OSDN Git Service

Merge tag 'v3.16-rc4' into drm-intel-next-queued
[android-x86/kernel.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link)
145                 if (vma->pin_count > 0)
146                         pin_count++;
147                 seq_printf(m, " (pinned x %d)", pin_count);
148         if (obj->pin_display)
149                 seq_printf(m, " (display)");
150         if (obj->fence_reg != I915_FENCE_REG_NONE)
151                 seq_printf(m, " (fence: %d)", obj->fence_reg);
152         list_for_each_entry(vma, &obj->vma_list, vma_link) {
153                 if (!i915_is_ggtt(vma->vm))
154                         seq_puts(m, " (pp");
155                 else
156                         seq_puts(m, " (g");
157                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158                            vma->node.start, vma->node.size);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->ring != NULL)
172                 seq_printf(m, " (%s)", obj->ring->name);
173         if (obj->frontbuffer_bits)
174                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179         seq_putc(m, ctx->is_initialized ? 'I' : 'i');
180         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181         seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186         struct drm_info_node *node = m->private;
187         uintptr_t list = (uintptr_t) node->info_ent->data;
188         struct list_head *head;
189         struct drm_device *dev = node->minor->dev;
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         struct i915_address_space *vm = &dev_priv->gtt.base;
192         struct i915_vma *vma;
193         size_t total_obj_size, total_gtt_size;
194         int count, ret;
195
196         ret = mutex_lock_interruptible(&dev->struct_mutex);
197         if (ret)
198                 return ret;
199
200         /* FIXME: the user of this interface might want more than just GGTT */
201         switch (list) {
202         case ACTIVE_LIST:
203                 seq_puts(m, "Active:\n");
204                 head = &vm->active_list;
205                 break;
206         case INACTIVE_LIST:
207                 seq_puts(m, "Inactive:\n");
208                 head = &vm->inactive_list;
209                 break;
210         default:
211                 mutex_unlock(&dev->struct_mutex);
212                 return -EINVAL;
213         }
214
215         total_obj_size = total_gtt_size = count = 0;
216         list_for_each_entry(vma, head, mm_list) {
217                 seq_printf(m, "   ");
218                 describe_obj(m, vma->obj);
219                 seq_printf(m, "\n");
220                 total_obj_size += vma->obj->base.size;
221                 total_gtt_size += vma->node.size;
222                 count++;
223         }
224         mutex_unlock(&dev->struct_mutex);
225
226         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227                    count, total_obj_size, total_gtt_size);
228         return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232                               struct list_head *A, struct list_head *B)
233 {
234         struct drm_i915_gem_object *a =
235                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236         struct drm_i915_gem_object *b =
237                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239         return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244         struct drm_info_node *node = m->private;
245         struct drm_device *dev = node->minor->dev;
246         struct drm_i915_private *dev_priv = dev->dev_private;
247         struct drm_i915_gem_object *obj;
248         size_t total_obj_size, total_gtt_size;
249         LIST_HEAD(stolen);
250         int count, ret;
251
252         ret = mutex_lock_interruptible(&dev->struct_mutex);
253         if (ret)
254                 return ret;
255
256         total_obj_size = total_gtt_size = count = 0;
257         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258                 if (obj->stolen == NULL)
259                         continue;
260
261                 list_add(&obj->obj_exec_link, &stolen);
262
263                 total_obj_size += obj->base.size;
264                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265                 count++;
266         }
267         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268                 if (obj->stolen == NULL)
269                         continue;
270
271                 list_add(&obj->obj_exec_link, &stolen);
272
273                 total_obj_size += obj->base.size;
274                 count++;
275         }
276         list_sort(NULL, &stolen, obj_rank_by_stolen);
277         seq_puts(m, "Stolen:\n");
278         while (!list_empty(&stolen)) {
279                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280                 seq_puts(m, "   ");
281                 describe_obj(m, obj);
282                 seq_putc(m, '\n');
283                 list_del_init(&obj->obj_exec_link);
284         }
285         mutex_unlock(&dev->struct_mutex);
286
287         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288                    count, total_obj_size, total_gtt_size);
289         return 0;
290 }
291
292 #define count_objects(list, member) do { \
293         list_for_each_entry(obj, list, member) { \
294                 size += i915_gem_obj_ggtt_size(obj); \
295                 ++count; \
296                 if (obj->map_and_fenceable) { \
297                         mappable_size += i915_gem_obj_ggtt_size(obj); \
298                         ++mappable_count; \
299                 } \
300         } \
301 } while (0)
302
303 struct file_stats {
304         struct drm_i915_file_private *file_priv;
305         int count;
306         size_t total, unbound;
307         size_t global, shared;
308         size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313         struct drm_i915_gem_object *obj = ptr;
314         struct file_stats *stats = data;
315         struct i915_vma *vma;
316
317         stats->count++;
318         stats->total += obj->base.size;
319
320         if (obj->base.name || obj->base.dma_buf)
321                 stats->shared += obj->base.size;
322
323         if (USES_FULL_PPGTT(obj->base.dev)) {
324                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325                         struct i915_hw_ppgtt *ppgtt;
326
327                         if (!drm_mm_node_allocated(&vma->node))
328                                 continue;
329
330                         if (i915_is_ggtt(vma->vm)) {
331                                 stats->global += obj->base.size;
332                                 continue;
333                         }
334
335                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336                         if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
337                                 continue;
338
339                         if (obj->ring) /* XXX per-vma statistic */
340                                 stats->active += obj->base.size;
341                         else
342                                 stats->inactive += obj->base.size;
343
344                         return 0;
345                 }
346         } else {
347                 if (i915_gem_obj_ggtt_bound(obj)) {
348                         stats->global += obj->base.size;
349                         if (obj->ring)
350                                 stats->active += obj->base.size;
351                         else
352                                 stats->inactive += obj->base.size;
353                         return 0;
354                 }
355         }
356
357         if (!list_empty(&obj->global_list))
358                 stats->unbound += obj->base.size;
359
360         return 0;
361 }
362
363 #define count_vmas(list, member) do { \
364         list_for_each_entry(vma, list, member) { \
365                 size += i915_gem_obj_ggtt_size(vma->obj); \
366                 ++count; \
367                 if (vma->obj->map_and_fenceable) { \
368                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
369                         ++mappable_count; \
370                 } \
371         } \
372 } while (0)
373
374 static int i915_gem_object_info(struct seq_file *m, void* data)
375 {
376         struct drm_info_node *node = m->private;
377         struct drm_device *dev = node->minor->dev;
378         struct drm_i915_private *dev_priv = dev->dev_private;
379         u32 count, mappable_count, purgeable_count;
380         size_t size, mappable_size, purgeable_size;
381         struct drm_i915_gem_object *obj;
382         struct i915_address_space *vm = &dev_priv->gtt.base;
383         struct drm_file *file;
384         struct i915_vma *vma;
385         int ret;
386
387         ret = mutex_lock_interruptible(&dev->struct_mutex);
388         if (ret)
389                 return ret;
390
391         seq_printf(m, "%u objects, %zu bytes\n",
392                    dev_priv->mm.object_count,
393                    dev_priv->mm.object_memory);
394
395         size = count = mappable_size = mappable_count = 0;
396         count_objects(&dev_priv->mm.bound_list, global_list);
397         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
398                    count, mappable_count, size, mappable_size);
399
400         size = count = mappable_size = mappable_count = 0;
401         count_vmas(&vm->active_list, mm_list);
402         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
403                    count, mappable_count, size, mappable_size);
404
405         size = count = mappable_size = mappable_count = 0;
406         count_vmas(&vm->inactive_list, mm_list);
407         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
408                    count, mappable_count, size, mappable_size);
409
410         size = count = purgeable_size = purgeable_count = 0;
411         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
412                 size += obj->base.size, ++count;
413                 if (obj->madv == I915_MADV_DONTNEED)
414                         purgeable_size += obj->base.size, ++purgeable_count;
415         }
416         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
417
418         size = count = mappable_size = mappable_count = 0;
419         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420                 if (obj->fault_mappable) {
421                         size += i915_gem_obj_ggtt_size(obj);
422                         ++count;
423                 }
424                 if (obj->pin_mappable) {
425                         mappable_size += i915_gem_obj_ggtt_size(obj);
426                         ++mappable_count;
427                 }
428                 if (obj->madv == I915_MADV_DONTNEED) {
429                         purgeable_size += obj->base.size;
430                         ++purgeable_count;
431                 }
432         }
433         seq_printf(m, "%u purgeable objects, %zu bytes\n",
434                    purgeable_count, purgeable_size);
435         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
436                    mappable_count, mappable_size);
437         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
438                    count, size);
439
440         seq_printf(m, "%zu [%lu] gtt total\n",
441                    dev_priv->gtt.base.total,
442                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
443
444         seq_putc(m, '\n');
445         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
446                 struct file_stats stats;
447                 struct task_struct *task;
448
449                 memset(&stats, 0, sizeof(stats));
450                 stats.file_priv = file->driver_priv;
451                 spin_lock(&file->table_lock);
452                 idr_for_each(&file->object_idr, per_file_stats, &stats);
453                 spin_unlock(&file->table_lock);
454                 /*
455                  * Although we have a valid reference on file->pid, that does
456                  * not guarantee that the task_struct who called get_pid() is
457                  * still alive (e.g. get_pid(current) => fork() => exit()).
458                  * Therefore, we need to protect this ->comm access using RCU.
459                  */
460                 rcu_read_lock();
461                 task = pid_task(file->pid, PIDTYPE_PID);
462                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
463                            task ? task->comm : "<unknown>",
464                            stats.count,
465                            stats.total,
466                            stats.active,
467                            stats.inactive,
468                            stats.global,
469                            stats.shared,
470                            stats.unbound);
471                 rcu_read_unlock();
472         }
473
474         mutex_unlock(&dev->struct_mutex);
475
476         return 0;
477 }
478
479 static int i915_gem_gtt_info(struct seq_file *m, void *data)
480 {
481         struct drm_info_node *node = m->private;
482         struct drm_device *dev = node->minor->dev;
483         uintptr_t list = (uintptr_t) node->info_ent->data;
484         struct drm_i915_private *dev_priv = dev->dev_private;
485         struct drm_i915_gem_object *obj;
486         size_t total_obj_size, total_gtt_size;
487         int count, ret;
488
489         ret = mutex_lock_interruptible(&dev->struct_mutex);
490         if (ret)
491                 return ret;
492
493         total_obj_size = total_gtt_size = count = 0;
494         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
495                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
496                         continue;
497
498                 seq_puts(m, "   ");
499                 describe_obj(m, obj);
500                 seq_putc(m, '\n');
501                 total_obj_size += obj->base.size;
502                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
503                 count++;
504         }
505
506         mutex_unlock(&dev->struct_mutex);
507
508         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
509                    count, total_obj_size, total_gtt_size);
510
511         return 0;
512 }
513
514 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
515 {
516         struct drm_info_node *node = m->private;
517         struct drm_device *dev = node->minor->dev;
518         unsigned long flags;
519         struct intel_crtc *crtc;
520         int ret;
521
522         ret = mutex_lock_interruptible(&dev->struct_mutex);
523         if (ret)
524                 return ret;
525
526         for_each_intel_crtc(dev, crtc) {
527                 const char pipe = pipe_name(crtc->pipe);
528                 const char plane = plane_name(crtc->plane);
529                 struct intel_unpin_work *work;
530
531                 spin_lock_irqsave(&dev->event_lock, flags);
532                 work = crtc->unpin_work;
533                 if (work == NULL) {
534                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
535                                    pipe, plane);
536                 } else {
537                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
538                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
539                                            pipe, plane);
540                         } else {
541                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
542                                            pipe, plane);
543                         }
544                         if (work->enable_stall_check)
545                                 seq_puts(m, "Stall check enabled, ");
546                         else
547                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
548                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
549
550                         if (work->old_fb_obj) {
551                                 struct drm_i915_gem_object *obj = work->old_fb_obj;
552                                 if (obj)
553                                         seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
554                                                    i915_gem_obj_ggtt_offset(obj));
555                         }
556                         if (work->pending_flip_obj) {
557                                 struct drm_i915_gem_object *obj = work->pending_flip_obj;
558                                 if (obj)
559                                         seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
560                                                    i915_gem_obj_ggtt_offset(obj));
561                         }
562                 }
563                 spin_unlock_irqrestore(&dev->event_lock, flags);
564         }
565
566         mutex_unlock(&dev->struct_mutex);
567
568         return 0;
569 }
570
571 static int i915_gem_request_info(struct seq_file *m, void *data)
572 {
573         struct drm_info_node *node = m->private;
574         struct drm_device *dev = node->minor->dev;
575         struct drm_i915_private *dev_priv = dev->dev_private;
576         struct intel_engine_cs *ring;
577         struct drm_i915_gem_request *gem_request;
578         int ret, count, i;
579
580         ret = mutex_lock_interruptible(&dev->struct_mutex);
581         if (ret)
582                 return ret;
583
584         count = 0;
585         for_each_ring(ring, dev_priv, i) {
586                 if (list_empty(&ring->request_list))
587                         continue;
588
589                 seq_printf(m, "%s requests:\n", ring->name);
590                 list_for_each_entry(gem_request,
591                                     &ring->request_list,
592                                     list) {
593                         seq_printf(m, "    %d @ %d\n",
594                                    gem_request->seqno,
595                                    (int) (jiffies - gem_request->emitted_jiffies));
596                 }
597                 count++;
598         }
599         mutex_unlock(&dev->struct_mutex);
600
601         if (count == 0)
602                 seq_puts(m, "No requests\n");
603
604         return 0;
605 }
606
607 static void i915_ring_seqno_info(struct seq_file *m,
608                                  struct intel_engine_cs *ring)
609 {
610         if (ring->get_seqno) {
611                 seq_printf(m, "Current sequence (%s): %u\n",
612                            ring->name, ring->get_seqno(ring, false));
613         }
614 }
615
616 static int i915_gem_seqno_info(struct seq_file *m, void *data)
617 {
618         struct drm_info_node *node = m->private;
619         struct drm_device *dev = node->minor->dev;
620         struct drm_i915_private *dev_priv = dev->dev_private;
621         struct intel_engine_cs *ring;
622         int ret, i;
623
624         ret = mutex_lock_interruptible(&dev->struct_mutex);
625         if (ret)
626                 return ret;
627         intel_runtime_pm_get(dev_priv);
628
629         for_each_ring(ring, dev_priv, i)
630                 i915_ring_seqno_info(m, ring);
631
632         intel_runtime_pm_put(dev_priv);
633         mutex_unlock(&dev->struct_mutex);
634
635         return 0;
636 }
637
638
639 static int i915_interrupt_info(struct seq_file *m, void *data)
640 {
641         struct drm_info_node *node = m->private;
642         struct drm_device *dev = node->minor->dev;
643         struct drm_i915_private *dev_priv = dev->dev_private;
644         struct intel_engine_cs *ring;
645         int ret, i, pipe;
646
647         ret = mutex_lock_interruptible(&dev->struct_mutex);
648         if (ret)
649                 return ret;
650         intel_runtime_pm_get(dev_priv);
651
652         if (IS_CHERRYVIEW(dev)) {
653                 int i;
654                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
655                            I915_READ(GEN8_MASTER_IRQ));
656
657                 seq_printf(m, "Display IER:\t%08x\n",
658                            I915_READ(VLV_IER));
659                 seq_printf(m, "Display IIR:\t%08x\n",
660                            I915_READ(VLV_IIR));
661                 seq_printf(m, "Display IIR_RW:\t%08x\n",
662                            I915_READ(VLV_IIR_RW));
663                 seq_printf(m, "Display IMR:\t%08x\n",
664                            I915_READ(VLV_IMR));
665                 for_each_pipe(pipe)
666                         seq_printf(m, "Pipe %c stat:\t%08x\n",
667                                    pipe_name(pipe),
668                                    I915_READ(PIPESTAT(pipe)));
669
670                 seq_printf(m, "Port hotplug:\t%08x\n",
671                            I915_READ(PORT_HOTPLUG_EN));
672                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
673                            I915_READ(VLV_DPFLIPSTAT));
674                 seq_printf(m, "DPINVGTT:\t%08x\n",
675                            I915_READ(DPINVGTT));
676
677                 for (i = 0; i < 4; i++) {
678                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
679                                    i, I915_READ(GEN8_GT_IMR(i)));
680                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
681                                    i, I915_READ(GEN8_GT_IIR(i)));
682                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
683                                    i, I915_READ(GEN8_GT_IER(i)));
684                 }
685
686                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
687                            I915_READ(GEN8_PCU_IMR));
688                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
689                            I915_READ(GEN8_PCU_IIR));
690                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
691                            I915_READ(GEN8_PCU_IER));
692         } else if (INTEL_INFO(dev)->gen >= 8) {
693                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
694                            I915_READ(GEN8_MASTER_IRQ));
695
696                 for (i = 0; i < 4; i++) {
697                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
698                                    i, I915_READ(GEN8_GT_IMR(i)));
699                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
700                                    i, I915_READ(GEN8_GT_IIR(i)));
701                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
702                                    i, I915_READ(GEN8_GT_IER(i)));
703                 }
704
705                 for_each_pipe(pipe) {
706                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
707                                    pipe_name(pipe),
708                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
709                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
710                                    pipe_name(pipe),
711                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
712                         seq_printf(m, "Pipe %c IER:\t%08x\n",
713                                    pipe_name(pipe),
714                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
715                 }
716
717                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
718                            I915_READ(GEN8_DE_PORT_IMR));
719                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
720                            I915_READ(GEN8_DE_PORT_IIR));
721                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
722                            I915_READ(GEN8_DE_PORT_IER));
723
724                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
725                            I915_READ(GEN8_DE_MISC_IMR));
726                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
727                            I915_READ(GEN8_DE_MISC_IIR));
728                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
729                            I915_READ(GEN8_DE_MISC_IER));
730
731                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
732                            I915_READ(GEN8_PCU_IMR));
733                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
734                            I915_READ(GEN8_PCU_IIR));
735                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
736                            I915_READ(GEN8_PCU_IER));
737         } else if (IS_VALLEYVIEW(dev)) {
738                 seq_printf(m, "Display IER:\t%08x\n",
739                            I915_READ(VLV_IER));
740                 seq_printf(m, "Display IIR:\t%08x\n",
741                            I915_READ(VLV_IIR));
742                 seq_printf(m, "Display IIR_RW:\t%08x\n",
743                            I915_READ(VLV_IIR_RW));
744                 seq_printf(m, "Display IMR:\t%08x\n",
745                            I915_READ(VLV_IMR));
746                 for_each_pipe(pipe)
747                         seq_printf(m, "Pipe %c stat:\t%08x\n",
748                                    pipe_name(pipe),
749                                    I915_READ(PIPESTAT(pipe)));
750
751                 seq_printf(m, "Master IER:\t%08x\n",
752                            I915_READ(VLV_MASTER_IER));
753
754                 seq_printf(m, "Render IER:\t%08x\n",
755                            I915_READ(GTIER));
756                 seq_printf(m, "Render IIR:\t%08x\n",
757                            I915_READ(GTIIR));
758                 seq_printf(m, "Render IMR:\t%08x\n",
759                            I915_READ(GTIMR));
760
761                 seq_printf(m, "PM IER:\t\t%08x\n",
762                            I915_READ(GEN6_PMIER));
763                 seq_printf(m, "PM IIR:\t\t%08x\n",
764                            I915_READ(GEN6_PMIIR));
765                 seq_printf(m, "PM IMR:\t\t%08x\n",
766                            I915_READ(GEN6_PMIMR));
767
768                 seq_printf(m, "Port hotplug:\t%08x\n",
769                            I915_READ(PORT_HOTPLUG_EN));
770                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
771                            I915_READ(VLV_DPFLIPSTAT));
772                 seq_printf(m, "DPINVGTT:\t%08x\n",
773                            I915_READ(DPINVGTT));
774
775         } else if (!HAS_PCH_SPLIT(dev)) {
776                 seq_printf(m, "Interrupt enable:    %08x\n",
777                            I915_READ(IER));
778                 seq_printf(m, "Interrupt identity:  %08x\n",
779                            I915_READ(IIR));
780                 seq_printf(m, "Interrupt mask:      %08x\n",
781                            I915_READ(IMR));
782                 for_each_pipe(pipe)
783                         seq_printf(m, "Pipe %c stat:         %08x\n",
784                                    pipe_name(pipe),
785                                    I915_READ(PIPESTAT(pipe)));
786         } else {
787                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
788                            I915_READ(DEIER));
789                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
790                            I915_READ(DEIIR));
791                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
792                            I915_READ(DEIMR));
793                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
794                            I915_READ(SDEIER));
795                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
796                            I915_READ(SDEIIR));
797                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
798                            I915_READ(SDEIMR));
799                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
800                            I915_READ(GTIER));
801                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
802                            I915_READ(GTIIR));
803                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
804                            I915_READ(GTIMR));
805         }
806         for_each_ring(ring, dev_priv, i) {
807                 if (INTEL_INFO(dev)->gen >= 6) {
808                         seq_printf(m,
809                                    "Graphics Interrupt mask (%s):       %08x\n",
810                                    ring->name, I915_READ_IMR(ring));
811                 }
812                 i915_ring_seqno_info(m, ring);
813         }
814         intel_runtime_pm_put(dev_priv);
815         mutex_unlock(&dev->struct_mutex);
816
817         return 0;
818 }
819
820 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
821 {
822         struct drm_info_node *node = m->private;
823         struct drm_device *dev = node->minor->dev;
824         struct drm_i915_private *dev_priv = dev->dev_private;
825         int i, ret;
826
827         ret = mutex_lock_interruptible(&dev->struct_mutex);
828         if (ret)
829                 return ret;
830
831         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
832         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
833         for (i = 0; i < dev_priv->num_fence_regs; i++) {
834                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
835
836                 seq_printf(m, "Fence %d, pin count = %d, object = ",
837                            i, dev_priv->fence_regs[i].pin_count);
838                 if (obj == NULL)
839                         seq_puts(m, "unused");
840                 else
841                         describe_obj(m, obj);
842                 seq_putc(m, '\n');
843         }
844
845         mutex_unlock(&dev->struct_mutex);
846         return 0;
847 }
848
849 static int i915_hws_info(struct seq_file *m, void *data)
850 {
851         struct drm_info_node *node = m->private;
852         struct drm_device *dev = node->minor->dev;
853         struct drm_i915_private *dev_priv = dev->dev_private;
854         struct intel_engine_cs *ring;
855         const u32 *hws;
856         int i;
857
858         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
859         hws = ring->status_page.page_addr;
860         if (hws == NULL)
861                 return 0;
862
863         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
864                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
865                            i * 4,
866                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
867         }
868         return 0;
869 }
870
871 static ssize_t
872 i915_error_state_write(struct file *filp,
873                        const char __user *ubuf,
874                        size_t cnt,
875                        loff_t *ppos)
876 {
877         struct i915_error_state_file_priv *error_priv = filp->private_data;
878         struct drm_device *dev = error_priv->dev;
879         int ret;
880
881         DRM_DEBUG_DRIVER("Resetting error state\n");
882
883         ret = mutex_lock_interruptible(&dev->struct_mutex);
884         if (ret)
885                 return ret;
886
887         i915_destroy_error_state(dev);
888         mutex_unlock(&dev->struct_mutex);
889
890         return cnt;
891 }
892
893 static int i915_error_state_open(struct inode *inode, struct file *file)
894 {
895         struct drm_device *dev = inode->i_private;
896         struct i915_error_state_file_priv *error_priv;
897
898         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
899         if (!error_priv)
900                 return -ENOMEM;
901
902         error_priv->dev = dev;
903
904         i915_error_state_get(dev, error_priv);
905
906         file->private_data = error_priv;
907
908         return 0;
909 }
910
911 static int i915_error_state_release(struct inode *inode, struct file *file)
912 {
913         struct i915_error_state_file_priv *error_priv = file->private_data;
914
915         i915_error_state_put(error_priv);
916         kfree(error_priv);
917
918         return 0;
919 }
920
921 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
922                                      size_t count, loff_t *pos)
923 {
924         struct i915_error_state_file_priv *error_priv = file->private_data;
925         struct drm_i915_error_state_buf error_str;
926         loff_t tmp_pos = 0;
927         ssize_t ret_count = 0;
928         int ret;
929
930         ret = i915_error_state_buf_init(&error_str, count, *pos);
931         if (ret)
932                 return ret;
933
934         ret = i915_error_state_to_str(&error_str, error_priv);
935         if (ret)
936                 goto out;
937
938         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
939                                             error_str.buf,
940                                             error_str.bytes);
941
942         if (ret_count < 0)
943                 ret = ret_count;
944         else
945                 *pos = error_str.start + ret_count;
946 out:
947         i915_error_state_buf_release(&error_str);
948         return ret ?: ret_count;
949 }
950
951 static const struct file_operations i915_error_state_fops = {
952         .owner = THIS_MODULE,
953         .open = i915_error_state_open,
954         .read = i915_error_state_read,
955         .write = i915_error_state_write,
956         .llseek = default_llseek,
957         .release = i915_error_state_release,
958 };
959
960 static int
961 i915_next_seqno_get(void *data, u64 *val)
962 {
963         struct drm_device *dev = data;
964         struct drm_i915_private *dev_priv = dev->dev_private;
965         int ret;
966
967         ret = mutex_lock_interruptible(&dev->struct_mutex);
968         if (ret)
969                 return ret;
970
971         *val = dev_priv->next_seqno;
972         mutex_unlock(&dev->struct_mutex);
973
974         return 0;
975 }
976
977 static int
978 i915_next_seqno_set(void *data, u64 val)
979 {
980         struct drm_device *dev = data;
981         int ret;
982
983         ret = mutex_lock_interruptible(&dev->struct_mutex);
984         if (ret)
985                 return ret;
986
987         ret = i915_gem_set_seqno(dev, val);
988         mutex_unlock(&dev->struct_mutex);
989
990         return ret;
991 }
992
993 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
994                         i915_next_seqno_get, i915_next_seqno_set,
995                         "0x%llx\n");
996
997 static int i915_rstdby_delays(struct seq_file *m, void *unused)
998 {
999         struct drm_info_node *node = m->private;
1000         struct drm_device *dev = node->minor->dev;
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002         u16 crstanddelay;
1003         int ret;
1004
1005         ret = mutex_lock_interruptible(&dev->struct_mutex);
1006         if (ret)
1007                 return ret;
1008         intel_runtime_pm_get(dev_priv);
1009
1010         crstanddelay = I915_READ16(CRSTANDVID);
1011
1012         intel_runtime_pm_put(dev_priv);
1013         mutex_unlock(&dev->struct_mutex);
1014
1015         seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
1016
1017         return 0;
1018 }
1019
1020 static int i915_frequency_info(struct seq_file *m, void *unused)
1021 {
1022         struct drm_info_node *node = m->private;
1023         struct drm_device *dev = node->minor->dev;
1024         struct drm_i915_private *dev_priv = dev->dev_private;
1025         int ret = 0;
1026
1027         intel_runtime_pm_get(dev_priv);
1028
1029         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1030
1031         if (IS_GEN5(dev)) {
1032                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1033                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1034
1035                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1036                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1037                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1038                            MEMSTAT_VID_SHIFT);
1039                 seq_printf(m, "Current P-state: %d\n",
1040                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1041         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1042                    IS_BROADWELL(dev)) {
1043                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1044                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1045                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1046                 u32 rpmodectl, rpinclimit, rpdeclimit;
1047                 u32 rpstat, cagf, reqf;
1048                 u32 rpupei, rpcurup, rpprevup;
1049                 u32 rpdownei, rpcurdown, rpprevdown;
1050                 int max_freq;
1051
1052                 /* RPSTAT1 is in the GT power well */
1053                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1054                 if (ret)
1055                         goto out;
1056
1057                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1058
1059                 reqf = I915_READ(GEN6_RPNSWREQ);
1060                 reqf &= ~GEN6_TURBO_DISABLE;
1061                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1062                         reqf >>= 24;
1063                 else
1064                         reqf >>= 25;
1065                 reqf *= GT_FREQUENCY_MULTIPLIER;
1066
1067                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1068                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1069                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1070
1071                 rpstat = I915_READ(GEN6_RPSTAT1);
1072                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1073                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1074                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1075                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1076                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1077                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1078                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1079                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1080                 else
1081                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1082                 cagf *= GT_FREQUENCY_MULTIPLIER;
1083
1084                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1085                 mutex_unlock(&dev->struct_mutex);
1086
1087                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1088                            I915_READ(GEN6_PMIER),
1089                            I915_READ(GEN6_PMIMR),
1090                            I915_READ(GEN6_PMISR),
1091                            I915_READ(GEN6_PMIIR),
1092                            I915_READ(GEN6_PMINTRMSK));
1093                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1094                 seq_printf(m, "Render p-state ratio: %d\n",
1095                            (gt_perf_status & 0xff00) >> 8);
1096                 seq_printf(m, "Render p-state VID: %d\n",
1097                            gt_perf_status & 0xff);
1098                 seq_printf(m, "Render p-state limit: %d\n",
1099                            rp_state_limits & 0xff);
1100                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1101                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1102                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1103                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1104                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1105                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1106                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1107                            GEN6_CURICONT_MASK);
1108                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1109                            GEN6_CURBSYTAVG_MASK);
1110                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1111                            GEN6_CURBSYTAVG_MASK);
1112                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1113                            GEN6_CURIAVG_MASK);
1114                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1115                            GEN6_CURBSYTAVG_MASK);
1116                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1117                            GEN6_CURBSYTAVG_MASK);
1118
1119                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1120                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1121                            max_freq * GT_FREQUENCY_MULTIPLIER);
1122
1123                 max_freq = (rp_state_cap & 0xff00) >> 8;
1124                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1125                            max_freq * GT_FREQUENCY_MULTIPLIER);
1126
1127                 max_freq = rp_state_cap & 0xff;
1128                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1129                            max_freq * GT_FREQUENCY_MULTIPLIER);
1130
1131                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1132                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1133         } else if (IS_VALLEYVIEW(dev)) {
1134                 u32 freq_sts, val;
1135
1136                 mutex_lock(&dev_priv->rps.hw_lock);
1137                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1138                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1139                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1140
1141                 val = valleyview_rps_max_freq(dev_priv);
1142                 seq_printf(m, "max GPU freq: %d MHz\n",
1143                            vlv_gpu_freq(dev_priv, val));
1144
1145                 val = valleyview_rps_min_freq(dev_priv);
1146                 seq_printf(m, "min GPU freq: %d MHz\n",
1147                            vlv_gpu_freq(dev_priv, val));
1148
1149                 seq_printf(m, "current GPU freq: %d MHz\n",
1150                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1151                 mutex_unlock(&dev_priv->rps.hw_lock);
1152         } else {
1153                 seq_puts(m, "no P-state info available\n");
1154         }
1155
1156 out:
1157         intel_runtime_pm_put(dev_priv);
1158         return ret;
1159 }
1160
1161 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1162 {
1163         struct drm_info_node *node = m->private;
1164         struct drm_device *dev = node->minor->dev;
1165         struct drm_i915_private *dev_priv = dev->dev_private;
1166         u32 delayfreq;
1167         int ret, i;
1168
1169         ret = mutex_lock_interruptible(&dev->struct_mutex);
1170         if (ret)
1171                 return ret;
1172         intel_runtime_pm_get(dev_priv);
1173
1174         for (i = 0; i < 16; i++) {
1175                 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1176                 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1177                            (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1178         }
1179
1180         intel_runtime_pm_put(dev_priv);
1181
1182         mutex_unlock(&dev->struct_mutex);
1183
1184         return 0;
1185 }
1186
1187 static inline int MAP_TO_MV(int map)
1188 {
1189         return 1250 - (map * 25);
1190 }
1191
1192 static int i915_inttoext_table(struct seq_file *m, void *unused)
1193 {
1194         struct drm_info_node *node = m->private;
1195         struct drm_device *dev = node->minor->dev;
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197         u32 inttoext;
1198         int ret, i;
1199
1200         ret = mutex_lock_interruptible(&dev->struct_mutex);
1201         if (ret)
1202                 return ret;
1203         intel_runtime_pm_get(dev_priv);
1204
1205         for (i = 1; i <= 32; i++) {
1206                 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1207                 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1208         }
1209
1210         intel_runtime_pm_put(dev_priv);
1211         mutex_unlock(&dev->struct_mutex);
1212
1213         return 0;
1214 }
1215
1216 static int ironlake_drpc_info(struct seq_file *m)
1217 {
1218         struct drm_info_node *node = m->private;
1219         struct drm_device *dev = node->minor->dev;
1220         struct drm_i915_private *dev_priv = dev->dev_private;
1221         u32 rgvmodectl, rstdbyctl;
1222         u16 crstandvid;
1223         int ret;
1224
1225         ret = mutex_lock_interruptible(&dev->struct_mutex);
1226         if (ret)
1227                 return ret;
1228         intel_runtime_pm_get(dev_priv);
1229
1230         rgvmodectl = I915_READ(MEMMODECTL);
1231         rstdbyctl = I915_READ(RSTDBYCTL);
1232         crstandvid = I915_READ16(CRSTANDVID);
1233
1234         intel_runtime_pm_put(dev_priv);
1235         mutex_unlock(&dev->struct_mutex);
1236
1237         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1238                    "yes" : "no");
1239         seq_printf(m, "Boost freq: %d\n",
1240                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1241                    MEMMODE_BOOST_FREQ_SHIFT);
1242         seq_printf(m, "HW control enabled: %s\n",
1243                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1244         seq_printf(m, "SW control enabled: %s\n",
1245                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1246         seq_printf(m, "Gated voltage change: %s\n",
1247                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1248         seq_printf(m, "Starting frequency: P%d\n",
1249                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1250         seq_printf(m, "Max P-state: P%d\n",
1251                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1252         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1253         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1254         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1255         seq_printf(m, "Render standby enabled: %s\n",
1256                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1257         seq_puts(m, "Current RS state: ");
1258         switch (rstdbyctl & RSX_STATUS_MASK) {
1259         case RSX_STATUS_ON:
1260                 seq_puts(m, "on\n");
1261                 break;
1262         case RSX_STATUS_RC1:
1263                 seq_puts(m, "RC1\n");
1264                 break;
1265         case RSX_STATUS_RC1E:
1266                 seq_puts(m, "RC1E\n");
1267                 break;
1268         case RSX_STATUS_RS1:
1269                 seq_puts(m, "RS1\n");
1270                 break;
1271         case RSX_STATUS_RS2:
1272                 seq_puts(m, "RS2 (RC6)\n");
1273                 break;
1274         case RSX_STATUS_RS3:
1275                 seq_puts(m, "RC3 (RC6+)\n");
1276                 break;
1277         default:
1278                 seq_puts(m, "unknown\n");
1279                 break;
1280         }
1281
1282         return 0;
1283 }
1284
1285 static int vlv_drpc_info(struct seq_file *m)
1286 {
1287
1288         struct drm_info_node *node = m->private;
1289         struct drm_device *dev = node->minor->dev;
1290         struct drm_i915_private *dev_priv = dev->dev_private;
1291         u32 rpmodectl1, rcctl1;
1292         unsigned fw_rendercount = 0, fw_mediacount = 0;
1293
1294         intel_runtime_pm_get(dev_priv);
1295
1296         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1297         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1298
1299         intel_runtime_pm_put(dev_priv);
1300
1301         seq_printf(m, "Video Turbo Mode: %s\n",
1302                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1303         seq_printf(m, "Turbo enabled: %s\n",
1304                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1305         seq_printf(m, "HW control enabled: %s\n",
1306                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1307         seq_printf(m, "SW control enabled: %s\n",
1308                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1309                           GEN6_RP_MEDIA_SW_MODE));
1310         seq_printf(m, "RC6 Enabled: %s\n",
1311                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1312                                         GEN6_RC_CTL_EI_MODE(1))));
1313         seq_printf(m, "Render Power Well: %s\n",
1314                         (I915_READ(VLV_GTLC_PW_STATUS) &
1315                                 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1316         seq_printf(m, "Media Power Well: %s\n",
1317                         (I915_READ(VLV_GTLC_PW_STATUS) &
1318                                 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1319
1320         seq_printf(m, "Render RC6 residency since boot: %u\n",
1321                    I915_READ(VLV_GT_RENDER_RC6));
1322         seq_printf(m, "Media RC6 residency since boot: %u\n",
1323                    I915_READ(VLV_GT_MEDIA_RC6));
1324
1325         spin_lock_irq(&dev_priv->uncore.lock);
1326         fw_rendercount = dev_priv->uncore.fw_rendercount;
1327         fw_mediacount = dev_priv->uncore.fw_mediacount;
1328         spin_unlock_irq(&dev_priv->uncore.lock);
1329
1330         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1331         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1332
1333
1334         return 0;
1335 }
1336
1337
1338 static int gen6_drpc_info(struct seq_file *m)
1339 {
1340
1341         struct drm_info_node *node = m->private;
1342         struct drm_device *dev = node->minor->dev;
1343         struct drm_i915_private *dev_priv = dev->dev_private;
1344         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1345         unsigned forcewake_count;
1346         int count = 0, ret;
1347
1348         ret = mutex_lock_interruptible(&dev->struct_mutex);
1349         if (ret)
1350                 return ret;
1351         intel_runtime_pm_get(dev_priv);
1352
1353         spin_lock_irq(&dev_priv->uncore.lock);
1354         forcewake_count = dev_priv->uncore.forcewake_count;
1355         spin_unlock_irq(&dev_priv->uncore.lock);
1356
1357         if (forcewake_count) {
1358                 seq_puts(m, "RC information inaccurate because somebody "
1359                             "holds a forcewake reference \n");
1360         } else {
1361                 /* NB: we cannot use forcewake, else we read the wrong values */
1362                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1363                         udelay(10);
1364                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1365         }
1366
1367         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1368         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1369
1370         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1371         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1372         mutex_unlock(&dev->struct_mutex);
1373         mutex_lock(&dev_priv->rps.hw_lock);
1374         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1375         mutex_unlock(&dev_priv->rps.hw_lock);
1376
1377         intel_runtime_pm_put(dev_priv);
1378
1379         seq_printf(m, "Video Turbo Mode: %s\n",
1380                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1381         seq_printf(m, "HW control enabled: %s\n",
1382                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1383         seq_printf(m, "SW control enabled: %s\n",
1384                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1385                           GEN6_RP_MEDIA_SW_MODE));
1386         seq_printf(m, "RC1e Enabled: %s\n",
1387                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1388         seq_printf(m, "RC6 Enabled: %s\n",
1389                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1390         seq_printf(m, "Deep RC6 Enabled: %s\n",
1391                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1392         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1393                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1394         seq_puts(m, "Current RC state: ");
1395         switch (gt_core_status & GEN6_RCn_MASK) {
1396         case GEN6_RC0:
1397                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1398                         seq_puts(m, "Core Power Down\n");
1399                 else
1400                         seq_puts(m, "on\n");
1401                 break;
1402         case GEN6_RC3:
1403                 seq_puts(m, "RC3\n");
1404                 break;
1405         case GEN6_RC6:
1406                 seq_puts(m, "RC6\n");
1407                 break;
1408         case GEN6_RC7:
1409                 seq_puts(m, "RC7\n");
1410                 break;
1411         default:
1412                 seq_puts(m, "Unknown\n");
1413                 break;
1414         }
1415
1416         seq_printf(m, "Core Power Down: %s\n",
1417                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1418
1419         /* Not exactly sure what this is */
1420         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1421                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1422         seq_printf(m, "RC6 residency since boot: %u\n",
1423                    I915_READ(GEN6_GT_GFX_RC6));
1424         seq_printf(m, "RC6+ residency since boot: %u\n",
1425                    I915_READ(GEN6_GT_GFX_RC6p));
1426         seq_printf(m, "RC6++ residency since boot: %u\n",
1427                    I915_READ(GEN6_GT_GFX_RC6pp));
1428
1429         seq_printf(m, "RC6   voltage: %dmV\n",
1430                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1431         seq_printf(m, "RC6+  voltage: %dmV\n",
1432                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1433         seq_printf(m, "RC6++ voltage: %dmV\n",
1434                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1435         return 0;
1436 }
1437
1438 static int i915_drpc_info(struct seq_file *m, void *unused)
1439 {
1440         struct drm_info_node *node = m->private;
1441         struct drm_device *dev = node->minor->dev;
1442
1443         if (IS_VALLEYVIEW(dev))
1444                 return vlv_drpc_info(m);
1445         else if (IS_GEN6(dev) || IS_GEN7(dev))
1446                 return gen6_drpc_info(m);
1447         else
1448                 return ironlake_drpc_info(m);
1449 }
1450
1451 static int i915_fbc_status(struct seq_file *m, void *unused)
1452 {
1453         struct drm_info_node *node = m->private;
1454         struct drm_device *dev = node->minor->dev;
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456
1457         if (!HAS_FBC(dev)) {
1458                 seq_puts(m, "FBC unsupported on this chipset\n");
1459                 return 0;
1460         }
1461
1462         intel_runtime_pm_get(dev_priv);
1463
1464         if (intel_fbc_enabled(dev)) {
1465                 seq_puts(m, "FBC enabled\n");
1466         } else {
1467                 seq_puts(m, "FBC disabled: ");
1468                 switch (dev_priv->fbc.no_fbc_reason) {
1469                 case FBC_OK:
1470                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1471                         break;
1472                 case FBC_UNSUPPORTED:
1473                         seq_puts(m, "unsupported by this chipset");
1474                         break;
1475                 case FBC_NO_OUTPUT:
1476                         seq_puts(m, "no outputs");
1477                         break;
1478                 case FBC_STOLEN_TOO_SMALL:
1479                         seq_puts(m, "not enough stolen memory");
1480                         break;
1481                 case FBC_UNSUPPORTED_MODE:
1482                         seq_puts(m, "mode not supported");
1483                         break;
1484                 case FBC_MODE_TOO_LARGE:
1485                         seq_puts(m, "mode too large");
1486                         break;
1487                 case FBC_BAD_PLANE:
1488                         seq_puts(m, "FBC unsupported on plane");
1489                         break;
1490                 case FBC_NOT_TILED:
1491                         seq_puts(m, "scanout buffer not tiled");
1492                         break;
1493                 case FBC_MULTIPLE_PIPES:
1494                         seq_puts(m, "multiple pipes are enabled");
1495                         break;
1496                 case FBC_MODULE_PARAM:
1497                         seq_puts(m, "disabled per module param (default off)");
1498                         break;
1499                 case FBC_CHIP_DEFAULT:
1500                         seq_puts(m, "disabled per chip default");
1501                         break;
1502                 default:
1503                         seq_puts(m, "unknown reason");
1504                 }
1505                 seq_putc(m, '\n');
1506         }
1507
1508         intel_runtime_pm_put(dev_priv);
1509
1510         return 0;
1511 }
1512
1513 static int i915_ips_status(struct seq_file *m, void *unused)
1514 {
1515         struct drm_info_node *node = m->private;
1516         struct drm_device *dev = node->minor->dev;
1517         struct drm_i915_private *dev_priv = dev->dev_private;
1518
1519         if (!HAS_IPS(dev)) {
1520                 seq_puts(m, "not supported\n");
1521                 return 0;
1522         }
1523
1524         intel_runtime_pm_get(dev_priv);
1525
1526         if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1527                 seq_puts(m, "enabled\n");
1528         else
1529                 seq_puts(m, "disabled\n");
1530
1531         intel_runtime_pm_put(dev_priv);
1532
1533         return 0;
1534 }
1535
1536 static int i915_sr_status(struct seq_file *m, void *unused)
1537 {
1538         struct drm_info_node *node = m->private;
1539         struct drm_device *dev = node->minor->dev;
1540         struct drm_i915_private *dev_priv = dev->dev_private;
1541         bool sr_enabled = false;
1542
1543         intel_runtime_pm_get(dev_priv);
1544
1545         if (HAS_PCH_SPLIT(dev))
1546                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1547         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1548                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1549         else if (IS_I915GM(dev))
1550                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1551         else if (IS_PINEVIEW(dev))
1552                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1553
1554         intel_runtime_pm_put(dev_priv);
1555
1556         seq_printf(m, "self-refresh: %s\n",
1557                    sr_enabled ? "enabled" : "disabled");
1558
1559         return 0;
1560 }
1561
1562 static int i915_emon_status(struct seq_file *m, void *unused)
1563 {
1564         struct drm_info_node *node = m->private;
1565         struct drm_device *dev = node->minor->dev;
1566         struct drm_i915_private *dev_priv = dev->dev_private;
1567         unsigned long temp, chipset, gfx;
1568         int ret;
1569
1570         if (!IS_GEN5(dev))
1571                 return -ENODEV;
1572
1573         ret = mutex_lock_interruptible(&dev->struct_mutex);
1574         if (ret)
1575                 return ret;
1576
1577         temp = i915_mch_val(dev_priv);
1578         chipset = i915_chipset_val(dev_priv);
1579         gfx = i915_gfx_val(dev_priv);
1580         mutex_unlock(&dev->struct_mutex);
1581
1582         seq_printf(m, "GMCH temp: %ld\n", temp);
1583         seq_printf(m, "Chipset power: %ld\n", chipset);
1584         seq_printf(m, "GFX power: %ld\n", gfx);
1585         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1586
1587         return 0;
1588 }
1589
1590 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1591 {
1592         struct drm_info_node *node = m->private;
1593         struct drm_device *dev = node->minor->dev;
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595         int ret = 0;
1596         int gpu_freq, ia_freq;
1597
1598         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1599                 seq_puts(m, "unsupported on this chipset\n");
1600                 return 0;
1601         }
1602
1603         intel_runtime_pm_get(dev_priv);
1604
1605         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1606
1607         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1608         if (ret)
1609                 goto out;
1610
1611         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1612
1613         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1614              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1615              gpu_freq++) {
1616                 ia_freq = gpu_freq;
1617                 sandybridge_pcode_read(dev_priv,
1618                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1619                                        &ia_freq);
1620                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1621                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1622                            ((ia_freq >> 0) & 0xff) * 100,
1623                            ((ia_freq >> 8) & 0xff) * 100);
1624         }
1625
1626         mutex_unlock(&dev_priv->rps.hw_lock);
1627
1628 out:
1629         intel_runtime_pm_put(dev_priv);
1630         return ret;
1631 }
1632
1633 static int i915_gfxec(struct seq_file *m, void *unused)
1634 {
1635         struct drm_info_node *node = m->private;
1636         struct drm_device *dev = node->minor->dev;
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         int ret;
1639
1640         ret = mutex_lock_interruptible(&dev->struct_mutex);
1641         if (ret)
1642                 return ret;
1643         intel_runtime_pm_get(dev_priv);
1644
1645         seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1646         intel_runtime_pm_put(dev_priv);
1647
1648         mutex_unlock(&dev->struct_mutex);
1649
1650         return 0;
1651 }
1652
1653 static int i915_opregion(struct seq_file *m, void *unused)
1654 {
1655         struct drm_info_node *node = m->private;
1656         struct drm_device *dev = node->minor->dev;
1657         struct drm_i915_private *dev_priv = dev->dev_private;
1658         struct intel_opregion *opregion = &dev_priv->opregion;
1659         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1660         int ret;
1661
1662         if (data == NULL)
1663                 return -ENOMEM;
1664
1665         ret = mutex_lock_interruptible(&dev->struct_mutex);
1666         if (ret)
1667                 goto out;
1668
1669         if (opregion->header) {
1670                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1671                 seq_write(m, data, OPREGION_SIZE);
1672         }
1673
1674         mutex_unlock(&dev->struct_mutex);
1675
1676 out:
1677         kfree(data);
1678         return 0;
1679 }
1680
1681 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1682 {
1683         struct drm_info_node *node = m->private;
1684         struct drm_device *dev = node->minor->dev;
1685         struct intel_fbdev *ifbdev = NULL;
1686         struct intel_framebuffer *fb;
1687
1688 #ifdef CONFIG_DRM_I915_FBDEV
1689         struct drm_i915_private *dev_priv = dev->dev_private;
1690
1691         ifbdev = dev_priv->fbdev;
1692         fb = to_intel_framebuffer(ifbdev->helper.fb);
1693
1694         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1695                    fb->base.width,
1696                    fb->base.height,
1697                    fb->base.depth,
1698                    fb->base.bits_per_pixel,
1699                    atomic_read(&fb->base.refcount.refcount));
1700         describe_obj(m, fb->obj);
1701         seq_putc(m, '\n');
1702 #endif
1703
1704         mutex_lock(&dev->mode_config.fb_lock);
1705         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1706                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1707                         continue;
1708
1709                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1710                            fb->base.width,
1711                            fb->base.height,
1712                            fb->base.depth,
1713                            fb->base.bits_per_pixel,
1714                            atomic_read(&fb->base.refcount.refcount));
1715                 describe_obj(m, fb->obj);
1716                 seq_putc(m, '\n');
1717         }
1718         mutex_unlock(&dev->mode_config.fb_lock);
1719
1720         return 0;
1721 }
1722
1723 static int i915_context_status(struct seq_file *m, void *unused)
1724 {
1725         struct drm_info_node *node = m->private;
1726         struct drm_device *dev = node->minor->dev;
1727         struct drm_i915_private *dev_priv = dev->dev_private;
1728         struct intel_engine_cs *ring;
1729         struct intel_context *ctx;
1730         int ret, i;
1731
1732         ret = mutex_lock_interruptible(&dev->struct_mutex);
1733         if (ret)
1734                 return ret;
1735
1736         if (dev_priv->ips.pwrctx) {
1737                 seq_puts(m, "power context ");
1738                 describe_obj(m, dev_priv->ips.pwrctx);
1739                 seq_putc(m, '\n');
1740         }
1741
1742         if (dev_priv->ips.renderctx) {
1743                 seq_puts(m, "render context ");
1744                 describe_obj(m, dev_priv->ips.renderctx);
1745                 seq_putc(m, '\n');
1746         }
1747
1748         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1749                 if (ctx->obj == NULL)
1750                         continue;
1751
1752                 seq_puts(m, "HW context ");
1753                 describe_ctx(m, ctx);
1754                 for_each_ring(ring, dev_priv, i)
1755                         if (ring->default_context == ctx)
1756                                 seq_printf(m, "(default context %s) ", ring->name);
1757
1758                 describe_obj(m, ctx->obj);
1759                 seq_putc(m, '\n');
1760         }
1761
1762         mutex_unlock(&dev->struct_mutex);
1763
1764         return 0;
1765 }
1766
1767 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1768 {
1769         struct drm_info_node *node = m->private;
1770         struct drm_device *dev = node->minor->dev;
1771         struct drm_i915_private *dev_priv = dev->dev_private;
1772         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1773
1774         spin_lock_irq(&dev_priv->uncore.lock);
1775         if (IS_VALLEYVIEW(dev)) {
1776                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1777                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1778         } else
1779                 forcewake_count = dev_priv->uncore.forcewake_count;
1780         spin_unlock_irq(&dev_priv->uncore.lock);
1781
1782         if (IS_VALLEYVIEW(dev)) {
1783                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1784                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1785         } else
1786                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1787
1788         return 0;
1789 }
1790
1791 static const char *swizzle_string(unsigned swizzle)
1792 {
1793         switch (swizzle) {
1794         case I915_BIT_6_SWIZZLE_NONE:
1795                 return "none";
1796         case I915_BIT_6_SWIZZLE_9:
1797                 return "bit9";
1798         case I915_BIT_6_SWIZZLE_9_10:
1799                 return "bit9/bit10";
1800         case I915_BIT_6_SWIZZLE_9_11:
1801                 return "bit9/bit11";
1802         case I915_BIT_6_SWIZZLE_9_10_11:
1803                 return "bit9/bit10/bit11";
1804         case I915_BIT_6_SWIZZLE_9_17:
1805                 return "bit9/bit17";
1806         case I915_BIT_6_SWIZZLE_9_10_17:
1807                 return "bit9/bit10/bit17";
1808         case I915_BIT_6_SWIZZLE_UNKNOWN:
1809                 return "unknown";
1810         }
1811
1812         return "bug";
1813 }
1814
1815 static int i915_swizzle_info(struct seq_file *m, void *data)
1816 {
1817         struct drm_info_node *node = m->private;
1818         struct drm_device *dev = node->minor->dev;
1819         struct drm_i915_private *dev_priv = dev->dev_private;
1820         int ret;
1821
1822         ret = mutex_lock_interruptible(&dev->struct_mutex);
1823         if (ret)
1824                 return ret;
1825         intel_runtime_pm_get(dev_priv);
1826
1827         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1828                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1829         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1830                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1831
1832         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1833                 seq_printf(m, "DDC = 0x%08x\n",
1834                            I915_READ(DCC));
1835                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1836                            I915_READ16(C0DRB3));
1837                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1838                            I915_READ16(C1DRB3));
1839         } else if (INTEL_INFO(dev)->gen >= 6) {
1840                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1841                            I915_READ(MAD_DIMM_C0));
1842                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1843                            I915_READ(MAD_DIMM_C1));
1844                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1845                            I915_READ(MAD_DIMM_C2));
1846                 seq_printf(m, "TILECTL = 0x%08x\n",
1847                            I915_READ(TILECTL));
1848                 if (IS_GEN8(dev))
1849                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1850                                    I915_READ(GAMTARBMODE));
1851                 else
1852                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1853                                    I915_READ(ARB_MODE));
1854                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1855                            I915_READ(DISP_ARB_CTL));
1856         }
1857         intel_runtime_pm_put(dev_priv);
1858         mutex_unlock(&dev->struct_mutex);
1859
1860         return 0;
1861 }
1862
1863 static int per_file_ctx(int id, void *ptr, void *data)
1864 {
1865         struct intel_context *ctx = ptr;
1866         struct seq_file *m = data;
1867         struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1868
1869         if (i915_gem_context_is_default(ctx))
1870                 seq_puts(m, "  default context:\n");
1871         else
1872                 seq_printf(m, "  context %d:\n", ctx->id);
1873         ppgtt->debug_dump(ppgtt, m);
1874
1875         return 0;
1876 }
1877
1878 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1879 {
1880         struct drm_i915_private *dev_priv = dev->dev_private;
1881         struct intel_engine_cs *ring;
1882         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1883         int unused, i;
1884
1885         if (!ppgtt)
1886                 return;
1887
1888         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1889         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1890         for_each_ring(ring, dev_priv, unused) {
1891                 seq_printf(m, "%s\n", ring->name);
1892                 for (i = 0; i < 4; i++) {
1893                         u32 offset = 0x270 + i * 8;
1894                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1895                         pdp <<= 32;
1896                         pdp |= I915_READ(ring->mmio_base + offset);
1897                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1898                 }
1899         }
1900 }
1901
1902 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1903 {
1904         struct drm_i915_private *dev_priv = dev->dev_private;
1905         struct intel_engine_cs *ring;
1906         struct drm_file *file;
1907         int i;
1908
1909         if (INTEL_INFO(dev)->gen == 6)
1910                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1911
1912         for_each_ring(ring, dev_priv, i) {
1913                 seq_printf(m, "%s\n", ring->name);
1914                 if (INTEL_INFO(dev)->gen == 7)
1915                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1916                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1917                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1918                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1919         }
1920         if (dev_priv->mm.aliasing_ppgtt) {
1921                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1922
1923                 seq_puts(m, "aliasing PPGTT:\n");
1924                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1925
1926                 ppgtt->debug_dump(ppgtt, m);
1927         } else
1928                 return;
1929
1930         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1931                 struct drm_i915_file_private *file_priv = file->driver_priv;
1932
1933                 seq_printf(m, "proc: %s\n",
1934                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
1935                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1936         }
1937         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1938 }
1939
1940 static int i915_ppgtt_info(struct seq_file *m, void *data)
1941 {
1942         struct drm_info_node *node = m->private;
1943         struct drm_device *dev = node->minor->dev;
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945
1946         int ret = mutex_lock_interruptible(&dev->struct_mutex);
1947         if (ret)
1948                 return ret;
1949         intel_runtime_pm_get(dev_priv);
1950
1951         if (INTEL_INFO(dev)->gen >= 8)
1952                 gen8_ppgtt_info(m, dev);
1953         else if (INTEL_INFO(dev)->gen >= 6)
1954                 gen6_ppgtt_info(m, dev);
1955
1956         intel_runtime_pm_put(dev_priv);
1957         mutex_unlock(&dev->struct_mutex);
1958
1959         return 0;
1960 }
1961
1962 static int i915_llc(struct seq_file *m, void *data)
1963 {
1964         struct drm_info_node *node = m->private;
1965         struct drm_device *dev = node->minor->dev;
1966         struct drm_i915_private *dev_priv = dev->dev_private;
1967
1968         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
1969         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1970         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1971
1972         return 0;
1973 }
1974
1975 static int i915_edp_psr_status(struct seq_file *m, void *data)
1976 {
1977         struct drm_info_node *node = m->private;
1978         struct drm_device *dev = node->minor->dev;
1979         struct drm_i915_private *dev_priv = dev->dev_private;
1980         u32 psrperf = 0;
1981         bool enabled = false;
1982
1983         intel_runtime_pm_get(dev_priv);
1984
1985         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1986         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1987         seq_printf(m, "Enabled: %s\n", yesno(dev_priv->psr.enabled));
1988         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
1989
1990         enabled = HAS_PSR(dev) &&
1991                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1992         seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
1993
1994         if (HAS_PSR(dev))
1995                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1996                         EDP_PSR_PERF_CNT_MASK;
1997         seq_printf(m, "Performance_Counter: %u\n", psrperf);
1998
1999         intel_runtime_pm_put(dev_priv);
2000         return 0;
2001 }
2002
2003 static int i915_sink_crc(struct seq_file *m, void *data)
2004 {
2005         struct drm_info_node *node = m->private;
2006         struct drm_device *dev = node->minor->dev;
2007         struct intel_encoder *encoder;
2008         struct intel_connector *connector;
2009         struct intel_dp *intel_dp = NULL;
2010         int ret;
2011         u8 crc[6];
2012
2013         drm_modeset_lock_all(dev);
2014         list_for_each_entry(connector, &dev->mode_config.connector_list,
2015                             base.head) {
2016
2017                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2018                         continue;
2019
2020                 if (!connector->base.encoder)
2021                         continue;
2022
2023                 encoder = to_intel_encoder(connector->base.encoder);
2024                 if (encoder->type != INTEL_OUTPUT_EDP)
2025                         continue;
2026
2027                 intel_dp = enc_to_intel_dp(&encoder->base);
2028
2029                 ret = intel_dp_sink_crc(intel_dp, crc);
2030                 if (ret)
2031                         goto out;
2032
2033                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2034                            crc[0], crc[1], crc[2],
2035                            crc[3], crc[4], crc[5]);
2036                 goto out;
2037         }
2038         ret = -ENODEV;
2039 out:
2040         drm_modeset_unlock_all(dev);
2041         return ret;
2042 }
2043
2044 static int i915_energy_uJ(struct seq_file *m, void *data)
2045 {
2046         struct drm_info_node *node = m->private;
2047         struct drm_device *dev = node->minor->dev;
2048         struct drm_i915_private *dev_priv = dev->dev_private;
2049         u64 power;
2050         u32 units;
2051
2052         if (INTEL_INFO(dev)->gen < 6)
2053                 return -ENODEV;
2054
2055         intel_runtime_pm_get(dev_priv);
2056
2057         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2058         power = (power & 0x1f00) >> 8;
2059         units = 1000000 / (1 << power); /* convert to uJ */
2060         power = I915_READ(MCH_SECP_NRG_STTS);
2061         power *= units;
2062
2063         intel_runtime_pm_put(dev_priv);
2064
2065         seq_printf(m, "%llu", (long long unsigned)power);
2066
2067         return 0;
2068 }
2069
2070 static int i915_pc8_status(struct seq_file *m, void *unused)
2071 {
2072         struct drm_info_node *node = m->private;
2073         struct drm_device *dev = node->minor->dev;
2074         struct drm_i915_private *dev_priv = dev->dev_private;
2075
2076         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2077                 seq_puts(m, "not supported\n");
2078                 return 0;
2079         }
2080
2081         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2082         seq_printf(m, "IRQs disabled: %s\n",
2083                    yesno(dev_priv->pm.irqs_disabled));
2084
2085         return 0;
2086 }
2087
2088 static const char *power_domain_str(enum intel_display_power_domain domain)
2089 {
2090         switch (domain) {
2091         case POWER_DOMAIN_PIPE_A:
2092                 return "PIPE_A";
2093         case POWER_DOMAIN_PIPE_B:
2094                 return "PIPE_B";
2095         case POWER_DOMAIN_PIPE_C:
2096                 return "PIPE_C";
2097         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2098                 return "PIPE_A_PANEL_FITTER";
2099         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2100                 return "PIPE_B_PANEL_FITTER";
2101         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2102                 return "PIPE_C_PANEL_FITTER";
2103         case POWER_DOMAIN_TRANSCODER_A:
2104                 return "TRANSCODER_A";
2105         case POWER_DOMAIN_TRANSCODER_B:
2106                 return "TRANSCODER_B";
2107         case POWER_DOMAIN_TRANSCODER_C:
2108                 return "TRANSCODER_C";
2109         case POWER_DOMAIN_TRANSCODER_EDP:
2110                 return "TRANSCODER_EDP";
2111         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2112                 return "PORT_DDI_A_2_LANES";
2113         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2114                 return "PORT_DDI_A_4_LANES";
2115         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2116                 return "PORT_DDI_B_2_LANES";
2117         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2118                 return "PORT_DDI_B_4_LANES";
2119         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2120                 return "PORT_DDI_C_2_LANES";
2121         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2122                 return "PORT_DDI_C_4_LANES";
2123         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2124                 return "PORT_DDI_D_2_LANES";
2125         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2126                 return "PORT_DDI_D_4_LANES";
2127         case POWER_DOMAIN_PORT_DSI:
2128                 return "PORT_DSI";
2129         case POWER_DOMAIN_PORT_CRT:
2130                 return "PORT_CRT";
2131         case POWER_DOMAIN_PORT_OTHER:
2132                 return "PORT_OTHER";
2133         case POWER_DOMAIN_VGA:
2134                 return "VGA";
2135         case POWER_DOMAIN_AUDIO:
2136                 return "AUDIO";
2137         case POWER_DOMAIN_INIT:
2138                 return "INIT";
2139         default:
2140                 WARN_ON(1);
2141                 return "?";
2142         }
2143 }
2144
2145 static int i915_power_domain_info(struct seq_file *m, void *unused)
2146 {
2147         struct drm_info_node *node = m->private;
2148         struct drm_device *dev = node->minor->dev;
2149         struct drm_i915_private *dev_priv = dev->dev_private;
2150         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2151         int i;
2152
2153         mutex_lock(&power_domains->lock);
2154
2155         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2156         for (i = 0; i < power_domains->power_well_count; i++) {
2157                 struct i915_power_well *power_well;
2158                 enum intel_display_power_domain power_domain;
2159
2160                 power_well = &power_domains->power_wells[i];
2161                 seq_printf(m, "%-25s %d\n", power_well->name,
2162                            power_well->count);
2163
2164                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2165                      power_domain++) {
2166                         if (!(BIT(power_domain) & power_well->domains))
2167                                 continue;
2168
2169                         seq_printf(m, "  %-23s %d\n",
2170                                  power_domain_str(power_domain),
2171                                  power_domains->domain_use_count[power_domain]);
2172                 }
2173         }
2174
2175         mutex_unlock(&power_domains->lock);
2176
2177         return 0;
2178 }
2179
2180 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2181                                  struct drm_display_mode *mode)
2182 {
2183         int i;
2184
2185         for (i = 0; i < tabs; i++)
2186                 seq_putc(m, '\t');
2187
2188         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2189                    mode->base.id, mode->name,
2190                    mode->vrefresh, mode->clock,
2191                    mode->hdisplay, mode->hsync_start,
2192                    mode->hsync_end, mode->htotal,
2193                    mode->vdisplay, mode->vsync_start,
2194                    mode->vsync_end, mode->vtotal,
2195                    mode->type, mode->flags);
2196 }
2197
2198 static void intel_encoder_info(struct seq_file *m,
2199                                struct intel_crtc *intel_crtc,
2200                                struct intel_encoder *intel_encoder)
2201 {
2202         struct drm_info_node *node = m->private;
2203         struct drm_device *dev = node->minor->dev;
2204         struct drm_crtc *crtc = &intel_crtc->base;
2205         struct intel_connector *intel_connector;
2206         struct drm_encoder *encoder;
2207
2208         encoder = &intel_encoder->base;
2209         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2210                    encoder->base.id, encoder->name);
2211         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2212                 struct drm_connector *connector = &intel_connector->base;
2213                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2214                            connector->base.id,
2215                            connector->name,
2216                            drm_get_connector_status_name(connector->status));
2217                 if (connector->status == connector_status_connected) {
2218                         struct drm_display_mode *mode = &crtc->mode;
2219                         seq_printf(m, ", mode:\n");
2220                         intel_seq_print_mode(m, 2, mode);
2221                 } else {
2222                         seq_putc(m, '\n');
2223                 }
2224         }
2225 }
2226
2227 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2228 {
2229         struct drm_info_node *node = m->private;
2230         struct drm_device *dev = node->minor->dev;
2231         struct drm_crtc *crtc = &intel_crtc->base;
2232         struct intel_encoder *intel_encoder;
2233
2234         if (crtc->primary->fb)
2235                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2236                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2237                            crtc->primary->fb->width, crtc->primary->fb->height);
2238         else
2239                 seq_puts(m, "\tprimary plane disabled\n");
2240         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2241                 intel_encoder_info(m, intel_crtc, intel_encoder);
2242 }
2243
2244 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2245 {
2246         struct drm_display_mode *mode = panel->fixed_mode;
2247
2248         seq_printf(m, "\tfixed mode:\n");
2249         intel_seq_print_mode(m, 2, mode);
2250 }
2251
2252 static void intel_dp_info(struct seq_file *m,
2253                           struct intel_connector *intel_connector)
2254 {
2255         struct intel_encoder *intel_encoder = intel_connector->encoder;
2256         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2257
2258         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2259         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2260                    "no");
2261         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2262                 intel_panel_info(m, &intel_connector->panel);
2263 }
2264
2265 static void intel_hdmi_info(struct seq_file *m,
2266                             struct intel_connector *intel_connector)
2267 {
2268         struct intel_encoder *intel_encoder = intel_connector->encoder;
2269         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2270
2271         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2272                    "no");
2273 }
2274
2275 static void intel_lvds_info(struct seq_file *m,
2276                             struct intel_connector *intel_connector)
2277 {
2278         intel_panel_info(m, &intel_connector->panel);
2279 }
2280
2281 static void intel_connector_info(struct seq_file *m,
2282                                  struct drm_connector *connector)
2283 {
2284         struct intel_connector *intel_connector = to_intel_connector(connector);
2285         struct intel_encoder *intel_encoder = intel_connector->encoder;
2286         struct drm_display_mode *mode;
2287
2288         seq_printf(m, "connector %d: type %s, status: %s\n",
2289                    connector->base.id, connector->name,
2290                    drm_get_connector_status_name(connector->status));
2291         if (connector->status == connector_status_connected) {
2292                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2293                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2294                            connector->display_info.width_mm,
2295                            connector->display_info.height_mm);
2296                 seq_printf(m, "\tsubpixel order: %s\n",
2297                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2298                 seq_printf(m, "\tCEA rev: %d\n",
2299                            connector->display_info.cea_rev);
2300         }
2301         if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2302             intel_encoder->type == INTEL_OUTPUT_EDP)
2303                 intel_dp_info(m, intel_connector);
2304         else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2305                 intel_hdmi_info(m, intel_connector);
2306         else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2307                 intel_lvds_info(m, intel_connector);
2308
2309         seq_printf(m, "\tmodes:\n");
2310         list_for_each_entry(mode, &connector->modes, head)
2311                 intel_seq_print_mode(m, 2, mode);
2312 }
2313
2314 static bool cursor_active(struct drm_device *dev, int pipe)
2315 {
2316         struct drm_i915_private *dev_priv = dev->dev_private;
2317         u32 state;
2318
2319         if (IS_845G(dev) || IS_I865G(dev))
2320                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2321         else
2322                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2323
2324         return state;
2325 }
2326
2327 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2328 {
2329         struct drm_i915_private *dev_priv = dev->dev_private;
2330         u32 pos;
2331
2332         pos = I915_READ(CURPOS(pipe));
2333
2334         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2335         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2336                 *x = -*x;
2337
2338         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2339         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2340                 *y = -*y;
2341
2342         return cursor_active(dev, pipe);
2343 }
2344
2345 static int i915_display_info(struct seq_file *m, void *unused)
2346 {
2347         struct drm_info_node *node = m->private;
2348         struct drm_device *dev = node->minor->dev;
2349         struct drm_i915_private *dev_priv = dev->dev_private;
2350         struct intel_crtc *crtc;
2351         struct drm_connector *connector;
2352
2353         intel_runtime_pm_get(dev_priv);
2354         drm_modeset_lock_all(dev);
2355         seq_printf(m, "CRTC info\n");
2356         seq_printf(m, "---------\n");
2357         for_each_intel_crtc(dev, crtc) {
2358                 bool active;
2359                 int x, y;
2360
2361                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2362                            crtc->base.base.id, pipe_name(crtc->pipe),
2363                            yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2364                 if (crtc->active) {
2365                         intel_crtc_info(m, crtc);
2366
2367                         active = cursor_position(dev, crtc->pipe, &x, &y);
2368                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2369                                    yesno(crtc->cursor_base),
2370                                    x, y, crtc->cursor_width, crtc->cursor_height,
2371                                    crtc->cursor_addr, yesno(active));
2372                 }
2373
2374                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2375                            yesno(!crtc->cpu_fifo_underrun_disabled),
2376                            yesno(!crtc->pch_fifo_underrun_disabled));
2377         }
2378
2379         seq_printf(m, "\n");
2380         seq_printf(m, "Connector info\n");
2381         seq_printf(m, "--------------\n");
2382         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2383                 intel_connector_info(m, connector);
2384         }
2385         drm_modeset_unlock_all(dev);
2386         intel_runtime_pm_put(dev_priv);
2387
2388         return 0;
2389 }
2390
2391 struct pipe_crc_info {
2392         const char *name;
2393         struct drm_device *dev;
2394         enum pipe pipe;
2395 };
2396
2397 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2398 {
2399         struct pipe_crc_info *info = inode->i_private;
2400         struct drm_i915_private *dev_priv = info->dev->dev_private;
2401         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2402
2403         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2404                 return -ENODEV;
2405
2406         spin_lock_irq(&pipe_crc->lock);
2407
2408         if (pipe_crc->opened) {
2409                 spin_unlock_irq(&pipe_crc->lock);
2410                 return -EBUSY; /* already open */
2411         }
2412
2413         pipe_crc->opened = true;
2414         filep->private_data = inode->i_private;
2415
2416         spin_unlock_irq(&pipe_crc->lock);
2417
2418         return 0;
2419 }
2420
2421 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2422 {
2423         struct pipe_crc_info *info = inode->i_private;
2424         struct drm_i915_private *dev_priv = info->dev->dev_private;
2425         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2426
2427         spin_lock_irq(&pipe_crc->lock);
2428         pipe_crc->opened = false;
2429         spin_unlock_irq(&pipe_crc->lock);
2430
2431         return 0;
2432 }
2433
2434 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2435 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2436 /* account for \'0' */
2437 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2438
2439 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2440 {
2441         assert_spin_locked(&pipe_crc->lock);
2442         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2443                         INTEL_PIPE_CRC_ENTRIES_NR);
2444 }
2445
2446 static ssize_t
2447 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2448                    loff_t *pos)
2449 {
2450         struct pipe_crc_info *info = filep->private_data;
2451         struct drm_device *dev = info->dev;
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2454         char buf[PIPE_CRC_BUFFER_LEN];
2455         int head, tail, n_entries, n;
2456         ssize_t bytes_read;
2457
2458         /*
2459          * Don't allow user space to provide buffers not big enough to hold
2460          * a line of data.
2461          */
2462         if (count < PIPE_CRC_LINE_LEN)
2463                 return -EINVAL;
2464
2465         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2466                 return 0;
2467
2468         /* nothing to read */
2469         spin_lock_irq(&pipe_crc->lock);
2470         while (pipe_crc_data_count(pipe_crc) == 0) {
2471                 int ret;
2472
2473                 if (filep->f_flags & O_NONBLOCK) {
2474                         spin_unlock_irq(&pipe_crc->lock);
2475                         return -EAGAIN;
2476                 }
2477
2478                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2479                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2480                 if (ret) {
2481                         spin_unlock_irq(&pipe_crc->lock);
2482                         return ret;
2483                 }
2484         }
2485
2486         /* We now have one or more entries to read */
2487         head = pipe_crc->head;
2488         tail = pipe_crc->tail;
2489         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2490                         count / PIPE_CRC_LINE_LEN);
2491         spin_unlock_irq(&pipe_crc->lock);
2492
2493         bytes_read = 0;
2494         n = 0;
2495         do {
2496                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2497                 int ret;
2498
2499                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2500                                        "%8u %8x %8x %8x %8x %8x\n",
2501                                        entry->frame, entry->crc[0],
2502                                        entry->crc[1], entry->crc[2],
2503                                        entry->crc[3], entry->crc[4]);
2504
2505                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2506                                    buf, PIPE_CRC_LINE_LEN);
2507                 if (ret == PIPE_CRC_LINE_LEN)
2508                         return -EFAULT;
2509
2510                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2511                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2512                 n++;
2513         } while (--n_entries);
2514
2515         spin_lock_irq(&pipe_crc->lock);
2516         pipe_crc->tail = tail;
2517         spin_unlock_irq(&pipe_crc->lock);
2518
2519         return bytes_read;
2520 }
2521
2522 static const struct file_operations i915_pipe_crc_fops = {
2523         .owner = THIS_MODULE,
2524         .open = i915_pipe_crc_open,
2525         .read = i915_pipe_crc_read,
2526         .release = i915_pipe_crc_release,
2527 };
2528
2529 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2530         {
2531                 .name = "i915_pipe_A_crc",
2532                 .pipe = PIPE_A,
2533         },
2534         {
2535                 .name = "i915_pipe_B_crc",
2536                 .pipe = PIPE_B,
2537         },
2538         {
2539                 .name = "i915_pipe_C_crc",
2540                 .pipe = PIPE_C,
2541         },
2542 };
2543
2544 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2545                                 enum pipe pipe)
2546 {
2547         struct drm_device *dev = minor->dev;
2548         struct dentry *ent;
2549         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2550
2551         info->dev = dev;
2552         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2553                                   &i915_pipe_crc_fops);
2554         if (!ent)
2555                 return -ENOMEM;
2556
2557         return drm_add_fake_info_node(minor, ent, info);
2558 }
2559
2560 static const char * const pipe_crc_sources[] = {
2561         "none",
2562         "plane1",
2563         "plane2",
2564         "pf",
2565         "pipe",
2566         "TV",
2567         "DP-B",
2568         "DP-C",
2569         "DP-D",
2570         "auto",
2571 };
2572
2573 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2574 {
2575         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2576         return pipe_crc_sources[source];
2577 }
2578
2579 static int display_crc_ctl_show(struct seq_file *m, void *data)
2580 {
2581         struct drm_device *dev = m->private;
2582         struct drm_i915_private *dev_priv = dev->dev_private;
2583         int i;
2584
2585         for (i = 0; i < I915_MAX_PIPES; i++)
2586                 seq_printf(m, "%c %s\n", pipe_name(i),
2587                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2588
2589         return 0;
2590 }
2591
2592 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2593 {
2594         struct drm_device *dev = inode->i_private;
2595
2596         return single_open(file, display_crc_ctl_show, dev);
2597 }
2598
2599 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2600                                  uint32_t *val)
2601 {
2602         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2603                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2604
2605         switch (*source) {
2606         case INTEL_PIPE_CRC_SOURCE_PIPE:
2607                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2608                 break;
2609         case INTEL_PIPE_CRC_SOURCE_NONE:
2610                 *val = 0;
2611                 break;
2612         default:
2613                 return -EINVAL;
2614         }
2615
2616         return 0;
2617 }
2618
2619 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2620                                      enum intel_pipe_crc_source *source)
2621 {
2622         struct intel_encoder *encoder;
2623         struct intel_crtc *crtc;
2624         struct intel_digital_port *dig_port;
2625         int ret = 0;
2626
2627         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2628
2629         drm_modeset_lock_all(dev);
2630         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2631                             base.head) {
2632                 if (!encoder->base.crtc)
2633                         continue;
2634
2635                 crtc = to_intel_crtc(encoder->base.crtc);
2636
2637                 if (crtc->pipe != pipe)
2638                         continue;
2639
2640                 switch (encoder->type) {
2641                 case INTEL_OUTPUT_TVOUT:
2642                         *source = INTEL_PIPE_CRC_SOURCE_TV;
2643                         break;
2644                 case INTEL_OUTPUT_DISPLAYPORT:
2645                 case INTEL_OUTPUT_EDP:
2646                         dig_port = enc_to_dig_port(&encoder->base);
2647                         switch (dig_port->port) {
2648                         case PORT_B:
2649                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2650                                 break;
2651                         case PORT_C:
2652                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2653                                 break;
2654                         case PORT_D:
2655                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2656                                 break;
2657                         default:
2658                                 WARN(1, "nonexisting DP port %c\n",
2659                                      port_name(dig_port->port));
2660                                 break;
2661                         }
2662                         break;
2663                 }
2664         }
2665         drm_modeset_unlock_all(dev);
2666
2667         return ret;
2668 }
2669
2670 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2671                                 enum pipe pipe,
2672                                 enum intel_pipe_crc_source *source,
2673                                 uint32_t *val)
2674 {
2675         struct drm_i915_private *dev_priv = dev->dev_private;
2676         bool need_stable_symbols = false;
2677
2678         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2679                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2680                 if (ret)
2681                         return ret;
2682         }
2683
2684         switch (*source) {
2685         case INTEL_PIPE_CRC_SOURCE_PIPE:
2686                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2687                 break;
2688         case INTEL_PIPE_CRC_SOURCE_DP_B:
2689                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2690                 need_stable_symbols = true;
2691                 break;
2692         case INTEL_PIPE_CRC_SOURCE_DP_C:
2693                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2694                 need_stable_symbols = true;
2695                 break;
2696         case INTEL_PIPE_CRC_SOURCE_NONE:
2697                 *val = 0;
2698                 break;
2699         default:
2700                 return -EINVAL;
2701         }
2702
2703         /*
2704          * When the pipe CRC tap point is after the transcoders we need
2705          * to tweak symbol-level features to produce a deterministic series of
2706          * symbols for a given frame. We need to reset those features only once
2707          * a frame (instead of every nth symbol):
2708          *   - DC-balance: used to ensure a better clock recovery from the data
2709          *     link (SDVO)
2710          *   - DisplayPort scrambling: used for EMI reduction
2711          */
2712         if (need_stable_symbols) {
2713                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2714
2715                 tmp |= DC_BALANCE_RESET_VLV;
2716                 if (pipe == PIPE_A)
2717                         tmp |= PIPE_A_SCRAMBLE_RESET;
2718                 else
2719                         tmp |= PIPE_B_SCRAMBLE_RESET;
2720
2721                 I915_WRITE(PORT_DFT2_G4X, tmp);
2722         }
2723
2724         return 0;
2725 }
2726
2727 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2728                                  enum pipe pipe,
2729                                  enum intel_pipe_crc_source *source,
2730                                  uint32_t *val)
2731 {
2732         struct drm_i915_private *dev_priv = dev->dev_private;
2733         bool need_stable_symbols = false;
2734
2735         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2736                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2737                 if (ret)
2738                         return ret;
2739         }
2740
2741         switch (*source) {
2742         case INTEL_PIPE_CRC_SOURCE_PIPE:
2743                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2744                 break;
2745         case INTEL_PIPE_CRC_SOURCE_TV:
2746                 if (!SUPPORTS_TV(dev))
2747                         return -EINVAL;
2748                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2749                 break;
2750         case INTEL_PIPE_CRC_SOURCE_DP_B:
2751                 if (!IS_G4X(dev))
2752                         return -EINVAL;
2753                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2754                 need_stable_symbols = true;
2755                 break;
2756         case INTEL_PIPE_CRC_SOURCE_DP_C:
2757                 if (!IS_G4X(dev))
2758                         return -EINVAL;
2759                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2760                 need_stable_symbols = true;
2761                 break;
2762         case INTEL_PIPE_CRC_SOURCE_DP_D:
2763                 if (!IS_G4X(dev))
2764                         return -EINVAL;
2765                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2766                 need_stable_symbols = true;
2767                 break;
2768         case INTEL_PIPE_CRC_SOURCE_NONE:
2769                 *val = 0;
2770                 break;
2771         default:
2772                 return -EINVAL;
2773         }
2774
2775         /*
2776          * When the pipe CRC tap point is after the transcoders we need
2777          * to tweak symbol-level features to produce a deterministic series of
2778          * symbols for a given frame. We need to reset those features only once
2779          * a frame (instead of every nth symbol):
2780          *   - DC-balance: used to ensure a better clock recovery from the data
2781          *     link (SDVO)
2782          *   - DisplayPort scrambling: used for EMI reduction
2783          */
2784         if (need_stable_symbols) {
2785                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2786
2787                 WARN_ON(!IS_G4X(dev));
2788
2789                 I915_WRITE(PORT_DFT_I9XX,
2790                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2791
2792                 if (pipe == PIPE_A)
2793                         tmp |= PIPE_A_SCRAMBLE_RESET;
2794                 else
2795                         tmp |= PIPE_B_SCRAMBLE_RESET;
2796
2797                 I915_WRITE(PORT_DFT2_G4X, tmp);
2798         }
2799
2800         return 0;
2801 }
2802
2803 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2804                                          enum pipe pipe)
2805 {
2806         struct drm_i915_private *dev_priv = dev->dev_private;
2807         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2808
2809         if (pipe == PIPE_A)
2810                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2811         else
2812                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2813         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2814                 tmp &= ~DC_BALANCE_RESET_VLV;
2815         I915_WRITE(PORT_DFT2_G4X, tmp);
2816
2817 }
2818
2819 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2820                                          enum pipe pipe)
2821 {
2822         struct drm_i915_private *dev_priv = dev->dev_private;
2823         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2824
2825         if (pipe == PIPE_A)
2826                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2827         else
2828                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2829         I915_WRITE(PORT_DFT2_G4X, tmp);
2830
2831         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2832                 I915_WRITE(PORT_DFT_I9XX,
2833                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2834         }
2835 }
2836
2837 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2838                                 uint32_t *val)
2839 {
2840         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2841                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2842
2843         switch (*source) {
2844         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2845                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2846                 break;
2847         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2848                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2849                 break;
2850         case INTEL_PIPE_CRC_SOURCE_PIPE:
2851                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2852                 break;
2853         case INTEL_PIPE_CRC_SOURCE_NONE:
2854                 *val = 0;
2855                 break;
2856         default:
2857                 return -EINVAL;
2858         }
2859
2860         return 0;
2861 }
2862
2863 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2864                                 uint32_t *val)
2865 {
2866         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2867                 *source = INTEL_PIPE_CRC_SOURCE_PF;
2868
2869         switch (*source) {
2870         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2871                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2872                 break;
2873         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2874                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2875                 break;
2876         case INTEL_PIPE_CRC_SOURCE_PF:
2877                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2878                 break;
2879         case INTEL_PIPE_CRC_SOURCE_NONE:
2880                 *val = 0;
2881                 break;
2882         default:
2883                 return -EINVAL;
2884         }
2885
2886         return 0;
2887 }
2888
2889 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2890                                enum intel_pipe_crc_source source)
2891 {
2892         struct drm_i915_private *dev_priv = dev->dev_private;
2893         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2894         u32 val = 0; /* shut up gcc */
2895         int ret;
2896
2897         if (pipe_crc->source == source)
2898                 return 0;
2899
2900         /* forbid changing the source without going back to 'none' */
2901         if (pipe_crc->source && source)
2902                 return -EINVAL;
2903
2904         if (IS_GEN2(dev))
2905                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2906         else if (INTEL_INFO(dev)->gen < 5)
2907                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2908         else if (IS_VALLEYVIEW(dev))
2909                 ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2910         else if (IS_GEN5(dev) || IS_GEN6(dev))
2911                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
2912         else
2913                 ret = ivb_pipe_crc_ctl_reg(&source, &val);
2914
2915         if (ret != 0)
2916                 return ret;
2917
2918         /* none -> real source transition */
2919         if (source) {
2920                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2921                                  pipe_name(pipe), pipe_crc_source_name(source));
2922
2923                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2924                                             INTEL_PIPE_CRC_ENTRIES_NR,
2925                                             GFP_KERNEL);
2926                 if (!pipe_crc->entries)
2927                         return -ENOMEM;
2928
2929                 spin_lock_irq(&pipe_crc->lock);
2930                 pipe_crc->head = 0;
2931                 pipe_crc->tail = 0;
2932                 spin_unlock_irq(&pipe_crc->lock);
2933         }
2934
2935         pipe_crc->source = source;
2936
2937         I915_WRITE(PIPE_CRC_CTL(pipe), val);
2938         POSTING_READ(PIPE_CRC_CTL(pipe));
2939
2940         /* real source -> none transition */
2941         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2942                 struct intel_pipe_crc_entry *entries;
2943                 struct intel_crtc *crtc =
2944                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2945
2946                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2947                                  pipe_name(pipe));
2948
2949                 drm_modeset_lock(&crtc->base.mutex, NULL);
2950                 if (crtc->active)
2951                         intel_wait_for_vblank(dev, pipe);
2952                 drm_modeset_unlock(&crtc->base.mutex);
2953
2954                 spin_lock_irq(&pipe_crc->lock);
2955                 entries = pipe_crc->entries;
2956                 pipe_crc->entries = NULL;
2957                 spin_unlock_irq(&pipe_crc->lock);
2958
2959                 kfree(entries);
2960
2961                 if (IS_G4X(dev))
2962                         g4x_undo_pipe_scramble_reset(dev, pipe);
2963                 else if (IS_VALLEYVIEW(dev))
2964                         vlv_undo_pipe_scramble_reset(dev, pipe);
2965         }
2966
2967         return 0;
2968 }
2969
2970 /*
2971  * Parse pipe CRC command strings:
2972  *   command: wsp* object wsp+ name wsp+ source wsp*
2973  *   object: 'pipe'
2974  *   name: (A | B | C)
2975  *   source: (none | plane1 | plane2 | pf)
2976  *   wsp: (#0x20 | #0x9 | #0xA)+
2977  *
2978  * eg.:
2979  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
2980  *  "pipe A none"    ->  Stop CRC
2981  */
2982 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2983 {
2984         int n_words = 0;
2985
2986         while (*buf) {
2987                 char *end;
2988
2989                 /* skip leading white space */
2990                 buf = skip_spaces(buf);
2991                 if (!*buf)
2992                         break;  /* end of buffer */
2993
2994                 /* find end of word */
2995                 for (end = buf; *end && !isspace(*end); end++)
2996                         ;
2997
2998                 if (n_words == max_words) {
2999                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3000                                          max_words);
3001                         return -EINVAL; /* ran out of words[] before bytes */
3002                 }
3003
3004                 if (*end)
3005                         *end++ = '\0';
3006                 words[n_words++] = buf;
3007                 buf = end;
3008         }
3009
3010         return n_words;
3011 }
3012
3013 enum intel_pipe_crc_object {
3014         PIPE_CRC_OBJECT_PIPE,
3015 };
3016
3017 static const char * const pipe_crc_objects[] = {
3018         "pipe",
3019 };
3020
3021 static int
3022 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3023 {
3024         int i;
3025
3026         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3027                 if (!strcmp(buf, pipe_crc_objects[i])) {
3028                         *o = i;
3029                         return 0;
3030                     }
3031
3032         return -EINVAL;
3033 }
3034
3035 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3036 {
3037         const char name = buf[0];
3038
3039         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3040                 return -EINVAL;
3041
3042         *pipe = name - 'A';
3043
3044         return 0;
3045 }
3046
3047 static int
3048 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3049 {
3050         int i;
3051
3052         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3053                 if (!strcmp(buf, pipe_crc_sources[i])) {
3054                         *s = i;
3055                         return 0;
3056                     }
3057
3058         return -EINVAL;
3059 }
3060
3061 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3062 {
3063 #define N_WORDS 3
3064         int n_words;
3065         char *words[N_WORDS];
3066         enum pipe pipe;
3067         enum intel_pipe_crc_object object;
3068         enum intel_pipe_crc_source source;
3069
3070         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3071         if (n_words != N_WORDS) {
3072                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3073                                  N_WORDS);
3074                 return -EINVAL;
3075         }
3076
3077         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3078                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3079                 return -EINVAL;
3080         }
3081
3082         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3083                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3084                 return -EINVAL;
3085         }
3086
3087         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3088                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3089                 return -EINVAL;
3090         }
3091
3092         return pipe_crc_set_source(dev, pipe, source);
3093 }
3094
3095 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3096                                      size_t len, loff_t *offp)
3097 {
3098         struct seq_file *m = file->private_data;
3099         struct drm_device *dev = m->private;
3100         char *tmpbuf;
3101         int ret;
3102
3103         if (len == 0)
3104                 return 0;
3105
3106         if (len > PAGE_SIZE - 1) {
3107                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3108                                  PAGE_SIZE);
3109                 return -E2BIG;
3110         }
3111
3112         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3113         if (!tmpbuf)
3114                 return -ENOMEM;
3115
3116         if (copy_from_user(tmpbuf, ubuf, len)) {
3117                 ret = -EFAULT;
3118                 goto out;
3119         }
3120         tmpbuf[len] = '\0';
3121
3122         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3123
3124 out:
3125         kfree(tmpbuf);
3126         if (ret < 0)
3127                 return ret;
3128
3129         *offp += len;
3130         return len;
3131 }
3132
3133 static const struct file_operations i915_display_crc_ctl_fops = {
3134         .owner = THIS_MODULE,
3135         .open = display_crc_ctl_open,
3136         .read = seq_read,
3137         .llseek = seq_lseek,
3138         .release = single_release,
3139         .write = display_crc_ctl_write
3140 };
3141
3142 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3143 {
3144         struct drm_device *dev = m->private;
3145         int num_levels = ilk_wm_max_level(dev) + 1;
3146         int level;
3147
3148         drm_modeset_lock_all(dev);
3149
3150         for (level = 0; level < num_levels; level++) {
3151                 unsigned int latency = wm[level];
3152
3153                 /* WM1+ latency values in 0.5us units */
3154                 if (level > 0)
3155                         latency *= 5;
3156
3157                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3158                            level, wm[level],
3159                            latency / 10, latency % 10);
3160         }
3161
3162         drm_modeset_unlock_all(dev);
3163 }
3164
3165 static int pri_wm_latency_show(struct seq_file *m, void *data)
3166 {
3167         struct drm_device *dev = m->private;
3168
3169         wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3170
3171         return 0;
3172 }
3173
3174 static int spr_wm_latency_show(struct seq_file *m, void *data)
3175 {
3176         struct drm_device *dev = m->private;
3177
3178         wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3179
3180         return 0;
3181 }
3182
3183 static int cur_wm_latency_show(struct seq_file *m, void *data)
3184 {
3185         struct drm_device *dev = m->private;
3186
3187         wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3188
3189         return 0;
3190 }
3191
3192 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3193 {
3194         struct drm_device *dev = inode->i_private;
3195
3196         if (!HAS_PCH_SPLIT(dev))
3197                 return -ENODEV;
3198
3199         return single_open(file, pri_wm_latency_show, dev);
3200 }
3201
3202 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3203 {
3204         struct drm_device *dev = inode->i_private;
3205
3206         if (!HAS_PCH_SPLIT(dev))
3207                 return -ENODEV;
3208
3209         return single_open(file, spr_wm_latency_show, dev);
3210 }
3211
3212 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3213 {
3214         struct drm_device *dev = inode->i_private;
3215
3216         if (!HAS_PCH_SPLIT(dev))
3217                 return -ENODEV;
3218
3219         return single_open(file, cur_wm_latency_show, dev);
3220 }
3221
3222 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3223                                 size_t len, loff_t *offp, uint16_t wm[5])
3224 {
3225         struct seq_file *m = file->private_data;
3226         struct drm_device *dev = m->private;
3227         uint16_t new[5] = { 0 };
3228         int num_levels = ilk_wm_max_level(dev) + 1;
3229         int level;
3230         int ret;
3231         char tmp[32];
3232
3233         if (len >= sizeof(tmp))
3234                 return -EINVAL;
3235
3236         if (copy_from_user(tmp, ubuf, len))
3237                 return -EFAULT;
3238
3239         tmp[len] = '\0';
3240
3241         ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3242         if (ret != num_levels)
3243                 return -EINVAL;
3244
3245         drm_modeset_lock_all(dev);
3246
3247         for (level = 0; level < num_levels; level++)
3248                 wm[level] = new[level];
3249
3250         drm_modeset_unlock_all(dev);
3251
3252         return len;
3253 }
3254
3255
3256 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3257                                     size_t len, loff_t *offp)
3258 {
3259         struct seq_file *m = file->private_data;
3260         struct drm_device *dev = m->private;
3261
3262         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3263 }
3264
3265 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3266                                     size_t len, loff_t *offp)
3267 {
3268         struct seq_file *m = file->private_data;
3269         struct drm_device *dev = m->private;
3270
3271         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3272 }
3273
3274 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3275                                     size_t len, loff_t *offp)
3276 {
3277         struct seq_file *m = file->private_data;
3278         struct drm_device *dev = m->private;
3279
3280         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3281 }
3282
3283 static const struct file_operations i915_pri_wm_latency_fops = {
3284         .owner = THIS_MODULE,
3285         .open = pri_wm_latency_open,
3286         .read = seq_read,
3287         .llseek = seq_lseek,
3288         .release = single_release,
3289         .write = pri_wm_latency_write
3290 };
3291
3292 static const struct file_operations i915_spr_wm_latency_fops = {
3293         .owner = THIS_MODULE,
3294         .open = spr_wm_latency_open,
3295         .read = seq_read,
3296         .llseek = seq_lseek,
3297         .release = single_release,
3298         .write = spr_wm_latency_write
3299 };
3300
3301 static const struct file_operations i915_cur_wm_latency_fops = {
3302         .owner = THIS_MODULE,
3303         .open = cur_wm_latency_open,
3304         .read = seq_read,
3305         .llseek = seq_lseek,
3306         .release = single_release,
3307         .write = cur_wm_latency_write
3308 };
3309
3310 static int
3311 i915_wedged_get(void *data, u64 *val)
3312 {
3313         struct drm_device *dev = data;
3314         struct drm_i915_private *dev_priv = dev->dev_private;
3315
3316         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3317
3318         return 0;
3319 }
3320
3321 static int
3322 i915_wedged_set(void *data, u64 val)
3323 {
3324         struct drm_device *dev = data;
3325         struct drm_i915_private *dev_priv = dev->dev_private;
3326
3327         intel_runtime_pm_get(dev_priv);
3328
3329         i915_handle_error(dev, val,
3330                           "Manually setting wedged to %llu", val);
3331
3332         intel_runtime_pm_put(dev_priv);
3333
3334         return 0;
3335 }
3336
3337 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3338                         i915_wedged_get, i915_wedged_set,
3339                         "%llu\n");
3340
3341 static int
3342 i915_ring_stop_get(void *data, u64 *val)
3343 {
3344         struct drm_device *dev = data;
3345         struct drm_i915_private *dev_priv = dev->dev_private;
3346
3347         *val = dev_priv->gpu_error.stop_rings;
3348
3349         return 0;
3350 }
3351
3352 static int
3353 i915_ring_stop_set(void *data, u64 val)
3354 {
3355         struct drm_device *dev = data;
3356         struct drm_i915_private *dev_priv = dev->dev_private;
3357         int ret;
3358
3359         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3360
3361         ret = mutex_lock_interruptible(&dev->struct_mutex);
3362         if (ret)
3363                 return ret;
3364
3365         dev_priv->gpu_error.stop_rings = val;
3366         mutex_unlock(&dev->struct_mutex);
3367
3368         return 0;
3369 }
3370
3371 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3372                         i915_ring_stop_get, i915_ring_stop_set,
3373                         "0x%08llx\n");
3374
3375 static int
3376 i915_ring_missed_irq_get(void *data, u64 *val)
3377 {
3378         struct drm_device *dev = data;
3379         struct drm_i915_private *dev_priv = dev->dev_private;
3380
3381         *val = dev_priv->gpu_error.missed_irq_rings;
3382         return 0;
3383 }
3384
3385 static int
3386 i915_ring_missed_irq_set(void *data, u64 val)
3387 {
3388         struct drm_device *dev = data;
3389         struct drm_i915_private *dev_priv = dev->dev_private;
3390         int ret;
3391
3392         /* Lock against concurrent debugfs callers */
3393         ret = mutex_lock_interruptible(&dev->struct_mutex);
3394         if (ret)
3395                 return ret;
3396         dev_priv->gpu_error.missed_irq_rings = val;
3397         mutex_unlock(&dev->struct_mutex);
3398
3399         return 0;
3400 }
3401
3402 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3403                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3404                         "0x%08llx\n");
3405
3406 static int
3407 i915_ring_test_irq_get(void *data, u64 *val)
3408 {
3409         struct drm_device *dev = data;
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411
3412         *val = dev_priv->gpu_error.test_irq_rings;
3413
3414         return 0;
3415 }
3416
3417 static int
3418 i915_ring_test_irq_set(void *data, u64 val)
3419 {
3420         struct drm_device *dev = data;
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422         int ret;
3423
3424         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3425
3426         /* Lock against concurrent debugfs callers */
3427         ret = mutex_lock_interruptible(&dev->struct_mutex);
3428         if (ret)
3429                 return ret;
3430
3431         dev_priv->gpu_error.test_irq_rings = val;
3432         mutex_unlock(&dev->struct_mutex);
3433
3434         return 0;
3435 }
3436
3437 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3438                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3439                         "0x%08llx\n");
3440
3441 #define DROP_UNBOUND 0x1
3442 #define DROP_BOUND 0x2
3443 #define DROP_RETIRE 0x4
3444 #define DROP_ACTIVE 0x8
3445 #define DROP_ALL (DROP_UNBOUND | \
3446                   DROP_BOUND | \
3447                   DROP_RETIRE | \
3448                   DROP_ACTIVE)
3449 static int
3450 i915_drop_caches_get(void *data, u64 *val)
3451 {
3452         *val = DROP_ALL;
3453
3454         return 0;
3455 }
3456
3457 static int
3458 i915_drop_caches_set(void *data, u64 val)
3459 {
3460         struct drm_device *dev = data;
3461         struct drm_i915_private *dev_priv = dev->dev_private;
3462         struct drm_i915_gem_object *obj, *next;
3463         struct i915_address_space *vm;
3464         struct i915_vma *vma, *x;
3465         int ret;
3466
3467         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3468
3469         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3470          * on ioctls on -EAGAIN. */
3471         ret = mutex_lock_interruptible(&dev->struct_mutex);
3472         if (ret)
3473                 return ret;
3474
3475         if (val & DROP_ACTIVE) {
3476                 ret = i915_gpu_idle(dev);
3477                 if (ret)
3478                         goto unlock;
3479         }
3480
3481         if (val & (DROP_RETIRE | DROP_ACTIVE))
3482                 i915_gem_retire_requests(dev);
3483
3484         if (val & DROP_BOUND) {
3485                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3486                         list_for_each_entry_safe(vma, x, &vm->inactive_list,
3487                                                  mm_list) {
3488                                 if (vma->pin_count)
3489                                         continue;
3490
3491                                 ret = i915_vma_unbind(vma);
3492                                 if (ret)
3493                                         goto unlock;
3494                         }
3495                 }
3496         }
3497
3498         if (val & DROP_UNBOUND) {
3499                 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3500                                          global_list)
3501                         if (obj->pages_pin_count == 0) {
3502                                 ret = i915_gem_object_put_pages(obj);
3503                                 if (ret)
3504                                         goto unlock;
3505                         }
3506         }
3507
3508 unlock:
3509         mutex_unlock(&dev->struct_mutex);
3510
3511         return ret;
3512 }
3513
3514 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3515                         i915_drop_caches_get, i915_drop_caches_set,
3516                         "0x%08llx\n");
3517
3518 static int
3519 i915_max_freq_get(void *data, u64 *val)
3520 {
3521         struct drm_device *dev = data;
3522         struct drm_i915_private *dev_priv = dev->dev_private;
3523         int ret;
3524
3525         if (INTEL_INFO(dev)->gen < 6)
3526                 return -ENODEV;
3527
3528         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3529
3530         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3531         if (ret)
3532                 return ret;
3533
3534         if (IS_VALLEYVIEW(dev))
3535                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3536         else
3537                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3538         mutex_unlock(&dev_priv->rps.hw_lock);
3539
3540         return 0;
3541 }
3542
3543 static int
3544 i915_max_freq_set(void *data, u64 val)
3545 {
3546         struct drm_device *dev = data;
3547         struct drm_i915_private *dev_priv = dev->dev_private;
3548         u32 rp_state_cap, hw_max, hw_min;
3549         int ret;
3550
3551         if (INTEL_INFO(dev)->gen < 6)
3552                 return -ENODEV;
3553
3554         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3555
3556         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3557
3558         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3559         if (ret)
3560                 return ret;
3561
3562         /*
3563          * Turbo will still be enabled, but won't go above the set value.
3564          */
3565         if (IS_VALLEYVIEW(dev)) {
3566                 val = vlv_freq_opcode(dev_priv, val);
3567
3568                 hw_max = valleyview_rps_max_freq(dev_priv);
3569                 hw_min = valleyview_rps_min_freq(dev_priv);
3570         } else {
3571                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3572
3573                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3574                 hw_max = dev_priv->rps.max_freq;
3575                 hw_min = (rp_state_cap >> 16) & 0xff;
3576         }
3577
3578         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3579                 mutex_unlock(&dev_priv->rps.hw_lock);
3580                 return -EINVAL;
3581         }
3582
3583         dev_priv->rps.max_freq_softlimit = val;
3584
3585         if (IS_VALLEYVIEW(dev))
3586                 valleyview_set_rps(dev, val);
3587         else
3588                 gen6_set_rps(dev, val);
3589
3590         mutex_unlock(&dev_priv->rps.hw_lock);
3591
3592         return 0;
3593 }
3594
3595 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3596                         i915_max_freq_get, i915_max_freq_set,
3597                         "%llu\n");
3598
3599 static int
3600 i915_min_freq_get(void *data, u64 *val)
3601 {
3602         struct drm_device *dev = data;
3603         struct drm_i915_private *dev_priv = dev->dev_private;
3604         int ret;
3605
3606         if (INTEL_INFO(dev)->gen < 6)
3607                 return -ENODEV;
3608
3609         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3610
3611         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3612         if (ret)
3613                 return ret;
3614
3615         if (IS_VALLEYVIEW(dev))
3616                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3617         else
3618                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3619         mutex_unlock(&dev_priv->rps.hw_lock);
3620
3621         return 0;
3622 }
3623
3624 static int
3625 i915_min_freq_set(void *data, u64 val)
3626 {
3627         struct drm_device *dev = data;
3628         struct drm_i915_private *dev_priv = dev->dev_private;
3629         u32 rp_state_cap, hw_max, hw_min;
3630         int ret;
3631
3632         if (INTEL_INFO(dev)->gen < 6)
3633                 return -ENODEV;
3634
3635         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3636
3637         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3638
3639         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3640         if (ret)
3641                 return ret;
3642
3643         /*
3644          * Turbo will still be enabled, but won't go below the set value.
3645          */
3646         if (IS_VALLEYVIEW(dev)) {
3647                 val = vlv_freq_opcode(dev_priv, val);
3648
3649                 hw_max = valleyview_rps_max_freq(dev_priv);
3650                 hw_min = valleyview_rps_min_freq(dev_priv);
3651         } else {
3652                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3653
3654                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3655                 hw_max = dev_priv->rps.max_freq;
3656                 hw_min = (rp_state_cap >> 16) & 0xff;
3657         }
3658
3659         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
3660                 mutex_unlock(&dev_priv->rps.hw_lock);
3661                 return -EINVAL;
3662         }
3663
3664         dev_priv->rps.min_freq_softlimit = val;
3665
3666         if (IS_VALLEYVIEW(dev))
3667                 valleyview_set_rps(dev, val);
3668         else
3669                 gen6_set_rps(dev, val);
3670
3671         mutex_unlock(&dev_priv->rps.hw_lock);
3672
3673         return 0;
3674 }
3675
3676 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3677                         i915_min_freq_get, i915_min_freq_set,
3678                         "%llu\n");
3679
3680 static int
3681 i915_cache_sharing_get(void *data, u64 *val)
3682 {
3683         struct drm_device *dev = data;
3684         struct drm_i915_private *dev_priv = dev->dev_private;
3685         u32 snpcr;
3686         int ret;
3687
3688         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3689                 return -ENODEV;
3690
3691         ret = mutex_lock_interruptible(&dev->struct_mutex);
3692         if (ret)
3693                 return ret;
3694         intel_runtime_pm_get(dev_priv);
3695
3696         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3697
3698         intel_runtime_pm_put(dev_priv);
3699         mutex_unlock(&dev_priv->dev->struct_mutex);
3700
3701         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3702
3703         return 0;
3704 }
3705
3706 static int
3707 i915_cache_sharing_set(void *data, u64 val)
3708 {
3709         struct drm_device *dev = data;
3710         struct drm_i915_private *dev_priv = dev->dev_private;
3711         u32 snpcr;
3712
3713         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3714                 return -ENODEV;
3715
3716         if (val > 3)
3717                 return -EINVAL;
3718
3719         intel_runtime_pm_get(dev_priv);
3720         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3721
3722         /* Update the cache sharing policy here as well */
3723         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3724         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3725         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3726         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3727
3728         intel_runtime_pm_put(dev_priv);
3729         return 0;
3730 }
3731
3732 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3733                         i915_cache_sharing_get, i915_cache_sharing_set,
3734                         "%llu\n");
3735
3736 static int i915_forcewake_open(struct inode *inode, struct file *file)
3737 {
3738         struct drm_device *dev = inode->i_private;
3739         struct drm_i915_private *dev_priv = dev->dev_private;
3740
3741         if (INTEL_INFO(dev)->gen < 6)
3742                 return 0;
3743
3744         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3745
3746         return 0;
3747 }
3748
3749 static int i915_forcewake_release(struct inode *inode, struct file *file)
3750 {
3751         struct drm_device *dev = inode->i_private;
3752         struct drm_i915_private *dev_priv = dev->dev_private;
3753
3754         if (INTEL_INFO(dev)->gen < 6)
3755                 return 0;
3756
3757         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3758
3759         return 0;
3760 }
3761
3762 static const struct file_operations i915_forcewake_fops = {
3763         .owner = THIS_MODULE,
3764         .open = i915_forcewake_open,
3765         .release = i915_forcewake_release,
3766 };
3767
3768 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3769 {
3770         struct drm_device *dev = minor->dev;
3771         struct dentry *ent;
3772
3773         ent = debugfs_create_file("i915_forcewake_user",
3774                                   S_IRUSR,
3775                                   root, dev,
3776                                   &i915_forcewake_fops);
3777         if (!ent)
3778                 return -ENOMEM;
3779
3780         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3781 }
3782
3783 static int i915_debugfs_create(struct dentry *root,
3784                                struct drm_minor *minor,
3785                                const char *name,
3786                                const struct file_operations *fops)
3787 {
3788         struct drm_device *dev = minor->dev;
3789         struct dentry *ent;
3790
3791         ent = debugfs_create_file(name,
3792                                   S_IRUGO | S_IWUSR,
3793                                   root, dev,
3794                                   fops);
3795         if (!ent)
3796                 return -ENOMEM;
3797
3798         return drm_add_fake_info_node(minor, ent, fops);
3799 }
3800
3801 static const struct drm_info_list i915_debugfs_list[] = {
3802         {"i915_capabilities", i915_capabilities, 0},
3803         {"i915_gem_objects", i915_gem_object_info, 0},
3804         {"i915_gem_gtt", i915_gem_gtt_info, 0},
3805         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3806         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3807         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3808         {"i915_gem_stolen", i915_gem_stolen_list_info },
3809         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3810         {"i915_gem_request", i915_gem_request_info, 0},
3811         {"i915_gem_seqno", i915_gem_seqno_info, 0},
3812         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3813         {"i915_gem_interrupt", i915_interrupt_info, 0},
3814         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3815         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3816         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3817         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3818         {"i915_rstdby_delays", i915_rstdby_delays, 0},
3819         {"i915_frequency_info", i915_frequency_info, 0},
3820         {"i915_delayfreq_table", i915_delayfreq_table, 0},
3821         {"i915_inttoext_table", i915_inttoext_table, 0},
3822         {"i915_drpc_info", i915_drpc_info, 0},
3823         {"i915_emon_status", i915_emon_status, 0},
3824         {"i915_ring_freq_table", i915_ring_freq_table, 0},
3825         {"i915_gfxec", i915_gfxec, 0},
3826         {"i915_fbc_status", i915_fbc_status, 0},
3827         {"i915_ips_status", i915_ips_status, 0},
3828         {"i915_sr_status", i915_sr_status, 0},
3829         {"i915_opregion", i915_opregion, 0},
3830         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3831         {"i915_context_status", i915_context_status, 0},
3832         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3833         {"i915_swizzle_info", i915_swizzle_info, 0},
3834         {"i915_ppgtt_info", i915_ppgtt_info, 0},
3835         {"i915_llc", i915_llc, 0},
3836         {"i915_edp_psr_status", i915_edp_psr_status, 0},
3837         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
3838         {"i915_energy_uJ", i915_energy_uJ, 0},
3839         {"i915_pc8_status", i915_pc8_status, 0},
3840         {"i915_power_domain_info", i915_power_domain_info, 0},
3841         {"i915_display_info", i915_display_info, 0},
3842 };
3843 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3844
3845 static const struct i915_debugfs_files {
3846         const char *name;
3847         const struct file_operations *fops;
3848 } i915_debugfs_files[] = {
3849         {"i915_wedged", &i915_wedged_fops},
3850         {"i915_max_freq", &i915_max_freq_fops},
3851         {"i915_min_freq", &i915_min_freq_fops},
3852         {"i915_cache_sharing", &i915_cache_sharing_fops},
3853         {"i915_ring_stop", &i915_ring_stop_fops},
3854         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3855         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
3856         {"i915_gem_drop_caches", &i915_drop_caches_fops},
3857         {"i915_error_state", &i915_error_state_fops},
3858         {"i915_next_seqno", &i915_next_seqno_fops},
3859         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3860         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3861         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3862         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3863 };
3864
3865 void intel_display_crc_init(struct drm_device *dev)
3866 {
3867         struct drm_i915_private *dev_priv = dev->dev_private;
3868         enum pipe pipe;
3869
3870         for_each_pipe(pipe) {
3871                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3872
3873                 pipe_crc->opened = false;
3874                 spin_lock_init(&pipe_crc->lock);
3875                 init_waitqueue_head(&pipe_crc->wq);
3876         }
3877 }
3878
3879 int i915_debugfs_init(struct drm_minor *minor)
3880 {
3881         int ret, i;
3882
3883         ret = i915_forcewake_create(minor->debugfs_root, minor);
3884         if (ret)
3885                 return ret;
3886
3887         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3888                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3889                 if (ret)
3890                         return ret;
3891         }
3892
3893         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3894                 ret = i915_debugfs_create(minor->debugfs_root, minor,
3895                                           i915_debugfs_files[i].name,
3896                                           i915_debugfs_files[i].fops);
3897                 if (ret)
3898                         return ret;
3899         }
3900
3901         return drm_debugfs_create_files(i915_debugfs_list,
3902                                         I915_DEBUGFS_ENTRIES,
3903                                         minor->debugfs_root, minor);
3904 }
3905
3906 void i915_debugfs_cleanup(struct drm_minor *minor)
3907 {
3908         int i;
3909
3910         drm_debugfs_remove_files(i915_debugfs_list,
3911                                  I915_DEBUGFS_ENTRIES, minor);
3912
3913         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3914                                  1, minor);
3915
3916         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3917                 struct drm_info_list *info_list =
3918                         (struct drm_info_list *)&i915_pipe_crc_data[i];
3919
3920                 drm_debugfs_remove_files(info_list, 1, minor);
3921         }
3922
3923         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3924                 struct drm_info_list *info_list =
3925                         (struct drm_info_list *) i915_debugfs_files[i].fops;
3926
3927                 drm_debugfs_remove_files(info_list, 1, minor);
3928         }
3929 }