OSDN Git Service

Merge tag 'nfsd-6.3-4' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[tomoyo/tomoyo-test1.git] / drivers / gpu / drm / i915 / gem / i915_gem_ttm.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5
6 #include <linux/shmem_fs.h>
7
8 #include <drm/ttm/ttm_placement.h>
9 #include <drm/ttm/ttm_tt.h>
10 #include <drm/drm_buddy.h>
11
12 #include "i915_drv.h"
13 #include "i915_ttm_buddy_manager.h"
14 #include "intel_memory_region.h"
15 #include "intel_region_ttm.h"
16
17 #include "gem/i915_gem_mman.h"
18 #include "gem/i915_gem_object.h"
19 #include "gem/i915_gem_region.h"
20 #include "gem/i915_gem_ttm.h"
21 #include "gem/i915_gem_ttm_move.h"
22 #include "gem/i915_gem_ttm_pm.h"
23 #include "gt/intel_gpu_commands.h"
24
25 #define I915_TTM_PRIO_PURGE     0
26 #define I915_TTM_PRIO_NO_PAGES  1
27 #define I915_TTM_PRIO_HAS_PAGES 2
28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
29
30 /*
31  * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32  */
33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
34
35 /**
36  * struct i915_ttm_tt - TTM page vector with additional private information
37  * @ttm: The base TTM page vector.
38  * @dev: The struct device used for dma mapping and unmapping.
39  * @cached_rsgt: The cached scatter-gather table.
40  * @is_shmem: Set if using shmem.
41  * @filp: The shmem file, if using shmem backend.
42  *
43  * Note that DMA may be going on right up to the point where the page-
44  * vector is unpopulated in delayed destroy. Hence keep the
45  * scatter-gather table mapped and cached up to that point. This is
46  * different from the cached gem object io scatter-gather table which
47  * doesn't have an associated dma mapping.
48  */
49 struct i915_ttm_tt {
50         struct ttm_tt ttm;
51         struct device *dev;
52         struct i915_refct_sgt cached_rsgt;
53
54         bool is_shmem;
55         struct file *filp;
56 };
57
58 static const struct ttm_place sys_placement_flags = {
59         .fpfn = 0,
60         .lpfn = 0,
61         .mem_type = I915_PL_SYSTEM,
62         .flags = 0,
63 };
64
65 static struct ttm_placement i915_sys_placement = {
66         .num_placement = 1,
67         .placement = &sys_placement_flags,
68         .num_busy_placement = 1,
69         .busy_placement = &sys_placement_flags,
70 };
71
72 /**
73  * i915_ttm_sys_placement - Return the struct ttm_placement to be
74  * used for an object in system memory.
75  *
76  * Rather than making the struct extern, use this
77  * function.
78  *
79  * Return: A pointer to a static variable for sys placement.
80  */
81 struct ttm_placement *i915_ttm_sys_placement(void)
82 {
83         return &i915_sys_placement;
84 }
85
86 static int i915_ttm_err_to_gem(int err)
87 {
88         /* Fastpath */
89         if (likely(!err))
90                 return 0;
91
92         switch (err) {
93         case -EBUSY:
94                 /*
95                  * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
96                  * restart the operation, since we don't record the contending
97                  * lock. We use -EAGAIN to restart.
98                  */
99                 return -EAGAIN;
100         case -ENOSPC:
101                 /*
102                  * Memory type / region is full, and we can't evict.
103                  * Except possibly system, that returns -ENOMEM;
104                  */
105                 return -ENXIO;
106         default:
107                 break;
108         }
109
110         return err;
111 }
112
113 static enum ttm_caching
114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
115 {
116         /*
117          * Objects only allowed in system get cached cpu-mappings, or when
118          * evicting lmem-only buffers to system for swapping. Other objects get
119          * WC mapping for now. Even if in system.
120          */
121         if (obj->mm.n_placements <= 1)
122                 return ttm_cached;
123
124         return ttm_write_combined;
125 }
126
127 static void
128 i915_ttm_place_from_region(const struct intel_memory_region *mr,
129                            struct ttm_place *place,
130                            resource_size_t offset,
131                            resource_size_t size,
132                            unsigned int flags)
133 {
134         memset(place, 0, sizeof(*place));
135         place->mem_type = intel_region_to_ttm_type(mr);
136
137         if (mr->type == INTEL_MEMORY_SYSTEM)
138                 return;
139
140         if (flags & I915_BO_ALLOC_CONTIGUOUS)
141                 place->flags |= TTM_PL_FLAG_CONTIGUOUS;
142         if (offset != I915_BO_INVALID_OFFSET) {
143                 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn));
144                 place->fpfn = offset >> PAGE_SHIFT;
145                 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn));
146                 place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
147         } else if (mr->io_size && mr->io_size < mr->total) {
148                 if (flags & I915_BO_ALLOC_GPU_ONLY) {
149                         place->flags |= TTM_PL_FLAG_TOPDOWN;
150                 } else {
151                         place->fpfn = 0;
152                         WARN_ON(overflows_type(mr->io_size >> PAGE_SHIFT, place->lpfn));
153                         place->lpfn = mr->io_size >> PAGE_SHIFT;
154                 }
155         }
156 }
157
158 static void
159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
160                             struct ttm_place *requested,
161                             struct ttm_place *busy,
162                             struct ttm_placement *placement)
163 {
164         unsigned int num_allowed = obj->mm.n_placements;
165         unsigned int flags = obj->flags;
166         unsigned int i;
167
168         placement->num_placement = 1;
169         i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
170                                    obj->mm.region, requested, obj->bo_offset,
171                                    obj->base.size, flags);
172
173         /* Cache this on object? */
174         placement->num_busy_placement = num_allowed;
175         for (i = 0; i < placement->num_busy_placement; ++i)
176                 i915_ttm_place_from_region(obj->mm.placements[i], busy + i,
177                                            obj->bo_offset, obj->base.size, flags);
178
179         if (num_allowed == 0) {
180                 *busy = *requested;
181                 placement->num_busy_placement = 1;
182         }
183
184         placement->placement = requested;
185         placement->busy_placement = busy;
186 }
187
188 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
189                                       struct ttm_tt *ttm,
190                                       struct ttm_operation_ctx *ctx)
191 {
192         struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
193         struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
194         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
195         const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
196         const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
197         struct file *filp = i915_tt->filp;
198         struct sgt_iter sgt_iter;
199         struct sg_table *st;
200         struct page *page;
201         unsigned long i;
202         int err;
203
204         if (!filp) {
205                 struct address_space *mapping;
206                 gfp_t mask;
207
208                 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
209                 if (IS_ERR(filp))
210                         return PTR_ERR(filp);
211
212                 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
213
214                 mapping = filp->f_mapping;
215                 mapping_set_gfp_mask(mapping, mask);
216                 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
217
218                 i915_tt->filp = filp;
219         }
220
221         st = &i915_tt->cached_rsgt.table;
222         err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
223                                    max_segment);
224         if (err)
225                 return err;
226
227         err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
228                               DMA_ATTR_SKIP_CPU_SYNC);
229         if (err)
230                 goto err_free_st;
231
232         i = 0;
233         for_each_sgt_page(page, sgt_iter, st)
234                 ttm->pages[i++] = page;
235
236         if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
237                 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
238
239         return 0;
240
241 err_free_st:
242         shmem_sg_free_table(st, filp->f_mapping, false, false);
243
244         return err;
245 }
246
247 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
248 {
249         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
250         bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
251         struct sg_table *st = &i915_tt->cached_rsgt.table;
252
253         shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
254                             backup, backup);
255 }
256
257 static void i915_ttm_tt_release(struct kref *ref)
258 {
259         struct i915_ttm_tt *i915_tt =
260                 container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
261         struct sg_table *st = &i915_tt->cached_rsgt.table;
262
263         GEM_WARN_ON(st->sgl);
264
265         kfree(i915_tt);
266 }
267
268 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
269         .release = i915_ttm_tt_release
270 };
271
272 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
273                                          uint32_t page_flags)
274 {
275         struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
276                                                      bdev);
277         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
278         unsigned long ccs_pages = 0;
279         enum ttm_caching caching;
280         struct i915_ttm_tt *i915_tt;
281         int ret;
282
283         if (i915_ttm_is_ghost_object(bo))
284                 return NULL;
285
286         i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
287         if (!i915_tt)
288                 return NULL;
289
290         if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource ||
291             ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt))
292                 page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
293
294         caching = i915_ttm_select_tt_caching(obj);
295         if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
296                 page_flags |= TTM_TT_FLAG_EXTERNAL |
297                               TTM_TT_FLAG_EXTERNAL_MAPPABLE;
298                 i915_tt->is_shmem = true;
299         }
300
301         if (i915_gem_object_needs_ccs_pages(obj))
302                 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
303                                                       NUM_BYTES_PER_CCS_BYTE),
304                                          PAGE_SIZE);
305
306         ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
307         if (ret)
308                 goto err_free;
309
310         __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
311                               &tt_rsgt_ops);
312
313         i915_tt->dev = obj->base.dev->dev;
314
315         return &i915_tt->ttm;
316
317 err_free:
318         kfree(i915_tt);
319         return NULL;
320 }
321
322 static int i915_ttm_tt_populate(struct ttm_device *bdev,
323                                 struct ttm_tt *ttm,
324                                 struct ttm_operation_ctx *ctx)
325 {
326         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
327
328         if (i915_tt->is_shmem)
329                 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
330
331         return ttm_pool_alloc(&bdev->pool, ttm, ctx);
332 }
333
334 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
335 {
336         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
337         struct sg_table *st = &i915_tt->cached_rsgt.table;
338
339         if (st->sgl)
340                 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
341
342         if (i915_tt->is_shmem) {
343                 i915_ttm_tt_shmem_unpopulate(ttm);
344         } else {
345                 sg_free_table(st);
346                 ttm_pool_free(&bdev->pool, ttm);
347         }
348 }
349
350 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
351 {
352         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
353
354         if (i915_tt->filp)
355                 fput(i915_tt->filp);
356
357         ttm_tt_fini(ttm);
358         i915_refct_sgt_put(&i915_tt->cached_rsgt);
359 }
360
361 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
362                                        const struct ttm_place *place)
363 {
364         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
365
366         if (i915_ttm_is_ghost_object(bo))
367                 return false;
368
369         /*
370          * EXTERNAL objects should never be swapped out by TTM, instead we need
371          * to handle that ourselves. TTM will already skip such objects for us,
372          * but we would like to avoid grabbing locks for no good reason.
373          */
374         if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
375                 return false;
376
377         /* Will do for now. Our pinned objects are still on TTM's LRU lists */
378         if (!i915_gem_object_evictable(obj))
379                 return false;
380
381         return ttm_bo_eviction_valuable(bo, place);
382 }
383
384 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
385                                  struct ttm_placement *placement)
386 {
387         *placement = i915_sys_placement;
388 }
389
390 /**
391  * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
392  * @obj: The GEM object
393  * This function frees any LMEM-related information that is cached on
394  * the object. For example the radix tree for fast page lookup and the
395  * cached refcounted sg-table
396  */
397 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
398 {
399         struct radix_tree_iter iter;
400         void __rcu **slot;
401
402         if (!obj->ttm.cached_io_rsgt)
403                 return;
404
405         rcu_read_lock();
406         radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
407                 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
408         rcu_read_unlock();
409
410         i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
411         obj->ttm.cached_io_rsgt = NULL;
412 }
413
414 /**
415  * i915_ttm_purge - Clear an object of its memory
416  * @obj: The object
417  *
418  * This function is called to clear an object of it's memory when it is
419  * marked as not needed anymore.
420  *
421  * Return: 0 on success, negative error code on failure.
422  */
423 int i915_ttm_purge(struct drm_i915_gem_object *obj)
424 {
425         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
426         struct i915_ttm_tt *i915_tt =
427                 container_of(bo->ttm, typeof(*i915_tt), ttm);
428         struct ttm_operation_ctx ctx = {
429                 .interruptible = true,
430                 .no_wait_gpu = false,
431         };
432         struct ttm_placement place = {};
433         int ret;
434
435         if (obj->mm.madv == __I915_MADV_PURGED)
436                 return 0;
437
438         ret = ttm_bo_validate(bo, &place, &ctx);
439         if (ret)
440                 return ret;
441
442         if (bo->ttm && i915_tt->filp) {
443                 /*
444                  * The below fput(which eventually calls shmem_truncate) might
445                  * be delayed by worker, so when directly called to purge the
446                  * pages(like by the shrinker) we should try to be more
447                  * aggressive and release the pages immediately.
448                  */
449                 shmem_truncate_range(file_inode(i915_tt->filp),
450                                      0, (loff_t)-1);
451                 fput(fetch_and_zero(&i915_tt->filp));
452         }
453
454         obj->write_domain = 0;
455         obj->read_domains = 0;
456         i915_ttm_adjust_gem_after_move(obj);
457         i915_ttm_free_cached_io_rsgt(obj);
458         obj->mm.madv = __I915_MADV_PURGED;
459
460         return 0;
461 }
462
463 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
464 {
465         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
466         struct i915_ttm_tt *i915_tt =
467                 container_of(bo->ttm, typeof(*i915_tt), ttm);
468         struct ttm_operation_ctx ctx = {
469                 .interruptible = true,
470                 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
471         };
472         struct ttm_placement place = {};
473         int ret;
474
475         if (!bo->ttm || bo->resource->mem_type != TTM_PL_SYSTEM)
476                 return 0;
477
478         GEM_BUG_ON(!i915_tt->is_shmem);
479
480         if (!i915_tt->filp)
481                 return 0;
482
483         ret = ttm_bo_wait_ctx(bo, &ctx);
484         if (ret)
485                 return ret;
486
487         switch (obj->mm.madv) {
488         case I915_MADV_DONTNEED:
489                 return i915_ttm_purge(obj);
490         case __I915_MADV_PURGED:
491                 return 0;
492         }
493
494         if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
495                 return 0;
496
497         bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
498         ret = ttm_bo_validate(bo, &place, &ctx);
499         if (ret) {
500                 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
501                 return ret;
502         }
503
504         if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
505                 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
506
507         return 0;
508 }
509
510 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
511 {
512         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
513
514         if (bo->resource && !i915_ttm_is_ghost_object(bo)) {
515                 __i915_gem_object_pages_fini(obj);
516                 i915_ttm_free_cached_io_rsgt(obj);
517         }
518 }
519
520 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
521 {
522         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
523         struct sg_table *st;
524         int ret;
525
526         if (i915_tt->cached_rsgt.table.sgl)
527                 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
528
529         st = &i915_tt->cached_rsgt.table;
530         ret = sg_alloc_table_from_pages_segment(st,
531                         ttm->pages, ttm->num_pages,
532                         0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
533                         i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
534         if (ret) {
535                 st->sgl = NULL;
536                 return ERR_PTR(ret);
537         }
538
539         ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
540         if (ret) {
541                 sg_free_table(st);
542                 return ERR_PTR(ret);
543         }
544
545         return i915_refct_sgt_get(&i915_tt->cached_rsgt);
546 }
547
548 /**
549  * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
550  * resource memory
551  * @obj: The GEM object used for sg-table caching
552  * @res: The struct ttm_resource for which an sg-table is requested.
553  *
554  * This function returns a refcounted sg-table representing the memory
555  * pointed to by @res. If @res is the object's current resource it may also
556  * cache the sg_table on the object or attempt to access an already cached
557  * sg-table. The refcounted sg-table needs to be put when no-longer in use.
558  *
559  * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
560  * failure.
561  */
562 struct i915_refct_sgt *
563 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
564                          struct ttm_resource *res)
565 {
566         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
567         u32 page_alignment;
568
569         if (!i915_ttm_gtt_binds_lmem(res))
570                 return i915_ttm_tt_get_st(bo->ttm);
571
572         page_alignment = bo->page_alignment << PAGE_SHIFT;
573         if (!page_alignment)
574                 page_alignment = obj->mm.region->min_page_size;
575
576         /*
577          * If CPU mapping differs, we need to add the ttm_tt pages to
578          * the resulting st. Might make sense for GGTT.
579          */
580         GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
581         if (bo->resource == res) {
582                 if (!obj->ttm.cached_io_rsgt) {
583                         struct i915_refct_sgt *rsgt;
584
585                         rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
586                                                                  res,
587                                                                  page_alignment);
588                         if (IS_ERR(rsgt))
589                                 return rsgt;
590
591                         obj->ttm.cached_io_rsgt = rsgt;
592                 }
593                 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
594         }
595
596         return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
597                                                  page_alignment);
598 }
599
600 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
601 {
602         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
603         long err;
604
605         WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
606
607         err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
608                                     true, 15 * HZ);
609         if (err < 0)
610                 return err;
611         if (err == 0)
612                 return -EBUSY;
613
614         err = i915_ttm_move_notify(bo);
615         if (err)
616                 return err;
617
618         return i915_ttm_purge(obj);
619 }
620
621 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
622 {
623         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
624         int ret;
625
626         if (i915_ttm_is_ghost_object(bo))
627                 return;
628
629         ret = i915_ttm_move_notify(bo);
630         GEM_WARN_ON(ret);
631         GEM_WARN_ON(obj->ttm.cached_io_rsgt);
632         if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
633                 i915_ttm_purge(obj);
634 }
635
636 /**
637  * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
638  * accessible.
639  * @res: The TTM resource to check.
640  *
641  * This is interesting on small-BAR systems where we may encounter lmem objects
642  * that can't be accessed via the CPU.
643  */
644 bool i915_ttm_resource_mappable(struct ttm_resource *res)
645 {
646         struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
647
648         if (!i915_ttm_cpu_maps_iomem(res))
649                 return true;
650
651         return bman_res->used_visible_size == PFN_UP(bman_res->base.size);
652 }
653
654 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
655 {
656         struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
657         bool unknown_state;
658
659         if (i915_ttm_is_ghost_object(mem->bo))
660                 return -EINVAL;
661
662         if (!kref_get_unless_zero(&obj->base.refcount))
663                 return -EINVAL;
664
665         assert_object_held(obj);
666
667         unknown_state = i915_gem_object_has_unknown_state(obj);
668         i915_gem_object_put(obj);
669         if (unknown_state)
670                 return -EINVAL;
671
672         if (!i915_ttm_cpu_maps_iomem(mem))
673                 return 0;
674
675         if (!i915_ttm_resource_mappable(mem))
676                 return -EINVAL;
677
678         mem->bus.caching = ttm_write_combined;
679         mem->bus.is_iomem = true;
680
681         return 0;
682 }
683
684 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
685                                          unsigned long page_offset)
686 {
687         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
688         struct scatterlist *sg;
689         unsigned long base;
690         unsigned int ofs;
691
692         GEM_BUG_ON(i915_ttm_is_ghost_object(bo));
693         GEM_WARN_ON(bo->ttm);
694
695         base = obj->mm.region->iomap.base - obj->mm.region->region.start;
696         sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs);
697
698         return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
699 }
700
701 static int i915_ttm_access_memory(struct ttm_buffer_object *bo,
702                                   unsigned long offset, void *buf,
703                                   int len, int write)
704 {
705         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
706         resource_size_t iomap = obj->mm.region->iomap.base -
707                 obj->mm.region->region.start;
708         unsigned long page = offset >> PAGE_SHIFT;
709         unsigned long bytes_left = len;
710
711         /*
712          * TODO: For now just let it fail if the resource is non-mappable,
713          * otherwise we need to perform the memcpy from the gpu here, without
714          * interfering with the object (like moving the entire thing).
715          */
716         if (!i915_ttm_resource_mappable(bo->resource))
717                 return -EIO;
718
719         offset -= page << PAGE_SHIFT;
720         do {
721                 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset);
722                 void __iomem *ptr;
723                 dma_addr_t daddr;
724
725                 daddr = i915_gem_object_get_dma_address(obj, page);
726                 ptr = ioremap_wc(iomap + daddr + offset, bytes);
727                 if (!ptr)
728                         return -EIO;
729
730                 if (write)
731                         memcpy_toio(ptr, buf, bytes);
732                 else
733                         memcpy_fromio(buf, ptr, bytes);
734                 iounmap(ptr);
735
736                 page++;
737                 buf += bytes;
738                 bytes_left -= bytes;
739                 offset = 0;
740         } while (bytes_left);
741
742         return len;
743 }
744
745 /*
746  * All callbacks need to take care not to downcast a struct ttm_buffer_object
747  * without checking its subclass, since it might be a TTM ghost object.
748  */
749 static struct ttm_device_funcs i915_ttm_bo_driver = {
750         .ttm_tt_create = i915_ttm_tt_create,
751         .ttm_tt_populate = i915_ttm_tt_populate,
752         .ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
753         .ttm_tt_destroy = i915_ttm_tt_destroy,
754         .eviction_valuable = i915_ttm_eviction_valuable,
755         .evict_flags = i915_ttm_evict_flags,
756         .move = i915_ttm_move,
757         .swap_notify = i915_ttm_swap_notify,
758         .delete_mem_notify = i915_ttm_delete_mem_notify,
759         .io_mem_reserve = i915_ttm_io_mem_reserve,
760         .io_mem_pfn = i915_ttm_io_mem_pfn,
761         .access_memory = i915_ttm_access_memory,
762 };
763
764 /**
765  * i915_ttm_driver - Return a pointer to the TTM device funcs
766  *
767  * Return: Pointer to statically allocated TTM device funcs.
768  */
769 struct ttm_device_funcs *i915_ttm_driver(void)
770 {
771         return &i915_ttm_bo_driver;
772 }
773
774 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
775                                 struct ttm_placement *placement)
776 {
777         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
778         struct ttm_operation_ctx ctx = {
779                 .interruptible = true,
780                 .no_wait_gpu = false,
781         };
782         int real_num_busy;
783         int ret;
784
785         /* First try only the requested placement. No eviction. */
786         real_num_busy = fetch_and_zero(&placement->num_busy_placement);
787         ret = ttm_bo_validate(bo, placement, &ctx);
788         if (ret) {
789                 ret = i915_ttm_err_to_gem(ret);
790                 /*
791                  * Anything that wants to restart the operation gets to
792                  * do that.
793                  */
794                 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
795                     ret == -EAGAIN)
796                         return ret;
797
798                 /*
799                  * If the initial attempt fails, allow all accepted placements,
800                  * evicting if necessary.
801                  */
802                 placement->num_busy_placement = real_num_busy;
803                 ret = ttm_bo_validate(bo, placement, &ctx);
804                 if (ret)
805                         return i915_ttm_err_to_gem(ret);
806         }
807
808         if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
809                 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
810                 if (ret)
811                         return ret;
812
813                 i915_ttm_adjust_domains_after_move(obj);
814                 i915_ttm_adjust_gem_after_move(obj);
815         }
816
817         if (!i915_gem_object_has_pages(obj)) {
818                 struct i915_refct_sgt *rsgt =
819                         i915_ttm_resource_get_st(obj, bo->resource);
820
821                 if (IS_ERR(rsgt))
822                         return PTR_ERR(rsgt);
823
824                 GEM_BUG_ON(obj->mm.rsgt);
825                 obj->mm.rsgt = rsgt;
826                 __i915_gem_object_set_pages(obj, &rsgt->table);
827         }
828
829         GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
830         i915_ttm_adjust_lru(obj);
831         return ret;
832 }
833
834 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
835 {
836         struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
837         struct ttm_placement placement;
838
839         /* restricted by sg_alloc_table */
840         if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int))
841                 return -E2BIG;
842
843         GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
844
845         /* Move to the requested placement. */
846         i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
847
848         return __i915_ttm_get_pages(obj, &placement);
849 }
850
851 /**
852  * DOC: Migration vs eviction
853  *
854  * GEM migration may not be the same as TTM migration / eviction. If
855  * the TTM core decides to evict an object it may be evicted to a
856  * TTM memory type that is not in the object's allowable GEM regions, or
857  * in fact theoretically to a TTM memory type that doesn't correspond to
858  * a GEM memory region. In that case the object's GEM region is not
859  * updated, and the data is migrated back to the GEM region at
860  * get_pages time. TTM may however set up CPU ptes to the object even
861  * when it is evicted.
862  * Gem forced migration using the i915_ttm_migrate() op, is allowed even
863  * to regions that are not in the object's list of allowable placements.
864  */
865 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
866                               struct intel_memory_region *mr,
867                               unsigned int flags)
868 {
869         struct ttm_place requested;
870         struct ttm_placement placement;
871         int ret;
872
873         i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
874                                    obj->base.size, flags);
875         placement.num_placement = 1;
876         placement.num_busy_placement = 1;
877         placement.placement = &requested;
878         placement.busy_placement = &requested;
879
880         ret = __i915_ttm_get_pages(obj, &placement);
881         if (ret)
882                 return ret;
883
884         /*
885          * Reinitialize the region bindings. This is primarily
886          * required for objects where the new region is not in
887          * its allowable placements.
888          */
889         if (obj->mm.region != mr) {
890                 i915_gem_object_release_memory_region(obj);
891                 i915_gem_object_init_memory_region(obj, mr);
892         }
893
894         return 0;
895 }
896
897 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
898                             struct intel_memory_region *mr,
899                             unsigned int flags)
900 {
901         return __i915_ttm_migrate(obj, mr, flags);
902 }
903
904 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
905                                struct sg_table *st)
906 {
907         /*
908          * We're currently not called from a shrinker, so put_pages()
909          * typically means the object is about to destroyed, or called
910          * from move_notify(). So just avoid doing much for now.
911          * If the object is not destroyed next, The TTM eviction logic
912          * and shrinkers will move it out if needed.
913          */
914
915         if (obj->mm.rsgt)
916                 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
917 }
918
919 /**
920  * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
921  * @obj: The object
922  */
923 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
924 {
925         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
926         struct i915_ttm_tt *i915_tt =
927                 container_of(bo->ttm, typeof(*i915_tt), ttm);
928         bool shrinkable =
929                 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
930
931         /*
932          * Don't manipulate the TTM LRUs while in TTM bo destruction.
933          * We're called through i915_ttm_delete_mem_notify().
934          */
935         if (!kref_read(&bo->kref))
936                 return;
937
938         /*
939          * We skip managing the shrinker LRU in set_pages() and just manage
940          * everything here. This does at least solve the issue with having
941          * temporary shmem mappings(like with evicted lmem) not being visible to
942          * the shrinker. Only our shmem objects are shrinkable, everything else
943          * we keep as unshrinkable.
944          *
945          * To make sure everything plays nice we keep an extra shrink pin in TTM
946          * if the underlying pages are not currently shrinkable. Once we release
947          * our pin, like when the pages are moved to shmem, the pages will then
948          * be added to the shrinker LRU, assuming the caller isn't also holding
949          * a pin.
950          *
951          * TODO: consider maybe also bumping the shrinker list here when we have
952          * already unpinned it, which should give us something more like an LRU.
953          *
954          * TODO: There is a small window of opportunity for this function to
955          * get called from eviction after we've dropped the last GEM refcount,
956          * but before the TTM deleted flag is set on the object. Avoid
957          * adjusting the shrinker list in such cases, since the object is
958          * not available to the shrinker anyway due to its zero refcount.
959          * To fix this properly we should move to a TTM shrinker LRU list for
960          * these objects.
961          */
962         if (kref_get_unless_zero(&obj->base.refcount)) {
963                 if (shrinkable != obj->mm.ttm_shrinkable) {
964                         if (shrinkable) {
965                                 if (obj->mm.madv == I915_MADV_WILLNEED)
966                                         __i915_gem_object_make_shrinkable(obj);
967                                 else
968                                         __i915_gem_object_make_purgeable(obj);
969                         } else {
970                                 i915_gem_object_make_unshrinkable(obj);
971                         }
972
973                         obj->mm.ttm_shrinkable = shrinkable;
974                 }
975                 i915_gem_object_put(obj);
976         }
977
978         /*
979          * Put on the correct LRU list depending on the MADV status
980          */
981         spin_lock(&bo->bdev->lru_lock);
982         if (shrinkable) {
983                 /* Try to keep shmem_tt from being considered for shrinking. */
984                 bo->priority = TTM_MAX_BO_PRIORITY - 1;
985         } else if (obj->mm.madv != I915_MADV_WILLNEED) {
986                 bo->priority = I915_TTM_PRIO_PURGE;
987         } else if (!i915_gem_object_has_pages(obj)) {
988                 bo->priority = I915_TTM_PRIO_NO_PAGES;
989         } else {
990                 struct ttm_resource_manager *man =
991                         ttm_manager_type(bo->bdev, bo->resource->mem_type);
992
993                 /*
994                  * If we need to place an LMEM resource which doesn't need CPU
995                  * access then we should try not to victimize mappable objects
996                  * first, since we likely end up stealing more of the mappable
997                  * portion. And likewise when we try to find space for a mappble
998                  * object, we know not to ever victimize objects that don't
999                  * occupy any mappable pages.
1000                  */
1001                 if (i915_ttm_cpu_maps_iomem(bo->resource) &&
1002                     i915_ttm_buddy_man_visible_size(man) < man->size &&
1003                     !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
1004                         bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
1005                 else
1006                         bo->priority = I915_TTM_PRIO_HAS_PAGES;
1007         }
1008
1009         ttm_bo_move_to_lru_tail(bo);
1010         spin_unlock(&bo->bdev->lru_lock);
1011 }
1012
1013 /*
1014  * TTM-backed gem object destruction requires some clarification.
1015  * Basically we have two possibilities here. We can either rely on the
1016  * i915 delayed destruction and put the TTM object when the object
1017  * is idle. This would be detected by TTM which would bypass the
1018  * TTM delayed destroy handling. The other approach is to put the TTM
1019  * object early and rely on the TTM destroyed handling, and then free
1020  * the leftover parts of the GEM object once TTM's destroyed list handling is
1021  * complete. For now, we rely on the latter for two reasons:
1022  * a) TTM can evict an object even when it's on the delayed destroy list,
1023  * which in theory allows for complete eviction.
1024  * b) There is work going on in TTM to allow freeing an object even when
1025  * it's not idle, and using the TTM destroyed list handling could help us
1026  * benefit from that.
1027  */
1028 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1029 {
1030         GEM_BUG_ON(!obj->ttm.created);
1031
1032         ttm_bo_put(i915_gem_to_ttm(obj));
1033 }
1034
1035 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1036 {
1037         struct vm_area_struct *area = vmf->vma;
1038         struct ttm_buffer_object *bo = area->vm_private_data;
1039         struct drm_device *dev = bo->base.dev;
1040         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1041         intel_wakeref_t wakeref = 0;
1042         vm_fault_t ret;
1043         int idx;
1044
1045         /* Sanity check that we allow writing into this object */
1046         if (unlikely(i915_gem_object_is_readonly(obj) &&
1047                      area->vm_flags & VM_WRITE))
1048                 return VM_FAULT_SIGBUS;
1049
1050         ret = ttm_bo_vm_reserve(bo, vmf);
1051         if (ret)
1052                 return ret;
1053
1054         if (obj->mm.madv != I915_MADV_WILLNEED) {
1055                 dma_resv_unlock(bo->base.resv);
1056                 return VM_FAULT_SIGBUS;
1057         }
1058
1059         /*
1060          * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1061          * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1062          * far as far doing a ttm_bo_move_null(), which should skip all the
1063          * other junk.
1064          */
1065         if (!bo->resource) {
1066                 struct ttm_operation_ctx ctx = {
1067                         .interruptible = true,
1068                         .no_wait_gpu = true, /* should be idle already */
1069                 };
1070
1071                 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1072
1073                 ret = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1074                 if (ret) {
1075                         dma_resv_unlock(bo->base.resv);
1076                         return VM_FAULT_SIGBUS;
1077                 }
1078         } else if (!i915_ttm_resource_mappable(bo->resource)) {
1079                 int err = -ENODEV;
1080                 int i;
1081
1082                 for (i = 0; i < obj->mm.n_placements; i++) {
1083                         struct intel_memory_region *mr = obj->mm.placements[i];
1084                         unsigned int flags;
1085
1086                         if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM)
1087                                 continue;
1088
1089                         flags = obj->flags;
1090                         flags &= ~I915_BO_ALLOC_GPU_ONLY;
1091                         err = __i915_ttm_migrate(obj, mr, flags);
1092                         if (!err)
1093                                 break;
1094                 }
1095
1096                 if (err) {
1097                         drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n",
1098                                 ERR_PTR(err));
1099                         dma_resv_unlock(bo->base.resv);
1100                         ret = VM_FAULT_SIGBUS;
1101                         goto out_rpm;
1102                 }
1103         }
1104
1105         if (i915_ttm_cpu_maps_iomem(bo->resource))
1106                 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1107
1108         if (drm_dev_enter(dev, &idx)) {
1109                 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1110                                                TTM_BO_VM_NUM_PREFAULT);
1111                 drm_dev_exit(idx);
1112         } else {
1113                 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1114         }
1115
1116         if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1117                 goto out_rpm;
1118
1119         /*
1120          * ttm_bo_vm_reserve() already has dma_resv_lock.
1121          * userfault_count is protected by dma_resv lock and rpm wakeref.
1122          */
1123         if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1124                 obj->userfault_count = 1;
1125                 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1126                 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1127                 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1128
1129                 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1130         }
1131
1132         if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
1133                 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1134                                    msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1135
1136         i915_ttm_adjust_lru(obj);
1137
1138         dma_resv_unlock(bo->base.resv);
1139
1140 out_rpm:
1141         if (wakeref)
1142                 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1143
1144         return ret;
1145 }
1146
1147 static int
1148 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1149               void *buf, int len, int write)
1150 {
1151         struct drm_i915_gem_object *obj =
1152                 i915_ttm_to_gem(area->vm_private_data);
1153
1154         if (i915_gem_object_is_readonly(obj) && write)
1155                 return -EACCES;
1156
1157         return ttm_bo_vm_access(area, addr, buf, len, write);
1158 }
1159
1160 static void ttm_vm_open(struct vm_area_struct *vma)
1161 {
1162         struct drm_i915_gem_object *obj =
1163                 i915_ttm_to_gem(vma->vm_private_data);
1164
1165         GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1166         i915_gem_object_get(obj);
1167 }
1168
1169 static void ttm_vm_close(struct vm_area_struct *vma)
1170 {
1171         struct drm_i915_gem_object *obj =
1172                 i915_ttm_to_gem(vma->vm_private_data);
1173
1174         GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1175         i915_gem_object_put(obj);
1176 }
1177
1178 static const struct vm_operations_struct vm_ops_ttm = {
1179         .fault = vm_fault_ttm,
1180         .access = vm_access_ttm,
1181         .open = ttm_vm_open,
1182         .close = ttm_vm_close,
1183 };
1184
1185 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1186 {
1187         /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1188         GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1189
1190         return drm_vma_node_offset_addr(&obj->base.vma_node);
1191 }
1192
1193 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1194 {
1195         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
1196         intel_wakeref_t wakeref = 0;
1197
1198         assert_object_held_shared(obj);
1199
1200         if (i915_ttm_cpu_maps_iomem(bo->resource)) {
1201                 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1202
1203                 /* userfault_count is protected by obj lock and rpm wakeref. */
1204                 if (obj->userfault_count) {
1205                         spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1206                         list_del(&obj->userfault_link);
1207                         spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1208                         obj->userfault_count = 0;
1209                 }
1210         }
1211
1212         GEM_WARN_ON(obj->userfault_count);
1213
1214         ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1215
1216         if (wakeref)
1217                 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1218 }
1219
1220 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1221         .name = "i915_gem_object_ttm",
1222         .flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1223                  I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1224
1225         .get_pages = i915_ttm_get_pages,
1226         .put_pages = i915_ttm_put_pages,
1227         .truncate = i915_ttm_truncate,
1228         .shrink = i915_ttm_shrink,
1229
1230         .adjust_lru = i915_ttm_adjust_lru,
1231         .delayed_free = i915_ttm_delayed_free,
1232         .migrate = i915_ttm_migrate,
1233
1234         .mmap_offset = i915_ttm_mmap_offset,
1235         .unmap_virtual = i915_ttm_unmap_virtual,
1236         .mmap_ops = &vm_ops_ttm,
1237 };
1238
1239 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1240 {
1241         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1242
1243         i915_gem_object_release_memory_region(obj);
1244         mutex_destroy(&obj->ttm.get_io_page.lock);
1245
1246         if (obj->ttm.created) {
1247                 /*
1248                  * We freely manage the shrinker LRU outide of the mm.pages life
1249                  * cycle. As a result when destroying the object we should be
1250                  * extra paranoid and ensure we remove it from the LRU, before
1251                  * we free the object.
1252                  *
1253                  * Touching the ttm_shrinkable outside of the object lock here
1254                  * should be safe now that the last GEM object ref was dropped.
1255                  */
1256                 if (obj->mm.ttm_shrinkable)
1257                         i915_gem_object_make_unshrinkable(obj);
1258
1259                 i915_ttm_backup_free(obj);
1260
1261                 /* This releases all gem object bindings to the backend. */
1262                 __i915_gem_free_object(obj);
1263
1264                 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1265         } else {
1266                 __i915_gem_object_fini(obj);
1267         }
1268 }
1269
1270 /**
1271  * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1272  * @mem: The initial memory region for the object.
1273  * @obj: The gem object.
1274  * @size: Object size in bytes.
1275  * @flags: gem object flags.
1276  *
1277  * Return: 0 on success, negative error code on failure.
1278  */
1279 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1280                                struct drm_i915_gem_object *obj,
1281                                resource_size_t offset,
1282                                resource_size_t size,
1283                                resource_size_t page_size,
1284                                unsigned int flags)
1285 {
1286         static struct lock_class_key lock_class;
1287         struct drm_i915_private *i915 = mem->i915;
1288         struct ttm_operation_ctx ctx = {
1289                 .interruptible = true,
1290                 .no_wait_gpu = false,
1291         };
1292         enum ttm_bo_type bo_type;
1293         int ret;
1294
1295         drm_gem_private_object_init(&i915->drm, &obj->base, size);
1296         i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1297
1298         obj->bo_offset = offset;
1299
1300         /* Don't put on a region list until we're either locked or fully initialized. */
1301         obj->mm.region = mem;
1302         INIT_LIST_HEAD(&obj->mm.region_link);
1303
1304         INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1305         mutex_init(&obj->ttm.get_io_page.lock);
1306         bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1307                 ttm_bo_type_kernel;
1308
1309         obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1310
1311         /* Forcing the page size is kernel internal only */
1312         GEM_BUG_ON(page_size && obj->mm.n_placements);
1313
1314         /*
1315          * Keep an extra shrink pin to prevent the object from being made
1316          * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1317          * drop the pin. The TTM backend manages the shrinker LRU itself,
1318          * outside of the normal mm.pages life cycle.
1319          */
1320         i915_gem_object_make_unshrinkable(obj);
1321
1322         /*
1323          * If this function fails, it will call the destructor, but
1324          * our caller still owns the object. So no freeing in the
1325          * destructor until obj->ttm.created is true.
1326          * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1327          * until successful initialization.
1328          */
1329         ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1330                                    &i915_sys_placement, page_size >> PAGE_SHIFT,
1331                                    &ctx, NULL, NULL, i915_ttm_bo_destroy);
1332
1333         /*
1334          * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size
1335          * is too big to add vma. The direct function that returns -ENOSPC is
1336          * drm_mm_insert_node_in_range(). To handle the same error as other code
1337          * that returns -E2BIG when the size is too large, it converts -ENOSPC to
1338          * -E2BIG.
1339          */
1340         if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC)
1341                 ret = -E2BIG;
1342
1343         if (ret)
1344                 return i915_ttm_err_to_gem(ret);
1345
1346         obj->ttm.created = true;
1347         i915_gem_object_release_memory_region(obj);
1348         i915_gem_object_init_memory_region(obj, mem);
1349         i915_ttm_adjust_domains_after_move(obj);
1350         i915_ttm_adjust_gem_after_move(obj);
1351         i915_gem_object_unlock(obj);
1352
1353         return 0;
1354 }
1355
1356 static const struct intel_memory_region_ops ttm_system_region_ops = {
1357         .init_object = __i915_gem_ttm_object_init,
1358         .release = intel_region_ttm_fini,
1359 };
1360
1361 struct intel_memory_region *
1362 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1363                           u16 type, u16 instance)
1364 {
1365         struct intel_memory_region *mr;
1366
1367         mr = intel_memory_region_create(i915, 0,
1368                                         totalram_pages() << PAGE_SHIFT,
1369                                         PAGE_SIZE, 0, 0,
1370                                         type, instance,
1371                                         &ttm_system_region_ops);
1372         if (IS_ERR(mr))
1373                 return mr;
1374
1375         intel_memory_region_set_name(mr, "system-ttm");
1376         return mr;
1377 }