OSDN Git Service

drm/i915: Drop assertion that active->fence is unchanged
[tomoyo/tomoyo-test1.git] / drivers / gpu / drm / i915 / i915_active.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6
7 #include <linux/debugobjects.h>
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_ring.h"
12
13 #include "i915_drv.h"
14 #include "i915_active.h"
15 #include "i915_globals.h"
16
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct i915_global_active {
25         struct i915_global base;
26         struct kmem_cache *slab_cache;
27 } global;
28
29 struct active_node {
30         struct i915_active_fence base;
31         struct i915_active *ref;
32         struct rb_node node;
33         u64 timeline;
34 };
35
36 static inline struct active_node *
37 node_from_active(struct i915_active_fence *active)
38 {
39         return container_of(active, struct active_node, base);
40 }
41
42 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
43
44 static inline bool is_barrier(const struct i915_active_fence *active)
45 {
46         return IS_ERR(rcu_access_pointer(active->fence));
47 }
48
49 static inline struct llist_node *barrier_to_ll(struct active_node *node)
50 {
51         GEM_BUG_ON(!is_barrier(&node->base));
52         return (struct llist_node *)&node->base.cb.node;
53 }
54
55 static inline struct intel_engine_cs *
56 __barrier_to_engine(struct active_node *node)
57 {
58         return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
59 }
60
61 static inline struct intel_engine_cs *
62 barrier_to_engine(struct active_node *node)
63 {
64         GEM_BUG_ON(!is_barrier(&node->base));
65         return __barrier_to_engine(node);
66 }
67
68 static inline struct active_node *barrier_from_ll(struct llist_node *x)
69 {
70         return container_of((struct list_head *)x,
71                             struct active_node, base.cb.node);
72 }
73
74 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
75
76 static void *active_debug_hint(void *addr)
77 {
78         struct i915_active *ref = addr;
79
80         return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
81 }
82
83 static struct debug_obj_descr active_debug_desc = {
84         .name = "i915_active",
85         .debug_hint = active_debug_hint,
86 };
87
88 static void debug_active_init(struct i915_active *ref)
89 {
90         debug_object_init(ref, &active_debug_desc);
91 }
92
93 static void debug_active_activate(struct i915_active *ref)
94 {
95         lockdep_assert_held(&ref->tree_lock);
96         if (!atomic_read(&ref->count)) /* before the first inc */
97                 debug_object_activate(ref, &active_debug_desc);
98 }
99
100 static void debug_active_deactivate(struct i915_active *ref)
101 {
102         lockdep_assert_held(&ref->tree_lock);
103         if (!atomic_read(&ref->count)) /* after the last dec */
104                 debug_object_deactivate(ref, &active_debug_desc);
105 }
106
107 static void debug_active_fini(struct i915_active *ref)
108 {
109         debug_object_free(ref, &active_debug_desc);
110 }
111
112 static void debug_active_assert(struct i915_active *ref)
113 {
114         debug_object_assert_init(ref, &active_debug_desc);
115 }
116
117 #else
118
119 static inline void debug_active_init(struct i915_active *ref) { }
120 static inline void debug_active_activate(struct i915_active *ref) { }
121 static inline void debug_active_deactivate(struct i915_active *ref) { }
122 static inline void debug_active_fini(struct i915_active *ref) { }
123 static inline void debug_active_assert(struct i915_active *ref) { }
124
125 #endif
126
127 static void
128 __active_retire(struct i915_active *ref)
129 {
130         struct active_node *it, *n;
131         struct rb_root root;
132         unsigned long flags;
133
134         GEM_BUG_ON(i915_active_is_idle(ref));
135
136         /* return the unused nodes to our slabcache -- flushing the allocator */
137         if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
138                 return;
139
140         GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
141         debug_active_deactivate(ref);
142
143         root = ref->tree;
144         ref->tree = RB_ROOT;
145         ref->cache = NULL;
146
147         spin_unlock_irqrestore(&ref->tree_lock, flags);
148
149         /* After the final retire, the entire struct may be freed */
150         if (ref->retire)
151                 ref->retire(ref);
152
153         /* ... except if you wait on it, you must manage your own references! */
154         wake_up_var(ref);
155
156         rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
157                 GEM_BUG_ON(i915_active_fence_isset(&it->base));
158                 kmem_cache_free(global.slab_cache, it);
159         }
160 }
161
162 static void
163 active_work(struct work_struct *wrk)
164 {
165         struct i915_active *ref = container_of(wrk, typeof(*ref), work);
166
167         GEM_BUG_ON(!atomic_read(&ref->count));
168         if (atomic_add_unless(&ref->count, -1, 1))
169                 return;
170
171         __active_retire(ref);
172 }
173
174 static void
175 active_retire(struct i915_active *ref)
176 {
177         GEM_BUG_ON(!atomic_read(&ref->count));
178         if (atomic_add_unless(&ref->count, -1, 1))
179                 return;
180
181         if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
182                 queue_work(system_unbound_wq, &ref->work);
183                 return;
184         }
185
186         __active_retire(ref);
187 }
188
189 static inline struct dma_fence **
190 __active_fence_slot(struct i915_active_fence *active)
191 {
192         return (struct dma_fence ** __force)&active->fence;
193 }
194
195 static inline bool
196 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
197 {
198         struct i915_active_fence *active =
199                 container_of(cb, typeof(*active), cb);
200
201         return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
202 }
203
204 static void
205 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
206 {
207         if (active_fence_cb(fence, cb))
208                 active_retire(container_of(cb, struct active_node, base.cb)->ref);
209 }
210
211 static void
212 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
213 {
214         if (active_fence_cb(fence, cb))
215                 active_retire(container_of(cb, struct i915_active, excl.cb));
216 }
217
218 static struct i915_active_fence *
219 active_instance(struct i915_active *ref, struct intel_timeline *tl)
220 {
221         struct active_node *node, *prealloc;
222         struct rb_node **p, *parent;
223         u64 idx = tl->fence_context;
224
225         /*
226          * We track the most recently used timeline to skip a rbtree search
227          * for the common case, under typical loads we never need the rbtree
228          * at all. We can reuse the last slot if it is empty, that is
229          * after the previous activity has been retired, or if it matches the
230          * current timeline.
231          */
232         node = READ_ONCE(ref->cache);
233         if (node && node->timeline == idx)
234                 return &node->base;
235
236         /* Preallocate a replacement, just in case */
237         prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
238         if (!prealloc)
239                 return NULL;
240
241         spin_lock_irq(&ref->tree_lock);
242         GEM_BUG_ON(i915_active_is_idle(ref));
243
244         parent = NULL;
245         p = &ref->tree.rb_node;
246         while (*p) {
247                 parent = *p;
248
249                 node = rb_entry(parent, struct active_node, node);
250                 if (node->timeline == idx) {
251                         kmem_cache_free(global.slab_cache, prealloc);
252                         goto out;
253                 }
254
255                 if (node->timeline < idx)
256                         p = &parent->rb_right;
257                 else
258                         p = &parent->rb_left;
259         }
260
261         node = prealloc;
262         __i915_active_fence_init(&node->base, NULL, node_retire);
263         node->ref = ref;
264         node->timeline = idx;
265
266         rb_link_node(&node->node, parent, p);
267         rb_insert_color(&node->node, &ref->tree);
268
269 out:
270         ref->cache = node;
271         spin_unlock_irq(&ref->tree_lock);
272
273         BUILD_BUG_ON(offsetof(typeof(*node), base));
274         return &node->base;
275 }
276
277 void __i915_active_init(struct i915_active *ref,
278                         int (*active)(struct i915_active *ref),
279                         void (*retire)(struct i915_active *ref),
280                         struct lock_class_key *mkey,
281                         struct lock_class_key *wkey)
282 {
283         unsigned long bits;
284
285         debug_active_init(ref);
286
287         ref->flags = 0;
288         ref->active = active;
289         ref->retire = ptr_unpack_bits(retire, &bits, 2);
290         if (bits & I915_ACTIVE_MAY_SLEEP)
291                 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
292
293         spin_lock_init(&ref->tree_lock);
294         ref->tree = RB_ROOT;
295         ref->cache = NULL;
296
297         init_llist_head(&ref->preallocated_barriers);
298         atomic_set(&ref->count, 0);
299         __mutex_init(&ref->mutex, "i915_active", mkey);
300         __i915_active_fence_init(&ref->excl, NULL, excl_retire);
301         INIT_WORK(&ref->work, active_work);
302 #if IS_ENABLED(CONFIG_LOCKDEP)
303         lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
304 #endif
305 }
306
307 static bool ____active_del_barrier(struct i915_active *ref,
308                                    struct active_node *node,
309                                    struct intel_engine_cs *engine)
310
311 {
312         struct llist_node *head = NULL, *tail = NULL;
313         struct llist_node *pos, *next;
314
315         GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
316
317         /*
318          * Rebuild the llist excluding our node. We may perform this
319          * outside of the kernel_context timeline mutex and so someone
320          * else may be manipulating the engine->barrier_tasks, in
321          * which case either we or they will be upset :)
322          *
323          * A second __active_del_barrier() will report failure to claim
324          * the active_node and the caller will just shrug and know not to
325          * claim ownership of its node.
326          *
327          * A concurrent i915_request_add_active_barriers() will miss adding
328          * any of the tasks, but we will try again on the next -- and since
329          * we are actively using the barrier, we know that there will be
330          * at least another opportunity when we idle.
331          */
332         llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
333                 if (node == barrier_from_ll(pos)) {
334                         node = NULL;
335                         continue;
336                 }
337
338                 pos->next = head;
339                 head = pos;
340                 if (!tail)
341                         tail = pos;
342         }
343         if (head)
344                 llist_add_batch(head, tail, &engine->barrier_tasks);
345
346         return !node;
347 }
348
349 static bool
350 __active_del_barrier(struct i915_active *ref, struct active_node *node)
351 {
352         return ____active_del_barrier(ref, node, barrier_to_engine(node));
353 }
354
355 int i915_active_ref(struct i915_active *ref,
356                     struct intel_timeline *tl,
357                     struct dma_fence *fence)
358 {
359         struct i915_active_fence *active;
360         int err;
361
362         lockdep_assert_held(&tl->mutex);
363
364         /* Prevent reaping in case we malloc/wait while building the tree */
365         err = i915_active_acquire(ref);
366         if (err)
367                 return err;
368
369         active = active_instance(ref, tl);
370         if (!active) {
371                 err = -ENOMEM;
372                 goto out;
373         }
374
375         if (is_barrier(active)) { /* proto-node used by our idle barrier */
376                 /*
377                  * This request is on the kernel_context timeline, and so
378                  * we can use it to substitute for the pending idle-barrer
379                  * request that we want to emit on the kernel_context.
380                  */
381                 __active_del_barrier(ref, node_from_active(active));
382                 RCU_INIT_POINTER(active->fence, NULL);
383                 atomic_dec(&ref->count);
384         }
385         if (!__i915_active_fence_set(active, fence))
386                 atomic_inc(&ref->count);
387
388 out:
389         i915_active_release(ref);
390         return err;
391 }
392
393 struct dma_fence *
394 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
395 {
396         struct dma_fence *prev;
397
398         /* We expect the caller to manage the exclusive timeline ordering */
399         GEM_BUG_ON(i915_active_is_idle(ref));
400
401         rcu_read_lock();
402         prev = __i915_active_fence_set(&ref->excl, f);
403         if (prev)
404                 prev = dma_fence_get_rcu(prev);
405         else
406                 atomic_inc(&ref->count);
407         rcu_read_unlock();
408
409         return prev;
410 }
411
412 bool i915_active_acquire_if_busy(struct i915_active *ref)
413 {
414         debug_active_assert(ref);
415         return atomic_add_unless(&ref->count, 1, 0);
416 }
417
418 int i915_active_acquire(struct i915_active *ref)
419 {
420         int err;
421
422         if (i915_active_acquire_if_busy(ref))
423                 return 0;
424
425         err = mutex_lock_interruptible(&ref->mutex);
426         if (err)
427                 return err;
428
429         if (likely(!i915_active_acquire_if_busy(ref))) {
430                 if (ref->active)
431                         err = ref->active(ref);
432                 if (!err) {
433                         spin_lock_irq(&ref->tree_lock); /* __active_retire() */
434                         debug_active_activate(ref);
435                         atomic_inc(&ref->count);
436                         spin_unlock_irq(&ref->tree_lock);
437                 }
438         }
439
440         mutex_unlock(&ref->mutex);
441
442         return err;
443 }
444
445 void i915_active_release(struct i915_active *ref)
446 {
447         debug_active_assert(ref);
448         active_retire(ref);
449 }
450
451 static void enable_signaling(struct i915_active_fence *active)
452 {
453         struct dma_fence *fence;
454
455         fence = i915_active_fence_get(active);
456         if (!fence)
457                 return;
458
459         dma_fence_enable_sw_signaling(fence);
460         dma_fence_put(fence);
461 }
462
463 int i915_active_wait(struct i915_active *ref)
464 {
465         struct active_node *it, *n;
466         int err = 0;
467
468         might_sleep();
469
470         if (!i915_active_acquire_if_busy(ref))
471                 return 0;
472
473         /* Flush lazy signals */
474         enable_signaling(&ref->excl);
475         rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
476                 if (is_barrier(&it->base)) /* unconnected idle barrier */
477                         continue;
478
479                 enable_signaling(&it->base);
480         }
481         /* Any fence added after the wait begins will not be auto-signaled */
482
483         i915_active_release(ref);
484         if (err)
485                 return err;
486
487         if (wait_var_event_interruptible(ref, i915_active_is_idle(ref)))
488                 return -EINTR;
489
490         flush_work(&ref->work);
491         return 0;
492 }
493
494 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
495 {
496         int err = 0;
497
498         if (rcu_access_pointer(ref->excl.fence)) {
499                 struct dma_fence *fence;
500
501                 rcu_read_lock();
502                 fence = dma_fence_get_rcu_safe(&ref->excl.fence);
503                 rcu_read_unlock();
504                 if (fence) {
505                         err = i915_request_await_dma_fence(rq, fence);
506                         dma_fence_put(fence);
507                 }
508         }
509
510         /* In the future we may choose to await on all fences */
511
512         return err;
513 }
514
515 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
516 void i915_active_fini(struct i915_active *ref)
517 {
518         debug_active_fini(ref);
519         GEM_BUG_ON(atomic_read(&ref->count));
520         GEM_BUG_ON(work_pending(&ref->work));
521         GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
522         mutex_destroy(&ref->mutex);
523 }
524 #endif
525
526 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
527 {
528         return node->timeline == idx && !i915_active_fence_isset(&node->base);
529 }
530
531 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
532 {
533         struct rb_node *prev, *p;
534
535         if (RB_EMPTY_ROOT(&ref->tree))
536                 return NULL;
537
538         spin_lock_irq(&ref->tree_lock);
539         GEM_BUG_ON(i915_active_is_idle(ref));
540
541         /*
542          * Try to reuse any existing barrier nodes already allocated for this
543          * i915_active, due to overlapping active phases there is likely a
544          * node kept alive (as we reuse before parking). We prefer to reuse
545          * completely idle barriers (less hassle in manipulating the llists),
546          * but otherwise any will do.
547          */
548         if (ref->cache && is_idle_barrier(ref->cache, idx)) {
549                 p = &ref->cache->node;
550                 goto match;
551         }
552
553         prev = NULL;
554         p = ref->tree.rb_node;
555         while (p) {
556                 struct active_node *node =
557                         rb_entry(p, struct active_node, node);
558
559                 if (is_idle_barrier(node, idx))
560                         goto match;
561
562                 prev = p;
563                 if (node->timeline < idx)
564                         p = p->rb_right;
565                 else
566                         p = p->rb_left;
567         }
568
569         /*
570          * No quick match, but we did find the leftmost rb_node for the
571          * kernel_context. Walk the rb_tree in-order to see if there were
572          * any idle-barriers on this timeline that we missed, or just use
573          * the first pending barrier.
574          */
575         for (p = prev; p; p = rb_next(p)) {
576                 struct active_node *node =
577                         rb_entry(p, struct active_node, node);
578                 struct intel_engine_cs *engine;
579
580                 if (node->timeline > idx)
581                         break;
582
583                 if (node->timeline < idx)
584                         continue;
585
586                 if (is_idle_barrier(node, idx))
587                         goto match;
588
589                 /*
590                  * The list of pending barriers is protected by the
591                  * kernel_context timeline, which notably we do not hold
592                  * here. i915_request_add_active_barriers() may consume
593                  * the barrier before we claim it, so we have to check
594                  * for success.
595                  */
596                 engine = __barrier_to_engine(node);
597                 smp_rmb(); /* serialise with add_active_barriers */
598                 if (is_barrier(&node->base) &&
599                     ____active_del_barrier(ref, node, engine))
600                         goto match;
601         }
602
603         spin_unlock_irq(&ref->tree_lock);
604
605         return NULL;
606
607 match:
608         rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
609         if (p == &ref->cache->node)
610                 ref->cache = NULL;
611         spin_unlock_irq(&ref->tree_lock);
612
613         return rb_entry(p, struct active_node, node);
614 }
615
616 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
617                                             struct intel_engine_cs *engine)
618 {
619         intel_engine_mask_t tmp, mask = engine->mask;
620         struct llist_node *first = NULL, *last = NULL;
621         struct intel_gt *gt = engine->gt;
622         int err;
623
624         GEM_BUG_ON(i915_active_is_idle(ref));
625
626         /* Wait until the previous preallocation is completed */
627         while (!llist_empty(&ref->preallocated_barriers))
628                 cond_resched();
629
630         /*
631          * Preallocate a node for each physical engine supporting the target
632          * engine (remember virtual engines have more than one sibling).
633          * We can then use the preallocated nodes in
634          * i915_active_acquire_barrier()
635          */
636         GEM_BUG_ON(!mask);
637         for_each_engine_masked(engine, gt, mask, tmp) {
638                 u64 idx = engine->kernel_context->timeline->fence_context;
639                 struct llist_node *prev = first;
640                 struct active_node *node;
641
642                 node = reuse_idle_barrier(ref, idx);
643                 if (!node) {
644                         node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
645                         if (!node) {
646                                 err = ENOMEM;
647                                 goto unwind;
648                         }
649
650                         RCU_INIT_POINTER(node->base.fence, NULL);
651                         node->base.cb.func = node_retire;
652                         node->timeline = idx;
653                         node->ref = ref;
654                 }
655
656                 if (!i915_active_fence_isset(&node->base)) {
657                         /*
658                          * Mark this as being *our* unconnected proto-node.
659                          *
660                          * Since this node is not in any list, and we have
661                          * decoupled it from the rbtree, we can reuse the
662                          * request to indicate this is an idle-barrier node
663                          * and then we can use the rb_node and list pointers
664                          * for our tracking of the pending barrier.
665                          */
666                         RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
667                         node->base.cb.node.prev = (void *)engine;
668                         atomic_inc(&ref->count);
669                 }
670                 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
671
672                 GEM_BUG_ON(barrier_to_engine(node) != engine);
673                 first = barrier_to_ll(node);
674                 first->next = prev;
675                 if (!last)
676                         last = first;
677                 intel_engine_pm_get(engine);
678         }
679
680         GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
681         llist_add_batch(first, last, &ref->preallocated_barriers);
682
683         return 0;
684
685 unwind:
686         while (first) {
687                 struct active_node *node = barrier_from_ll(first);
688
689                 first = first->next;
690
691                 atomic_dec(&ref->count);
692                 intel_engine_pm_put(barrier_to_engine(node));
693
694                 kmem_cache_free(global.slab_cache, node);
695         }
696         return err;
697 }
698
699 void i915_active_acquire_barrier(struct i915_active *ref)
700 {
701         struct llist_node *pos, *next;
702         unsigned long flags;
703
704         GEM_BUG_ON(i915_active_is_idle(ref));
705
706         /*
707          * Transfer the list of preallocated barriers into the
708          * i915_active rbtree, but only as proto-nodes. They will be
709          * populated by i915_request_add_active_barriers() to point to the
710          * request that will eventually release them.
711          */
712         llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
713                 struct active_node *node = barrier_from_ll(pos);
714                 struct intel_engine_cs *engine = barrier_to_engine(node);
715                 struct rb_node **p, *parent;
716
717                 spin_lock_irqsave_nested(&ref->tree_lock, flags,
718                                          SINGLE_DEPTH_NESTING);
719                 parent = NULL;
720                 p = &ref->tree.rb_node;
721                 while (*p) {
722                         struct active_node *it;
723
724                         parent = *p;
725
726                         it = rb_entry(parent, struct active_node, node);
727                         if (it->timeline < node->timeline)
728                                 p = &parent->rb_right;
729                         else
730                                 p = &parent->rb_left;
731                 }
732                 rb_link_node(&node->node, parent, p);
733                 rb_insert_color(&node->node, &ref->tree);
734                 spin_unlock_irqrestore(&ref->tree_lock, flags);
735
736                 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
737                 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
738                 intel_engine_pm_put(engine);
739         }
740 }
741
742 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
743 {
744         return __active_fence_slot(&barrier_from_ll(node)->base);
745 }
746
747 void i915_request_add_active_barriers(struct i915_request *rq)
748 {
749         struct intel_engine_cs *engine = rq->engine;
750         struct llist_node *node, *next;
751         unsigned long flags;
752
753         GEM_BUG_ON(!intel_context_is_barrier(rq->context));
754         GEM_BUG_ON(intel_engine_is_virtual(engine));
755         GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
756
757         node = llist_del_all(&engine->barrier_tasks);
758         if (!node)
759                 return;
760         /*
761          * Attach the list of proto-fences to the in-flight request such
762          * that the parent i915_active will be released when this request
763          * is retired.
764          */
765         spin_lock_irqsave(&rq->lock, flags);
766         llist_for_each_safe(node, next, node) {
767                 /* serialise with reuse_idle_barrier */
768                 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
769                 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
770         }
771         spin_unlock_irqrestore(&rq->lock, flags);
772 }
773
774 /*
775  * __i915_active_fence_set: Update the last active fence along its timeline
776  * @active: the active tracker
777  * @fence: the new fence (under construction)
778  *
779  * Records the new @fence as the last active fence along its timeline in
780  * this active tracker, moving the tracking callbacks from the previous
781  * fence onto this one. Returns the previous fence (if not already completed),
782  * which the caller must ensure is executed before the new fence. To ensure
783  * that the order of fences within the timeline of the i915_active_fence is
784  * understood, it should be locked by the caller.
785  */
786 struct dma_fence *
787 __i915_active_fence_set(struct i915_active_fence *active,
788                         struct dma_fence *fence)
789 {
790         struct dma_fence *prev;
791         unsigned long flags;
792
793         if (fence == rcu_access_pointer(active->fence))
794                 return fence;
795
796         GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
797
798         /*
799          * Consider that we have two threads arriving (A and B), with
800          * C already resident as the active->fence.
801          *
802          * A does the xchg first, and so it sees C or NULL depending
803          * on the timing of the interrupt handler. If it is NULL, the
804          * previous fence must have been signaled and we know that
805          * we are first on the timeline. If it is still present,
806          * we acquire the lock on that fence and serialise with the interrupt
807          * handler, in the process removing it from any future interrupt
808          * callback. A will then wait on C before executing (if present).
809          *
810          * As B is second, it sees A as the previous fence and so waits for
811          * it to complete its transition and takes over the occupancy for
812          * itself -- remembering that it needs to wait on A before executing.
813          *
814          * Note the strong ordering of the timeline also provides consistent
815          * nesting rules for the fence->lock; the inner lock is always the
816          * older lock.
817          */
818         spin_lock_irqsave(fence->lock, flags);
819         prev = xchg(__active_fence_slot(active), fence);
820         if (prev) {
821                 GEM_BUG_ON(prev == fence);
822                 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
823                 __list_del_entry(&active->cb.node);
824                 spin_unlock(prev->lock); /* serialise with prev->cb_list */
825         }
826         list_add_tail(&active->cb.node, &fence->cb_list);
827         spin_unlock_irqrestore(fence->lock, flags);
828
829         return prev;
830 }
831
832 int i915_active_fence_set(struct i915_active_fence *active,
833                           struct i915_request *rq)
834 {
835         struct dma_fence *fence;
836         int err = 0;
837
838         /* Must maintain timeline ordering wrt previous active requests */
839         rcu_read_lock();
840         fence = __i915_active_fence_set(active, &rq->fence);
841         if (fence) /* but the previous fence may not belong to that timeline! */
842                 fence = dma_fence_get_rcu(fence);
843         rcu_read_unlock();
844         if (fence) {
845                 err = i915_request_await_dma_fence(rq, fence);
846                 dma_fence_put(fence);
847         }
848
849         return err;
850 }
851
852 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
853 {
854         active_fence_cb(fence, cb);
855 }
856
857 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
858 #include "selftests/i915_active.c"
859 #endif
860
861 static void i915_global_active_shrink(void)
862 {
863         kmem_cache_shrink(global.slab_cache);
864 }
865
866 static void i915_global_active_exit(void)
867 {
868         kmem_cache_destroy(global.slab_cache);
869 }
870
871 static struct i915_global_active global = { {
872         .shrink = i915_global_active_shrink,
873         .exit = i915_global_active_exit,
874 } };
875
876 int __init i915_global_active_init(void)
877 {
878         global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
879         if (!global.slab_cache)
880                 return -ENOMEM;
881
882         i915_global_register(&global.base);
883         return 0;
884 }