OSDN Git Service

Merge branch 'hid-asus' into kernel-4.9
[android-x86/kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52
53 static struct drm_driver driver;
54
55 static unsigned int i915_load_fail_count;
56
57 bool __i915_inject_load_failure(const char *func, int line)
58 {
59         if (i915_load_fail_count >= i915.inject_load_failure)
60                 return false;
61
62         if (++i915_load_fail_count == i915.inject_load_failure) {
63                 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
64                          i915.inject_load_failure, func, line);
65                 return true;
66         }
67
68         return false;
69 }
70
71 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
72 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
73                     "providing the dmesg log by booting with drm.debug=0xf"
74
75 void
76 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
77               const char *fmt, ...)
78 {
79         static bool shown_bug_once;
80         struct device *kdev = dev_priv->drm.dev;
81         bool is_error = level[1] <= KERN_ERR[1];
82         bool is_debug = level[1] == KERN_DEBUG[1];
83         struct va_format vaf;
84         va_list args;
85
86         if (is_debug && !(drm_debug & DRM_UT_DRIVER))
87                 return;
88
89         va_start(args, fmt);
90
91         vaf.fmt = fmt;
92         vaf.va = &args;
93
94         dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
95                    __builtin_return_address(0), &vaf);
96
97         if (is_error && !shown_bug_once) {
98                 dev_notice(kdev, "%s", FDO_BUG_MSG);
99                 shown_bug_once = true;
100         }
101
102         va_end(args);
103 }
104
105 static bool i915_error_injected(struct drm_i915_private *dev_priv)
106 {
107         return i915.inject_load_failure &&
108                i915_load_fail_count == i915.inject_load_failure;
109 }
110
111 #define i915_load_error(dev_priv, fmt, ...)                                  \
112         __i915_printk(dev_priv,                                              \
113                       i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
114                       fmt, ##__VA_ARGS__)
115
116
117 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
118 {
119         enum intel_pch ret = PCH_NOP;
120
121         /*
122          * In a virtualized passthrough environment we can be in a
123          * setup where the ISA bridge is not able to be passed through.
124          * In this case, a south bridge can be emulated and we have to
125          * make an educated guess as to which PCH is really there.
126          */
127
128         if (IS_GEN5(dev)) {
129                 ret = PCH_IBX;
130                 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
131         } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
132                 ret = PCH_CPT;
133                 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
134         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
135                 ret = PCH_LPT;
136                 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
137         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
138                 ret = PCH_SPT;
139                 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
140         }
141
142         return ret;
143 }
144
145 static void intel_detect_pch(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = to_i915(dev);
148         struct pci_dev *pch = NULL;
149
150         /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151          * (which really amounts to a PCH but no South Display).
152          */
153         if (INTEL_INFO(dev)->num_pipes == 0) {
154                 dev_priv->pch_type = PCH_NOP;
155                 return;
156         }
157
158         /*
159          * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160          * make graphics device passthrough work easy for VMM, that only
161          * need to expose ISA bridge to let driver know the real hardware
162          * underneath. This is a requirement from virtualization team.
163          *
164          * In some virtualized environments (e.g. XEN), there is irrelevant
165          * ISA bridge in the system. To work reliably, we should scan trhough
166          * all the ISA bridge devices and check for the first match, instead
167          * of only checking the first one.
168          */
169         while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170                 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171                         unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172                         dev_priv->pch_id = id;
173
174                         if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175                                 dev_priv->pch_type = PCH_IBX;
176                                 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177                                 WARN_ON(!IS_GEN5(dev));
178                         } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179                                 dev_priv->pch_type = PCH_CPT;
180                                 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181                                 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
182                         } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
183                                 /* PantherPoint is CPT compatible */
184                                 dev_priv->pch_type = PCH_CPT;
185                                 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
186                                 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
187                         } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
188                                 dev_priv->pch_type = PCH_LPT;
189                                 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
190                                 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
191                                 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
192                         } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
193                                 dev_priv->pch_type = PCH_LPT;
194                                 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
195                                 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
196                                 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
197                         } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
198                                 dev_priv->pch_type = PCH_SPT;
199                                 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
200                                 WARN_ON(!IS_SKYLAKE(dev) &&
201                                         !IS_KABYLAKE(dev));
202                         } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
203                                 dev_priv->pch_type = PCH_SPT;
204                                 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
205                                 WARN_ON(!IS_SKYLAKE(dev) &&
206                                         !IS_KABYLAKE(dev));
207                         } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
208                                 dev_priv->pch_type = PCH_KBP;
209                                 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
210                                 WARN_ON(!IS_KABYLAKE(dev));
211                         } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
212                                    (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
213                                    ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
214                                     pch->subsystem_vendor ==
215                                             PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
216                                     pch->subsystem_device ==
217                                             PCI_SUBDEVICE_ID_QEMU)) {
218                                 dev_priv->pch_type = intel_virt_detect_pch(dev);
219                         } else
220                                 continue;
221
222                         break;
223                 }
224         }
225         if (!pch)
226                 DRM_DEBUG_KMS("No PCH found.\n");
227
228         pci_dev_put(pch);
229 }
230
231 static int i915_getparam(struct drm_device *dev, void *data,
232                          struct drm_file *file_priv)
233 {
234         struct drm_i915_private *dev_priv = to_i915(dev);
235         struct pci_dev *pdev = dev_priv->drm.pdev;
236         drm_i915_getparam_t *param = data;
237         int value;
238
239         switch (param->param) {
240         case I915_PARAM_IRQ_ACTIVE:
241         case I915_PARAM_ALLOW_BATCHBUFFER:
242         case I915_PARAM_LAST_DISPATCH:
243         case I915_PARAM_HAS_EXEC_CONSTANTS:
244                 /* Reject all old ums/dri params. */
245                 return -ENODEV;
246         case I915_PARAM_CHIPSET_ID:
247                 value = pdev->device;
248                 break;
249         case I915_PARAM_REVISION:
250                 value = pdev->revision;
251                 break;
252         case I915_PARAM_NUM_FENCES_AVAIL:
253                 value = dev_priv->num_fence_regs;
254                 break;
255         case I915_PARAM_HAS_OVERLAY:
256                 value = dev_priv->overlay ? 1 : 0;
257                 break;
258         case I915_PARAM_HAS_BSD:
259                 value = intel_engine_initialized(&dev_priv->engine[VCS]);
260                 break;
261         case I915_PARAM_HAS_BLT:
262                 value = intel_engine_initialized(&dev_priv->engine[BCS]);
263                 break;
264         case I915_PARAM_HAS_VEBOX:
265                 value = intel_engine_initialized(&dev_priv->engine[VECS]);
266                 break;
267         case I915_PARAM_HAS_BSD2:
268                 value = intel_engine_initialized(&dev_priv->engine[VCS2]);
269                 break;
270         case I915_PARAM_HAS_LLC:
271                 value = HAS_LLC(dev_priv);
272                 break;
273         case I915_PARAM_HAS_WT:
274                 value = HAS_WT(dev_priv);
275                 break;
276         case I915_PARAM_HAS_ALIASING_PPGTT:
277                 value = USES_PPGTT(dev_priv);
278                 break;
279         case I915_PARAM_HAS_SEMAPHORES:
280                 value = i915.semaphores;
281                 break;
282         case I915_PARAM_HAS_SECURE_BATCHES:
283                 value = capable(CAP_SYS_ADMIN);
284                 break;
285         case I915_PARAM_CMD_PARSER_VERSION:
286                 value = i915_cmd_parser_get_version(dev_priv);
287                 break;
288         case I915_PARAM_SUBSLICE_TOTAL:
289                 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
290                 if (!value)
291                         return -ENODEV;
292                 break;
293         case I915_PARAM_EU_TOTAL:
294                 value = INTEL_INFO(dev_priv)->sseu.eu_total;
295                 if (!value)
296                         return -ENODEV;
297                 break;
298         case I915_PARAM_HAS_GPU_RESET:
299                 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
300                 break;
301         case I915_PARAM_HAS_RESOURCE_STREAMER:
302                 value = HAS_RESOURCE_STREAMER(dev_priv);
303                 break;
304         case I915_PARAM_HAS_POOLED_EU:
305                 value = HAS_POOLED_EU(dev_priv);
306                 break;
307         case I915_PARAM_MIN_EU_IN_POOL:
308                 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
309                 break;
310         case I915_PARAM_MMAP_GTT_VERSION:
311                 /* Though we've started our numbering from 1, and so class all
312                  * earlier versions as 0, in effect their value is undefined as
313                  * the ioctl will report EINVAL for the unknown param!
314                  */
315                 value = i915_gem_mmap_gtt_version();
316                 break;
317         case I915_PARAM_MMAP_VERSION:
318                 /* Remember to bump this if the version changes! */
319         case I915_PARAM_HAS_GEM:
320         case I915_PARAM_HAS_PAGEFLIPPING:
321         case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
322         case I915_PARAM_HAS_RELAXED_FENCING:
323         case I915_PARAM_HAS_COHERENT_RINGS:
324         case I915_PARAM_HAS_RELAXED_DELTA:
325         case I915_PARAM_HAS_GEN7_SOL_RESET:
326         case I915_PARAM_HAS_WAIT_TIMEOUT:
327         case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
328         case I915_PARAM_HAS_PINNED_BATCHES:
329         case I915_PARAM_HAS_EXEC_NO_RELOC:
330         case I915_PARAM_HAS_EXEC_HANDLE_LUT:
331         case I915_PARAM_HAS_COHERENT_PHYS_GTT:
332         case I915_PARAM_HAS_EXEC_SOFTPIN:
333                 /* For the time being all of these are always true;
334                  * if some supported hardware does not have one of these
335                  * features this value needs to be provided from
336                  * INTEL_INFO(), a feature macro, or similar.
337                  */
338                 value = 1;
339                 break;
340         default:
341                 DRM_DEBUG("Unknown parameter %d\n", param->param);
342                 return -EINVAL;
343         }
344
345         if (put_user(value, param->value))
346                 return -EFAULT;
347
348         return 0;
349 }
350
351 static int i915_get_bridge_dev(struct drm_device *dev)
352 {
353         struct drm_i915_private *dev_priv = to_i915(dev);
354
355         dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
356         if (!dev_priv->bridge_dev) {
357                 DRM_ERROR("bridge device not found\n");
358                 return -1;
359         }
360         return 0;
361 }
362
363 /* Allocate space for the MCH regs if needed, return nonzero on error */
364 static int
365 intel_alloc_mchbar_resource(struct drm_device *dev)
366 {
367         struct drm_i915_private *dev_priv = to_i915(dev);
368         int reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
369         u32 temp_lo, temp_hi = 0;
370         u64 mchbar_addr;
371         int ret;
372
373         if (INTEL_INFO(dev)->gen >= 4)
374                 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
375         pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
376         mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
377
378         /* If ACPI doesn't have it, assume we need to allocate it ourselves */
379 #ifdef CONFIG_PNP
380         if (mchbar_addr &&
381             pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
382                 return 0;
383 #endif
384
385         /* Get some space for it */
386         dev_priv->mch_res.name = "i915 MCHBAR";
387         dev_priv->mch_res.flags = IORESOURCE_MEM;
388         ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
389                                      &dev_priv->mch_res,
390                                      MCHBAR_SIZE, MCHBAR_SIZE,
391                                      PCIBIOS_MIN_MEM,
392                                      0, pcibios_align_resource,
393                                      dev_priv->bridge_dev);
394         if (ret) {
395                 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
396                 dev_priv->mch_res.start = 0;
397                 return ret;
398         }
399
400         if (INTEL_INFO(dev)->gen >= 4)
401                 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
402                                        upper_32_bits(dev_priv->mch_res.start));
403
404         pci_write_config_dword(dev_priv->bridge_dev, reg,
405                                lower_32_bits(dev_priv->mch_res.start));
406         return 0;
407 }
408
409 /* Setup MCHBAR if possible, return true if we should disable it again */
410 static void
411 intel_setup_mchbar(struct drm_device *dev)
412 {
413         struct drm_i915_private *dev_priv = to_i915(dev);
414         int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
415         u32 temp;
416         bool enabled;
417
418         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
419                 return;
420
421         dev_priv->mchbar_need_disable = false;
422
423         if (IS_I915G(dev) || IS_I915GM(dev)) {
424                 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
425                 enabled = !!(temp & DEVEN_MCHBAR_EN);
426         } else {
427                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
428                 enabled = temp & 1;
429         }
430
431         /* If it's already enabled, don't have to do anything */
432         if (enabled)
433                 return;
434
435         if (intel_alloc_mchbar_resource(dev))
436                 return;
437
438         dev_priv->mchbar_need_disable = true;
439
440         /* Space is allocated or reserved, so enable it. */
441         if (IS_I915G(dev) || IS_I915GM(dev)) {
442                 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
443                                        temp | DEVEN_MCHBAR_EN);
444         } else {
445                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
446                 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
447         }
448 }
449
450 static void
451 intel_teardown_mchbar(struct drm_device *dev)
452 {
453         struct drm_i915_private *dev_priv = to_i915(dev);
454         int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
455
456         if (dev_priv->mchbar_need_disable) {
457                 if (IS_I915G(dev) || IS_I915GM(dev)) {
458                         u32 deven_val;
459
460                         pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
461                                               &deven_val);
462                         deven_val &= ~DEVEN_MCHBAR_EN;
463                         pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
464                                                deven_val);
465                 } else {
466                         u32 mchbar_val;
467
468                         pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
469                                               &mchbar_val);
470                         mchbar_val &= ~1;
471                         pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
472                                                mchbar_val);
473                 }
474         }
475
476         if (dev_priv->mch_res.start)
477                 release_resource(&dev_priv->mch_res);
478 }
479
480 /* true = enable decode, false = disable decoder */
481 static unsigned int i915_vga_set_decode(void *cookie, bool state)
482 {
483         struct drm_device *dev = cookie;
484
485         intel_modeset_vga_set_state(dev, state);
486         if (state)
487                 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
488                        VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
489         else
490                 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
491 }
492
493 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
494 {
495         struct drm_device *dev = pci_get_drvdata(pdev);
496         pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
497
498         if (state == VGA_SWITCHEROO_ON) {
499                 pr_info("switched on\n");
500                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
501                 /* i915 resume handler doesn't set to D0 */
502                 pci_set_power_state(pdev, PCI_D0);
503                 i915_resume_switcheroo(dev);
504                 dev->switch_power_state = DRM_SWITCH_POWER_ON;
505         } else {
506                 pr_info("switched off\n");
507                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
508                 i915_suspend_switcheroo(dev, pmm);
509                 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
510         }
511 }
512
513 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
514 {
515         struct drm_device *dev = pci_get_drvdata(pdev);
516
517         /*
518          * FIXME: open_count is protected by drm_global_mutex but that would lead to
519          * locking inversion with the driver load path. And the access here is
520          * completely racy anyway. So don't bother with locking for now.
521          */
522         return dev->open_count == 0;
523 }
524
525 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
526         .set_gpu_state = i915_switcheroo_set_state,
527         .reprobe = NULL,
528         .can_switch = i915_switcheroo_can_switch,
529 };
530
531 static void i915_gem_fini(struct drm_device *dev)
532 {
533         struct drm_i915_private *dev_priv = to_i915(dev);
534
535         /*
536          * Neither the BIOS, ourselves or any other kernel
537          * expects the system to be in execlists mode on startup,
538          * so we need to reset the GPU back to legacy mode. And the only
539          * known way to disable logical contexts is through a GPU reset.
540          *
541          * So in order to leave the system in a known default configuration,
542          * always reset the GPU upon unload. Afterwards we then clean up the
543          * GEM state tracking, flushing off the requests and leaving the
544          * system in a known idle state.
545          *
546          * Note that is of the upmost importance that the GPU is idle and
547          * all stray writes are flushed *before* we dismantle the backing
548          * storage for the pinned objects.
549          *
550          * However, since we are uncertain that reseting the GPU on older
551          * machines is a good idea, we don't - just in case it leaves the
552          * machine in an unusable condition.
553          */
554         if (HAS_HW_CONTEXTS(dev)) {
555                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
556                 WARN_ON(reset && reset != -ENODEV);
557         }
558
559         mutex_lock(&dev->struct_mutex);
560         i915_gem_cleanup_engines(dev);
561         i915_gem_context_fini(dev);
562         mutex_unlock(&dev->struct_mutex);
563
564         WARN_ON(!list_empty(&to_i915(dev)->context_list));
565 }
566
567 static int i915_load_modeset_init(struct drm_device *dev)
568 {
569         struct drm_i915_private *dev_priv = to_i915(dev);
570         struct pci_dev *pdev = dev_priv->drm.pdev;
571         int ret;
572
573         if (i915_inject_load_failure())
574                 return -ENODEV;
575
576         intel_bios_init(dev_priv);
577
578         /* If we have > 1 VGA cards, then we need to arbitrate access
579          * to the common VGA resources.
580          *
581          * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
582          * then we do not take part in VGA arbitration and the
583          * vga_client_register() fails with -ENODEV.
584          */
585         ret = vga_client_register(pdev, dev, NULL, i915_vga_set_decode);
586         if (ret && ret != -ENODEV)
587                 goto out;
588
589         intel_register_dsm_handler();
590
591         ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
592         if (ret)
593                 goto cleanup_vga_client;
594
595         /* must happen before intel_power_domains_init_hw() on VLV/CHV */
596         intel_update_rawclk(dev_priv);
597
598         intel_power_domains_init_hw(dev_priv, false);
599
600         intel_csr_ucode_init(dev_priv);
601
602         ret = intel_irq_install(dev_priv);
603         if (ret)
604                 goto cleanup_csr;
605
606         intel_setup_gmbus(dev);
607
608         /* Important: The output setup functions called by modeset_init need
609          * working irqs for e.g. gmbus and dp aux transfers. */
610         intel_modeset_init(dev);
611
612         intel_guc_init(dev);
613
614         ret = i915_gem_init(dev);
615         if (ret)
616                 goto cleanup_irq;
617
618         intel_modeset_gem_init(dev);
619
620         if (INTEL_INFO(dev)->num_pipes == 0)
621                 return 0;
622
623         ret = intel_fbdev_init(dev);
624         if (ret)
625                 goto cleanup_gem;
626
627         /* Only enable hotplug handling once the fbdev is fully set up. */
628         intel_hpd_init(dev_priv);
629
630         drm_kms_helper_poll_init(dev);
631
632         return 0;
633
634 cleanup_gem:
635         i915_gem_fini(dev);
636 cleanup_irq:
637         intel_guc_fini(dev);
638         drm_irq_uninstall(dev);
639         intel_teardown_gmbus(dev);
640 cleanup_csr:
641         intel_csr_ucode_fini(dev_priv);
642         intel_power_domains_fini(dev_priv);
643         vga_switcheroo_unregister_client(pdev);
644 cleanup_vga_client:
645         vga_client_register(pdev, NULL, NULL, NULL);
646 out:
647         return ret;
648 }
649
650 #if IS_ENABLED(CONFIG_FB)
651 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
652 {
653         struct apertures_struct *ap;
654         struct pci_dev *pdev = dev_priv->drm.pdev;
655         struct i915_ggtt *ggtt = &dev_priv->ggtt;
656         bool primary;
657         int ret;
658
659         ap = alloc_apertures(1);
660         if (!ap)
661                 return -ENOMEM;
662
663         ap->ranges[0].base = ggtt->mappable_base;
664         ap->ranges[0].size = ggtt->mappable_end;
665
666         primary =
667                 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
668
669         ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
670
671         kfree(ap);
672
673         return ret;
674 }
675 #else
676 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
677 {
678         return 0;
679 }
680 #endif
681
682 #if !defined(CONFIG_VGA_CONSOLE)
683 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
684 {
685         return 0;
686 }
687 #elif !defined(CONFIG_DUMMY_CONSOLE)
688 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
689 {
690         return -ENODEV;
691 }
692 #else
693 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
694 {
695         int ret = 0;
696
697         DRM_INFO("Replacing VGA console driver\n");
698
699         console_lock();
700         if (con_is_bound(&vga_con))
701                 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
702         if (ret == 0) {
703                 ret = do_unregister_con_driver(&vga_con);
704
705                 /* Ignore "already unregistered". */
706                 if (ret == -ENODEV)
707                         ret = 0;
708         }
709         console_unlock();
710
711         return ret;
712 }
713 #endif
714
715 static void intel_init_dpio(struct drm_i915_private *dev_priv)
716 {
717         /*
718          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
719          * CHV x1 PHY (DP/HDMI D)
720          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
721          */
722         if (IS_CHERRYVIEW(dev_priv)) {
723                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
724                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
725         } else if (IS_VALLEYVIEW(dev_priv)) {
726                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
727         }
728 }
729
730 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
731 {
732         /*
733          * The i915 workqueue is primarily used for batched retirement of
734          * requests (and thus managing bo) once the task has been completed
735          * by the GPU. i915_gem_retire_requests() is called directly when we
736          * need high-priority retirement, such as waiting for an explicit
737          * bo.
738          *
739          * It is also used for periodic low-priority events, such as
740          * idle-timers and recording error state.
741          *
742          * All tasks on the workqueue are expected to acquire the dev mutex
743          * so there is no point in running more than one instance of the
744          * workqueue at any time.  Use an ordered one.
745          */
746         dev_priv->wq = alloc_ordered_workqueue("i915", 0);
747         if (dev_priv->wq == NULL)
748                 goto out_err;
749
750         dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
751         if (dev_priv->hotplug.dp_wq == NULL)
752                 goto out_free_wq;
753
754         return 0;
755
756 out_free_wq:
757         destroy_workqueue(dev_priv->wq);
758 out_err:
759         DRM_ERROR("Failed to allocate workqueues.\n");
760
761         return -ENOMEM;
762 }
763
764 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
765 {
766         destroy_workqueue(dev_priv->hotplug.dp_wq);
767         destroy_workqueue(dev_priv->wq);
768 }
769
770 /**
771  * i915_driver_init_early - setup state not requiring device access
772  * @dev_priv: device private
773  *
774  * Initialize everything that is a "SW-only" state, that is state not
775  * requiring accessing the device or exposing the driver via kernel internal
776  * or userspace interfaces. Example steps belonging here: lock initialization,
777  * system memory allocation, setting up device specific attributes and
778  * function hooks not requiring accessing the device.
779  */
780 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
781                                   const struct pci_device_id *ent)
782 {
783         const struct intel_device_info *match_info =
784                 (struct intel_device_info *)ent->driver_data;
785         struct intel_device_info *device_info;
786         int ret = 0;
787
788         if (i915_inject_load_failure())
789                 return -ENODEV;
790
791         /* Setup the write-once "constant" device info */
792         device_info = mkwrite_device_info(dev_priv);
793         memcpy(device_info, match_info, sizeof(*device_info));
794         device_info->device_id = dev_priv->drm.pdev->device;
795
796         BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
797         device_info->gen_mask = BIT(device_info->gen - 1);
798
799         spin_lock_init(&dev_priv->irq_lock);
800         spin_lock_init(&dev_priv->gpu_error.lock);
801         mutex_init(&dev_priv->backlight_lock);
802         spin_lock_init(&dev_priv->uncore.lock);
803         spin_lock_init(&dev_priv->mm.object_stat_lock);
804         spin_lock_init(&dev_priv->mmio_flip_lock);
805         mutex_init(&dev_priv->sb_lock);
806         mutex_init(&dev_priv->modeset_restore_lock);
807         mutex_init(&dev_priv->av_mutex);
808         mutex_init(&dev_priv->wm.wm_mutex);
809         mutex_init(&dev_priv->pps_mutex);
810
811         i915_memcpy_init_early(dev_priv);
812
813         ret = i915_workqueues_init(dev_priv);
814         if (ret < 0)
815                 return ret;
816
817         ret = intel_gvt_init(dev_priv);
818         if (ret < 0)
819                 goto err_workqueues;
820
821         /* This must be called before any calls to HAS_PCH_* */
822         intel_detect_pch(&dev_priv->drm);
823
824         intel_pm_setup(&dev_priv->drm);
825         intel_init_dpio(dev_priv);
826         intel_power_domains_init(dev_priv);
827         intel_irq_init(dev_priv);
828         intel_init_display_hooks(dev_priv);
829         intel_init_clock_gating_hooks(dev_priv);
830         intel_init_audio_hooks(dev_priv);
831         i915_gem_load_init(&dev_priv->drm);
832
833         intel_display_crc_init(dev_priv);
834
835         intel_device_info_dump(dev_priv);
836
837         /* Not all pre-production machines fall into this category, only the
838          * very first ones. Almost everything should work, except for maybe
839          * suspend/resume. And we don't implement workarounds that affect only
840          * pre-production machines. */
841         if (IS_HSW_EARLY_SDV(dev_priv))
842                 DRM_INFO("This is an early pre-production Haswell machine. "
843                          "It may not be fully functional.\n");
844
845         return 0;
846
847 err_workqueues:
848         i915_workqueues_cleanup(dev_priv);
849         return ret;
850 }
851
852 /**
853  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
854  * @dev_priv: device private
855  */
856 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
857 {
858         i915_gem_load_cleanup(&dev_priv->drm);
859         i915_workqueues_cleanup(dev_priv);
860 }
861
862 static int i915_mmio_setup(struct drm_device *dev)
863 {
864         struct drm_i915_private *dev_priv = to_i915(dev);
865         struct pci_dev *pdev = dev_priv->drm.pdev;
866         int mmio_bar;
867         int mmio_size;
868
869         mmio_bar = IS_GEN2(dev) ? 1 : 0;
870         /*
871          * Before gen4, the registers and the GTT are behind different BARs.
872          * However, from gen4 onwards, the registers and the GTT are shared
873          * in the same BAR, so we want to restrict this ioremap from
874          * clobbering the GTT which we want ioremap_wc instead. Fortunately,
875          * the register BAR remains the same size for all the earlier
876          * generations up to Ironlake.
877          */
878         if (INTEL_INFO(dev)->gen < 5)
879                 mmio_size = 512 * 1024;
880         else
881                 mmio_size = 2 * 1024 * 1024;
882         dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
883         if (dev_priv->regs == NULL) {
884                 DRM_ERROR("failed to map registers\n");
885
886                 return -EIO;
887         }
888
889         /* Try to make sure MCHBAR is enabled before poking at it */
890         intel_setup_mchbar(dev);
891
892         return 0;
893 }
894
895 static void i915_mmio_cleanup(struct drm_device *dev)
896 {
897         struct drm_i915_private *dev_priv = to_i915(dev);
898         struct pci_dev *pdev = dev_priv->drm.pdev;
899
900         intel_teardown_mchbar(dev);
901         pci_iounmap(pdev, dev_priv->regs);
902 }
903
904 /**
905  * i915_driver_init_mmio - setup device MMIO
906  * @dev_priv: device private
907  *
908  * Setup minimal device state necessary for MMIO accesses later in the
909  * initialization sequence. The setup here should avoid any other device-wide
910  * side effects or exposing the driver via kernel internal or user space
911  * interfaces.
912  */
913 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
914 {
915         struct drm_device *dev = &dev_priv->drm;
916         int ret;
917
918         if (i915_inject_load_failure())
919                 return -ENODEV;
920
921         if (i915_get_bridge_dev(dev))
922                 return -EIO;
923
924         ret = i915_mmio_setup(dev);
925         if (ret < 0)
926                 goto put_bridge;
927
928         intel_uncore_init(dev_priv);
929
930         return 0;
931
932 put_bridge:
933         pci_dev_put(dev_priv->bridge_dev);
934
935         return ret;
936 }
937
938 /**
939  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
940  * @dev_priv: device private
941  */
942 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
943 {
944         struct drm_device *dev = &dev_priv->drm;
945
946         intel_uncore_fini(dev_priv);
947         i915_mmio_cleanup(dev);
948         pci_dev_put(dev_priv->bridge_dev);
949 }
950
951 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
952 {
953         i915.enable_execlists =
954                 intel_sanitize_enable_execlists(dev_priv,
955                                                 i915.enable_execlists);
956
957         /*
958          * i915.enable_ppgtt is read-only, so do an early pass to validate the
959          * user's requested state against the hardware/driver capabilities.  We
960          * do this now so that we can print out any log messages once rather
961          * than every time we check intel_enable_ppgtt().
962          */
963         i915.enable_ppgtt =
964                 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
965         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
966
967         i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
968         DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
969 }
970
971 /**
972  * i915_driver_init_hw - setup state requiring device access
973  * @dev_priv: device private
974  *
975  * Setup state that requires accessing the device, but doesn't require
976  * exposing the driver via kernel internal or userspace interfaces.
977  */
978 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
979 {
980         struct pci_dev *pdev = dev_priv->drm.pdev;
981         struct drm_device *dev = &dev_priv->drm;
982         int ret;
983
984         if (i915_inject_load_failure())
985                 return -ENODEV;
986
987         intel_device_info_runtime_init(dev_priv);
988
989         intel_sanitize_options(dev_priv);
990
991         ret = i915_ggtt_probe_hw(dev_priv);
992         if (ret)
993                 return ret;
994
995         /* WARNING: Apparently we must kick fbdev drivers before vgacon,
996          * otherwise the vga fbdev driver falls over. */
997         ret = i915_kick_out_firmware_fb(dev_priv);
998         if (ret) {
999                 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1000                 goto out_ggtt;
1001         }
1002
1003         ret = i915_kick_out_vgacon(dev_priv);
1004         if (ret) {
1005                 DRM_ERROR("failed to remove conflicting VGA console\n");
1006                 goto out_ggtt;
1007         }
1008
1009         ret = i915_ggtt_init_hw(dev_priv);
1010         if (ret)
1011                 return ret;
1012
1013         ret = i915_ggtt_enable_hw(dev_priv);
1014         if (ret) {
1015                 DRM_ERROR("failed to enable GGTT\n");
1016                 goto out_ggtt;
1017         }
1018
1019         pci_set_master(pdev);
1020
1021         /* overlay on gen2 is broken and can't address above 1G */
1022         if (IS_GEN2(dev)) {
1023                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1024                 if (ret) {
1025                         DRM_ERROR("failed to set DMA mask\n");
1026
1027                         goto out_ggtt;
1028                 }
1029         }
1030
1031         /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1032          * using 32bit addressing, overwriting memory if HWS is located
1033          * above 4GB.
1034          *
1035          * The documentation also mentions an issue with undefined
1036          * behaviour if any general state is accessed within a page above 4GB,
1037          * which also needs to be handled carefully.
1038          */
1039         if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) {
1040                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1041
1042                 if (ret) {
1043                         DRM_ERROR("failed to set DMA mask\n");
1044
1045                         goto out_ggtt;
1046                 }
1047         }
1048
1049         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1050                            PM_QOS_DEFAULT_VALUE);
1051
1052         intel_uncore_sanitize(dev_priv);
1053
1054         intel_opregion_setup(dev_priv);
1055
1056         i915_gem_load_init_fences(dev_priv);
1057
1058         /* On the 945G/GM, the chipset reports the MSI capability on the
1059          * integrated graphics even though the support isn't actually there
1060          * according to the published specs.  It doesn't appear to function
1061          * correctly in testing on 945G.
1062          * This may be a side effect of MSI having been made available for PEG
1063          * and the registers being closely associated.
1064          *
1065          * According to chipset errata, on the 965GM, MSI interrupts may
1066          * be lost or delayed, but we use them anyways to avoid
1067          * stuck interrupts on some machines.
1068          */
1069         if (!IS_I945G(dev) && !IS_I945GM(dev)) {
1070                 if (pci_enable_msi(pdev) < 0)
1071                         DRM_DEBUG_DRIVER("can't enable MSI");
1072         }
1073
1074         return 0;
1075
1076 out_ggtt:
1077         i915_ggtt_cleanup_hw(dev_priv);
1078
1079         return ret;
1080 }
1081
1082 /**
1083  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1084  * @dev_priv: device private
1085  */
1086 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1087 {
1088         struct pci_dev *pdev = dev_priv->drm.pdev;
1089
1090         if (pdev->msi_enabled)
1091                 pci_disable_msi(pdev);
1092
1093         pm_qos_remove_request(&dev_priv->pm_qos);
1094         i915_ggtt_cleanup_hw(dev_priv);
1095 }
1096
1097 /**
1098  * i915_driver_register - register the driver with the rest of the system
1099  * @dev_priv: device private
1100  *
1101  * Perform any steps necessary to make the driver available via kernel
1102  * internal or userspace interfaces.
1103  */
1104 static void i915_driver_register(struct drm_i915_private *dev_priv)
1105 {
1106         struct drm_device *dev = &dev_priv->drm;
1107
1108         i915_gem_shrinker_init(dev_priv);
1109
1110         /*
1111          * Notify a valid surface after modesetting,
1112          * when running inside a VM.
1113          */
1114         if (intel_vgpu_active(dev_priv))
1115                 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1116
1117         /* Reveal our presence to userspace */
1118         if (drm_dev_register(dev, 0) == 0) {
1119                 i915_debugfs_register(dev_priv);
1120                 i915_setup_sysfs(dev_priv);
1121         } else
1122                 DRM_ERROR("Failed to register driver for userspace access!\n");
1123
1124         if (INTEL_INFO(dev_priv)->num_pipes) {
1125                 /* Must be done after probing outputs */
1126                 intel_opregion_register(dev_priv);
1127                 acpi_video_register();
1128         }
1129
1130         if (IS_GEN5(dev_priv))
1131                 intel_gpu_ips_init(dev_priv);
1132
1133         if (intel_lpe_audio_init(dev_priv) < 0)
1134                 i915_audio_component_init(dev_priv);
1135
1136         /*
1137          * Some ports require correctly set-up hpd registers for detection to
1138          * work properly (leading to ghost connected connector status), e.g. VGA
1139          * on gm45.  Hence we can only set up the initial fbdev config after hpd
1140          * irqs are fully enabled. We do it last so that the async config
1141          * cannot run before the connectors are registered.
1142          */
1143         intel_fbdev_initial_config_async(dev);
1144 }
1145
1146 /**
1147  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1148  * @dev_priv: device private
1149  */
1150 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1151 {
1152         if (HAS_LPE_AUDIO(dev_priv))
1153                 intel_lpe_audio_teardown(dev_priv);
1154         else
1155                 i915_audio_component_cleanup(dev_priv);
1156
1157         intel_gpu_ips_teardown();
1158         acpi_video_unregister();
1159         intel_opregion_unregister(dev_priv);
1160
1161         i915_teardown_sysfs(dev_priv);
1162         i915_debugfs_unregister(dev_priv);
1163         drm_dev_unregister(&dev_priv->drm);
1164
1165         i915_gem_shrinker_cleanup(dev_priv);
1166 }
1167
1168 /**
1169  * i915_driver_load - setup chip and create an initial config
1170  * @dev: DRM device
1171  * @flags: startup flags
1172  *
1173  * The driver load routine has to do several things:
1174  *   - drive output discovery via intel_modeset_init()
1175  *   - initialize the memory manager
1176  *   - allocate initial config memory
1177  *   - setup the DRM framebuffer with the allocated memory
1178  */
1179 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1180 {
1181         struct drm_i915_private *dev_priv;
1182         int ret;
1183
1184         if (i915.nuclear_pageflip)
1185                 driver.driver_features |= DRIVER_ATOMIC;
1186
1187         ret = -ENOMEM;
1188         dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1189         if (dev_priv)
1190                 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1191         if (ret) {
1192                 dev_printk(KERN_ERR, &pdev->dev,
1193                            "[" DRM_NAME ":%s] allocation failed\n", __func__);
1194                 kfree(dev_priv);
1195                 return ret;
1196         }
1197
1198         dev_priv->drm.pdev = pdev;
1199         dev_priv->drm.dev_private = dev_priv;
1200
1201         ret = pci_enable_device(pdev);
1202         if (ret)
1203                 goto out_free_priv;
1204
1205         pci_set_drvdata(pdev, &dev_priv->drm);
1206         /*
1207          * Disable the system suspend direct complete optimization, which can
1208          * leave the device suspended skipping the driver's suspend handlers
1209          * if the device was already runtime suspended. This is needed due to
1210          * the difference in our runtime and system suspend sequence and
1211          * becaue the HDA driver may require us to enable the audio power
1212          * domain during system suspend.
1213          */
1214         pdev->dev_flags |= PCI_DEV_FLAGS_NEEDS_RESUME;
1215
1216         ret = i915_driver_init_early(dev_priv, ent);
1217         if (ret < 0)
1218                 goto out_pci_disable;
1219
1220         intel_runtime_pm_get(dev_priv);
1221
1222         ret = i915_driver_init_mmio(dev_priv);
1223         if (ret < 0)
1224                 goto out_runtime_pm_put;
1225
1226         ret = i915_driver_init_hw(dev_priv);
1227         if (ret < 0)
1228                 goto out_cleanup_mmio;
1229
1230         /*
1231          * TODO: move the vblank init and parts of modeset init steps into one
1232          * of the i915_driver_init_/i915_driver_register functions according
1233          * to the role/effect of the given init step.
1234          */
1235         if (INTEL_INFO(dev_priv)->num_pipes) {
1236                 ret = drm_vblank_init(&dev_priv->drm,
1237                                       INTEL_INFO(dev_priv)->num_pipes);
1238                 if (ret)
1239                         goto out_cleanup_hw;
1240         }
1241
1242         ret = i915_load_modeset_init(&dev_priv->drm);
1243         if (ret < 0)
1244                 goto out_cleanup_vblank;
1245
1246         i915_driver_register(dev_priv);
1247
1248         intel_runtime_pm_enable(dev_priv);
1249
1250         /* Everything is in place, we can now relax! */
1251         DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1252                  driver.name, driver.major, driver.minor, driver.patchlevel,
1253                  driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1254
1255         intel_runtime_pm_put(dev_priv);
1256
1257         return 0;
1258
1259 out_cleanup_vblank:
1260         drm_vblank_cleanup(&dev_priv->drm);
1261 out_cleanup_hw:
1262         i915_driver_cleanup_hw(dev_priv);
1263 out_cleanup_mmio:
1264         i915_driver_cleanup_mmio(dev_priv);
1265 out_runtime_pm_put:
1266         intel_runtime_pm_put(dev_priv);
1267         i915_driver_cleanup_early(dev_priv);
1268 out_pci_disable:
1269         pci_disable_device(pdev);
1270 out_free_priv:
1271         i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1272         drm_dev_unref(&dev_priv->drm);
1273         return ret;
1274 }
1275
1276 void i915_driver_unload(struct drm_device *dev)
1277 {
1278         struct drm_i915_private *dev_priv = to_i915(dev);
1279         struct pci_dev *pdev = dev_priv->drm.pdev;
1280
1281         intel_fbdev_fini(dev);
1282
1283         if (i915_gem_suspend(dev))
1284                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1285
1286         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1287
1288         i915_driver_unregister(dev_priv);
1289
1290         drm_vblank_cleanup(dev);
1291
1292         intel_modeset_cleanup(dev);
1293
1294         /*
1295          * free the memory space allocated for the child device
1296          * config parsed from VBT
1297          */
1298         if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1299                 kfree(dev_priv->vbt.child_dev);
1300                 dev_priv->vbt.child_dev = NULL;
1301                 dev_priv->vbt.child_dev_num = 0;
1302         }
1303         kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1304         dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1305         kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1306         dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1307
1308         vga_switcheroo_unregister_client(pdev);
1309         vga_client_register(pdev, NULL, NULL, NULL);
1310
1311         intel_csr_ucode_fini(dev_priv);
1312
1313         /* Free error state after interrupts are fully disabled. */
1314         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1315         i915_destroy_error_state(dev);
1316
1317         /* Flush any outstanding unpin_work. */
1318         drain_workqueue(dev_priv->wq);
1319
1320         intel_guc_fini(dev);
1321         i915_gem_fini(dev);
1322         intel_fbc_cleanup_cfb(dev_priv);
1323
1324         intel_power_domains_fini(dev_priv);
1325
1326         i915_driver_cleanup_hw(dev_priv);
1327         i915_driver_cleanup_mmio(dev_priv);
1328
1329         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1330
1331         i915_driver_cleanup_early(dev_priv);
1332 }
1333
1334 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1335 {
1336         int ret;
1337
1338         ret = i915_gem_open(dev, file);
1339         if (ret)
1340                 return ret;
1341
1342         return 0;
1343 }
1344
1345 /**
1346  * i915_driver_lastclose - clean up after all DRM clients have exited
1347  * @dev: DRM device
1348  *
1349  * Take care of cleaning up after all DRM clients have exited.  In the
1350  * mode setting case, we want to restore the kernel's initial mode (just
1351  * in case the last client left us in a bad state).
1352  *
1353  * Additionally, in the non-mode setting case, we'll tear down the GTT
1354  * and DMA structures, since the kernel won't be using them, and clea
1355  * up any GEM state.
1356  */
1357 static void i915_driver_lastclose(struct drm_device *dev)
1358 {
1359         intel_fbdev_restore_mode(dev);
1360         vga_switcheroo_process_delayed_switch();
1361 }
1362
1363 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1364 {
1365         mutex_lock(&dev->struct_mutex);
1366         i915_gem_context_close(dev, file);
1367         i915_gem_release(dev, file);
1368         mutex_unlock(&dev->struct_mutex);
1369 }
1370
1371 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1372 {
1373         struct drm_i915_file_private *file_priv = file->driver_priv;
1374
1375         kfree(file_priv);
1376 }
1377
1378 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1379 {
1380         struct drm_device *dev = &dev_priv->drm;
1381         struct intel_encoder *encoder;
1382
1383         drm_modeset_lock_all(dev);
1384         for_each_intel_encoder(dev, encoder)
1385                 if (encoder->suspend)
1386                         encoder->suspend(encoder);
1387         drm_modeset_unlock_all(dev);
1388 }
1389
1390 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1391                               bool rpm_resume);
1392 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1393
1394 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1395 {
1396 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1397         if (acpi_target_system_state() < ACPI_STATE_S3)
1398                 return true;
1399 #endif
1400         return false;
1401 }
1402
1403 static int i915_drm_suspend(struct drm_device *dev)
1404 {
1405         struct drm_i915_private *dev_priv = to_i915(dev);
1406         struct pci_dev *pdev = dev_priv->drm.pdev;
1407         pci_power_t opregion_target_state;
1408         int error;
1409
1410         /* ignore lid events during suspend */
1411         mutex_lock(&dev_priv->modeset_restore_lock);
1412         dev_priv->modeset_restore = MODESET_SUSPENDED;
1413         mutex_unlock(&dev_priv->modeset_restore_lock);
1414
1415         disable_rpm_wakeref_asserts(dev_priv);
1416
1417         /* We do a lot of poking in a lot of registers, make sure they work
1418          * properly. */
1419         intel_display_set_init_power(dev_priv, true);
1420
1421         drm_kms_helper_poll_disable(dev);
1422
1423         pci_save_state(pdev);
1424
1425         error = i915_gem_suspend(dev);
1426         if (error) {
1427                 dev_err(&pdev->dev,
1428                         "GEM idle failed, resume might fail\n");
1429                 goto out;
1430         }
1431
1432         intel_guc_suspend(dev);
1433
1434         intel_display_suspend(dev);
1435
1436         intel_dp_mst_suspend(dev);
1437
1438         intel_runtime_pm_disable_interrupts(dev_priv);
1439         intel_hpd_cancel_work(dev_priv);
1440
1441         intel_suspend_encoders(dev_priv);
1442
1443         intel_suspend_hw(dev);
1444
1445         i915_gem_suspend_gtt_mappings(dev);
1446
1447         i915_save_state(dev);
1448
1449         opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1450         intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1451
1452         intel_uncore_suspend(dev_priv);
1453         intel_opregion_unregister(dev_priv);
1454
1455         intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1456
1457         dev_priv->suspend_count++;
1458
1459         intel_csr_ucode_suspend(dev_priv);
1460
1461 out:
1462         enable_rpm_wakeref_asserts(dev_priv);
1463
1464         return error;
1465 }
1466
1467 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1468 {
1469         struct drm_i915_private *dev_priv = to_i915(dev);
1470         struct pci_dev *pdev = dev_priv->drm.pdev;
1471         bool fw_csr;
1472         int ret;
1473
1474         disable_rpm_wakeref_asserts(dev_priv);
1475
1476         intel_display_set_init_power(dev_priv, false);
1477
1478         fw_csr = !IS_BROXTON(dev_priv) &&
1479                 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1480         /*
1481          * In case of firmware assisted context save/restore don't manually
1482          * deinit the power domains. This also means the CSR/DMC firmware will
1483          * stay active, it will power down any HW resources as required and
1484          * also enable deeper system power states that would be blocked if the
1485          * firmware was inactive.
1486          */
1487         if (!fw_csr)
1488                 intel_power_domains_suspend(dev_priv);
1489
1490         ret = 0;
1491         if (IS_BROXTON(dev_priv))
1492                 bxt_enable_dc9(dev_priv);
1493         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1494                 hsw_enable_pc8(dev_priv);
1495         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1496                 ret = vlv_suspend_complete(dev_priv);
1497
1498         if (ret) {
1499                 DRM_ERROR("Suspend complete failed: %d\n", ret);
1500                 if (!fw_csr)
1501                         intel_power_domains_init_hw(dev_priv, true);
1502
1503                 goto out;
1504         }
1505
1506         pci_disable_device(pdev);
1507         /*
1508          * During hibernation on some platforms the BIOS may try to access
1509          * the device even though it's already in D3 and hang the machine. So
1510          * leave the device in D0 on those platforms and hope the BIOS will
1511          * power down the device properly. The issue was seen on multiple old
1512          * GENs with different BIOS vendors, so having an explicit blacklist
1513          * is inpractical; apply the workaround on everything pre GEN6. The
1514          * platforms where the issue was seen:
1515          * Lenovo Thinkpad X301, X61s, X60, T60, X41
1516          * Fujitsu FSC S7110
1517          * Acer Aspire 1830T
1518          */
1519         if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
1520                 pci_set_power_state(pdev, PCI_D3hot);
1521
1522         dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1523
1524 out:
1525         enable_rpm_wakeref_asserts(dev_priv);
1526
1527         return ret;
1528 }
1529
1530 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1531 {
1532         int error;
1533
1534         if (!dev) {
1535                 DRM_ERROR("dev: %p\n", dev);
1536                 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1537                 return -ENODEV;
1538         }
1539
1540         if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1541                          state.event != PM_EVENT_FREEZE))
1542                 return -EINVAL;
1543
1544         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1545                 return 0;
1546
1547         error = i915_drm_suspend(dev);
1548         if (error)
1549                 return error;
1550
1551         return i915_drm_suspend_late(dev, false);
1552 }
1553
1554 static int i915_drm_resume(struct drm_device *dev)
1555 {
1556         struct drm_i915_private *dev_priv = to_i915(dev);
1557         int ret;
1558
1559         disable_rpm_wakeref_asserts(dev_priv);
1560         intel_sanitize_gt_powersave(dev_priv);
1561
1562         ret = i915_ggtt_enable_hw(dev_priv);
1563         if (ret)
1564                 DRM_ERROR("failed to re-enable GGTT\n");
1565
1566         intel_csr_ucode_resume(dev_priv);
1567
1568         i915_gem_resume(dev);
1569
1570         i915_restore_state(dev);
1571         intel_pps_unlock_regs_wa(dev_priv);
1572         intel_opregion_setup(dev_priv);
1573
1574         intel_init_pch_refclk(dev);
1575         drm_mode_config_reset(dev);
1576
1577         /*
1578          * Interrupts have to be enabled before any batches are run. If not the
1579          * GPU will hang. i915_gem_init_hw() will initiate batches to
1580          * update/restore the context.
1581          *
1582          * Modeset enabling in intel_modeset_init_hw() also needs working
1583          * interrupts.
1584          */
1585         intel_runtime_pm_enable_interrupts(dev_priv);
1586
1587         mutex_lock(&dev->struct_mutex);
1588         if (i915_gem_init_hw(dev)) {
1589                 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1590                 i915_gem_set_wedged(dev_priv);
1591         }
1592         mutex_unlock(&dev->struct_mutex);
1593
1594         intel_guc_resume(dev);
1595
1596         intel_modeset_init_hw(dev);
1597
1598         spin_lock_irq(&dev_priv->irq_lock);
1599         if (dev_priv->display.hpd_irq_setup)
1600                 dev_priv->display.hpd_irq_setup(dev_priv);
1601         spin_unlock_irq(&dev_priv->irq_lock);
1602
1603         intel_dp_mst_resume(dev);
1604
1605         intel_display_resume(dev);
1606
1607         /*
1608          * ... but also need to make sure that hotplug processing
1609          * doesn't cause havoc. Like in the driver load code we don't
1610          * bother with the tiny race here where we might loose hotplug
1611          * notifications.
1612          * */
1613         intel_hpd_init(dev_priv);
1614         /* Config may have changed between suspend and resume */
1615         drm_helper_hpd_irq_event(dev);
1616
1617         intel_opregion_register(dev_priv);
1618
1619         intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1620
1621         mutex_lock(&dev_priv->modeset_restore_lock);
1622         dev_priv->modeset_restore = MODESET_DONE;
1623         mutex_unlock(&dev_priv->modeset_restore_lock);
1624
1625         intel_opregion_notify_adapter(dev_priv, PCI_D0);
1626
1627         intel_autoenable_gt_powersave(dev_priv);
1628         drm_kms_helper_poll_enable(dev);
1629
1630         enable_rpm_wakeref_asserts(dev_priv);
1631
1632         return 0;
1633 }
1634
1635 static int i915_drm_resume_early(struct drm_device *dev)
1636 {
1637         struct drm_i915_private *dev_priv = to_i915(dev);
1638         struct pci_dev *pdev = dev_priv->drm.pdev;
1639         int ret;
1640
1641         /*
1642          * We have a resume ordering issue with the snd-hda driver also
1643          * requiring our device to be power up. Due to the lack of a
1644          * parent/child relationship we currently solve this with an early
1645          * resume hook.
1646          *
1647          * FIXME: This should be solved with a special hdmi sink device or
1648          * similar so that power domains can be employed.
1649          */
1650
1651         /*
1652          * Note that we need to set the power state explicitly, since we
1653          * powered off the device during freeze and the PCI core won't power
1654          * it back up for us during thaw. Powering off the device during
1655          * freeze is not a hard requirement though, and during the
1656          * suspend/resume phases the PCI core makes sure we get here with the
1657          * device powered on. So in case we change our freeze logic and keep
1658          * the device powered we can also remove the following set power state
1659          * call.
1660          */
1661         ret = pci_set_power_state(pdev, PCI_D0);
1662         if (ret) {
1663                 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1664                 goto out;
1665         }
1666
1667         /*
1668          * Note that pci_enable_device() first enables any parent bridge
1669          * device and only then sets the power state for this device. The
1670          * bridge enabling is a nop though, since bridge devices are resumed
1671          * first. The order of enabling power and enabling the device is
1672          * imposed by the PCI core as described above, so here we preserve the
1673          * same order for the freeze/thaw phases.
1674          *
1675          * TODO: eventually we should remove pci_disable_device() /
1676          * pci_enable_enable_device() from suspend/resume. Due to how they
1677          * depend on the device enable refcount we can't anyway depend on them
1678          * disabling/enabling the device.
1679          */
1680         if (pci_enable_device(pdev)) {
1681                 ret = -EIO;
1682                 goto out;
1683         }
1684
1685         pci_set_master(pdev);
1686
1687         disable_rpm_wakeref_asserts(dev_priv);
1688
1689         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1690                 ret = vlv_resume_prepare(dev_priv, false);
1691         if (ret)
1692                 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1693                           ret);
1694
1695         intel_uncore_resume_early(dev_priv);
1696
1697         if (IS_BROXTON(dev_priv)) {
1698                 if (!dev_priv->suspended_to_idle)
1699                         gen9_sanitize_dc_state(dev_priv);
1700                 bxt_disable_dc9(dev_priv);
1701         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1702                 hsw_disable_pc8(dev_priv);
1703         }
1704
1705         intel_uncore_sanitize(dev_priv);
1706
1707         if (IS_BROXTON(dev_priv) ||
1708             !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1709                 intel_power_domains_init_hw(dev_priv, true);
1710
1711         enable_rpm_wakeref_asserts(dev_priv);
1712
1713 out:
1714         dev_priv->suspended_to_idle = false;
1715
1716         return ret;
1717 }
1718
1719 int i915_resume_switcheroo(struct drm_device *dev)
1720 {
1721         int ret;
1722
1723         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1724                 return 0;
1725
1726         ret = i915_drm_resume_early(dev);
1727         if (ret)
1728                 return ret;
1729
1730         return i915_drm_resume(dev);
1731 }
1732
1733 /**
1734  * i915_reset - reset chip after a hang
1735  * @dev: drm device to reset
1736  *
1737  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1738  * on failure.
1739  *
1740  * Caller must hold the struct_mutex.
1741  *
1742  * Procedure is fairly simple:
1743  *   - reset the chip using the reset reg
1744  *   - re-init context state
1745  *   - re-init hardware status page
1746  *   - re-init ring buffer
1747  *   - re-init interrupt state
1748  *   - re-init display
1749  */
1750 void i915_reset(struct drm_i915_private *dev_priv)
1751 {
1752         struct drm_device *dev = &dev_priv->drm;
1753         struct i915_gpu_error *error = &dev_priv->gpu_error;
1754         int ret;
1755
1756         lockdep_assert_held(&dev->struct_mutex);
1757
1758         if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1759                 return;
1760
1761         /* Clear any previous failed attempts at recovery. Time to try again. */
1762         __clear_bit(I915_WEDGED, &error->flags);
1763         error->reset_count++;
1764
1765         pr_notice("drm/i915: Resetting chip after gpu hang\n");
1766         ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1767         if (ret) {
1768                 if (ret != -ENODEV)
1769                         DRM_ERROR("Failed to reset chip: %i\n", ret);
1770                 else
1771                         DRM_DEBUG_DRIVER("GPU reset disabled\n");
1772                 goto error;
1773         }
1774
1775         i915_gem_reset(dev_priv);
1776         intel_overlay_reset(dev_priv);
1777
1778         /* Ok, now get things going again... */
1779
1780         /*
1781          * Everything depends on having the GTT running, so we need to start
1782          * there.  Fortunately we don't need to do this unless we reset the
1783          * chip at a PCI level.
1784          *
1785          * Next we need to restore the context, but we don't use those
1786          * yet either...
1787          *
1788          * Ring buffer needs to be re-initialized in the KMS case, or if X
1789          * was running at the time of the reset (i.e. we weren't VT
1790          * switched away).
1791          */
1792         ret = i915_gem_init_hw(dev);
1793         if (ret) {
1794                 DRM_ERROR("Failed hw init on reset %d\n", ret);
1795                 goto error;
1796         }
1797
1798 wakeup:
1799         wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1800         return;
1801
1802 error:
1803         i915_gem_set_wedged(dev_priv);
1804         goto wakeup;
1805 }
1806
1807 static int i915_pm_suspend(struct device *kdev)
1808 {
1809         struct pci_dev *pdev = to_pci_dev(kdev);
1810         struct drm_device *dev = pci_get_drvdata(pdev);
1811
1812         if (!dev) {
1813                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1814                 return -ENODEV;
1815         }
1816
1817         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1818                 return 0;
1819
1820         return i915_drm_suspend(dev);
1821 }
1822
1823 static int i915_pm_suspend_late(struct device *kdev)
1824 {
1825         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1826
1827         /*
1828          * We have a suspend ordering issue with the snd-hda driver also
1829          * requiring our device to be power up. Due to the lack of a
1830          * parent/child relationship we currently solve this with an late
1831          * suspend hook.
1832          *
1833          * FIXME: This should be solved with a special hdmi sink device or
1834          * similar so that power domains can be employed.
1835          */
1836         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1837                 return 0;
1838
1839         return i915_drm_suspend_late(dev, false);
1840 }
1841
1842 static int i915_pm_poweroff_late(struct device *kdev)
1843 {
1844         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1845
1846         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1847                 return 0;
1848
1849         return i915_drm_suspend_late(dev, true);
1850 }
1851
1852 static int i915_pm_resume_early(struct device *kdev)
1853 {
1854         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1855
1856         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1857                 return 0;
1858
1859         return i915_drm_resume_early(dev);
1860 }
1861
1862 static int i915_pm_resume(struct device *kdev)
1863 {
1864         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1865
1866         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1867                 return 0;
1868
1869         return i915_drm_resume(dev);
1870 }
1871
1872 /* freeze: before creating the hibernation_image */
1873 static int i915_pm_freeze(struct device *kdev)
1874 {
1875         int ret;
1876
1877         ret = i915_pm_suspend(kdev);
1878         if (ret)
1879                 return ret;
1880
1881         ret = i915_gem_freeze(kdev_to_i915(kdev));
1882         if (ret)
1883                 return ret;
1884
1885         return 0;
1886 }
1887
1888 static int i915_pm_freeze_late(struct device *kdev)
1889 {
1890         int ret;
1891
1892         ret = i915_pm_suspend_late(kdev);
1893         if (ret)
1894                 return ret;
1895
1896         ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1897         if (ret)
1898                 return ret;
1899
1900         return 0;
1901 }
1902
1903 /* thaw: called after creating the hibernation image, but before turning off. */
1904 static int i915_pm_thaw_early(struct device *kdev)
1905 {
1906         return i915_pm_resume_early(kdev);
1907 }
1908
1909 static int i915_pm_thaw(struct device *kdev)
1910 {
1911         return i915_pm_resume(kdev);
1912 }
1913
1914 /* restore: called after loading the hibernation image. */
1915 static int i915_pm_restore_early(struct device *kdev)
1916 {
1917         return i915_pm_resume_early(kdev);
1918 }
1919
1920 static int i915_pm_restore(struct device *kdev)
1921 {
1922         return i915_pm_resume(kdev);
1923 }
1924
1925 /*
1926  * Save all Gunit registers that may be lost after a D3 and a subsequent
1927  * S0i[R123] transition. The list of registers needing a save/restore is
1928  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1929  * registers in the following way:
1930  * - Driver: saved/restored by the driver
1931  * - Punit : saved/restored by the Punit firmware
1932  * - No, w/o marking: no need to save/restore, since the register is R/O or
1933  *                    used internally by the HW in a way that doesn't depend
1934  *                    keeping the content across a suspend/resume.
1935  * - Debug : used for debugging
1936  *
1937  * We save/restore all registers marked with 'Driver', with the following
1938  * exceptions:
1939  * - Registers out of use, including also registers marked with 'Debug'.
1940  *   These have no effect on the driver's operation, so we don't save/restore
1941  *   them to reduce the overhead.
1942  * - Registers that are fully setup by an initialization function called from
1943  *   the resume path. For example many clock gating and RPS/RC6 registers.
1944  * - Registers that provide the right functionality with their reset defaults.
1945  *
1946  * TODO: Except for registers that based on the above 3 criteria can be safely
1947  * ignored, we save/restore all others, practically treating the HW context as
1948  * a black-box for the driver. Further investigation is needed to reduce the
1949  * saved/restored registers even further, by following the same 3 criteria.
1950  */
1951 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1952 {
1953         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1954         int i;
1955
1956         /* GAM 0x4000-0x4770 */
1957         s->wr_watermark         = I915_READ(GEN7_WR_WATERMARK);
1958         s->gfx_prio_ctrl        = I915_READ(GEN7_GFX_PRIO_CTRL);
1959         s->arb_mode             = I915_READ(ARB_MODE);
1960         s->gfx_pend_tlb0        = I915_READ(GEN7_GFX_PEND_TLB0);
1961         s->gfx_pend_tlb1        = I915_READ(GEN7_GFX_PEND_TLB1);
1962
1963         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1964                 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1965
1966         s->media_max_req_count  = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1967         s->gfx_max_req_count    = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1968
1969         s->render_hwsp          = I915_READ(RENDER_HWS_PGA_GEN7);
1970         s->ecochk               = I915_READ(GAM_ECOCHK);
1971         s->bsd_hwsp             = I915_READ(BSD_HWS_PGA_GEN7);
1972         s->blt_hwsp             = I915_READ(BLT_HWS_PGA_GEN7);
1973
1974         s->tlb_rd_addr          = I915_READ(GEN7_TLB_RD_ADDR);
1975
1976         /* MBC 0x9024-0x91D0, 0x8500 */
1977         s->g3dctl               = I915_READ(VLV_G3DCTL);
1978         s->gsckgctl             = I915_READ(VLV_GSCKGCTL);
1979         s->mbctl                = I915_READ(GEN6_MBCTL);
1980
1981         /* GCP 0x9400-0x9424, 0x8100-0x810C */
1982         s->ucgctl1              = I915_READ(GEN6_UCGCTL1);
1983         s->ucgctl3              = I915_READ(GEN6_UCGCTL3);
1984         s->rcgctl1              = I915_READ(GEN6_RCGCTL1);
1985         s->rcgctl2              = I915_READ(GEN6_RCGCTL2);
1986         s->rstctl               = I915_READ(GEN6_RSTCTL);
1987         s->misccpctl            = I915_READ(GEN7_MISCCPCTL);
1988
1989         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1990         s->gfxpause             = I915_READ(GEN6_GFXPAUSE);
1991         s->rpdeuhwtc            = I915_READ(GEN6_RPDEUHWTC);
1992         s->rpdeuc               = I915_READ(GEN6_RPDEUC);
1993         s->ecobus               = I915_READ(ECOBUS);
1994         s->pwrdwnupctl          = I915_READ(VLV_PWRDWNUPCTL);
1995         s->rp_down_timeout      = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1996         s->rp_deucsw            = I915_READ(GEN6_RPDEUCSW);
1997         s->rcubmabdtmr          = I915_READ(GEN6_RCUBMABDTMR);
1998         s->rcedata              = I915_READ(VLV_RCEDATA);
1999         s->spare2gh             = I915_READ(VLV_SPAREG2H);
2000
2001         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2002         s->gt_imr               = I915_READ(GTIMR);
2003         s->gt_ier               = I915_READ(GTIER);
2004         s->pm_imr               = I915_READ(GEN6_PMIMR);
2005         s->pm_ier               = I915_READ(GEN6_PMIER);
2006
2007         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2008                 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2009
2010         /* GT SA CZ domain, 0x100000-0x138124 */
2011         s->tilectl              = I915_READ(TILECTL);
2012         s->gt_fifoctl           = I915_READ(GTFIFOCTL);
2013         s->gtlc_wake_ctrl       = I915_READ(VLV_GTLC_WAKE_CTRL);
2014         s->gtlc_survive         = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2015         s->pmwgicz              = I915_READ(VLV_PMWGICZ);
2016
2017         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2018         s->gu_ctl0              = I915_READ(VLV_GU_CTL0);
2019         s->gu_ctl1              = I915_READ(VLV_GU_CTL1);
2020         s->pcbr                 = I915_READ(VLV_PCBR);
2021         s->clock_gate_dis2      = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2022
2023         /*
2024          * Not saving any of:
2025          * DFT,         0x9800-0x9EC0
2026          * SARB,        0xB000-0xB1FC
2027          * GAC,         0x5208-0x524C, 0x14000-0x14C000
2028          * PCI CFG
2029          */
2030 }
2031
2032 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2033 {
2034         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2035         u32 val;
2036         int i;
2037
2038         /* GAM 0x4000-0x4770 */
2039         I915_WRITE(GEN7_WR_WATERMARK,   s->wr_watermark);
2040         I915_WRITE(GEN7_GFX_PRIO_CTRL,  s->gfx_prio_ctrl);
2041         I915_WRITE(ARB_MODE,            s->arb_mode | (0xffff << 16));
2042         I915_WRITE(GEN7_GFX_PEND_TLB0,  s->gfx_pend_tlb0);
2043         I915_WRITE(GEN7_GFX_PEND_TLB1,  s->gfx_pend_tlb1);
2044
2045         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2046                 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2047
2048         I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2049         I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2050
2051         I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2052         I915_WRITE(GAM_ECOCHK,          s->ecochk);
2053         I915_WRITE(BSD_HWS_PGA_GEN7,    s->bsd_hwsp);
2054         I915_WRITE(BLT_HWS_PGA_GEN7,    s->blt_hwsp);
2055
2056         I915_WRITE(GEN7_TLB_RD_ADDR,    s->tlb_rd_addr);
2057
2058         /* MBC 0x9024-0x91D0, 0x8500 */
2059         I915_WRITE(VLV_G3DCTL,          s->g3dctl);
2060         I915_WRITE(VLV_GSCKGCTL,        s->gsckgctl);
2061         I915_WRITE(GEN6_MBCTL,          s->mbctl);
2062
2063         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2064         I915_WRITE(GEN6_UCGCTL1,        s->ucgctl1);
2065         I915_WRITE(GEN6_UCGCTL3,        s->ucgctl3);
2066         I915_WRITE(GEN6_RCGCTL1,        s->rcgctl1);
2067         I915_WRITE(GEN6_RCGCTL2,        s->rcgctl2);
2068         I915_WRITE(GEN6_RSTCTL,         s->rstctl);
2069         I915_WRITE(GEN7_MISCCPCTL,      s->misccpctl);
2070
2071         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2072         I915_WRITE(GEN6_GFXPAUSE,       s->gfxpause);
2073         I915_WRITE(GEN6_RPDEUHWTC,      s->rpdeuhwtc);
2074         I915_WRITE(GEN6_RPDEUC,         s->rpdeuc);
2075         I915_WRITE(ECOBUS,              s->ecobus);
2076         I915_WRITE(VLV_PWRDWNUPCTL,     s->pwrdwnupctl);
2077         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2078         I915_WRITE(GEN6_RPDEUCSW,       s->rp_deucsw);
2079         I915_WRITE(GEN6_RCUBMABDTMR,    s->rcubmabdtmr);
2080         I915_WRITE(VLV_RCEDATA,         s->rcedata);
2081         I915_WRITE(VLV_SPAREG2H,        s->spare2gh);
2082
2083         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2084         I915_WRITE(GTIMR,               s->gt_imr);
2085         I915_WRITE(GTIER,               s->gt_ier);
2086         I915_WRITE(GEN6_PMIMR,          s->pm_imr);
2087         I915_WRITE(GEN6_PMIER,          s->pm_ier);
2088
2089         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2090                 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2091
2092         /* GT SA CZ domain, 0x100000-0x138124 */
2093         I915_WRITE(TILECTL,                     s->tilectl);
2094         I915_WRITE(GTFIFOCTL,                   s->gt_fifoctl);
2095         /*
2096          * Preserve the GT allow wake and GFX force clock bit, they are not
2097          * be restored, as they are used to control the s0ix suspend/resume
2098          * sequence by the caller.
2099          */
2100         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2101         val &= VLV_GTLC_ALLOWWAKEREQ;
2102         val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2103         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2104
2105         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2106         val &= VLV_GFX_CLK_FORCE_ON_BIT;
2107         val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2108         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2109
2110         I915_WRITE(VLV_PMWGICZ,                 s->pmwgicz);
2111
2112         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2113         I915_WRITE(VLV_GU_CTL0,                 s->gu_ctl0);
2114         I915_WRITE(VLV_GU_CTL1,                 s->gu_ctl1);
2115         I915_WRITE(VLV_PCBR,                    s->pcbr);
2116         I915_WRITE(VLV_GUNIT_CLOCK_GATE2,       s->clock_gate_dis2);
2117 }
2118
2119 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2120 {
2121         u32 val;
2122         int err;
2123
2124         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2125         val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2126         if (force_on)
2127                 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2128         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2129
2130         if (!force_on)
2131                 return 0;
2132
2133         err = intel_wait_for_register(dev_priv,
2134                                       VLV_GTLC_SURVIVABILITY_REG,
2135                                       VLV_GFX_CLK_STATUS_BIT,
2136                                       VLV_GFX_CLK_STATUS_BIT,
2137                                       20);
2138         if (err)
2139                 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2140                           I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2141
2142         return err;
2143 }
2144
2145 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2146 {
2147         u32 val;
2148         int err = 0;
2149
2150         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2151         val &= ~VLV_GTLC_ALLOWWAKEREQ;
2152         if (allow)
2153                 val |= VLV_GTLC_ALLOWWAKEREQ;
2154         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2155         POSTING_READ(VLV_GTLC_WAKE_CTRL);
2156
2157         err = intel_wait_for_register(dev_priv,
2158                                       VLV_GTLC_PW_STATUS,
2159                                       VLV_GTLC_ALLOWWAKEACK,
2160                                       allow,
2161                                       1);
2162         if (err)
2163                 DRM_ERROR("timeout disabling GT waking\n");
2164
2165         return err;
2166 }
2167
2168 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2169                                  bool wait_for_on)
2170 {
2171         u32 mask;
2172         u32 val;
2173         int err;
2174
2175         mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2176         val = wait_for_on ? mask : 0;
2177         if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2178                 return 0;
2179
2180         DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2181                       onoff(wait_for_on),
2182                       I915_READ(VLV_GTLC_PW_STATUS));
2183
2184         /*
2185          * RC6 transitioning can be delayed up to 2 msec (see
2186          * valleyview_enable_rps), use 3 msec for safety.
2187          */
2188         err = intel_wait_for_register(dev_priv,
2189                                       VLV_GTLC_PW_STATUS, mask, val,
2190                                       3);
2191         if (err)
2192                 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2193                           onoff(wait_for_on));
2194
2195         return err;
2196 }
2197
2198 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2199 {
2200         if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2201                 return;
2202
2203         DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2204         I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2205 }
2206
2207 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2208 {
2209         u32 mask;
2210         int err;
2211
2212         /*
2213          * Bspec defines the following GT well on flags as debug only, so
2214          * don't treat them as hard failures.
2215          */
2216         (void)vlv_wait_for_gt_wells(dev_priv, false);
2217
2218         mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2219         WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2220
2221         vlv_check_no_gt_access(dev_priv);
2222
2223         err = vlv_force_gfx_clock(dev_priv, true);
2224         if (err)
2225                 goto err1;
2226
2227         err = vlv_allow_gt_wake(dev_priv, false);
2228         if (err)
2229                 goto err2;
2230
2231         if (!IS_CHERRYVIEW(dev_priv))
2232                 vlv_save_gunit_s0ix_state(dev_priv);
2233
2234         err = vlv_force_gfx_clock(dev_priv, false);
2235         if (err)
2236                 goto err2;
2237
2238         return 0;
2239
2240 err2:
2241         /* For safety always re-enable waking and disable gfx clock forcing */
2242         vlv_allow_gt_wake(dev_priv, true);
2243 err1:
2244         vlv_force_gfx_clock(dev_priv, false);
2245
2246         return err;
2247 }
2248
2249 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2250                                 bool rpm_resume)
2251 {
2252         struct drm_device *dev = &dev_priv->drm;
2253         int err;
2254         int ret;
2255
2256         /*
2257          * If any of the steps fail just try to continue, that's the best we
2258          * can do at this point. Return the first error code (which will also
2259          * leave RPM permanently disabled).
2260          */
2261         ret = vlv_force_gfx_clock(dev_priv, true);
2262
2263         if (!IS_CHERRYVIEW(dev_priv))
2264                 vlv_restore_gunit_s0ix_state(dev_priv);
2265
2266         err = vlv_allow_gt_wake(dev_priv, true);
2267         if (!ret)
2268                 ret = err;
2269
2270         err = vlv_force_gfx_clock(dev_priv, false);
2271         if (!ret)
2272                 ret = err;
2273
2274         vlv_check_no_gt_access(dev_priv);
2275
2276         if (rpm_resume) {
2277                 intel_init_clock_gating(dev);
2278                 i915_gem_restore_fences(dev);
2279         }
2280
2281         return ret;
2282 }
2283
2284 static int intel_runtime_suspend(struct device *kdev)
2285 {
2286         struct pci_dev *pdev = to_pci_dev(kdev);
2287         struct drm_device *dev = pci_get_drvdata(pdev);
2288         struct drm_i915_private *dev_priv = to_i915(dev);
2289         int ret;
2290
2291         if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2292                 return -ENODEV;
2293
2294         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2295                 return -ENODEV;
2296
2297         DRM_DEBUG_KMS("Suspending device\n");
2298
2299         /*
2300          * We could deadlock here in case another thread holding struct_mutex
2301          * calls RPM suspend concurrently, since the RPM suspend will wait
2302          * first for this RPM suspend to finish. In this case the concurrent
2303          * RPM resume will be followed by its RPM suspend counterpart. Still
2304          * for consistency return -EAGAIN, which will reschedule this suspend.
2305          */
2306         if (!mutex_trylock(&dev->struct_mutex)) {
2307                 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
2308                 /*
2309                  * Bump the expiration timestamp, otherwise the suspend won't
2310                  * be rescheduled.
2311                  */
2312                 pm_runtime_mark_last_busy(kdev);
2313
2314                 return -EAGAIN;
2315         }
2316
2317         disable_rpm_wakeref_asserts(dev_priv);
2318
2319         /*
2320          * We are safe here against re-faults, since the fault handler takes
2321          * an RPM reference.
2322          */
2323         i915_gem_release_all_mmaps(dev_priv);
2324         mutex_unlock(&dev->struct_mutex);
2325
2326         intel_guc_suspend(dev);
2327
2328         intel_runtime_pm_disable_interrupts(dev_priv);
2329
2330         ret = 0;
2331         if (IS_BROXTON(dev_priv)) {
2332                 bxt_display_core_uninit(dev_priv);
2333                 bxt_enable_dc9(dev_priv);
2334         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2335                 hsw_enable_pc8(dev_priv);
2336         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2337                 ret = vlv_suspend_complete(dev_priv);
2338         }
2339
2340         if (ret) {
2341                 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2342                 intel_runtime_pm_enable_interrupts(dev_priv);
2343
2344                 enable_rpm_wakeref_asserts(dev_priv);
2345
2346                 return ret;
2347         }
2348
2349         intel_uncore_suspend(dev_priv);
2350
2351         enable_rpm_wakeref_asserts(dev_priv);
2352         WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2353
2354         if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2355                 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2356
2357         dev_priv->pm.suspended = true;
2358
2359         /*
2360          * FIXME: We really should find a document that references the arguments
2361          * used below!
2362          */
2363         if (IS_BROADWELL(dev_priv)) {
2364                 /*
2365                  * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2366                  * being detected, and the call we do at intel_runtime_resume()
2367                  * won't be able to restore them. Since PCI_D3hot matches the
2368                  * actual specification and appears to be working, use it.
2369                  */
2370                 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2371         } else {
2372                 /*
2373                  * current versions of firmware which depend on this opregion
2374                  * notification have repurposed the D1 definition to mean
2375                  * "runtime suspended" vs. what you would normally expect (D3)
2376                  * to distinguish it from notifications that might be sent via
2377                  * the suspend path.
2378                  */
2379                 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2380         }
2381
2382         assert_forcewakes_inactive(dev_priv);
2383
2384         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2385                 intel_hpd_poll_init(dev_priv);
2386
2387         DRM_DEBUG_KMS("Device suspended\n");
2388         return 0;
2389 }
2390
2391 static int intel_runtime_resume(struct device *kdev)
2392 {
2393         struct pci_dev *pdev = to_pci_dev(kdev);
2394         struct drm_device *dev = pci_get_drvdata(pdev);
2395         struct drm_i915_private *dev_priv = to_i915(dev);
2396         int ret = 0;
2397
2398         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2399                 return -ENODEV;
2400
2401         DRM_DEBUG_KMS("Resuming device\n");
2402
2403         WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2404         disable_rpm_wakeref_asserts(dev_priv);
2405
2406         intel_opregion_notify_adapter(dev_priv, PCI_D0);
2407         dev_priv->pm.suspended = false;
2408         if (intel_uncore_unclaimed_mmio(dev_priv))
2409                 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2410
2411         intel_guc_resume(dev);
2412
2413         if (IS_GEN6(dev_priv))
2414                 intel_init_pch_refclk(dev);
2415
2416         if (IS_BROXTON(dev)) {
2417                 bxt_disable_dc9(dev_priv);
2418                 bxt_display_core_init(dev_priv, true);
2419                 if (dev_priv->csr.dmc_payload &&
2420                     (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2421                         gen9_enable_dc5(dev_priv);
2422         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2423                 hsw_disable_pc8(dev_priv);
2424         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2425                 ret = vlv_resume_prepare(dev_priv, true);
2426         }
2427
2428         /*
2429          * No point of rolling back things in case of an error, as the best
2430          * we can do is to hope that things will still work (and disable RPM).
2431          */
2432         i915_gem_init_swizzling(dev);
2433
2434         intel_runtime_pm_enable_interrupts(dev_priv);
2435
2436         /*
2437          * On VLV/CHV display interrupts are part of the display
2438          * power well, so hpd is reinitialized from there. For
2439          * everyone else do it here.
2440          */
2441         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2442                 intel_hpd_init(dev_priv);
2443
2444         enable_rpm_wakeref_asserts(dev_priv);
2445
2446         if (ret)
2447                 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2448         else
2449                 DRM_DEBUG_KMS("Device resumed\n");
2450
2451         return ret;
2452 }
2453
2454 const struct dev_pm_ops i915_pm_ops = {
2455         /*
2456          * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2457          * PMSG_RESUME]
2458          */
2459         .suspend = i915_pm_suspend,
2460         .suspend_late = i915_pm_suspend_late,
2461         .resume_early = i915_pm_resume_early,
2462         .resume = i915_pm_resume,
2463
2464         /*
2465          * S4 event handlers
2466          * @freeze, @freeze_late    : called (1) before creating the
2467          *                            hibernation image [PMSG_FREEZE] and
2468          *                            (2) after rebooting, before restoring
2469          *                            the image [PMSG_QUIESCE]
2470          * @thaw, @thaw_early       : called (1) after creating the hibernation
2471          *                            image, before writing it [PMSG_THAW]
2472          *                            and (2) after failing to create or
2473          *                            restore the image [PMSG_RECOVER]
2474          * @poweroff, @poweroff_late: called after writing the hibernation
2475          *                            image, before rebooting [PMSG_HIBERNATE]
2476          * @restore, @restore_early : called after rebooting and restoring the
2477          *                            hibernation image [PMSG_RESTORE]
2478          */
2479         .freeze = i915_pm_freeze,
2480         .freeze_late = i915_pm_freeze_late,
2481         .thaw_early = i915_pm_thaw_early,
2482         .thaw = i915_pm_thaw,
2483         .poweroff = i915_pm_suspend,
2484         .poweroff_late = i915_pm_poweroff_late,
2485         .restore_early = i915_pm_restore_early,
2486         .restore = i915_pm_restore,
2487
2488         /* S0ix (via runtime suspend) event handlers */
2489         .runtime_suspend = intel_runtime_suspend,
2490         .runtime_resume = intel_runtime_resume,
2491 };
2492
2493 static const struct vm_operations_struct i915_gem_vm_ops = {
2494         .fault = i915_gem_fault,
2495         .open = drm_gem_vm_open,
2496         .close = drm_gem_vm_close,
2497 };
2498
2499 static const struct file_operations i915_driver_fops = {
2500         .owner = THIS_MODULE,
2501         .open = drm_open,
2502         .release = drm_release,
2503         .unlocked_ioctl = drm_ioctl,
2504         .mmap = drm_gem_mmap,
2505         .poll = drm_poll,
2506         .read = drm_read,
2507 #ifdef CONFIG_COMPAT
2508         .compat_ioctl = i915_compat_ioctl,
2509 #endif
2510         .llseek = noop_llseek,
2511 };
2512
2513 static int
2514 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2515                           struct drm_file *file)
2516 {
2517         return -ENODEV;
2518 }
2519
2520 static const struct drm_ioctl_desc i915_ioctls[] = {
2521         DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2522         DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2523         DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2524         DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2525         DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2526         DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2527         DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2528         DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2529         DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2530         DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2531         DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2532         DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2533         DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2534         DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2535         DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2536         DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2537         DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2538         DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2539         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2540         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2541         DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2542         DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2543         DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2544         DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2545         DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2546         DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2547         DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2548         DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2549         DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2550         DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2551         DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2552         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2553         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2554         DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2555         DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2556         DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_RENDER_ALLOW),
2557         DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_RENDER_ALLOW),
2558         DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2559         DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2560         DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2561         DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2562         DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2563         DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2564         DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2565         DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2566         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2567         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2568         DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2569         DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2570         DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2571         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2572         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2573 };
2574
2575 static struct drm_driver driver = {
2576         /* Don't use MTRRs here; the Xserver or userspace app should
2577          * deal with them for Intel hardware.
2578          */
2579         .driver_features =
2580             DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2581             DRIVER_RENDER | DRIVER_MODESET,
2582         .open = i915_driver_open,
2583         .lastclose = i915_driver_lastclose,
2584         .preclose = i915_driver_preclose,
2585         .postclose = i915_driver_postclose,
2586         .set_busid = drm_pci_set_busid,
2587
2588         .gem_close_object = i915_gem_close_object,
2589         .gem_free_object = i915_gem_free_object,
2590         .gem_vm_ops = &i915_gem_vm_ops,
2591
2592         .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2593         .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2594         .gem_prime_export = i915_gem_prime_export,
2595         .gem_prime_import = i915_gem_prime_import,
2596
2597         .dumb_create = i915_gem_dumb_create,
2598         .dumb_map_offset = i915_gem_mmap_gtt,
2599         .dumb_destroy = drm_gem_dumb_destroy,
2600         .ioctls = i915_ioctls,
2601         .num_ioctls = ARRAY_SIZE(i915_ioctls),
2602         .fops = &i915_driver_fops,
2603         .name = DRIVER_NAME,
2604         .desc = DRIVER_DESC,
2605         .date = DRIVER_DATE,
2606         .major = DRIVER_MAJOR,
2607         .minor = DRIVER_MINOR,
2608         .patchlevel = DRIVER_PATCHLEVEL,
2609 };