OSDN Git Service

perf/x86/uncore: Correct the number of CHAs on EMR
[tomoyo/tomoyo-test1.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #include "gt/intel_gt_regs.h"
42
43 #if defined(VERBOSE_DEBUG)
44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
45 #else
46 #define gvt_vdbg_mm(fmt, args...)
47 #endif
48
49 static bool enable_out_of_sync = false;
50 static int preallocated_oos_pages = 8192;
51
52 static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn)
53 {
54         struct kvm *kvm = vgpu->vfio_device.kvm;
55         int idx;
56         bool ret;
57
58         if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
59                 return false;
60
61         idx = srcu_read_lock(&kvm->srcu);
62         ret = kvm_is_visible_gfn(kvm, gfn);
63         srcu_read_unlock(&kvm->srcu, idx);
64
65         return ret;
66 }
67
68 /*
69  * validate a gm address and related range size,
70  * translate it to host gm address
71  */
72 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
73 {
74         if (size == 0)
75                 return vgpu_gmadr_is_valid(vgpu, addr);
76
77         if (vgpu_gmadr_is_aperture(vgpu, addr) &&
78             vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
79                 return true;
80         else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
81                  vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
82                 return true;
83
84         gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
85                      addr, size);
86         return false;
87 }
88
89 /* translate a guest gmadr to host gmadr */
90 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
91 {
92         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93
94         if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
95                      "invalid guest gmadr %llx\n", g_addr))
96                 return -EACCES;
97
98         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
99                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
100                           + (g_addr - vgpu_aperture_offset(vgpu));
101         else
102                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
103                           + (g_addr - vgpu_hidden_offset(vgpu));
104         return 0;
105 }
106
107 /* translate a host gmadr to guest gmadr */
108 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
109 {
110         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
111
112         if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
113                      "invalid host gmadr %llx\n", h_addr))
114                 return -EACCES;
115
116         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
117                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
118                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
119         else
120                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
121                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
122         return 0;
123 }
124
125 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
126                              unsigned long *h_index)
127 {
128         u64 h_addr;
129         int ret;
130
131         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
132                                        &h_addr);
133         if (ret)
134                 return ret;
135
136         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
137         return 0;
138 }
139
140 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
141                              unsigned long *g_index)
142 {
143         u64 g_addr;
144         int ret;
145
146         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
147                                        &g_addr);
148         if (ret)
149                 return ret;
150
151         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
152         return 0;
153 }
154
155 #define gtt_type_is_entry(type) \
156         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
157          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
158          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
159
160 #define gtt_type_is_pt(type) \
161         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
162
163 #define gtt_type_is_pte_pt(type) \
164         (type == GTT_TYPE_PPGTT_PTE_PT)
165
166 #define gtt_type_is_root_pointer(type) \
167         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
168
169 #define gtt_init_entry(e, t, p, v) do { \
170         (e)->type = t; \
171         (e)->pdev = p; \
172         memcpy(&(e)->val64, &v, sizeof(v)); \
173 } while (0)
174
175 /*
176  * Mappings between GTT_TYPE* enumerations.
177  * Following information can be found according to the given type:
178  * - type of next level page table
179  * - type of entry inside this level page table
180  * - type of entry with PSE set
181  *
182  * If the given type doesn't have such a kind of information,
183  * e.g. give a l4 root entry type, then request to get its PSE type,
184  * give a PTE page table type, then request to get its next level page
185  * table type, as we know l4 root entry doesn't have a PSE bit,
186  * and a PTE page table doesn't have a next level page table type,
187  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
188  * page table.
189  */
190
191 struct gtt_type_table_entry {
192         int entry_type;
193         int pt_type;
194         int next_pt_type;
195         int pse_entry_type;
196 };
197
198 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
199         [type] = { \
200                 .entry_type = e_type, \
201                 .pt_type = cpt_type, \
202                 .next_pt_type = npt_type, \
203                 .pse_entry_type = pse_type, \
204         }
205
206 static const struct gtt_type_table_entry gtt_type_table[] = {
207         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
208                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
209                         GTT_TYPE_INVALID,
210                         GTT_TYPE_PPGTT_PML4_PT,
211                         GTT_TYPE_INVALID),
212         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
213                         GTT_TYPE_PPGTT_PML4_ENTRY,
214                         GTT_TYPE_PPGTT_PML4_PT,
215                         GTT_TYPE_PPGTT_PDP_PT,
216                         GTT_TYPE_INVALID),
217         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
218                         GTT_TYPE_PPGTT_PML4_ENTRY,
219                         GTT_TYPE_PPGTT_PML4_PT,
220                         GTT_TYPE_PPGTT_PDP_PT,
221                         GTT_TYPE_INVALID),
222         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
223                         GTT_TYPE_PPGTT_PDP_ENTRY,
224                         GTT_TYPE_PPGTT_PDP_PT,
225                         GTT_TYPE_PPGTT_PDE_PT,
226                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
227         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
228                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
229                         GTT_TYPE_INVALID,
230                         GTT_TYPE_PPGTT_PDE_PT,
231                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
232         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
233                         GTT_TYPE_PPGTT_PDP_ENTRY,
234                         GTT_TYPE_PPGTT_PDP_PT,
235                         GTT_TYPE_PPGTT_PDE_PT,
236                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
237         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
238                         GTT_TYPE_PPGTT_PDE_ENTRY,
239                         GTT_TYPE_PPGTT_PDE_PT,
240                         GTT_TYPE_PPGTT_PTE_PT,
241                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
242         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
243                         GTT_TYPE_PPGTT_PDE_ENTRY,
244                         GTT_TYPE_PPGTT_PDE_PT,
245                         GTT_TYPE_PPGTT_PTE_PT,
246                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
247         /* We take IPS bit as 'PSE' for PTE level. */
248         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
249                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
250                         GTT_TYPE_PPGTT_PTE_PT,
251                         GTT_TYPE_INVALID,
252                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
253         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
254                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
255                         GTT_TYPE_PPGTT_PTE_PT,
256                         GTT_TYPE_INVALID,
257                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
258         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
259                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
260                         GTT_TYPE_PPGTT_PTE_PT,
261                         GTT_TYPE_INVALID,
262                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
263         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
264                         GTT_TYPE_PPGTT_PDE_ENTRY,
265                         GTT_TYPE_PPGTT_PDE_PT,
266                         GTT_TYPE_INVALID,
267                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
268         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
269                         GTT_TYPE_PPGTT_PDP_ENTRY,
270                         GTT_TYPE_PPGTT_PDP_PT,
271                         GTT_TYPE_INVALID,
272                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
273         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
274                         GTT_TYPE_GGTT_PTE,
275                         GTT_TYPE_INVALID,
276                         GTT_TYPE_INVALID,
277                         GTT_TYPE_INVALID),
278 };
279
280 static inline int get_next_pt_type(int type)
281 {
282         return gtt_type_table[type].next_pt_type;
283 }
284
285 static inline int get_entry_type(int type)
286 {
287         return gtt_type_table[type].entry_type;
288 }
289
290 static inline int get_pse_type(int type)
291 {
292         return gtt_type_table[type].pse_entry_type;
293 }
294
295 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
296 {
297         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
298
299         return readq(addr);
300 }
301
302 static void ggtt_invalidate(struct intel_gt *gt)
303 {
304         mmio_hw_access_pre(gt);
305         intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
306         mmio_hw_access_post(gt);
307 }
308
309 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
310 {
311         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
312
313         writeq(pte, addr);
314 }
315
316 static inline int gtt_get_entry64(void *pt,
317                 struct intel_gvt_gtt_entry *e,
318                 unsigned long index, bool hypervisor_access, unsigned long gpa,
319                 struct intel_vgpu *vgpu)
320 {
321         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
322         int ret;
323
324         if (WARN_ON(info->gtt_entry_size != 8))
325                 return -EINVAL;
326
327         if (hypervisor_access) {
328                 ret = intel_gvt_read_gpa(vgpu, gpa +
329                                 (index << info->gtt_entry_size_shift),
330                                 &e->val64, 8);
331                 if (WARN_ON(ret))
332                         return ret;
333         } else if (!pt) {
334                 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
335         } else {
336                 e->val64 = *((u64 *)pt + index);
337         }
338         return 0;
339 }
340
341 static inline int gtt_set_entry64(void *pt,
342                 struct intel_gvt_gtt_entry *e,
343                 unsigned long index, bool hypervisor_access, unsigned long gpa,
344                 struct intel_vgpu *vgpu)
345 {
346         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
347         int ret;
348
349         if (WARN_ON(info->gtt_entry_size != 8))
350                 return -EINVAL;
351
352         if (hypervisor_access) {
353                 ret = intel_gvt_write_gpa(vgpu, gpa +
354                                 (index << info->gtt_entry_size_shift),
355                                 &e->val64, 8);
356                 if (WARN_ON(ret))
357                         return ret;
358         } else if (!pt) {
359                 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
360         } else {
361                 *((u64 *)pt + index) = e->val64;
362         }
363         return 0;
364 }
365
366 #define GTT_HAW 46
367
368 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
369 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
370 #define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
371 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
372
373 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
374 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
375
376 #define GTT_64K_PTE_STRIDE 16
377
378 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
379 {
380         unsigned long pfn;
381
382         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
383                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
384         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
385                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
386         else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
387                 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
388         else
389                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
390         return pfn;
391 }
392
393 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
394 {
395         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
396                 e->val64 &= ~ADDR_1G_MASK;
397                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
398         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
399                 e->val64 &= ~ADDR_2M_MASK;
400                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
401         } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
402                 e->val64 &= ~ADDR_64K_MASK;
403                 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
404         } else {
405                 e->val64 &= ~ADDR_4K_MASK;
406                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
407         }
408
409         e->val64 |= (pfn << PAGE_SHIFT);
410 }
411
412 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
413 {
414         return !!(e->val64 & _PAGE_PSE);
415 }
416
417 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
418 {
419         if (gen8_gtt_test_pse(e)) {
420                 switch (e->type) {
421                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
422                         e->val64 &= ~_PAGE_PSE;
423                         e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
424                         break;
425                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
426                         e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
427                         e->val64 &= ~_PAGE_PSE;
428                         break;
429                 default:
430                         WARN_ON(1);
431                 }
432         }
433 }
434
435 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
436 {
437         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
438                 return false;
439
440         return !!(e->val64 & GEN8_PDE_IPS_64K);
441 }
442
443 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
444 {
445         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
446                 return;
447
448         e->val64 &= ~GEN8_PDE_IPS_64K;
449 }
450
451 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
452 {
453         /*
454          * i915 writes PDP root pointer registers without present bit,
455          * it also works, so we need to treat root pointer entry
456          * specifically.
457          */
458         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
459                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
460                 return (e->val64 != 0);
461         else
462                 return (e->val64 & GEN8_PAGE_PRESENT);
463 }
464
465 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
466 {
467         e->val64 &= ~GEN8_PAGE_PRESENT;
468 }
469
470 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
471 {
472         e->val64 |= GEN8_PAGE_PRESENT;
473 }
474
475 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
476 {
477         return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
478 }
479
480 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
481 {
482         e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
483 }
484
485 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
486 {
487         e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
488 }
489
490 /*
491  * Per-platform GMA routines.
492  */
493 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
494 {
495         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
496
497         trace_gma_index(__func__, gma, x);
498         return x;
499 }
500
501 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
502 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
503 { \
504         unsigned long x = (exp); \
505         trace_gma_index(__func__, gma, x); \
506         return x; \
507 }
508
509 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
510 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
511 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
512 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
513 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
514
515 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
516         .get_entry = gtt_get_entry64,
517         .set_entry = gtt_set_entry64,
518         .clear_present = gtt_entry_clear_present,
519         .set_present = gtt_entry_set_present,
520         .test_present = gen8_gtt_test_present,
521         .test_pse = gen8_gtt_test_pse,
522         .clear_pse = gen8_gtt_clear_pse,
523         .clear_ips = gen8_gtt_clear_ips,
524         .test_ips = gen8_gtt_test_ips,
525         .clear_64k_splited = gen8_gtt_clear_64k_splited,
526         .set_64k_splited = gen8_gtt_set_64k_splited,
527         .test_64k_splited = gen8_gtt_test_64k_splited,
528         .get_pfn = gen8_gtt_get_pfn,
529         .set_pfn = gen8_gtt_set_pfn,
530 };
531
532 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
533         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
534         .gma_to_pte_index = gen8_gma_to_pte_index,
535         .gma_to_pde_index = gen8_gma_to_pde_index,
536         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
537         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
538         .gma_to_pml4_index = gen8_gma_to_pml4_index,
539 };
540
541 /* Update entry type per pse and ips bit. */
542 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
543         struct intel_gvt_gtt_entry *entry, bool ips)
544 {
545         switch (entry->type) {
546         case GTT_TYPE_PPGTT_PDE_ENTRY:
547         case GTT_TYPE_PPGTT_PDP_ENTRY:
548                 if (pte_ops->test_pse(entry))
549                         entry->type = get_pse_type(entry->type);
550                 break;
551         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
552                 if (ips)
553                         entry->type = get_pse_type(entry->type);
554                 break;
555         default:
556                 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
557         }
558
559         GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
560 }
561
562 /*
563  * MM helpers.
564  */
565 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
566                 struct intel_gvt_gtt_entry *entry, unsigned long index,
567                 bool guest)
568 {
569         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
570
571         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
572
573         entry->type = mm->ppgtt_mm.root_entry_type;
574         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
575                            mm->ppgtt_mm.shadow_pdps,
576                            entry, index, false, 0, mm->vgpu);
577         update_entry_type_for_real(pte_ops, entry, false);
578 }
579
580 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
581                 struct intel_gvt_gtt_entry *entry, unsigned long index)
582 {
583         _ppgtt_get_root_entry(mm, entry, index, true);
584 }
585
586 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
587                 struct intel_gvt_gtt_entry *entry, unsigned long index)
588 {
589         _ppgtt_get_root_entry(mm, entry, index, false);
590 }
591
592 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
593                 struct intel_gvt_gtt_entry *entry, unsigned long index,
594                 bool guest)
595 {
596         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597
598         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
599                            mm->ppgtt_mm.shadow_pdps,
600                            entry, index, false, 0, mm->vgpu);
601 }
602
603 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
604                 struct intel_gvt_gtt_entry *entry, unsigned long index)
605 {
606         _ppgtt_set_root_entry(mm, entry, index, false);
607 }
608
609 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
610                 struct intel_gvt_gtt_entry *entry, unsigned long index)
611 {
612         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
613
614         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
615
616         entry->type = GTT_TYPE_GGTT_PTE;
617         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
618                            false, 0, mm->vgpu);
619 }
620
621 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
622                 struct intel_gvt_gtt_entry *entry, unsigned long index)
623 {
624         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
625
626         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
627
628         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
629                            false, 0, mm->vgpu);
630 }
631
632 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
633                 struct intel_gvt_gtt_entry *entry, unsigned long index)
634 {
635         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
636
637         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
638
639         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
640 }
641
642 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
643                 struct intel_gvt_gtt_entry *entry, unsigned long index)
644 {
645         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
646         unsigned long offset = index;
647
648         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
649
650         if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
651                 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
652                 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
653         } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
654                 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
655                 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
656         }
657
658         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
659 }
660
661 /*
662  * PPGTT shadow page table helpers.
663  */
664 static inline int ppgtt_spt_get_entry(
665                 struct intel_vgpu_ppgtt_spt *spt,
666                 void *page_table, int type,
667                 struct intel_gvt_gtt_entry *e, unsigned long index,
668                 bool guest)
669 {
670         struct intel_gvt *gvt = spt->vgpu->gvt;
671         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
672         int ret;
673
674         e->type = get_entry_type(type);
675
676         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
677                 return -EINVAL;
678
679         ret = ops->get_entry(page_table, e, index, guest,
680                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
681                         spt->vgpu);
682         if (ret)
683                 return ret;
684
685         update_entry_type_for_real(ops, e, guest ?
686                                    spt->guest_page.pde_ips : false);
687
688         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
689                     type, e->type, index, e->val64);
690         return 0;
691 }
692
693 static inline int ppgtt_spt_set_entry(
694                 struct intel_vgpu_ppgtt_spt *spt,
695                 void *page_table, int type,
696                 struct intel_gvt_gtt_entry *e, unsigned long index,
697                 bool guest)
698 {
699         struct intel_gvt *gvt = spt->vgpu->gvt;
700         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
701
702         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
703                 return -EINVAL;
704
705         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
706                     type, e->type, index, e->val64);
707
708         return ops->set_entry(page_table, e, index, guest,
709                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
710                         spt->vgpu);
711 }
712
713 #define ppgtt_get_guest_entry(spt, e, index) \
714         ppgtt_spt_get_entry(spt, NULL, \
715                 spt->guest_page.type, e, index, true)
716
717 #define ppgtt_set_guest_entry(spt, e, index) \
718         ppgtt_spt_set_entry(spt, NULL, \
719                 spt->guest_page.type, e, index, true)
720
721 #define ppgtt_get_shadow_entry(spt, e, index) \
722         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
723                 spt->shadow_page.type, e, index, false)
724
725 #define ppgtt_set_shadow_entry(spt, e, index) \
726         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
727                 spt->shadow_page.type, e, index, false)
728
729 static void *alloc_spt(gfp_t gfp_mask)
730 {
731         struct intel_vgpu_ppgtt_spt *spt;
732
733         spt = kzalloc(sizeof(*spt), gfp_mask);
734         if (!spt)
735                 return NULL;
736
737         spt->shadow_page.page = alloc_page(gfp_mask);
738         if (!spt->shadow_page.page) {
739                 kfree(spt);
740                 return NULL;
741         }
742         return spt;
743 }
744
745 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
746 {
747         __free_page(spt->shadow_page.page);
748         kfree(spt);
749 }
750
751 static int detach_oos_page(struct intel_vgpu *vgpu,
752                 struct intel_vgpu_oos_page *oos_page);
753
754 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
755 {
756         struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
757
758         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
759
760         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
761                        DMA_BIDIRECTIONAL);
762
763         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
764
765         if (spt->guest_page.gfn) {
766                 if (spt->guest_page.oos_page)
767                         detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
768
769                 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
770         }
771
772         list_del_init(&spt->post_shadow_list);
773         free_spt(spt);
774 }
775
776 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
777 {
778         struct intel_vgpu_ppgtt_spt *spt, *spn;
779         struct radix_tree_iter iter;
780         LIST_HEAD(all_spt);
781         void __rcu **slot;
782
783         rcu_read_lock();
784         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
785                 spt = radix_tree_deref_slot(slot);
786                 list_move(&spt->post_shadow_list, &all_spt);
787         }
788         rcu_read_unlock();
789
790         list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
791                 ppgtt_free_spt(spt);
792 }
793
794 static int ppgtt_handle_guest_write_page_table_bytes(
795                 struct intel_vgpu_ppgtt_spt *spt,
796                 u64 pa, void *p_data, int bytes);
797
798 static int ppgtt_write_protection_handler(
799                 struct intel_vgpu_page_track *page_track,
800                 u64 gpa, void *data, int bytes)
801 {
802         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
803
804         int ret;
805
806         if (bytes != 4 && bytes != 8)
807                 return -EINVAL;
808
809         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
810         if (ret)
811                 return ret;
812         return ret;
813 }
814
815 /* Find a spt by guest gfn. */
816 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
817                 struct intel_vgpu *vgpu, unsigned long gfn)
818 {
819         struct intel_vgpu_page_track *track;
820
821         track = intel_vgpu_find_page_track(vgpu, gfn);
822         if (track && track->handler == ppgtt_write_protection_handler)
823                 return track->priv_data;
824
825         return NULL;
826 }
827
828 /* Find the spt by shadow page mfn. */
829 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
830                 struct intel_vgpu *vgpu, unsigned long mfn)
831 {
832         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
833 }
834
835 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
836
837 /* Allocate shadow page table without guest page. */
838 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
839                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
840 {
841         struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
842         struct intel_vgpu_ppgtt_spt *spt = NULL;
843         dma_addr_t daddr;
844         int ret;
845
846 retry:
847         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
848         if (!spt) {
849                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
850                         goto retry;
851
852                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
853                 return ERR_PTR(-ENOMEM);
854         }
855
856         spt->vgpu = vgpu;
857         atomic_set(&spt->refcount, 1);
858         INIT_LIST_HEAD(&spt->post_shadow_list);
859
860         /*
861          * Init shadow_page.
862          */
863         spt->shadow_page.type = type;
864         daddr = dma_map_page(kdev, spt->shadow_page.page,
865                              0, 4096, DMA_BIDIRECTIONAL);
866         if (dma_mapping_error(kdev, daddr)) {
867                 gvt_vgpu_err("fail to map dma addr\n");
868                 ret = -EINVAL;
869                 goto err_free_spt;
870         }
871         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
872         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
873
874         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
875         if (ret)
876                 goto err_unmap_dma;
877
878         return spt;
879
880 err_unmap_dma:
881         dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
882 err_free_spt:
883         free_spt(spt);
884         return ERR_PTR(ret);
885 }
886
887 /* Allocate shadow page table associated with specific gfn. */
888 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
889                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
890                 unsigned long gfn, bool guest_pde_ips)
891 {
892         struct intel_vgpu_ppgtt_spt *spt;
893         int ret;
894
895         spt = ppgtt_alloc_spt(vgpu, type);
896         if (IS_ERR(spt))
897                 return spt;
898
899         /*
900          * Init guest_page.
901          */
902         ret = intel_vgpu_register_page_track(vgpu, gfn,
903                         ppgtt_write_protection_handler, spt);
904         if (ret) {
905                 ppgtt_free_spt(spt);
906                 return ERR_PTR(ret);
907         }
908
909         spt->guest_page.type = type;
910         spt->guest_page.gfn = gfn;
911         spt->guest_page.pde_ips = guest_pde_ips;
912
913         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
914
915         return spt;
916 }
917
918 #define pt_entry_size_shift(spt) \
919         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
920
921 #define pt_entries(spt) \
922         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
923
924 #define for_each_present_guest_entry(spt, e, i) \
925         for (i = 0; i < pt_entries(spt); \
926              i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
927                 if (!ppgtt_get_guest_entry(spt, e, i) && \
928                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
929
930 #define for_each_present_shadow_entry(spt, e, i) \
931         for (i = 0; i < pt_entries(spt); \
932              i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
933                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
934                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
935
936 #define for_each_shadow_entry(spt, e, i) \
937         for (i = 0; i < pt_entries(spt); \
938              i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
939                 if (!ppgtt_get_shadow_entry(spt, e, i))
940
941 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
942 {
943         int v = atomic_read(&spt->refcount);
944
945         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
946         atomic_inc(&spt->refcount);
947 }
948
949 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
950 {
951         int v = atomic_read(&spt->refcount);
952
953         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
954         return atomic_dec_return(&spt->refcount);
955 }
956
957 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
958
959 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
960                 struct intel_gvt_gtt_entry *e)
961 {
962         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
963         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
964         struct intel_vgpu_ppgtt_spt *s;
965         enum intel_gvt_gtt_type cur_pt_type;
966
967         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
968
969         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
970                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
971                 cur_pt_type = get_next_pt_type(e->type);
972
973                 if (!gtt_type_is_pt(cur_pt_type) ||
974                                 !gtt_type_is_pt(cur_pt_type + 1)) {
975                         drm_WARN(&i915->drm, 1,
976                                  "Invalid page table type, cur_pt_type is: %d\n",
977                                  cur_pt_type);
978                         return -EINVAL;
979                 }
980
981                 cur_pt_type += 1;
982
983                 if (ops->get_pfn(e) ==
984                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
985                         return 0;
986         }
987         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
988         if (!s) {
989                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
990                                 ops->get_pfn(e));
991                 return -ENXIO;
992         }
993         return ppgtt_invalidate_spt(s);
994 }
995
996 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
997                 struct intel_gvt_gtt_entry *entry)
998 {
999         struct intel_vgpu *vgpu = spt->vgpu;
1000         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1001         unsigned long pfn;
1002         int type;
1003
1004         pfn = ops->get_pfn(entry);
1005         type = spt->shadow_page.type;
1006
1007         /* Uninitialized spte or unshadowed spte. */
1008         if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
1009                 return;
1010
1011         intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
1012 }
1013
1014 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1015 {
1016         struct intel_vgpu *vgpu = spt->vgpu;
1017         struct intel_gvt_gtt_entry e;
1018         unsigned long index;
1019         int ret;
1020
1021         trace_spt_change(spt->vgpu->id, "die", spt,
1022                         spt->guest_page.gfn, spt->shadow_page.type);
1023
1024         if (ppgtt_put_spt(spt) > 0)
1025                 return 0;
1026
1027         for_each_present_shadow_entry(spt, &e, index) {
1028                 switch (e.type) {
1029                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1030                         gvt_vdbg_mm("invalidate 4K entry\n");
1031                         ppgtt_invalidate_pte(spt, &e);
1032                         break;
1033                 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1034                         /* We don't setup 64K shadow entry so far. */
1035                         WARN(1, "suspicious 64K gtt entry\n");
1036                         continue;
1037                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1038                         gvt_vdbg_mm("invalidate 2M entry\n");
1039                         continue;
1040                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1041                         WARN(1, "GVT doesn't support 1GB page\n");
1042                         continue;
1043                 case GTT_TYPE_PPGTT_PML4_ENTRY:
1044                 case GTT_TYPE_PPGTT_PDP_ENTRY:
1045                 case GTT_TYPE_PPGTT_PDE_ENTRY:
1046                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1047                         ret = ppgtt_invalidate_spt_by_shadow_entry(
1048                                         spt->vgpu, &e);
1049                         if (ret)
1050                                 goto fail;
1051                         break;
1052                 default:
1053                         GEM_BUG_ON(1);
1054                 }
1055         }
1056
1057         trace_spt_change(spt->vgpu->id, "release", spt,
1058                          spt->guest_page.gfn, spt->shadow_page.type);
1059         ppgtt_free_spt(spt);
1060         return 0;
1061 fail:
1062         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1063                         spt, e.val64, e.type);
1064         return ret;
1065 }
1066
1067 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1068 {
1069         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1070
1071         if (GRAPHICS_VER(dev_priv) == 9) {
1072                 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1073                         GAMW_ECO_ENABLE_64K_IPS_FIELD;
1074
1075                 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1076         } else if (GRAPHICS_VER(dev_priv) >= 11) {
1077                 /* 64K paging only controlled by IPS bit in PTE now. */
1078                 return true;
1079         } else
1080                 return false;
1081 }
1082
1083 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1084
1085 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1086                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1087 {
1088         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1089         struct intel_vgpu_ppgtt_spt *spt = NULL;
1090         bool ips = false;
1091         int ret;
1092
1093         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1094
1095         if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1096                 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1097
1098         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1099         if (spt) {
1100                 ppgtt_get_spt(spt);
1101
1102                 if (ips != spt->guest_page.pde_ips) {
1103                         spt->guest_page.pde_ips = ips;
1104
1105                         gvt_dbg_mm("reshadow PDE since ips changed\n");
1106                         clear_page(spt->shadow_page.vaddr);
1107                         ret = ppgtt_populate_spt(spt);
1108                         if (ret) {
1109                                 ppgtt_put_spt(spt);
1110                                 goto err;
1111                         }
1112                 }
1113         } else {
1114                 int type = get_next_pt_type(we->type);
1115
1116                 if (!gtt_type_is_pt(type)) {
1117                         ret = -EINVAL;
1118                         goto err;
1119                 }
1120
1121                 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1122                 if (IS_ERR(spt)) {
1123                         ret = PTR_ERR(spt);
1124                         goto err;
1125                 }
1126
1127                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1128                 if (ret)
1129                         goto err_free_spt;
1130
1131                 ret = ppgtt_populate_spt(spt);
1132                 if (ret)
1133                         goto err_free_spt;
1134
1135                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1136                                  spt->shadow_page.type);
1137         }
1138         return spt;
1139
1140 err_free_spt:
1141         ppgtt_free_spt(spt);
1142         spt = NULL;
1143 err:
1144         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1145                      spt, we->val64, we->type);
1146         return ERR_PTR(ret);
1147 }
1148
1149 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1150                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1151 {
1152         const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1153
1154         se->type = ge->type;
1155         se->val64 = ge->val64;
1156
1157         /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1158         if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1159                 ops->clear_ips(se);
1160
1161         ops->set_pfn(se, s->shadow_page.mfn);
1162 }
1163
1164 /*
1165  * Check if can do 2M page
1166  * @vgpu: target vgpu
1167  * @entry: target pfn's gtt entry
1168  *
1169  * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1170  * negative if found err.
1171  */
1172 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1173         struct intel_gvt_gtt_entry *entry)
1174 {
1175         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1176         kvm_pfn_t pfn;
1177
1178         if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1179                 return 0;
1180
1181         if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1182                 return -EINVAL;
1183         pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry));
1184         if (is_error_noslot_pfn(pfn))
1185                 return -EINVAL;
1186         return PageTransHuge(pfn_to_page(pfn));
1187 }
1188
1189 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1190         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1191         struct intel_gvt_gtt_entry *se)
1192 {
1193         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1194         struct intel_vgpu_ppgtt_spt *sub_spt;
1195         struct intel_gvt_gtt_entry sub_se;
1196         unsigned long start_gfn;
1197         dma_addr_t dma_addr;
1198         unsigned long sub_index;
1199         int ret;
1200
1201         gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1202
1203         start_gfn = ops->get_pfn(se);
1204
1205         sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1206         if (IS_ERR(sub_spt))
1207                 return PTR_ERR(sub_spt);
1208
1209         for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1210                 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1211                                                    PAGE_SIZE, &dma_addr);
1212                 if (ret)
1213                         goto err;
1214                 sub_se.val64 = se->val64;
1215
1216                 /* Copy the PAT field from PDE. */
1217                 sub_se.val64 &= ~_PAGE_PAT;
1218                 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1219
1220                 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1221                 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1222         }
1223
1224         /* Clear dirty field. */
1225         se->val64 &= ~_PAGE_DIRTY;
1226
1227         ops->clear_pse(se);
1228         ops->clear_ips(se);
1229         ops->set_pfn(se, sub_spt->shadow_page.mfn);
1230         ppgtt_set_shadow_entry(spt, se, index);
1231         return 0;
1232 err:
1233         /* Cancel the existing addess mappings of DMA addr. */
1234         for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1235                 gvt_vdbg_mm("invalidate 4K entry\n");
1236                 ppgtt_invalidate_pte(sub_spt, &sub_se);
1237         }
1238         /* Release the new allocated spt. */
1239         trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1240                 sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1241         ppgtt_free_spt(sub_spt);
1242         return ret;
1243 }
1244
1245 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1246         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1247         struct intel_gvt_gtt_entry *se)
1248 {
1249         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1250         struct intel_gvt_gtt_entry entry = *se;
1251         unsigned long start_gfn;
1252         dma_addr_t dma_addr;
1253         int i, ret;
1254
1255         gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1256
1257         GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1258
1259         start_gfn = ops->get_pfn(se);
1260
1261         entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1262         ops->set_64k_splited(&entry);
1263
1264         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1265                 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1266                                                    PAGE_SIZE, &dma_addr);
1267                 if (ret)
1268                         return ret;
1269
1270                 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1271                 ppgtt_set_shadow_entry(spt, &entry, index + i);
1272         }
1273         return 0;
1274 }
1275
1276 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1277         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1278         struct intel_gvt_gtt_entry *ge)
1279 {
1280         const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1281         struct intel_gvt_gtt_entry se = *ge;
1282         unsigned long gfn, page_size = PAGE_SIZE;
1283         dma_addr_t dma_addr;
1284         int ret;
1285
1286         if (!pte_ops->test_present(ge))
1287                 return 0;
1288
1289         gfn = pte_ops->get_pfn(ge);
1290
1291         switch (ge->type) {
1292         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1293                 gvt_vdbg_mm("shadow 4K gtt entry\n");
1294                 break;
1295         case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1296                 gvt_vdbg_mm("shadow 64K gtt entry\n");
1297                 /*
1298                  * The layout of 64K page is special, the page size is
1299                  * controlled by uper PDE. To be simple, we always split
1300                  * 64K page to smaller 4K pages in shadow PT.
1301                  */
1302                 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1303         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1304                 gvt_vdbg_mm("shadow 2M gtt entry\n");
1305                 ret = is_2MB_gtt_possible(vgpu, ge);
1306                 if (ret == 0)
1307                         return split_2MB_gtt_entry(vgpu, spt, index, &se);
1308                 else if (ret < 0)
1309                         return ret;
1310                 page_size = I915_GTT_PAGE_SIZE_2M;
1311                 break;
1312         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1313                 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1314                 return -EINVAL;
1315         default:
1316                 GEM_BUG_ON(1);
1317         }
1318
1319         /* direct shadow */
1320         ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr);
1321         if (ret)
1322                 return -ENXIO;
1323
1324         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1325         ppgtt_set_shadow_entry(spt, &se, index);
1326         return 0;
1327 }
1328
1329 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1330 {
1331         struct intel_vgpu *vgpu = spt->vgpu;
1332         struct intel_gvt *gvt = vgpu->gvt;
1333         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1334         struct intel_vgpu_ppgtt_spt *s;
1335         struct intel_gvt_gtt_entry se, ge;
1336         unsigned long gfn, i;
1337         int ret;
1338
1339         trace_spt_change(spt->vgpu->id, "born", spt,
1340                          spt->guest_page.gfn, spt->shadow_page.type);
1341
1342         for_each_present_guest_entry(spt, &ge, i) {
1343                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1344                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1345                         if (IS_ERR(s)) {
1346                                 ret = PTR_ERR(s);
1347                                 goto fail;
1348                         }
1349                         ppgtt_get_shadow_entry(spt, &se, i);
1350                         ppgtt_generate_shadow_entry(&se, s, &ge);
1351                         ppgtt_set_shadow_entry(spt, &se, i);
1352                 } else {
1353                         gfn = ops->get_pfn(&ge);
1354                         if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
1355                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1356                                 ppgtt_set_shadow_entry(spt, &se, i);
1357                                 continue;
1358                         }
1359
1360                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1361                         if (ret)
1362                                 goto fail;
1363                 }
1364         }
1365         return 0;
1366 fail:
1367         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1368                         spt, ge.val64, ge.type);
1369         return ret;
1370 }
1371
1372 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1373                 struct intel_gvt_gtt_entry *se, unsigned long index)
1374 {
1375         struct intel_vgpu *vgpu = spt->vgpu;
1376         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1377         int ret;
1378
1379         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1380                                spt->shadow_page.type, se->val64, index);
1381
1382         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1383                     se->type, index, se->val64);
1384
1385         if (!ops->test_present(se))
1386                 return 0;
1387
1388         if (ops->get_pfn(se) ==
1389             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1390                 return 0;
1391
1392         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1393                 struct intel_vgpu_ppgtt_spt *s =
1394                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1395                 if (!s) {
1396                         gvt_vgpu_err("fail to find guest page\n");
1397                         ret = -ENXIO;
1398                         goto fail;
1399                 }
1400                 ret = ppgtt_invalidate_spt(s);
1401                 if (ret)
1402                         goto fail;
1403         } else {
1404                 /* We don't setup 64K shadow entry so far. */
1405                 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1406                      "suspicious 64K entry\n");
1407                 ppgtt_invalidate_pte(spt, se);
1408         }
1409
1410         return 0;
1411 fail:
1412         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1413                         spt, se->val64, se->type);
1414         return ret;
1415 }
1416
1417 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1418                 struct intel_gvt_gtt_entry *we, unsigned long index)
1419 {
1420         struct intel_vgpu *vgpu = spt->vgpu;
1421         struct intel_gvt_gtt_entry m;
1422         struct intel_vgpu_ppgtt_spt *s;
1423         int ret;
1424
1425         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1426                                we->val64, index);
1427
1428         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1429                     we->type, index, we->val64);
1430
1431         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1432                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1433                 if (IS_ERR(s)) {
1434                         ret = PTR_ERR(s);
1435                         goto fail;
1436                 }
1437                 ppgtt_get_shadow_entry(spt, &m, index);
1438                 ppgtt_generate_shadow_entry(&m, s, we);
1439                 ppgtt_set_shadow_entry(spt, &m, index);
1440         } else {
1441                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1442                 if (ret)
1443                         goto fail;
1444         }
1445         return 0;
1446 fail:
1447         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1448                 spt, we->val64, we->type);
1449         return ret;
1450 }
1451
1452 static int sync_oos_page(struct intel_vgpu *vgpu,
1453                 struct intel_vgpu_oos_page *oos_page)
1454 {
1455         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1456         struct intel_gvt *gvt = vgpu->gvt;
1457         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1458         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1459         struct intel_gvt_gtt_entry old, new;
1460         int index;
1461         int ret;
1462
1463         trace_oos_change(vgpu->id, "sync", oos_page->id,
1464                          spt, spt->guest_page.type);
1465
1466         old.type = new.type = get_entry_type(spt->guest_page.type);
1467         old.val64 = new.val64 = 0;
1468
1469         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1470                                 info->gtt_entry_size_shift); index++) {
1471                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1472                 ops->get_entry(NULL, &new, index, true,
1473                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1474
1475                 if (old.val64 == new.val64
1476                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1477                         continue;
1478
1479                 trace_oos_sync(vgpu->id, oos_page->id,
1480                                 spt, spt->guest_page.type,
1481                                 new.val64, index);
1482
1483                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1484                 if (ret)
1485                         return ret;
1486
1487                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1488         }
1489
1490         spt->guest_page.write_cnt = 0;
1491         list_del_init(&spt->post_shadow_list);
1492         return 0;
1493 }
1494
1495 static int detach_oos_page(struct intel_vgpu *vgpu,
1496                 struct intel_vgpu_oos_page *oos_page)
1497 {
1498         struct intel_gvt *gvt = vgpu->gvt;
1499         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1500
1501         trace_oos_change(vgpu->id, "detach", oos_page->id,
1502                          spt, spt->guest_page.type);
1503
1504         spt->guest_page.write_cnt = 0;
1505         spt->guest_page.oos_page = NULL;
1506         oos_page->spt = NULL;
1507
1508         list_del_init(&oos_page->vm_list);
1509         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1510
1511         return 0;
1512 }
1513
1514 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1515                 struct intel_vgpu_ppgtt_spt *spt)
1516 {
1517         struct intel_gvt *gvt = spt->vgpu->gvt;
1518         int ret;
1519
1520         ret = intel_gvt_read_gpa(spt->vgpu,
1521                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1522                         oos_page->mem, I915_GTT_PAGE_SIZE);
1523         if (ret)
1524                 return ret;
1525
1526         oos_page->spt = spt;
1527         spt->guest_page.oos_page = oos_page;
1528
1529         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1530
1531         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1532                          spt, spt->guest_page.type);
1533         return 0;
1534 }
1535
1536 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1537 {
1538         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1539         int ret;
1540
1541         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1542         if (ret)
1543                 return ret;
1544
1545         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1546                          spt, spt->guest_page.type);
1547
1548         list_del_init(&oos_page->vm_list);
1549         return sync_oos_page(spt->vgpu, oos_page);
1550 }
1551
1552 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1553 {
1554         struct intel_gvt *gvt = spt->vgpu->gvt;
1555         struct intel_gvt_gtt *gtt = &gvt->gtt;
1556         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1557         int ret;
1558
1559         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1560
1561         if (list_empty(&gtt->oos_page_free_list_head)) {
1562                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1563                         struct intel_vgpu_oos_page, list);
1564                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1565                 if (ret)
1566                         return ret;
1567                 ret = detach_oos_page(spt->vgpu, oos_page);
1568                 if (ret)
1569                         return ret;
1570         } else
1571                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1572                         struct intel_vgpu_oos_page, list);
1573         return attach_oos_page(oos_page, spt);
1574 }
1575
1576 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1577 {
1578         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1579
1580         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1581                 return -EINVAL;
1582
1583         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1584                          spt, spt->guest_page.type);
1585
1586         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1587         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1588 }
1589
1590 /**
1591  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1592  * @vgpu: a vGPU
1593  *
1594  * This function is called before submitting a guest workload to host,
1595  * to sync all the out-of-synced shadow for vGPU
1596  *
1597  * Returns:
1598  * Zero on success, negative error code if failed.
1599  */
1600 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1601 {
1602         struct list_head *pos, *n;
1603         struct intel_vgpu_oos_page *oos_page;
1604         int ret;
1605
1606         if (!enable_out_of_sync)
1607                 return 0;
1608
1609         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1610                 oos_page = container_of(pos,
1611                                 struct intel_vgpu_oos_page, vm_list);
1612                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1613                 if (ret)
1614                         return ret;
1615         }
1616         return 0;
1617 }
1618
1619 /*
1620  * The heart of PPGTT shadow page table.
1621  */
1622 static int ppgtt_handle_guest_write_page_table(
1623                 struct intel_vgpu_ppgtt_spt *spt,
1624                 struct intel_gvt_gtt_entry *we, unsigned long index)
1625 {
1626         struct intel_vgpu *vgpu = spt->vgpu;
1627         int type = spt->shadow_page.type;
1628         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1629         struct intel_gvt_gtt_entry old_se;
1630         int new_present;
1631         int i, ret;
1632
1633         new_present = ops->test_present(we);
1634
1635         /*
1636          * Adding the new entry first and then removing the old one, that can
1637          * guarantee the ppgtt table is validated during the window between
1638          * adding and removal.
1639          */
1640         ppgtt_get_shadow_entry(spt, &old_se, index);
1641
1642         if (new_present) {
1643                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1644                 if (ret)
1645                         goto fail;
1646         }
1647
1648         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1649         if (ret)
1650                 goto fail;
1651
1652         if (!new_present) {
1653                 /* For 64KB splited entries, we need clear them all. */
1654                 if (ops->test_64k_splited(&old_se) &&
1655                     !(index % GTT_64K_PTE_STRIDE)) {
1656                         gvt_vdbg_mm("remove splited 64K shadow entries\n");
1657                         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1658                                 ops->clear_64k_splited(&old_se);
1659                                 ops->set_pfn(&old_se,
1660                                         vgpu->gtt.scratch_pt[type].page_mfn);
1661                                 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1662                         }
1663                 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1664                            old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1665                         ops->clear_pse(&old_se);
1666                         ops->set_pfn(&old_se,
1667                                      vgpu->gtt.scratch_pt[type].page_mfn);
1668                         ppgtt_set_shadow_entry(spt, &old_se, index);
1669                 } else {
1670                         ops->set_pfn(&old_se,
1671                                      vgpu->gtt.scratch_pt[type].page_mfn);
1672                         ppgtt_set_shadow_entry(spt, &old_se, index);
1673                 }
1674         }
1675
1676         return 0;
1677 fail:
1678         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1679                         spt, we->val64, we->type);
1680         return ret;
1681 }
1682
1683
1684
1685 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1686 {
1687         return enable_out_of_sync
1688                 && gtt_type_is_pte_pt(spt->guest_page.type)
1689                 && spt->guest_page.write_cnt >= 2;
1690 }
1691
1692 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1693                 unsigned long index)
1694 {
1695         set_bit(index, spt->post_shadow_bitmap);
1696         if (!list_empty(&spt->post_shadow_list))
1697                 return;
1698
1699         list_add_tail(&spt->post_shadow_list,
1700                         &spt->vgpu->gtt.post_shadow_list_head);
1701 }
1702
1703 /**
1704  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1705  * @vgpu: a vGPU
1706  *
1707  * This function is called before submitting a guest workload to host,
1708  * to flush all the post shadows for a vGPU.
1709  *
1710  * Returns:
1711  * Zero on success, negative error code if failed.
1712  */
1713 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1714 {
1715         struct list_head *pos, *n;
1716         struct intel_vgpu_ppgtt_spt *spt;
1717         struct intel_gvt_gtt_entry ge;
1718         unsigned long index;
1719         int ret;
1720
1721         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1722                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1723                                 post_shadow_list);
1724
1725                 for_each_set_bit(index, spt->post_shadow_bitmap,
1726                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1727                         ppgtt_get_guest_entry(spt, &ge, index);
1728
1729                         ret = ppgtt_handle_guest_write_page_table(spt,
1730                                                         &ge, index);
1731                         if (ret)
1732                                 return ret;
1733                         clear_bit(index, spt->post_shadow_bitmap);
1734                 }
1735                 list_del_init(&spt->post_shadow_list);
1736         }
1737         return 0;
1738 }
1739
1740 static int ppgtt_handle_guest_write_page_table_bytes(
1741                 struct intel_vgpu_ppgtt_spt *spt,
1742                 u64 pa, void *p_data, int bytes)
1743 {
1744         struct intel_vgpu *vgpu = spt->vgpu;
1745         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1746         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1747         struct intel_gvt_gtt_entry we, se;
1748         unsigned long index;
1749         int ret;
1750
1751         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1752
1753         ppgtt_get_guest_entry(spt, &we, index);
1754
1755         /*
1756          * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1757          * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1758          * ignored.
1759          */
1760         if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1761             (index % GTT_64K_PTE_STRIDE)) {
1762                 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1763                             index);
1764                 return 0;
1765         }
1766
1767         if (bytes == info->gtt_entry_size) {
1768                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1769                 if (ret)
1770                         return ret;
1771         } else {
1772                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1773                         int type = spt->shadow_page.type;
1774
1775                         ppgtt_get_shadow_entry(spt, &se, index);
1776                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1777                         if (ret)
1778                                 return ret;
1779                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1780                         ppgtt_set_shadow_entry(spt, &se, index);
1781                 }
1782                 ppgtt_set_post_shadow(spt, index);
1783         }
1784
1785         if (!enable_out_of_sync)
1786                 return 0;
1787
1788         spt->guest_page.write_cnt++;
1789
1790         if (spt->guest_page.oos_page)
1791                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1792                                 false, 0, vgpu);
1793
1794         if (can_do_out_of_sync(spt)) {
1795                 if (!spt->guest_page.oos_page)
1796                         ppgtt_allocate_oos_page(spt);
1797
1798                 ret = ppgtt_set_guest_page_oos(spt);
1799                 if (ret < 0)
1800                         return ret;
1801         }
1802         return 0;
1803 }
1804
1805 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1806 {
1807         struct intel_vgpu *vgpu = mm->vgpu;
1808         struct intel_gvt *gvt = vgpu->gvt;
1809         struct intel_gvt_gtt *gtt = &gvt->gtt;
1810         const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1811         struct intel_gvt_gtt_entry se;
1812         int index;
1813
1814         if (!mm->ppgtt_mm.shadowed)
1815                 return;
1816
1817         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1818                 ppgtt_get_shadow_root_entry(mm, &se, index);
1819
1820                 if (!ops->test_present(&se))
1821                         continue;
1822
1823                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1824                 se.val64 = 0;
1825                 ppgtt_set_shadow_root_entry(mm, &se, index);
1826
1827                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1828                                        NULL, se.type, se.val64, index);
1829         }
1830
1831         mm->ppgtt_mm.shadowed = false;
1832 }
1833
1834
1835 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1836 {
1837         struct intel_vgpu *vgpu = mm->vgpu;
1838         struct intel_gvt *gvt = vgpu->gvt;
1839         struct intel_gvt_gtt *gtt = &gvt->gtt;
1840         const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1841         struct intel_vgpu_ppgtt_spt *spt;
1842         struct intel_gvt_gtt_entry ge, se;
1843         int index, ret;
1844
1845         if (mm->ppgtt_mm.shadowed)
1846                 return 0;
1847
1848         mm->ppgtt_mm.shadowed = true;
1849
1850         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1851                 ppgtt_get_guest_root_entry(mm, &ge, index);
1852
1853                 if (!ops->test_present(&ge))
1854                         continue;
1855
1856                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1857                                        ge.type, ge.val64, index);
1858
1859                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1860                 if (IS_ERR(spt)) {
1861                         gvt_vgpu_err("fail to populate guest root pointer\n");
1862                         ret = PTR_ERR(spt);
1863                         goto fail;
1864                 }
1865                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1866                 ppgtt_set_shadow_root_entry(mm, &se, index);
1867
1868                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1869                                        NULL, se.type, se.val64, index);
1870         }
1871
1872         return 0;
1873 fail:
1874         invalidate_ppgtt_mm(mm);
1875         return ret;
1876 }
1877
1878 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1879 {
1880         struct intel_vgpu_mm *mm;
1881
1882         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1883         if (!mm)
1884                 return NULL;
1885
1886         mm->vgpu = vgpu;
1887         kref_init(&mm->ref);
1888         atomic_set(&mm->pincount, 0);
1889
1890         return mm;
1891 }
1892
1893 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1894 {
1895         kfree(mm);
1896 }
1897
1898 /**
1899  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1900  * @vgpu: a vGPU
1901  * @root_entry_type: ppgtt root entry type
1902  * @pdps: guest pdps.
1903  *
1904  * This function is used to create a ppgtt mm object for a vGPU.
1905  *
1906  * Returns:
1907  * Zero on success, negative error code in pointer if failed.
1908  */
1909 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1910                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1911 {
1912         struct intel_gvt *gvt = vgpu->gvt;
1913         struct intel_vgpu_mm *mm;
1914         int ret;
1915
1916         mm = vgpu_alloc_mm(vgpu);
1917         if (!mm)
1918                 return ERR_PTR(-ENOMEM);
1919
1920         mm->type = INTEL_GVT_MM_PPGTT;
1921
1922         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1923                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1924         mm->ppgtt_mm.root_entry_type = root_entry_type;
1925
1926         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1927         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1928         INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1929
1930         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1931                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1932         else
1933                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1934                        sizeof(mm->ppgtt_mm.guest_pdps));
1935
1936         ret = shadow_ppgtt_mm(mm);
1937         if (ret) {
1938                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1939                 vgpu_free_mm(mm);
1940                 return ERR_PTR(ret);
1941         }
1942
1943         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1944
1945         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1946         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1947         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1948
1949         return mm;
1950 }
1951
1952 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1953 {
1954         struct intel_vgpu_mm *mm;
1955         unsigned long nr_entries;
1956
1957         mm = vgpu_alloc_mm(vgpu);
1958         if (!mm)
1959                 return ERR_PTR(-ENOMEM);
1960
1961         mm->type = INTEL_GVT_MM_GGTT;
1962
1963         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1964         mm->ggtt_mm.virtual_ggtt =
1965                 vzalloc(array_size(nr_entries,
1966                                    vgpu->gvt->device_info.gtt_entry_size));
1967         if (!mm->ggtt_mm.virtual_ggtt) {
1968                 vgpu_free_mm(mm);
1969                 return ERR_PTR(-ENOMEM);
1970         }
1971
1972         mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1973         if (!mm->ggtt_mm.host_ggtt_aperture) {
1974                 vfree(mm->ggtt_mm.virtual_ggtt);
1975                 vgpu_free_mm(mm);
1976                 return ERR_PTR(-ENOMEM);
1977         }
1978
1979         mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1980         if (!mm->ggtt_mm.host_ggtt_hidden) {
1981                 vfree(mm->ggtt_mm.host_ggtt_aperture);
1982                 vfree(mm->ggtt_mm.virtual_ggtt);
1983                 vgpu_free_mm(mm);
1984                 return ERR_PTR(-ENOMEM);
1985         }
1986
1987         return mm;
1988 }
1989
1990 /**
1991  * _intel_vgpu_mm_release - destroy a mm object
1992  * @mm_ref: a kref object
1993  *
1994  * This function is used to destroy a mm object for vGPU
1995  *
1996  */
1997 void _intel_vgpu_mm_release(struct kref *mm_ref)
1998 {
1999         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
2000
2001         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
2002                 gvt_err("vgpu mm pin count bug detected\n");
2003
2004         if (mm->type == INTEL_GVT_MM_PPGTT) {
2005                 list_del(&mm->ppgtt_mm.list);
2006
2007                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2008                 list_del(&mm->ppgtt_mm.lru_list);
2009                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2010
2011                 invalidate_ppgtt_mm(mm);
2012         } else {
2013                 vfree(mm->ggtt_mm.virtual_ggtt);
2014                 vfree(mm->ggtt_mm.host_ggtt_aperture);
2015                 vfree(mm->ggtt_mm.host_ggtt_hidden);
2016         }
2017
2018         vgpu_free_mm(mm);
2019 }
2020
2021 /**
2022  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2023  * @mm: a vGPU mm object
2024  *
2025  * This function is called when user doesn't want to use a vGPU mm object
2026  */
2027 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2028 {
2029         atomic_dec_if_positive(&mm->pincount);
2030 }
2031
2032 /**
2033  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2034  * @mm: target vgpu mm
2035  *
2036  * This function is called when user wants to use a vGPU mm object. If this
2037  * mm object hasn't been shadowed yet, the shadow will be populated at this
2038  * time.
2039  *
2040  * Returns:
2041  * Zero on success, negative error code if failed.
2042  */
2043 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2044 {
2045         int ret;
2046
2047         atomic_inc(&mm->pincount);
2048
2049         if (mm->type == INTEL_GVT_MM_PPGTT) {
2050                 ret = shadow_ppgtt_mm(mm);
2051                 if (ret)
2052                         return ret;
2053
2054                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2055                 list_move_tail(&mm->ppgtt_mm.lru_list,
2056                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2057                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2058         }
2059
2060         return 0;
2061 }
2062
2063 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2064 {
2065         struct intel_vgpu_mm *mm;
2066         struct list_head *pos, *n;
2067
2068         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2069
2070         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2071                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2072
2073                 if (atomic_read(&mm->pincount))
2074                         continue;
2075
2076                 list_del_init(&mm->ppgtt_mm.lru_list);
2077                 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2078                 invalidate_ppgtt_mm(mm);
2079                 return 1;
2080         }
2081         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2082         return 0;
2083 }
2084
2085 /*
2086  * GMA translation APIs.
2087  */
2088 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2089                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2090 {
2091         struct intel_vgpu *vgpu = mm->vgpu;
2092         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2093         struct intel_vgpu_ppgtt_spt *s;
2094
2095         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2096         if (!s)
2097                 return -ENXIO;
2098
2099         if (!guest)
2100                 ppgtt_get_shadow_entry(s, e, index);
2101         else
2102                 ppgtt_get_guest_entry(s, e, index);
2103         return 0;
2104 }
2105
2106 /**
2107  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2108  * @mm: mm object. could be a PPGTT or GGTT mm object
2109  * @gma: graphics memory address in this mm object
2110  *
2111  * This function is used to translate a graphics memory address in specific
2112  * graphics memory space to guest physical address.
2113  *
2114  * Returns:
2115  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2116  */
2117 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2118 {
2119         struct intel_vgpu *vgpu = mm->vgpu;
2120         struct intel_gvt *gvt = vgpu->gvt;
2121         const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2122         const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2123         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2124         unsigned long gma_index[4];
2125         struct intel_gvt_gtt_entry e;
2126         int i, levels = 0;
2127         int ret;
2128
2129         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2130                    mm->type != INTEL_GVT_MM_PPGTT);
2131
2132         if (mm->type == INTEL_GVT_MM_GGTT) {
2133                 if (!vgpu_gmadr_is_valid(vgpu, gma))
2134                         goto err;
2135
2136                 ggtt_get_guest_entry(mm, &e,
2137                         gma_ops->gma_to_ggtt_pte_index(gma));
2138
2139                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2140                         + (gma & ~I915_GTT_PAGE_MASK);
2141
2142                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2143         } else {
2144                 switch (mm->ppgtt_mm.root_entry_type) {
2145                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2146                         ppgtt_get_shadow_root_entry(mm, &e, 0);
2147
2148                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2149                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2150                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
2151                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
2152                         levels = 4;
2153                         break;
2154                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2155                         ppgtt_get_shadow_root_entry(mm, &e,
2156                                         gma_ops->gma_to_l3_pdp_index(gma));
2157
2158                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
2159                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
2160                         levels = 2;
2161                         break;
2162                 default:
2163                         GEM_BUG_ON(1);
2164                 }
2165
2166                 /* walk the shadow page table and get gpa from guest entry */
2167                 for (i = 0; i < levels; i++) {
2168                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2169                                 (i == levels - 1));
2170                         if (ret)
2171                                 goto err;
2172
2173                         if (!pte_ops->test_present(&e)) {
2174                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2175                                 goto err;
2176                         }
2177                 }
2178
2179                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2180                                         (gma & ~I915_GTT_PAGE_MASK);
2181                 trace_gma_translate(vgpu->id, "ppgtt", 0,
2182                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
2183         }
2184
2185         return gpa;
2186 err:
2187         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2188         return INTEL_GVT_INVALID_ADDR;
2189 }
2190
2191 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2192         unsigned int off, void *p_data, unsigned int bytes)
2193 {
2194         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2195         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2196         unsigned long index = off >> info->gtt_entry_size_shift;
2197         unsigned long gma;
2198         struct intel_gvt_gtt_entry e;
2199
2200         if (bytes != 4 && bytes != 8)
2201                 return -EINVAL;
2202
2203         gma = index << I915_GTT_PAGE_SHIFT;
2204         if (!intel_gvt_ggtt_validate_range(vgpu,
2205                                            gma, 1 << I915_GTT_PAGE_SHIFT)) {
2206                 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2207                 memset(p_data, 0, bytes);
2208                 return 0;
2209         }
2210
2211         ggtt_get_guest_entry(ggtt_mm, &e, index);
2212         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2213                         bytes);
2214         return 0;
2215 }
2216
2217 /**
2218  * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2219  * @vgpu: a vGPU
2220  * @off: register offset
2221  * @p_data: data will be returned to guest
2222  * @bytes: data length
2223  *
2224  * This function is used to emulate the GTT MMIO register read
2225  *
2226  * Returns:
2227  * Zero on success, error code if failed.
2228  */
2229 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2230         void *p_data, unsigned int bytes)
2231 {
2232         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2233         int ret;
2234
2235         if (bytes != 4 && bytes != 8)
2236                 return -EINVAL;
2237
2238         off -= info->gtt_start_offset;
2239         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2240         return ret;
2241 }
2242
2243 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2244                 struct intel_gvt_gtt_entry *entry)
2245 {
2246         const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2247         unsigned long pfn;
2248
2249         pfn = pte_ops->get_pfn(entry);
2250         if (pfn != vgpu->gvt->gtt.scratch_mfn)
2251                 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2252 }
2253
2254 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2255         void *p_data, unsigned int bytes)
2256 {
2257         struct intel_gvt *gvt = vgpu->gvt;
2258         const struct intel_gvt_device_info *info = &gvt->device_info;
2259         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2260         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2261         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2262         unsigned long gma, gfn;
2263         struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2264         struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2265         dma_addr_t dma_addr;
2266         int ret;
2267         struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2268         bool partial_update = false;
2269
2270         if (bytes != 4 && bytes != 8)
2271                 return -EINVAL;
2272
2273         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2274
2275         /* the VM may configure the whole GM space when ballooning is used */
2276         if (!vgpu_gmadr_is_valid(vgpu, gma))
2277                 return 0;
2278
2279         e.type = GTT_TYPE_GGTT_PTE;
2280         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2281                         bytes);
2282
2283         /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2284          * write, save the first 4 bytes in a list and update virtual
2285          * PTE. Only update shadow PTE when the second 4 bytes comes.
2286          */
2287         if (bytes < info->gtt_entry_size) {
2288                 bool found = false;
2289
2290                 list_for_each_entry_safe(pos, n,
2291                                 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2292                         if (g_gtt_index == pos->offset >>
2293                                         info->gtt_entry_size_shift) {
2294                                 if (off != pos->offset) {
2295                                         /* the second partial part*/
2296                                         int last_off = pos->offset &
2297                                                 (info->gtt_entry_size - 1);
2298
2299                                         memcpy((void *)&e.val64 + last_off,
2300                                                 (void *)&pos->data + last_off,
2301                                                 bytes);
2302
2303                                         list_del(&pos->list);
2304                                         kfree(pos);
2305                                         found = true;
2306                                         break;
2307                                 }
2308
2309                                 /* update of the first partial part */
2310                                 pos->data = e.val64;
2311                                 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2312                                 return 0;
2313                         }
2314                 }
2315
2316                 if (!found) {
2317                         /* the first partial part */
2318                         partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2319                         if (!partial_pte)
2320                                 return -ENOMEM;
2321                         partial_pte->offset = off;
2322                         partial_pte->data = e.val64;
2323                         list_add_tail(&partial_pte->list,
2324                                 &ggtt_mm->ggtt_mm.partial_pte_list);
2325                         partial_update = true;
2326                 }
2327         }
2328
2329         if (!partial_update && (ops->test_present(&e))) {
2330                 gfn = ops->get_pfn(&e);
2331                 m.val64 = e.val64;
2332                 m.type = e.type;
2333
2334                 /* one PTE update may be issued in multiple writes and the
2335                  * first write may not construct a valid gfn
2336                  */
2337                 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
2338                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2339                         goto out;
2340                 }
2341
2342                 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2343                                                    &dma_addr);
2344                 if (ret) {
2345                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
2346                         /* guest driver may read/write the entry when partial
2347                          * update the entry in this situation p2m will fail
2348                          * setting the shadow entry to point to a scratch page
2349                          */
2350                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2351                 } else
2352                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2353         } else {
2354                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2355                 ops->clear_present(&m);
2356         }
2357
2358 out:
2359         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2360
2361         ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2362         ggtt_invalidate_pte(vgpu, &e);
2363
2364         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2365         ggtt_invalidate(gvt->gt);
2366         return 0;
2367 }
2368
2369 /*
2370  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2371  * @vgpu: a vGPU
2372  * @off: register offset
2373  * @p_data: data from guest write
2374  * @bytes: data length
2375  *
2376  * This function is used to emulate the GTT MMIO register write
2377  *
2378  * Returns:
2379  * Zero on success, error code if failed.
2380  */
2381 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2382                 unsigned int off, void *p_data, unsigned int bytes)
2383 {
2384         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2385         int ret;
2386         struct intel_vgpu_submission *s = &vgpu->submission;
2387         struct intel_engine_cs *engine;
2388         int i;
2389
2390         if (bytes != 4 && bytes != 8)
2391                 return -EINVAL;
2392
2393         off -= info->gtt_start_offset;
2394         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2395
2396         /* if ggtt of last submitted context is written,
2397          * that context is probably got unpinned.
2398          * Set last shadowed ctx to invalid.
2399          */
2400         for_each_engine(engine, vgpu->gvt->gt, i) {
2401                 if (!s->last_ctx[i].valid)
2402                         continue;
2403
2404                 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2405                         s->last_ctx[i].valid = false;
2406         }
2407         return ret;
2408 }
2409
2410 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2411                 enum intel_gvt_gtt_type type)
2412 {
2413         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2414         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2415         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2416         int page_entry_num = I915_GTT_PAGE_SIZE >>
2417                                 vgpu->gvt->device_info.gtt_entry_size_shift;
2418         void *scratch_pt;
2419         int i;
2420         struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2421         dma_addr_t daddr;
2422
2423         if (drm_WARN_ON(&i915->drm,
2424                         type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2425                 return -EINVAL;
2426
2427         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2428         if (!scratch_pt) {
2429                 gvt_vgpu_err("fail to allocate scratch page\n");
2430                 return -ENOMEM;
2431         }
2432
2433         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2434         if (dma_mapping_error(dev, daddr)) {
2435                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2436                 __free_page(virt_to_page(scratch_pt));
2437                 return -ENOMEM;
2438         }
2439         gtt->scratch_pt[type].page_mfn =
2440                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2441         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2442         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2443                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2444
2445         /* Build the tree by full filled the scratch pt with the entries which
2446          * point to the next level scratch pt or scratch page. The
2447          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2448          * 'type' pt.
2449          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2450          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2451          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2452          */
2453         if (type > GTT_TYPE_PPGTT_PTE_PT) {
2454                 struct intel_gvt_gtt_entry se;
2455
2456                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2457                 se.type = get_entry_type(type - 1);
2458                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2459
2460                 /* The entry parameters like present/writeable/cache type
2461                  * set to the same as i915's scratch page tree.
2462                  */
2463                 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2464                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2465                         se.val64 |= PPAT_CACHED;
2466
2467                 for (i = 0; i < page_entry_num; i++)
2468                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2469         }
2470
2471         return 0;
2472 }
2473
2474 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2475 {
2476         int i;
2477         struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2478         dma_addr_t daddr;
2479
2480         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2481                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2482                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2483                                         I915_GTT_PAGE_SHIFT);
2484                         dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2485                         __free_page(vgpu->gtt.scratch_pt[i].page);
2486                         vgpu->gtt.scratch_pt[i].page = NULL;
2487                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2488                 }
2489         }
2490
2491         return 0;
2492 }
2493
2494 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2495 {
2496         int i, ret;
2497
2498         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2499                 ret = alloc_scratch_pages(vgpu, i);
2500                 if (ret)
2501                         goto err;
2502         }
2503
2504         return 0;
2505
2506 err:
2507         release_scratch_page_tree(vgpu);
2508         return ret;
2509 }
2510
2511 /**
2512  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2513  * @vgpu: a vGPU
2514  *
2515  * This function is used to initialize per-vGPU graphics memory virtualization
2516  * components.
2517  *
2518  * Returns:
2519  * Zero on success, error code if failed.
2520  */
2521 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2522 {
2523         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2524
2525         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2526
2527         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2528         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2529         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2530
2531         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2532         if (IS_ERR(gtt->ggtt_mm)) {
2533                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2534                 return PTR_ERR(gtt->ggtt_mm);
2535         }
2536
2537         intel_vgpu_reset_ggtt(vgpu, false);
2538
2539         INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2540
2541         return create_scratch_page_tree(vgpu);
2542 }
2543
2544 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2545 {
2546         struct list_head *pos, *n;
2547         struct intel_vgpu_mm *mm;
2548
2549         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2550                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2551                 intel_vgpu_destroy_mm(mm);
2552         }
2553
2554         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2555                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2556
2557         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2558                 gvt_err("Why we still has spt not freed?\n");
2559                 ppgtt_free_all_spt(vgpu);
2560         }
2561 }
2562
2563 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2564 {
2565         struct intel_gvt_partial_pte *pos, *next;
2566
2567         list_for_each_entry_safe(pos, next,
2568                                  &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2569                                  list) {
2570                 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2571                         pos->offset, pos->data);
2572                 kfree(pos);
2573         }
2574         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2575         vgpu->gtt.ggtt_mm = NULL;
2576 }
2577
2578 /**
2579  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2580  * @vgpu: a vGPU
2581  *
2582  * This function is used to clean up per-vGPU graphics memory virtualization
2583  * components.
2584  *
2585  * Returns:
2586  * Zero on success, error code if failed.
2587  */
2588 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2589 {
2590         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2591         intel_vgpu_destroy_ggtt_mm(vgpu);
2592         release_scratch_page_tree(vgpu);
2593 }
2594
2595 static void clean_spt_oos(struct intel_gvt *gvt)
2596 {
2597         struct intel_gvt_gtt *gtt = &gvt->gtt;
2598         struct list_head *pos, *n;
2599         struct intel_vgpu_oos_page *oos_page;
2600
2601         WARN(!list_empty(&gtt->oos_page_use_list_head),
2602                 "someone is still using oos page\n");
2603
2604         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2605                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2606                 list_del(&oos_page->list);
2607                 free_page((unsigned long)oos_page->mem);
2608                 kfree(oos_page);
2609         }
2610 }
2611
2612 static int setup_spt_oos(struct intel_gvt *gvt)
2613 {
2614         struct intel_gvt_gtt *gtt = &gvt->gtt;
2615         struct intel_vgpu_oos_page *oos_page;
2616         int i;
2617         int ret;
2618
2619         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2620         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2621
2622         for (i = 0; i < preallocated_oos_pages; i++) {
2623                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2624                 if (!oos_page) {
2625                         ret = -ENOMEM;
2626                         goto fail;
2627                 }
2628                 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2629                 if (!oos_page->mem) {
2630                         ret = -ENOMEM;
2631                         kfree(oos_page);
2632                         goto fail;
2633                 }
2634
2635                 INIT_LIST_HEAD(&oos_page->list);
2636                 INIT_LIST_HEAD(&oos_page->vm_list);
2637                 oos_page->id = i;
2638                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2639         }
2640
2641         gvt_dbg_mm("%d oos pages preallocated\n", i);
2642
2643         return 0;
2644 fail:
2645         clean_spt_oos(gvt);
2646         return ret;
2647 }
2648
2649 /**
2650  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2651  * @vgpu: a vGPU
2652  * @pdps: pdp root array
2653  *
2654  * This function is used to find a PPGTT mm object from mm object pool
2655  *
2656  * Returns:
2657  * pointer to mm object on success, NULL if failed.
2658  */
2659 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2660                 u64 pdps[])
2661 {
2662         struct intel_vgpu_mm *mm;
2663         struct list_head *pos;
2664
2665         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2666                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2667
2668                 switch (mm->ppgtt_mm.root_entry_type) {
2669                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2670                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2671                                 return mm;
2672                         break;
2673                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2674                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2675                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2676                                 return mm;
2677                         break;
2678                 default:
2679                         GEM_BUG_ON(1);
2680                 }
2681         }
2682         return NULL;
2683 }
2684
2685 /**
2686  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2687  * @vgpu: a vGPU
2688  * @root_entry_type: ppgtt root entry type
2689  * @pdps: guest pdps
2690  *
2691  * This function is used to find or create a PPGTT mm object from a guest.
2692  *
2693  * Returns:
2694  * Zero on success, negative error code if failed.
2695  */
2696 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2697                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2698 {
2699         struct intel_vgpu_mm *mm;
2700
2701         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2702         if (mm) {
2703                 intel_vgpu_mm_get(mm);
2704         } else {
2705                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2706                 if (IS_ERR(mm))
2707                         gvt_vgpu_err("fail to create mm\n");
2708         }
2709         return mm;
2710 }
2711
2712 /**
2713  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2714  * @vgpu: a vGPU
2715  * @pdps: guest pdps
2716  *
2717  * This function is used to find a PPGTT mm object from a guest and destroy it.
2718  *
2719  * Returns:
2720  * Zero on success, negative error code if failed.
2721  */
2722 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2723 {
2724         struct intel_vgpu_mm *mm;
2725
2726         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2727         if (!mm) {
2728                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2729                 return -EINVAL;
2730         }
2731         intel_vgpu_mm_put(mm);
2732         return 0;
2733 }
2734
2735 /**
2736  * intel_gvt_init_gtt - initialize mm components of a GVT device
2737  * @gvt: GVT device
2738  *
2739  * This function is called at the initialization stage, to initialize
2740  * the mm components of a GVT device.
2741  *
2742  * Returns:
2743  * zero on success, negative error code if failed.
2744  */
2745 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2746 {
2747         int ret;
2748         void *page;
2749         struct device *dev = gvt->gt->i915->drm.dev;
2750         dma_addr_t daddr;
2751
2752         gvt_dbg_core("init gtt\n");
2753
2754         gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2755         gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2756
2757         page = (void *)get_zeroed_page(GFP_KERNEL);
2758         if (!page) {
2759                 gvt_err("fail to allocate scratch ggtt page\n");
2760                 return -ENOMEM;
2761         }
2762
2763         daddr = dma_map_page(dev, virt_to_page(page), 0,
2764                         4096, DMA_BIDIRECTIONAL);
2765         if (dma_mapping_error(dev, daddr)) {
2766                 gvt_err("fail to dmamap scratch ggtt page\n");
2767                 __free_page(virt_to_page(page));
2768                 return -ENOMEM;
2769         }
2770
2771         gvt->gtt.scratch_page = virt_to_page(page);
2772         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2773
2774         if (enable_out_of_sync) {
2775                 ret = setup_spt_oos(gvt);
2776                 if (ret) {
2777                         gvt_err("fail to initialize SPT oos\n");
2778                         dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2779                         __free_page(gvt->gtt.scratch_page);
2780                         return ret;
2781                 }
2782         }
2783         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2784         mutex_init(&gvt->gtt.ppgtt_mm_lock);
2785         return 0;
2786 }
2787
2788 /**
2789  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2790  * @gvt: GVT device
2791  *
2792  * This function is called at the driver unloading stage, to clean up
2793  * the mm components of a GVT device.
2794  *
2795  */
2796 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2797 {
2798         struct device *dev = gvt->gt->i915->drm.dev;
2799         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2800                                         I915_GTT_PAGE_SHIFT);
2801
2802         dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2803
2804         __free_page(gvt->gtt.scratch_page);
2805
2806         if (enable_out_of_sync)
2807                 clean_spt_oos(gvt);
2808 }
2809
2810 /**
2811  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2812  * @vgpu: a vGPU
2813  *
2814  * This function is called when invalidate all PPGTT instances of a vGPU.
2815  *
2816  */
2817 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2818 {
2819         struct list_head *pos, *n;
2820         struct intel_vgpu_mm *mm;
2821
2822         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2823                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2824                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2825                         mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2826                         list_del_init(&mm->ppgtt_mm.lru_list);
2827                         mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2828                         if (mm->ppgtt_mm.shadowed)
2829                                 invalidate_ppgtt_mm(mm);
2830                 }
2831         }
2832 }
2833
2834 /**
2835  * intel_vgpu_reset_ggtt - reset the GGTT entry
2836  * @vgpu: a vGPU
2837  * @invalidate_old: invalidate old entries
2838  *
2839  * This function is called at the vGPU create stage
2840  * to reset all the GGTT entries.
2841  *
2842  */
2843 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2844 {
2845         struct intel_gvt *gvt = vgpu->gvt;
2846         const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2847         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2848         struct intel_gvt_gtt_entry old_entry;
2849         u32 index;
2850         u32 num_entries;
2851
2852         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2853         pte_ops->set_present(&entry);
2854
2855         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2856         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2857         while (num_entries--) {
2858                 if (invalidate_old) {
2859                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2860                         ggtt_invalidate_pte(vgpu, &old_entry);
2861                 }
2862                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2863         }
2864
2865         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2866         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2867         while (num_entries--) {
2868                 if (invalidate_old) {
2869                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2870                         ggtt_invalidate_pte(vgpu, &old_entry);
2871                 }
2872                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2873         }
2874
2875         ggtt_invalidate(gvt->gt);
2876 }
2877
2878 /**
2879  * intel_vgpu_reset_gtt - reset the all GTT related status
2880  * @vgpu: a vGPU
2881  *
2882  * This function is called from vfio core to reset reset all
2883  * GTT related status, including GGTT, PPGTT, scratch page.
2884  *
2885  */
2886 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2887 {
2888         /* Shadow pages are only created when there is no page
2889          * table tracking data, so remove page tracking data after
2890          * removing the shadow pages.
2891          */
2892         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2893         intel_vgpu_reset_ggtt(vgpu, true);
2894 }
2895
2896 /**
2897  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2898  * @gvt: intel gvt device
2899  *
2900  * This function is called at driver resume stage to restore
2901  * GGTT entries of every vGPU.
2902  *
2903  */
2904 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2905 {
2906         struct intel_vgpu *vgpu;
2907         struct intel_vgpu_mm *mm;
2908         int id;
2909         gen8_pte_t pte;
2910         u32 idx, num_low, num_hi, offset;
2911
2912         /* Restore dirty host ggtt for all vGPUs */
2913         idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2914                 mm = vgpu->gtt.ggtt_mm;
2915
2916                 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2917                 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2918                 for (idx = 0; idx < num_low; idx++) {
2919                         pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2920                         if (pte & GEN8_PAGE_PRESENT)
2921                                 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2922                 }
2923
2924                 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2925                 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2926                 for (idx = 0; idx < num_hi; idx++) {
2927                         pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2928                         if (pte & GEN8_PAGE_PRESENT)
2929                                 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2930                 }
2931         }
2932 }