OSDN Git Service

Linux 6.6-rc1
[tomoyo/tomoyo-test1.git] / drivers / gpu / drm / i915 / i915_active.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6
7 #include <linux/debugobjects.h>
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13
14 #include "i915_drv.h"
15 #include "i915_active.h"
16
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct kmem_cache *slab_cache;
25
26 struct active_node {
27         struct rb_node node;
28         struct i915_active_fence base;
29         struct i915_active *ref;
30         u64 timeline;
31 };
32
33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
34
35 static inline struct active_node *
36 node_from_active(struct i915_active_fence *active)
37 {
38         return container_of(active, struct active_node, base);
39 }
40
41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
42
43 static inline bool is_barrier(const struct i915_active_fence *active)
44 {
45         return IS_ERR(rcu_access_pointer(active->fence));
46 }
47
48 static inline struct llist_node *barrier_to_ll(struct active_node *node)
49 {
50         GEM_BUG_ON(!is_barrier(&node->base));
51         return (struct llist_node *)&node->base.cb.node;
52 }
53
54 static inline struct intel_engine_cs *
55 __barrier_to_engine(struct active_node *node)
56 {
57         return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
58 }
59
60 static inline struct intel_engine_cs *
61 barrier_to_engine(struct active_node *node)
62 {
63         GEM_BUG_ON(!is_barrier(&node->base));
64         return __barrier_to_engine(node);
65 }
66
67 static inline struct active_node *barrier_from_ll(struct llist_node *x)
68 {
69         return container_of((struct list_head *)x,
70                             struct active_node, base.cb.node);
71 }
72
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
74
75 static void *active_debug_hint(void *addr)
76 {
77         struct i915_active *ref = addr;
78
79         return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
80 }
81
82 static const struct debug_obj_descr active_debug_desc = {
83         .name = "i915_active",
84         .debug_hint = active_debug_hint,
85 };
86
87 static void debug_active_init(struct i915_active *ref)
88 {
89         debug_object_init(ref, &active_debug_desc);
90 }
91
92 static void debug_active_activate(struct i915_active *ref)
93 {
94         lockdep_assert_held(&ref->tree_lock);
95         debug_object_activate(ref, &active_debug_desc);
96 }
97
98 static void debug_active_deactivate(struct i915_active *ref)
99 {
100         lockdep_assert_held(&ref->tree_lock);
101         if (!atomic_read(&ref->count)) /* after the last dec */
102                 debug_object_deactivate(ref, &active_debug_desc);
103 }
104
105 static void debug_active_fini(struct i915_active *ref)
106 {
107         debug_object_free(ref, &active_debug_desc);
108 }
109
110 static void debug_active_assert(struct i915_active *ref)
111 {
112         debug_object_assert_init(ref, &active_debug_desc);
113 }
114
115 #else
116
117 static inline void debug_active_init(struct i915_active *ref) { }
118 static inline void debug_active_activate(struct i915_active *ref) { }
119 static inline void debug_active_deactivate(struct i915_active *ref) { }
120 static inline void debug_active_fini(struct i915_active *ref) { }
121 static inline void debug_active_assert(struct i915_active *ref) { }
122
123 #endif
124
125 static void
126 __active_retire(struct i915_active *ref)
127 {
128         struct rb_root root = RB_ROOT;
129         struct active_node *it, *n;
130         unsigned long flags;
131
132         GEM_BUG_ON(i915_active_is_idle(ref));
133
134         /* return the unused nodes to our slabcache -- flushing the allocator */
135         if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
136                 return;
137
138         GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
139         debug_active_deactivate(ref);
140
141         /* Even if we have not used the cache, we may still have a barrier */
142         if (!ref->cache)
143                 ref->cache = fetch_node(ref->tree.rb_node);
144
145         /* Keep the MRU cached node for reuse */
146         if (ref->cache) {
147                 /* Discard all other nodes in the tree */
148                 rb_erase(&ref->cache->node, &ref->tree);
149                 root = ref->tree;
150
151                 /* Rebuild the tree with only the cached node */
152                 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
153                 rb_insert_color(&ref->cache->node, &ref->tree);
154                 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
155
156                 /* Make the cached node available for reuse with any timeline */
157                 ref->cache->timeline = 0; /* needs cmpxchg(u64) */
158         }
159
160         spin_unlock_irqrestore(&ref->tree_lock, flags);
161
162         /* After the final retire, the entire struct may be freed */
163         if (ref->retire)
164                 ref->retire(ref);
165
166         /* ... except if you wait on it, you must manage your own references! */
167         wake_up_var(ref);
168
169         /* Finally free the discarded timeline tree  */
170         rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
171                 GEM_BUG_ON(i915_active_fence_isset(&it->base));
172                 kmem_cache_free(slab_cache, it);
173         }
174 }
175
176 static void
177 active_work(struct work_struct *wrk)
178 {
179         struct i915_active *ref = container_of(wrk, typeof(*ref), work);
180
181         GEM_BUG_ON(!atomic_read(&ref->count));
182         if (atomic_add_unless(&ref->count, -1, 1))
183                 return;
184
185         __active_retire(ref);
186 }
187
188 static void
189 active_retire(struct i915_active *ref)
190 {
191         GEM_BUG_ON(!atomic_read(&ref->count));
192         if (atomic_add_unless(&ref->count, -1, 1))
193                 return;
194
195         if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
196                 queue_work(system_unbound_wq, &ref->work);
197                 return;
198         }
199
200         __active_retire(ref);
201 }
202
203 static inline struct dma_fence **
204 __active_fence_slot(struct i915_active_fence *active)
205 {
206         return (struct dma_fence ** __force)&active->fence;
207 }
208
209 static inline bool
210 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
211 {
212         struct i915_active_fence *active =
213                 container_of(cb, typeof(*active), cb);
214
215         return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
216 }
217
218 static void
219 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
220 {
221         if (active_fence_cb(fence, cb))
222                 active_retire(container_of(cb, struct active_node, base.cb)->ref);
223 }
224
225 static void
226 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
227 {
228         if (active_fence_cb(fence, cb))
229                 active_retire(container_of(cb, struct i915_active, excl.cb));
230 }
231
232 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
233 {
234         struct active_node *it;
235
236         GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
237
238         /*
239          * We track the most recently used timeline to skip a rbtree search
240          * for the common case, under typical loads we never need the rbtree
241          * at all. We can reuse the last slot if it is empty, that is
242          * after the previous activity has been retired, or if it matches the
243          * current timeline.
244          */
245         it = READ_ONCE(ref->cache);
246         if (it) {
247                 u64 cached = READ_ONCE(it->timeline);
248
249                 /* Once claimed, this slot will only belong to this idx */
250                 if (cached == idx)
251                         return it;
252
253                 /*
254                  * An unclaimed cache [.timeline=0] can only be claimed once.
255                  *
256                  * If the value is already non-zero, some other thread has
257                  * claimed the cache and we know that is does not match our
258                  * idx. If, and only if, the timeline is currently zero is it
259                  * worth competing to claim it atomically for ourselves (for
260                  * only the winner of that race will cmpxchg return the old
261                  * value of 0).
262                  */
263                 if (!cached && !cmpxchg64(&it->timeline, 0, idx))
264                         return it;
265         }
266
267         BUILD_BUG_ON(offsetof(typeof(*it), node));
268
269         /* While active, the tree can only be built; not destroyed */
270         GEM_BUG_ON(i915_active_is_idle(ref));
271
272         it = fetch_node(ref->tree.rb_node);
273         while (it) {
274                 if (it->timeline < idx) {
275                         it = fetch_node(it->node.rb_right);
276                 } else if (it->timeline > idx) {
277                         it = fetch_node(it->node.rb_left);
278                 } else {
279                         WRITE_ONCE(ref->cache, it);
280                         break;
281                 }
282         }
283
284         /* NB: If the tree rotated beneath us, we may miss our target. */
285         return it;
286 }
287
288 static struct i915_active_fence *
289 active_instance(struct i915_active *ref, u64 idx)
290 {
291         struct active_node *node;
292         struct rb_node **p, *parent;
293
294         node = __active_lookup(ref, idx);
295         if (likely(node))
296                 return &node->base;
297
298         spin_lock_irq(&ref->tree_lock);
299         GEM_BUG_ON(i915_active_is_idle(ref));
300
301         parent = NULL;
302         p = &ref->tree.rb_node;
303         while (*p) {
304                 parent = *p;
305
306                 node = rb_entry(parent, struct active_node, node);
307                 if (node->timeline == idx)
308                         goto out;
309
310                 if (node->timeline < idx)
311                         p = &parent->rb_right;
312                 else
313                         p = &parent->rb_left;
314         }
315
316         /*
317          * XXX: We should preallocate this before i915_active_ref() is ever
318          *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
319          */
320         node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
321         if (!node)
322                 goto out;
323
324         __i915_active_fence_init(&node->base, NULL, node_retire);
325         node->ref = ref;
326         node->timeline = idx;
327
328         rb_link_node(&node->node, parent, p);
329         rb_insert_color(&node->node, &ref->tree);
330
331 out:
332         WRITE_ONCE(ref->cache, node);
333         spin_unlock_irq(&ref->tree_lock);
334
335         return &node->base;
336 }
337
338 void __i915_active_init(struct i915_active *ref,
339                         int (*active)(struct i915_active *ref),
340                         void (*retire)(struct i915_active *ref),
341                         unsigned long flags,
342                         struct lock_class_key *mkey,
343                         struct lock_class_key *wkey)
344 {
345         debug_active_init(ref);
346
347         ref->flags = flags;
348         ref->active = active;
349         ref->retire = retire;
350
351         spin_lock_init(&ref->tree_lock);
352         ref->tree = RB_ROOT;
353         ref->cache = NULL;
354
355         init_llist_head(&ref->preallocated_barriers);
356         atomic_set(&ref->count, 0);
357         __mutex_init(&ref->mutex, "i915_active", mkey);
358         __i915_active_fence_init(&ref->excl, NULL, excl_retire);
359         INIT_WORK(&ref->work, active_work);
360 #if IS_ENABLED(CONFIG_LOCKDEP)
361         lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
362 #endif
363 }
364
365 static bool ____active_del_barrier(struct i915_active *ref,
366                                    struct active_node *node,
367                                    struct intel_engine_cs *engine)
368
369 {
370         struct llist_node *head = NULL, *tail = NULL;
371         struct llist_node *pos, *next;
372
373         GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
374
375         /*
376          * Rebuild the llist excluding our node. We may perform this
377          * outside of the kernel_context timeline mutex and so someone
378          * else may be manipulating the engine->barrier_tasks, in
379          * which case either we or they will be upset :)
380          *
381          * A second __active_del_barrier() will report failure to claim
382          * the active_node and the caller will just shrug and know not to
383          * claim ownership of its node.
384          *
385          * A concurrent i915_request_add_active_barriers() will miss adding
386          * any of the tasks, but we will try again on the next -- and since
387          * we are actively using the barrier, we know that there will be
388          * at least another opportunity when we idle.
389          */
390         llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
391                 if (node == barrier_from_ll(pos)) {
392                         node = NULL;
393                         continue;
394                 }
395
396                 pos->next = head;
397                 head = pos;
398                 if (!tail)
399                         tail = pos;
400         }
401         if (head)
402                 llist_add_batch(head, tail, &engine->barrier_tasks);
403
404         return !node;
405 }
406
407 static bool
408 __active_del_barrier(struct i915_active *ref, struct active_node *node)
409 {
410         return ____active_del_barrier(ref, node, barrier_to_engine(node));
411 }
412
413 static bool
414 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
415 {
416         if (!is_barrier(active)) /* proto-node used by our idle barrier? */
417                 return false;
418
419         /*
420          * This request is on the kernel_context timeline, and so
421          * we can use it to substitute for the pending idle-barrer
422          * request that we want to emit on the kernel_context.
423          */
424         return __active_del_barrier(ref, node_from_active(active));
425 }
426
427 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
428 {
429         u64 idx = i915_request_timeline(rq)->fence_context;
430         struct dma_fence *fence = &rq->fence;
431         struct i915_active_fence *active;
432         int err;
433
434         /* Prevent reaping in case we malloc/wait while building the tree */
435         err = i915_active_acquire(ref);
436         if (err)
437                 return err;
438
439         do {
440                 active = active_instance(ref, idx);
441                 if (!active) {
442                         err = -ENOMEM;
443                         goto out;
444                 }
445
446                 if (replace_barrier(ref, active)) {
447                         RCU_INIT_POINTER(active->fence, NULL);
448                         atomic_dec(&ref->count);
449                 }
450         } while (unlikely(is_barrier(active)));
451
452         fence = __i915_active_fence_set(active, fence);
453         if (!fence)
454                 __i915_active_acquire(ref);
455         else
456                 dma_fence_put(fence);
457
458 out:
459         i915_active_release(ref);
460         return err;
461 }
462
463 static struct dma_fence *
464 __i915_active_set_fence(struct i915_active *ref,
465                         struct i915_active_fence *active,
466                         struct dma_fence *fence)
467 {
468         struct dma_fence *prev;
469
470         if (replace_barrier(ref, active)) {
471                 RCU_INIT_POINTER(active->fence, fence);
472                 return NULL;
473         }
474
475         prev = __i915_active_fence_set(active, fence);
476         if (!prev)
477                 __i915_active_acquire(ref);
478
479         return prev;
480 }
481
482 struct dma_fence *
483 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
484 {
485         /* We expect the caller to manage the exclusive timeline ordering */
486         return __i915_active_set_fence(ref, &ref->excl, f);
487 }
488
489 bool i915_active_acquire_if_busy(struct i915_active *ref)
490 {
491         debug_active_assert(ref);
492         return atomic_add_unless(&ref->count, 1, 0);
493 }
494
495 static void __i915_active_activate(struct i915_active *ref)
496 {
497         spin_lock_irq(&ref->tree_lock); /* __active_retire() */
498         if (!atomic_fetch_inc(&ref->count))
499                 debug_active_activate(ref);
500         spin_unlock_irq(&ref->tree_lock);
501 }
502
503 int i915_active_acquire(struct i915_active *ref)
504 {
505         int err;
506
507         if (i915_active_acquire_if_busy(ref))
508                 return 0;
509
510         if (!ref->active) {
511                 __i915_active_activate(ref);
512                 return 0;
513         }
514
515         err = mutex_lock_interruptible(&ref->mutex);
516         if (err)
517                 return err;
518
519         if (likely(!i915_active_acquire_if_busy(ref))) {
520                 err = ref->active(ref);
521                 if (!err)
522                         __i915_active_activate(ref);
523         }
524
525         mutex_unlock(&ref->mutex);
526
527         return err;
528 }
529
530 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
531 {
532         struct i915_active_fence *active;
533         int err;
534
535         err = i915_active_acquire(ref);
536         if (err)
537                 return err;
538
539         active = active_instance(ref, idx);
540         if (!active) {
541                 i915_active_release(ref);
542                 return -ENOMEM;
543         }
544
545         return 0; /* return with active ref */
546 }
547
548 void i915_active_release(struct i915_active *ref)
549 {
550         debug_active_assert(ref);
551         active_retire(ref);
552 }
553
554 static void enable_signaling(struct i915_active_fence *active)
555 {
556         struct dma_fence *fence;
557
558         if (unlikely(is_barrier(active)))
559                 return;
560
561         fence = i915_active_fence_get(active);
562         if (!fence)
563                 return;
564
565         dma_fence_enable_sw_signaling(fence);
566         dma_fence_put(fence);
567 }
568
569 static int flush_barrier(struct active_node *it)
570 {
571         struct intel_engine_cs *engine;
572
573         if (likely(!is_barrier(&it->base)))
574                 return 0;
575
576         engine = __barrier_to_engine(it);
577         smp_rmb(); /* serialise with add_active_barriers */
578         if (!is_barrier(&it->base))
579                 return 0;
580
581         return intel_engine_flush_barriers(engine);
582 }
583
584 static int flush_lazy_signals(struct i915_active *ref)
585 {
586         struct active_node *it, *n;
587         int err = 0;
588
589         enable_signaling(&ref->excl);
590         rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
591                 err = flush_barrier(it); /* unconnected idle barrier? */
592                 if (err)
593                         break;
594
595                 enable_signaling(&it->base);
596         }
597
598         return err;
599 }
600
601 int __i915_active_wait(struct i915_active *ref, int state)
602 {
603         might_sleep();
604
605         /* Any fence added after the wait begins will not be auto-signaled */
606         if (i915_active_acquire_if_busy(ref)) {
607                 int err;
608
609                 err = flush_lazy_signals(ref);
610                 i915_active_release(ref);
611                 if (err)
612                         return err;
613
614                 if (___wait_var_event(ref, i915_active_is_idle(ref),
615                                       state, 0, 0, schedule()))
616                         return -EINTR;
617         }
618
619         /*
620          * After the wait is complete, the caller may free the active.
621          * We have to flush any concurrent retirement before returning.
622          */
623         flush_work(&ref->work);
624         return 0;
625 }
626
627 static int __await_active(struct i915_active_fence *active,
628                           int (*fn)(void *arg, struct dma_fence *fence),
629                           void *arg)
630 {
631         struct dma_fence *fence;
632
633         if (is_barrier(active)) /* XXX flush the barrier? */
634                 return 0;
635
636         fence = i915_active_fence_get(active);
637         if (fence) {
638                 int err;
639
640                 err = fn(arg, fence);
641                 dma_fence_put(fence);
642                 if (err < 0)
643                         return err;
644         }
645
646         return 0;
647 }
648
649 struct wait_barrier {
650         struct wait_queue_entry base;
651         struct i915_active *ref;
652 };
653
654 static int
655 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
656 {
657         struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
658
659         if (i915_active_is_idle(wb->ref)) {
660                 list_del(&wq->entry);
661                 i915_sw_fence_complete(wq->private);
662                 kfree(wq);
663         }
664
665         return 0;
666 }
667
668 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
669 {
670         struct wait_barrier *wb;
671
672         wb = kmalloc(sizeof(*wb), GFP_KERNEL);
673         if (unlikely(!wb))
674                 return -ENOMEM;
675
676         GEM_BUG_ON(i915_active_is_idle(ref));
677         if (!i915_sw_fence_await(fence)) {
678                 kfree(wb);
679                 return -EINVAL;
680         }
681
682         wb->base.flags = 0;
683         wb->base.func = barrier_wake;
684         wb->base.private = fence;
685         wb->ref = ref;
686
687         add_wait_queue(__var_waitqueue(ref), &wb->base);
688         return 0;
689 }
690
691 static int await_active(struct i915_active *ref,
692                         unsigned int flags,
693                         int (*fn)(void *arg, struct dma_fence *fence),
694                         void *arg, struct i915_sw_fence *barrier)
695 {
696         int err = 0;
697
698         if (!i915_active_acquire_if_busy(ref))
699                 return 0;
700
701         if (flags & I915_ACTIVE_AWAIT_EXCL &&
702             rcu_access_pointer(ref->excl.fence)) {
703                 err = __await_active(&ref->excl, fn, arg);
704                 if (err)
705                         goto out;
706         }
707
708         if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
709                 struct active_node *it, *n;
710
711                 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
712                         err = __await_active(&it->base, fn, arg);
713                         if (err)
714                                 goto out;
715                 }
716         }
717
718         if (flags & I915_ACTIVE_AWAIT_BARRIER) {
719                 err = flush_lazy_signals(ref);
720                 if (err)
721                         goto out;
722
723                 err = __await_barrier(ref, barrier);
724                 if (err)
725                         goto out;
726         }
727
728 out:
729         i915_active_release(ref);
730         return err;
731 }
732
733 static int rq_await_fence(void *arg, struct dma_fence *fence)
734 {
735         return i915_request_await_dma_fence(arg, fence);
736 }
737
738 int i915_request_await_active(struct i915_request *rq,
739                               struct i915_active *ref,
740                               unsigned int flags)
741 {
742         return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
743 }
744
745 static int sw_await_fence(void *arg, struct dma_fence *fence)
746 {
747         return i915_sw_fence_await_dma_fence(arg, fence, 0,
748                                              GFP_NOWAIT | __GFP_NOWARN);
749 }
750
751 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
752                                struct i915_active *ref,
753                                unsigned int flags)
754 {
755         return await_active(ref, flags, sw_await_fence, fence, fence);
756 }
757
758 void i915_active_fini(struct i915_active *ref)
759 {
760         debug_active_fini(ref);
761         GEM_BUG_ON(atomic_read(&ref->count));
762         GEM_BUG_ON(work_pending(&ref->work));
763         mutex_destroy(&ref->mutex);
764
765         if (ref->cache)
766                 kmem_cache_free(slab_cache, ref->cache);
767 }
768
769 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
770 {
771         return node->timeline == idx && !i915_active_fence_isset(&node->base);
772 }
773
774 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
775 {
776         struct rb_node *prev, *p;
777
778         if (RB_EMPTY_ROOT(&ref->tree))
779                 return NULL;
780
781         GEM_BUG_ON(i915_active_is_idle(ref));
782
783         /*
784          * Try to reuse any existing barrier nodes already allocated for this
785          * i915_active, due to overlapping active phases there is likely a
786          * node kept alive (as we reuse before parking). We prefer to reuse
787          * completely idle barriers (less hassle in manipulating the llists),
788          * but otherwise any will do.
789          */
790         if (ref->cache && is_idle_barrier(ref->cache, idx)) {
791                 p = &ref->cache->node;
792                 goto match;
793         }
794
795         prev = NULL;
796         p = ref->tree.rb_node;
797         while (p) {
798                 struct active_node *node =
799                         rb_entry(p, struct active_node, node);
800
801                 if (is_idle_barrier(node, idx))
802                         goto match;
803
804                 prev = p;
805                 if (node->timeline < idx)
806                         p = READ_ONCE(p->rb_right);
807                 else
808                         p = READ_ONCE(p->rb_left);
809         }
810
811         /*
812          * No quick match, but we did find the leftmost rb_node for the
813          * kernel_context. Walk the rb_tree in-order to see if there were
814          * any idle-barriers on this timeline that we missed, or just use
815          * the first pending barrier.
816          */
817         for (p = prev; p; p = rb_next(p)) {
818                 struct active_node *node =
819                         rb_entry(p, struct active_node, node);
820                 struct intel_engine_cs *engine;
821
822                 if (node->timeline > idx)
823                         break;
824
825                 if (node->timeline < idx)
826                         continue;
827
828                 if (is_idle_barrier(node, idx))
829                         goto match;
830
831                 /*
832                  * The list of pending barriers is protected by the
833                  * kernel_context timeline, which notably we do not hold
834                  * here. i915_request_add_active_barriers() may consume
835                  * the barrier before we claim it, so we have to check
836                  * for success.
837                  */
838                 engine = __barrier_to_engine(node);
839                 smp_rmb(); /* serialise with add_active_barriers */
840                 if (is_barrier(&node->base) &&
841                     ____active_del_barrier(ref, node, engine))
842                         goto match;
843         }
844
845         return NULL;
846
847 match:
848         spin_lock_irq(&ref->tree_lock);
849         rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
850         if (p == &ref->cache->node)
851                 WRITE_ONCE(ref->cache, NULL);
852         spin_unlock_irq(&ref->tree_lock);
853
854         return rb_entry(p, struct active_node, node);
855 }
856
857 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
858                                             struct intel_engine_cs *engine)
859 {
860         intel_engine_mask_t tmp, mask = engine->mask;
861         struct llist_node *first = NULL, *last = NULL;
862         struct intel_gt *gt = engine->gt;
863
864         GEM_BUG_ON(i915_active_is_idle(ref));
865
866         /* Wait until the previous preallocation is completed */
867         while (!llist_empty(&ref->preallocated_barriers))
868                 cond_resched();
869
870         /*
871          * Preallocate a node for each physical engine supporting the target
872          * engine (remember virtual engines have more than one sibling).
873          * We can then use the preallocated nodes in
874          * i915_active_acquire_barrier()
875          */
876         GEM_BUG_ON(!mask);
877         for_each_engine_masked(engine, gt, mask, tmp) {
878                 u64 idx = engine->kernel_context->timeline->fence_context;
879                 struct llist_node *prev = first;
880                 struct active_node *node;
881
882                 rcu_read_lock();
883                 node = reuse_idle_barrier(ref, idx);
884                 rcu_read_unlock();
885                 if (!node) {
886                         node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
887                         if (!node)
888                                 goto unwind;
889
890                         RCU_INIT_POINTER(node->base.fence, NULL);
891                         node->base.cb.func = node_retire;
892                         node->timeline = idx;
893                         node->ref = ref;
894                 }
895
896                 if (!i915_active_fence_isset(&node->base)) {
897                         /*
898                          * Mark this as being *our* unconnected proto-node.
899                          *
900                          * Since this node is not in any list, and we have
901                          * decoupled it from the rbtree, we can reuse the
902                          * request to indicate this is an idle-barrier node
903                          * and then we can use the rb_node and list pointers
904                          * for our tracking of the pending barrier.
905                          */
906                         RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
907                         node->base.cb.node.prev = (void *)engine;
908                         __i915_active_acquire(ref);
909                 }
910                 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
911
912                 GEM_BUG_ON(barrier_to_engine(node) != engine);
913                 first = barrier_to_ll(node);
914                 first->next = prev;
915                 if (!last)
916                         last = first;
917                 intel_engine_pm_get(engine);
918         }
919
920         GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
921         llist_add_batch(first, last, &ref->preallocated_barriers);
922
923         return 0;
924
925 unwind:
926         while (first) {
927                 struct active_node *node = barrier_from_ll(first);
928
929                 first = first->next;
930
931                 atomic_dec(&ref->count);
932                 intel_engine_pm_put(barrier_to_engine(node));
933
934                 kmem_cache_free(slab_cache, node);
935         }
936         return -ENOMEM;
937 }
938
939 void i915_active_acquire_barrier(struct i915_active *ref)
940 {
941         struct llist_node *pos, *next;
942         unsigned long flags;
943
944         GEM_BUG_ON(i915_active_is_idle(ref));
945
946         /*
947          * Transfer the list of preallocated barriers into the
948          * i915_active rbtree, but only as proto-nodes. They will be
949          * populated by i915_request_add_active_barriers() to point to the
950          * request that will eventually release them.
951          */
952         llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
953                 struct active_node *node = barrier_from_ll(pos);
954                 struct intel_engine_cs *engine = barrier_to_engine(node);
955                 struct rb_node **p, *parent;
956
957                 spin_lock_irqsave_nested(&ref->tree_lock, flags,
958                                          SINGLE_DEPTH_NESTING);
959                 parent = NULL;
960                 p = &ref->tree.rb_node;
961                 while (*p) {
962                         struct active_node *it;
963
964                         parent = *p;
965
966                         it = rb_entry(parent, struct active_node, node);
967                         if (it->timeline < node->timeline)
968                                 p = &parent->rb_right;
969                         else
970                                 p = &parent->rb_left;
971                 }
972                 rb_link_node(&node->node, parent, p);
973                 rb_insert_color(&node->node, &ref->tree);
974                 spin_unlock_irqrestore(&ref->tree_lock, flags);
975
976                 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
977                 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
978                 intel_engine_pm_put_delay(engine, 2);
979         }
980 }
981
982 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
983 {
984         return __active_fence_slot(&barrier_from_ll(node)->base);
985 }
986
987 void i915_request_add_active_barriers(struct i915_request *rq)
988 {
989         struct intel_engine_cs *engine = rq->engine;
990         struct llist_node *node, *next;
991         unsigned long flags;
992
993         GEM_BUG_ON(!intel_context_is_barrier(rq->context));
994         GEM_BUG_ON(intel_engine_is_virtual(engine));
995         GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
996
997         node = llist_del_all(&engine->barrier_tasks);
998         if (!node)
999                 return;
1000         /*
1001          * Attach the list of proto-fences to the in-flight request such
1002          * that the parent i915_active will be released when this request
1003          * is retired.
1004          */
1005         spin_lock_irqsave(&rq->lock, flags);
1006         llist_for_each_safe(node, next, node) {
1007                 /* serialise with reuse_idle_barrier */
1008                 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1009                 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1010         }
1011         spin_unlock_irqrestore(&rq->lock, flags);
1012 }
1013
1014 /*
1015  * __i915_active_fence_set: Update the last active fence along its timeline
1016  * @active: the active tracker
1017  * @fence: the new fence (under construction)
1018  *
1019  * Records the new @fence as the last active fence along its timeline in
1020  * this active tracker, moving the tracking callbacks from the previous
1021  * fence onto this one. Gets and returns a reference to the previous fence
1022  * (if not already completed), which the caller must put after making sure
1023  * that it is executed before the new fence. To ensure that the order of
1024  * fences within the timeline of the i915_active_fence is understood, it
1025  * should be locked by the caller.
1026  */
1027 struct dma_fence *
1028 __i915_active_fence_set(struct i915_active_fence *active,
1029                         struct dma_fence *fence)
1030 {
1031         struct dma_fence *prev;
1032         unsigned long flags;
1033
1034         /*
1035          * In case of fences embedded in i915_requests, their memory is
1036          * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
1037          * by new requests.  Then, there is a risk of passing back a pointer
1038          * to a new, completely unrelated fence that reuses the same memory
1039          * while tracked under a different active tracker.  Combined with i915
1040          * perf open/close operations that build await dependencies between
1041          * engine kernel context requests and user requests from different
1042          * timelines, this can lead to dependency loops and infinite waits.
1043          *
1044          * As a countermeasure, we try to get a reference to the active->fence
1045          * first, so if we succeed and pass it back to our user then it is not
1046          * released and potentially reused by an unrelated request before the
1047          * user has a chance to set up an await dependency on it.
1048          */
1049         prev = i915_active_fence_get(active);
1050         if (fence == prev)
1051                 return fence;
1052
1053         GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1054
1055         /*
1056          * Consider that we have two threads arriving (A and B), with
1057          * C already resident as the active->fence.
1058          *
1059          * Both A and B have got a reference to C or NULL, depending on the
1060          * timing of the interrupt handler.  Let's assume that if A has got C
1061          * then it has locked C first (before B).
1062          *
1063          * Note the strong ordering of the timeline also provides consistent
1064          * nesting rules for the fence->lock; the inner lock is always the
1065          * older lock.
1066          */
1067         spin_lock_irqsave(fence->lock, flags);
1068         if (prev)
1069                 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1070
1071         /*
1072          * A does the cmpxchg first, and so it sees C or NULL, as before, or
1073          * something else, depending on the timing of other threads and/or
1074          * interrupt handler.  If not the same as before then A unlocks C if
1075          * applicable and retries, starting from an attempt to get a new
1076          * active->fence.  Meanwhile, B follows the same path as A.
1077          * Once A succeeds with cmpxch, B fails again, retires, gets A from
1078          * active->fence, locks it as soon as A completes, and possibly
1079          * succeeds with cmpxchg.
1080          */
1081         while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
1082                 if (prev) {
1083                         spin_unlock(prev->lock);
1084                         dma_fence_put(prev);
1085                 }
1086                 spin_unlock_irqrestore(fence->lock, flags);
1087
1088                 prev = i915_active_fence_get(active);
1089                 GEM_BUG_ON(prev == fence);
1090
1091                 spin_lock_irqsave(fence->lock, flags);
1092                 if (prev)
1093                         spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1094         }
1095
1096         /*
1097          * If prev is NULL then the previous fence must have been signaled
1098          * and we know that we are first on the timeline.  If it is still
1099          * present then, having the lock on that fence already acquired, we
1100          * serialise with the interrupt handler, in the process of removing it
1101          * from any future interrupt callback.  A will then wait on C before
1102          * executing (if present).
1103          *
1104          * As B is second, it sees A as the previous fence and so waits for
1105          * it to complete its transition and takes over the occupancy for
1106          * itself -- remembering that it needs to wait on A before executing.
1107          */
1108         if (prev) {
1109                 __list_del_entry(&active->cb.node);
1110                 spin_unlock(prev->lock); /* serialise with prev->cb_list */
1111         }
1112         list_add_tail(&active->cb.node, &fence->cb_list);
1113         spin_unlock_irqrestore(fence->lock, flags);
1114
1115         return prev;
1116 }
1117
1118 int i915_active_fence_set(struct i915_active_fence *active,
1119                           struct i915_request *rq)
1120 {
1121         struct dma_fence *fence;
1122         int err = 0;
1123
1124         /* Must maintain timeline ordering wrt previous active requests */
1125         fence = __i915_active_fence_set(active, &rq->fence);
1126         if (fence) {
1127                 err = i915_request_await_dma_fence(rq, fence);
1128                 dma_fence_put(fence);
1129         }
1130
1131         return err;
1132 }
1133
1134 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1135 {
1136         active_fence_cb(fence, cb);
1137 }
1138
1139 struct auto_active {
1140         struct i915_active base;
1141         struct kref ref;
1142 };
1143
1144 struct i915_active *i915_active_get(struct i915_active *ref)
1145 {
1146         struct auto_active *aa = container_of(ref, typeof(*aa), base);
1147
1148         kref_get(&aa->ref);
1149         return &aa->base;
1150 }
1151
1152 static void auto_release(struct kref *ref)
1153 {
1154         struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1155
1156         i915_active_fini(&aa->base);
1157         kfree(aa);
1158 }
1159
1160 void i915_active_put(struct i915_active *ref)
1161 {
1162         struct auto_active *aa = container_of(ref, typeof(*aa), base);
1163
1164         kref_put(&aa->ref, auto_release);
1165 }
1166
1167 static int auto_active(struct i915_active *ref)
1168 {
1169         i915_active_get(ref);
1170         return 0;
1171 }
1172
1173 static void auto_retire(struct i915_active *ref)
1174 {
1175         i915_active_put(ref);
1176 }
1177
1178 struct i915_active *i915_active_create(void)
1179 {
1180         struct auto_active *aa;
1181
1182         aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1183         if (!aa)
1184                 return NULL;
1185
1186         kref_init(&aa->ref);
1187         i915_active_init(&aa->base, auto_active, auto_retire, 0);
1188
1189         return &aa->base;
1190 }
1191
1192 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1193 #include "selftests/i915_active.c"
1194 #endif
1195
1196 void i915_active_module_exit(void)
1197 {
1198         kmem_cache_destroy(slab_cache);
1199 }
1200
1201 int __init i915_active_module_init(void)
1202 {
1203         slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1204         if (!slab_cache)
1205                 return -ENOMEM;
1206
1207         return 0;
1208 }