         eb->batch->node.start +
2195                                         eb->batch_start_offset,
2196                                         eb->batch_len,
2197                                         eb->batch_flags);
2198         if (err)
2199                 return err;
2200
2201         if (eb->trampoline) {
2202                 GEM_BUG_ON(eb->batch_start_offset);
2203                 err = eb->engine->emit_bb_start(eb->request,
2204                                                 eb->trampoline->node.start +
2205                                                 eb->batch_len,
2206                                                 0, 0);
2207                 if (err)
2208                         return err;
2209         }
2210
2211         if (intel_context_nopreempt(eb->context))
2212                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2213
2214         return 0;
2215 }
2216
2217 static int num_vcs_engines(const struct drm_i915_private *i915)
2218 {
2219         return hweight64(INTEL_INFO(i915)->engine_mask &
2220                          GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2221 }
2222
2223 /*
2224  * Find one BSD ring to dispatch the corresponding BSD command.
2225  * The engine index is returned.
2226  */
2227 static unsigned int
2228 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2229                          struct drm_file *file)
2230 {
2231         struct drm_i915_file_private *file_priv = file->driver_priv;
2232
2233         /* Check whether the file_priv has already selected one ring. */
2234         if ((int)file_priv->bsd_engine < 0)
2235                 file_priv->bsd_engine =
2236                         get_random_int() % num_vcs_engines(dev_priv);
2237
2238         return file_priv->bsd_engine;
2239 }
2240
2241 static const enum intel_engine_id user_ring_map[] = {
2242         [I915_EXEC_DEFAULT]     = RCS0,
2243         [I915_EXEC_RENDER]      = RCS0,
2244         [I915_EXEC_BLT]         = BCS0,
2245         [I915_EXEC_BSD]         = VCS0,
2246         [I915_EXEC_VEBOX]       = VECS0
2247 };
2248
2249 static struct i915_request *eb_throttle(struct intel_context *ce)
2250 {
2251         struct intel_ring *ring = ce->ring;
2252         struct intel_timeline *tl = ce->timeline;
2253         struct i915_request *rq;
2254
2255         /*
2256          * Completely unscientific finger-in-the-air estimates for suitable
2257          * maximum user request size (to avoid blocking) and then backoff.
2258          */
2259         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2260                 return NULL;
2261
2262         /*
2263          * Find a request that after waiting upon, there will be at least half
2264          * the ring available. The hysteresis allows us to compete for the
2265          * shared ring and should mean that we sleep less often prior to
2266          * claiming our resources, but not so long that the ring completely
2267          * drains before we can submit our next request.
2268          */
2269         list_for_each_entry(rq, &tl->requests, link) {
2270                 if (rq->ring != ring)
2271                         continue;
2272
2273                 if (__intel_ring_space(rq->postfix,
2274                                        ring->emit, ring->size) > ring->size / 2)
2275                         break;
2276         }
2277         if (&rq->link == &tl->requests)
2278                 return NULL; /* weird, we will check again later for real */
2279
2280         return i915_request_get(rq);
2281 }
2282
2283 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2284 {
2285         struct intel_timeline *tl;
2286         struct i915_request *rq;
2287         int err;
2288
2289         /*
2290          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2291          * EIO if the GPU is already wedged.
2292          */
2293         err = intel_gt_terminally_wedged(ce->engine->gt);
2294         if (err)
2295                 return err;
2296
2297         if (unlikely(intel_context_is_banned(ce)))
2298                 return -EIO;
2299
2300         /*
2301          * Pinning the contexts may generate requests in order to acquire
2302          * GGTT space, so do this first before we reserve a seqno for
2303          * ourselves.
2304          */
2305         err = intel_context_pin(ce);
2306         if (err)
2307                 return err;
2308
2309         /*
2310          * Take a local wakeref for preparing to dispatch the execbuf as
2311          * we expect to access the hardware fairly frequently in the
2312          * process, and require the engine to be kept awake between accesses.
2313          * Upon dispatch, we acquire another prolonged wakeref that we hold
2314          * until the timeline is idle, which in turn releases the wakeref
2315          * taken on the engine, and the parent device.
2316          */
2317         tl = intel_context_timeline_lock(ce);
2318         if (IS_ERR(tl)) {
2319                 err = PTR_ERR(tl);
2320                 goto err_unpin;
2321         }
2322
2323         intel_context_enter(ce);
2324         rq = eb_throttle(ce);
2325
2326         intel_context_timeline_unlock(tl);
2327
2328         if (rq) {
2329                 if (i915_request_wait(rq,
2330                                       I915_WAIT_INTERRUPTIBLE,
2331                                       MAX_SCHEDULE_TIMEOUT) < 0) {
2332                         i915_request_put(rq);
2333                         err = -EINTR;
2334                         goto err_exit;
2335                 }
2336
2337                 i915_request_put(rq);
2338         }
2339
2340         eb->engine = ce->engine;
2341         eb->context = ce;
2342         return 0;
2343
2344 err_exit:
2345         mutex_lock(&tl->mutex);
2346         intel_context_exit(ce);
2347         intel_context_timeline_unlock(tl);
2348 err_unpin:
2349         intel_context_unpin(ce);
2350         return err;
2351 }
2352
2353 static void eb_unpin_engine(struct i915_execbuffer *eb)
2354 {
2355         struct intel_context *ce = eb->context;
2356         struct intel_timeline *tl = ce->timeline;
2357
2358         mutex_lock(&tl->mutex);
2359         intel_context_exit(ce);
2360         mutex_unlock(&tl->mutex);
2361
2362         intel_context_unpin(ce);
2363 }
2364
2365 static unsigned int
2366 eb_select_legacy_ring(struct i915_execbuffer *eb,
2367                       struct drm_file *file,
2368                       struct drm_i915_gem_execbuffer2 *args)
2369 {
2370         struct drm_i915_private *i915 = eb->i915;
2371         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2372
2373         if (user_ring_id != I915_EXEC_BSD &&
2374             (args->flags & I915_EXEC_BSD_MASK)) {
2375                 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2376                           "bsd dispatch flags: %d\n", (int)(args->flags));
2377                 return -1;
2378         }
2379
2380         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2381                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2382
2383                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2384                         bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2385                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2386                            bsd_idx <= I915_EXEC_BSD_RING2) {
2387                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2388                         bsd_idx--;
2389                 } else {
2390                         DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2391                                   bsd_idx);
2392                         return -1;
2393                 }
2394
2395                 return _VCS(bsd_idx);
2396         }
2397
2398         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2399                 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2400                 return -1;
2401         }
2402
2403         return user_ring_map[user_ring_id];
2404 }
2405
2406 static int
2407 eb_pin_engine(struct i915_execbuffer *eb,
2408               struct drm_file *file,
2409               struct drm_i915_gem_execbuffer2 *args)
2410 {
2411         struct intel_context *ce;
2412         unsigned int idx;
2413         int err;
2414
2415         if (i915_gem_context_user_engines(eb->gem_context))
2416                 idx = args->flags & I915_EXEC_RING_MASK;
2417         else
2418                 idx = eb_select_legacy_ring(eb, file, args);
2419
2420         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2421         if (IS_ERR(ce))
2422                 return PTR_ERR(ce);
2423
2424         err = __eb_pin_engine(eb, ce);
2425         intel_context_put(ce);
2426
2427         return err;
2428 }
2429
2430 static void
2431 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2432 {
2433         while (n--)
2434                 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2435         kvfree(fences);
2436 }
2437
2438 static struct drm_syncobj **
2439 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2440                 struct drm_file *file)
2441 {
2442         const unsigned long nfences = args->num_cliprects;
2443         struct drm_i915_gem_exec_fence __user *user;
2444         struct drm_syncobj **fences;
2445         unsigned long n;
2446         int err;
2447
2448         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2449                 return NULL;
2450
2451         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2452         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2453         if (nfences > min_t(unsigned long,
2454                             ULONG_MAX / sizeof(*user),
2455                             SIZE_MAX / sizeof(*fences)))
2456                 return ERR_PTR(-EINVAL);
2457
2458         user = u64_to_user_ptr(args->cliprects_ptr);
2459         if (!access_ok(user, nfences * sizeof(*user)))
2460                 return ERR_PTR(-EFAULT);
2461
2462         fences = kvmalloc_array(nfences, sizeof(*fences),
2463                                 __GFP_NOWARN | GFP_KERNEL);
2464         if (!fences)
2465                 return ERR_PTR(-ENOMEM);
2466
2467         for (n = 0; n < nfences; n++) {
2468                 struct drm_i915_gem_exec_fence fence;
2469                 struct drm_syncobj *syncobj;
2470
2471                 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2472                         err = -EFAULT;
2473                         goto err;
2474                 }
2475
2476                 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2477                         err = -EINVAL;
2478                         goto err;
2479                 }
2480
2481                 syncobj = drm_syncobj_find(file, fence.handle);
2482                 if (!syncobj) {
2483                         DRM_DEBUG("Invalid syncobj handle provided\n");
2484                         err = -ENOENT;
2485                         goto err;
2486                 }
2487
2488                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2489                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2490
2491                 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2492         }
2493
2494         return fences;
2495
2496 err:
2497         __free_fence_array(fences, n);
2498         return ERR_PTR(err);
2499 }
2500
2501 static void
2502 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2503                 struct drm_syncobj **fences)
2504 {
2505         if (fences)
2506                 __free_fence_array(fences, args->num_cliprects);
2507 }
2508
2509 static int
2510 await_fence_array(struct i915_execbuffer *eb,
2511                   struct drm_syncobj **fences)
2512 {
2513         const unsigned int nfences = eb->args->num_cliprects;
2514         unsigned int n;
2515         int err;
2516
2517         for (n = 0; n < nfences; n++) {
2518                 struct drm_syncobj *syncobj;
2519                 struct dma_fence *fence;
2520                 unsigned int flags;
2521
2522                 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2523                 if (!(flags & I915_EXEC_FENCE_WAIT))
2524                         continue;
2525
2526                 fence = drm_syncobj_fence_get(syncobj);
2527                 if (!fence)
2528                         return -EINVAL;
2529
2530                 err = i915_request_await_dma_fence(eb->request, fence);
2531                 dma_fence_put(fence);
2532                 if (err < 0)
2533                         return err;
2534         }
2535
2536         return 0;
2537 }
2538
2539 static void
2540 signal_fence_array(struct i915_execbuffer *eb,
2541                    struct drm_syncobj **fences)
2542 {
2543         const unsigned int nfences = eb->args->num_cliprects;
2544         struct dma_fence * const fence = &eb->request->fence;
2545         unsigned int n;
2546
2547         for (n = 0; n < nfences; n++) {
2548                 struct drm_syncobj *syncobj;
2549                 unsigned int flags;
2550
2551                 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2552                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2553                         continue;
2554
2555                 drm_syncobj_replace_fence(syncobj, fence);
2556         }
2557 }
2558
2559 static int
2560 i915_gem_do_execbuffer(struct drm_device *dev,
2561                        struct drm_file *file,
2562                        struct drm_i915_gem_execbuffer2 *args,
2563                        struct drm_i915_gem_exec_object2 *exec,
2564                        struct drm_syncobj **fences)
2565 {
2566         struct drm_i915_private *i915 = to_i915(dev);
2567         struct i915_execbuffer eb;
2568         struct dma_fence *in_fence = NULL;
2569         struct dma_fence *exec_fence = NULL;
2570         struct sync_file *out_fence = NULL;
2571         int out_fence_fd = -1;
2572         int err;
2573
2574         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2575         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2576                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2577
2578         eb.i915 = i915;
2579         eb.file = file;
2580         eb.args = args;
2581         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2582                 args->flags |= __EXEC_HAS_RELOC;
2583
2584         eb.exec = exec;
2585         eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2586         eb.vma[0] = NULL;
2587         eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2588
2589         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2590         reloc_cache_init(&eb.reloc_cache, eb.i915);
2591
2592         eb.buffer_count = args->buffer_count;
2593         eb.batch_start_offset = args->batch_start_offset;
2594         eb.batch_len = args->batch_len;
2595         eb.trampoline = NULL;
2596
2597         eb.batch_flags = 0;
2598         if (args->flags & I915_EXEC_SECURE) {
2599                 if (INTEL_GEN(i915) >= 11)
2600                         return -ENODEV;
2601
2602                 /* Return -EPERM to trigger fallback code on old binaries. */
2603                 if (!HAS_SECURE_BATCHES(i915))
2604                         return -EPERM;
2605
2606                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2607                         return -EPERM;
2608
2609                 eb.batch_flags |= I915_DISPATCH_SECURE;
2610         }
2611         if (args->flags & I915_EXEC_IS_PINNED)
2612                 eb.batch_flags |= I915_DISPATCH_PINNED;
2613
2614         if (args->flags & I915_EXEC_FENCE_IN) {
2615                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2616                 if (!in_fence)
2617                         return -EINVAL;
2618         }
2619
2620         if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2621                 if (in_fence) {
2622                         err = -EINVAL;
2623                         goto err_in_fence;
2624                 }
2625
2626                 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2627                 if (!exec_fence) {
2628                         err = -EINVAL;
2629                         goto err_in_fence;
2630                 }
2631         }
2632
2633         if (args->flags & I915_EXEC_FENCE_OUT) {
2634                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2635                 if (out_fence_fd < 0) {
2636                         err = out_fence_fd;
2637                         goto err_exec_fence;
2638                 }
2639         }
2640
2641         err = eb_create(&eb);
2642         if (err)
2643                 goto err_out_fence;
2644
2645         GEM_BUG_ON(!eb.lut_size);
2646
2647         err = eb_select_context(&eb);
2648         if (unlikely(err))
2649                 goto err_destroy;
2650
2651         err = eb_pin_engine(&eb, file, args);
2652         if (unlikely(err))
2653                 goto err_context;
2654
2655         err = i915_mutex_lock_interruptible(dev);
2656         if (err)
2657                 goto err_engine;
2658
2659         err = eb_relocate(&eb);
2660         if (err) {
2661                 /*
2662                  * If the user expects the execobject.offset and
2663                  * reloc.presumed_offset to be an exact match,
2664                  * as for using NO_RELOC, then we cannot update
2665                  * the execobject.offset until we have completed
2666                  * relocation.
2667                  */
2668                 args->flags &= ~__EXEC_HAS_RELOC;
2669                 goto err_vma;
2670         }
2671
2672         if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2673                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2674                 err = -EINVAL;
2675                 goto err_vma;
2676         }
2677         if (eb.batch_start_offset > eb.batch->size ||
2678             eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2679                 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2680                 err = -EINVAL;
2681                 goto err_vma;
2682         }
2683
2684         if (eb.batch_len == 0)
2685                 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2686
2687         err = eb_parse(&eb);
2688         if (err)
2689                 goto err_vma;
2690
2691         /*
2692          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2693          * batch" bit. Hence we need to pin secure batches into the global gtt.
2694          * hsw should have this fixed, but bdw mucks it up again. */
2695         if (eb.batch_flags & I915_DISPATCH_SECURE) {
2696                 struct i915_vma *vma;
2697
2698                 /*
2699                  * So on first glance it looks freaky that we pin the batch here
2700                  * outside of the reservation loop. But:
2701                  * - The batch is already pinned into the relevant ppgtt, so we
2702                  *   already have the backing storage fully allocated.
2703                  * - No other BO uses the global gtt (well contexts, but meh),
2704                  *   so we don't really have issues with multiple objects not
2705                  *   fitting due to fragmentation.
2706                  * So this is actually safe.
2707                  */
2708                 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2709                 if (IS_ERR(vma)) {
2710                         err = PTR_ERR(vma);
2711                         goto err_vma;
2712                 }
2713
2714                 eb.batch = vma;
2715         }
2716
2717         /* All GPU relocation batches must be submitted prior to the user rq */
2718         GEM_BUG_ON(eb.reloc_cache.rq);
2719
2720         /* Allocate a request for this batch buffer nice and early. */
2721         eb.request = i915_request_create(eb.context);
2722         if (IS_ERR(eb.request)) {
2723                 err = PTR_ERR(eb.request);
2724                 goto err_batch_unpin;
2725         }
2726
2727         if (in_fence) {
2728                 err = i915_request_await_dma_fence(eb.request, in_fence);
2729                 if (err < 0)
2730                         goto err_request;
2731         }
2732
2733         if (exec_fence) {
2734                 err = i915_request_await_execution(eb.request, exec_fence,
2735                                                    eb.engine->bond_execute);
2736                 if (err < 0)
2737                         goto err_request;
2738         }
2739
2740         if (fences) {
2741                 err = await_fence_array(&eb, fences);
2742                 if (err)
2743                         goto err_request;
2744         }
2745
2746         if (out_fence_fd != -1) {
2747                 out_fence = sync_file_create(&eb.request->fence);
2748                 if (!out_fence) {
2749                         err = -ENOMEM;
2750                         goto err_request;
2751                 }
2752         }
2753
2754         /*
2755          * Whilst this request exists, batch_obj will be on the
2756          * active_list, and so will hold the active reference. Only when this
2757          * request is retired will the the batch_obj be moved onto the
2758          * inactive_list and lose its active reference. Hence we do not need
2759          * to explicitly hold another reference here.
2760          */
2761         eb.request->batch = eb.batch;
2762         if (eb.batch->private)
2763                 intel_engine_pool_mark_active(eb.batch->private, eb.request);
2764
2765         trace_i915_request_queue(eb.request, eb.batch_flags);
2766         err = eb_submit(&eb);
2767 err_request:
2768         add_to_client(eb.request, file);
2769         i915_request_get(eb.request);
2770         i915_request_add(eb.request);
2771
2772         if (fences)
2773                 signal_fence_array(&eb, fences);
2774
2775         if (out_fence) {
2776                 if (err == 0) {
2777                         fd_install(out_fence_fd, out_fence->file);
2778                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2779                         args->rsvd2 |= (u64)out_fence_fd << 32;
2780                         out_fence_fd = -1;
2781                 } else {
2782                         fput(out_fence->file);
2783                 }
2784         }
2785         i915_request_put(eb.request);
2786
2787 err_batch_unpin:
2788         if (eb.batch_flags & I915_DISPATCH_SECURE)
2789                 i915_vma_unpin(eb.batch);
2790         if (eb.batch->private)
2791                 intel_engine_pool_put(eb.batch->private);
2792 err_vma:
2793         if (eb.exec)
2794                 eb_release_vmas(&eb);
2795         if (eb.trampoline)
2796                 i915_vma_unpin(eb.trampoline);
2797         mutex_unlock(&dev->struct_mutex);
2798 err_engine:
2799         eb_unpin_engine(&eb);
2800 err_context:
2801         i915_gem_context_put(eb.gem_context);
2802 err_destroy:
2803         eb_destroy(&eb);
2804 err_out_fence:
2805         if (out_fence_fd != -1)
2806                 put_unused_fd(out_fence_fd);
2807 err_exec_fence:
2808         dma_fence_put(exec_fence);
2809 err_in_fence:
2810         dma_fence_put(in_fence);
2811         return err;
2812 }
2813
2814 static size_t eb_element_size(void)
2815 {
2816         return (sizeof(struct drm_i915_gem_exec_object2) +
2817                 sizeof(struct i915_vma *) +
2818                 sizeof(unsigned int));
2819 }
2820
2821 static bool check_buffer_count(size_t count)
2822 {
2823         const size_t sz = eb_element_size();
2824
2825         /*
2826          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2827          * array size (see eb_create()). Otherwise, we can accept an array as
2828          * large as can be addressed (though use large arrays at your peril)!
2829          */
2830
2831         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2832 }
2833
2834 /*
2835  * Legacy execbuffer just creates an exec2 list from the original exec object
2836  * list array and passes it to the real function.
2837  */
2838 int
2839 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2840                           struct drm_file *file)
2841 {
2842         struct drm_i915_gem_execbuffer *args = data;
2843         struct drm_i915_gem_execbuffer2 exec2;
2844         struct drm_i915_gem_exec_object *exec_list = NULL;
2845         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2846         const size_t count = args->buffer_count;
2847         unsigned int i;
2848         int err;
2849
2850         if (!check_buffer_count(count)) {
2851                 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2852                 return -EINVAL;
2853         }
2854
2855         exec2.buffers_ptr = args->buffers_ptr;
2856         exec2.buffer_count = args->buffer_count;
2857         exec2.batch_start_offset = args->batch_start_offset;
2858         exec2.batch_len = args->batch_len;
2859         exec2.DR1 = args->DR1;
2860         exec2.DR4 = args->DR4;
2861         exec2.num_cliprects = args->num_cliprects;
2862         exec2.cliprects_ptr = args->cliprects_ptr;
2863         exec2.flags = I915_EXEC_RENDER;
2864         i915_execbuffer2_set_context_id(exec2, 0);
2865
2866         err = i915_gem_check_execbuffer(&exec2);
2867         if (err)
2868                 return err;
2869
2870         /* Copy in the exec list from userland */
2871         exec_list = kvmalloc_array(count, sizeof(*exec_list),
2872                                    __GFP_NOWARN | GFP_KERNEL);
2873         exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2874                                     __GFP_NOWARN | GFP_KERNEL);
2875         if (exec_list == NULL || exec2_list == NULL) {
2876                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2877                           args->buffer_count);
2878                 kvfree(exec_list);
2879                 kvfree(exec2_list);
2880                 return -ENOMEM;
2881         }
2882         err = copy_from_user(exec_list,
2883                              u64_to_user_ptr(args->buffers_ptr),
2884                              sizeof(*exec_list) * count);
2885         if (err) {
2886                 DRM_DEBUG("copy %d exec entries failed %d\n",
2887                           args->buffer_count, err);
2888                 kvfree(exec_list);
2889                 kvfree(exec2_list);
2890                 return -EFAULT;
2891         }
2892
2893         for (i = 0; i < args->buffer_count; i++) {
2894                 exec2_list[i].handle = exec_list[i].handle;
2895                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2896                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2897                 exec2_list[i].alignment = exec_list[i].alignment;
2898                 exec2_list[i].offset = exec_list[i].offset;
2899                 if (INTEL_GEN(to_i915(dev)) < 4)
2900                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2901                 else
2902                         exec2_list[i].flags = 0;
2903         }
2904
2905         err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2906         if (exec2.flags & __EXEC_HAS_RELOC) {
2907                 struct drm_i915_gem_exec_object __user *user_exec_list =
2908                         u64_to_user_ptr(args->buffers_ptr);
2909
2910                 /* Copy the new buffer offsets back to the user's exec list. */
2911                 for (i = 0; i < args->buffer_count; i++) {
2912                         if (!(exec2_list[i].offset & UPDATE))
2913                                 continue;
2914
2915                         exec2_list[i].offset =
2916                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2917                         exec2_list[i].offset &= PIN_OFFSET_MASK;
2918                         if (__copy_to_user(&user_exec_list[i].offset,
2919                                            &exec2_list[i].offset,
2920                                            sizeof(user_exec_list[i].offset)))
2921                                 break;
2922                 }
2923         }
2924
2925         kvfree(exec_list);
2926         kvfree(exec2_list);
2927         return err;
2928 }
2929
2930 int
2931 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2932                            struct drm_file *file)
2933 {
2934         struct drm_i915_gem_execbuffer2 *args = data;
2935         struct drm_i915_gem_exec_object2 *exec2_list;
2936         struct drm_syncobj **fences = NULL;
2937         const size_t count = args->buffer_count;
2938         int err;
2939
2940         if (!check_buffer_count(count)) {
2941                 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2942                 return -EINVAL;
2943         }
2944
2945         err = i915_gem_check_execbuffer(args);
2946         if (err)
2947                 return err;
2948
2949         /* Allocate an extra slot for use by the command parser */
2950         exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2951                                     __GFP_NOWARN | GFP_KERNEL);
2952         if (exec2_list == NULL) {
2953                 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2954                           count);
2955                 return -ENOMEM;
2956         }
2957         if (copy_from_user(exec2_list,
2958                            u64_to_user_ptr(args->buffers_ptr),
2959                            sizeof(*exec2_list) * count)) {
2960                 DRM_DEBUG("copy %zd exec entries failed\n", count);
2961                 kvfree(exec2_list);
2962                 return -EFAULT;
2963         }
2964
2965         if (args->flags & I915_EXEC_FENCE_ARRAY) {
2966                 fences = get_fence_array(args, file);
2967                 if (IS_ERR(fences)) {
2968                         kvfree(exec2_list);
2969                         return PTR_ERR(fences);
2970                 }
2971         }
2972
2973         err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2974
2975         /*
2976          * Now that we have begun execution of the batchbuffer, we ignore
2977          * any new error after this point. Also given that we have already
2978          * updated the associated relocations, we try to write out the current
2979          * object locations irrespective of any error.
2980          */
2981         if (args->flags & __EXEC_HAS_RELOC) {
2982                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2983                         u64_to_user_ptr(args->buffers_ptr);
2984                 unsigned int i;
2985
2986                 /* Copy the new buffer offsets back to the user's exec list. */
2987                 /*
2988                  * Note: count * sizeof(*user_exec_list) does not overflow,
2989                  * because we checked 'count' in check_buffer_count().
2990                  *
2991                  * And this range already got effectively checked earlier
2992                  * when we did the "copy_from_user()" above.
2993                  */
2994                 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2995                         goto end;
2996
2997                 for (i = 0; i < args->buffer_count; i++) {
2998                         if (!(exec2_list[i].offset & UPDATE))
2999                                 continue;
3000
3001                         exec2_list[i].offset =
3002                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3003                         unsafe_put_user(exec2_list[i].offset,
3004                                         &user_exec_list[i].offset,
3005                                         end_user);
3006                 }
3007 end_user:
3008                 user_access_end();
3009 end:;
3010         }
3011
3012         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3013         put_fence_array(args, fences);
3014         kvfree(exec2_list);
3015         return err;
3016 }