OSDN Git Service

drm/i915: setup bridge for HDMI LPE audio driver
[android-x86/kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52
53 static struct drm_driver driver;
54
55 static unsigned int i915_load_fail_count;
56
57 bool __i915_inject_load_failure(const char *func, int line)
58 {
59         if (i915_load_fail_count >= i915.inject_load_failure)
60                 return false;
61
62         if (++i915_load_fail_count == i915.inject_load_failure) {
63                 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
64                          i915.inject_load_failure, func, line);
65                 return true;
66         }
67
68         return false;
69 }
70
71 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
72 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
73                     "providing the dmesg log by booting with drm.debug=0xf"
74
75 void
76 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
77               const char *fmt, ...)
78 {
79         static bool shown_bug_once;
80         struct device *kdev = dev_priv->drm.dev;
81         bool is_error = level[1] <= KERN_ERR[1];
82         bool is_debug = level[1] == KERN_DEBUG[1];
83         struct va_format vaf;
84         va_list args;
85
86         if (is_debug && !(drm_debug & DRM_UT_DRIVER))
87                 return;
88
89         va_start(args, fmt);
90
91         vaf.fmt = fmt;
92         vaf.va = &args;
93
94         dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
95                    __builtin_return_address(0), &vaf);
96
97         if (is_error && !shown_bug_once) {
98                 dev_notice(kdev, "%s", FDO_BUG_MSG);
99                 shown_bug_once = true;
100         }
101
102         va_end(args);
103 }
104
105 static bool i915_error_injected(struct drm_i915_private *dev_priv)
106 {
107         return i915.inject_load_failure &&
108                i915_load_fail_count == i915.inject_load_failure;
109 }
110
111 #define i915_load_error(dev_priv, fmt, ...)                                  \
112         __i915_printk(dev_priv,                                              \
113                       i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
114                       fmt, ##__VA_ARGS__)
115
116
117 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
118 {
119         enum intel_pch ret = PCH_NOP;
120
121         /*
122          * In a virtualized passthrough environment we can be in a
123          * setup where the ISA bridge is not able to be passed through.
124          * In this case, a south bridge can be emulated and we have to
125          * make an educated guess as to which PCH is really there.
126          */
127
128         if (IS_GEN5(dev)) {
129                 ret = PCH_IBX;
130                 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
131         } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
132                 ret = PCH_CPT;
133                 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
134         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
135                 ret = PCH_LPT;
136                 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
137         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
138                 ret = PCH_SPT;
139                 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
140         }
141
142         return ret;
143 }
144
145 static void intel_detect_pch(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = to_i915(dev);
148         struct pci_dev *pch = NULL;
149
150         /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151          * (which really amounts to a PCH but no South Display).
152          */
153         if (INTEL_INFO(dev)->num_pipes == 0) {
154                 dev_priv->pch_type = PCH_NOP;
155                 return;
156         }
157
158         /*
159          * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160          * make graphics device passthrough work easy for VMM, that only
161          * need to expose ISA bridge to let driver know the real hardware
162          * underneath. This is a requirement from virtualization team.
163          *
164          * In some virtualized environments (e.g. XEN), there is irrelevant
165          * ISA bridge in the system. To work reliably, we should scan trhough
166          * all the ISA bridge devices and check for the first match, instead
167          * of only checking the first one.
168          */
169         while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170                 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171                         unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172                         dev_priv->pch_id = id;
173
174                         if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175                                 dev_priv->pch_type = PCH_IBX;
176                                 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177                                 WARN_ON(!IS_GEN5(dev));
178                         } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179                                 dev_priv->pch_type = PCH_CPT;
180                                 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181                                 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
182                         } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
183                                 /* PantherPoint is CPT compatible */
184                                 dev_priv->pch_type = PCH_CPT;
185                                 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
186                                 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
187                         } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
188                                 dev_priv->pch_type = PCH_LPT;
189                                 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
190                                 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
191                                 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
192                         } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
193                                 dev_priv->pch_type = PCH_LPT;
194                                 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
195                                 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
196                                 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
197                         } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
198                                 dev_priv->pch_type = PCH_SPT;
199                                 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
200                                 WARN_ON(!IS_SKYLAKE(dev) &&
201                                         !IS_KABYLAKE(dev));
202                         } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
203                                 dev_priv->pch_type = PCH_SPT;
204                                 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
205                                 WARN_ON(!IS_SKYLAKE(dev) &&
206                                         !IS_KABYLAKE(dev));
207                         } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
208                                 dev_priv->pch_type = PCH_KBP;
209                                 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
210                                 WARN_ON(!IS_KABYLAKE(dev));
211                         } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
212                                    (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
213                                    ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
214                                     pch->subsystem_vendor ==
215                                             PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
216                                     pch->subsystem_device ==
217                                             PCI_SUBDEVICE_ID_QEMU)) {
218                                 dev_priv->pch_type = intel_virt_detect_pch(dev);
219                         } else
220                                 continue;
221
222                         break;
223                 }
224         }
225         if (!pch)
226                 DRM_DEBUG_KMS("No PCH found.\n");
227
228         pci_dev_put(pch);
229 }
230
231 static int i915_getparam(struct drm_device *dev, void *data,
232                          struct drm_file *file_priv)
233 {
234         struct drm_i915_private *dev_priv = to_i915(dev);
235         struct pci_dev *pdev = dev_priv->drm.pdev;
236         drm_i915_getparam_t *param = data;
237         int value;
238
239         switch (param->param) {
240         case I915_PARAM_IRQ_ACTIVE:
241         case I915_PARAM_ALLOW_BATCHBUFFER:
242         case I915_PARAM_LAST_DISPATCH:
243                 /* Reject all old ums/dri params. */
244                 return -ENODEV;
245         case I915_PARAM_CHIPSET_ID:
246                 value = pdev->device;
247                 break;
248         case I915_PARAM_REVISION:
249                 value = pdev->revision;
250                 break;
251         case I915_PARAM_NUM_FENCES_AVAIL:
252                 value = dev_priv->num_fence_regs;
253                 break;
254         case I915_PARAM_HAS_OVERLAY:
255                 value = dev_priv->overlay ? 1 : 0;
256                 break;
257         case I915_PARAM_HAS_BSD:
258                 value = intel_engine_initialized(&dev_priv->engine[VCS]);
259                 break;
260         case I915_PARAM_HAS_BLT:
261                 value = intel_engine_initialized(&dev_priv->engine[BCS]);
262                 break;
263         case I915_PARAM_HAS_VEBOX:
264                 value = intel_engine_initialized(&dev_priv->engine[VECS]);
265                 break;
266         case I915_PARAM_HAS_BSD2:
267                 value = intel_engine_initialized(&dev_priv->engine[VCS2]);
268                 break;
269         case I915_PARAM_HAS_EXEC_CONSTANTS:
270                 value = INTEL_GEN(dev_priv) >= 4;
271                 break;
272         case I915_PARAM_HAS_LLC:
273                 value = HAS_LLC(dev_priv);
274                 break;
275         case I915_PARAM_HAS_WT:
276                 value = HAS_WT(dev_priv);
277                 break;
278         case I915_PARAM_HAS_ALIASING_PPGTT:
279                 value = USES_PPGTT(dev_priv);
280                 break;
281         case I915_PARAM_HAS_SEMAPHORES:
282                 value = i915.semaphores;
283                 break;
284         case I915_PARAM_HAS_SECURE_BATCHES:
285                 value = capable(CAP_SYS_ADMIN);
286                 break;
287         case I915_PARAM_CMD_PARSER_VERSION:
288                 value = i915_cmd_parser_get_version(dev_priv);
289                 break;
290         case I915_PARAM_SUBSLICE_TOTAL:
291                 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
292                 if (!value)
293                         return -ENODEV;
294                 break;
295         case I915_PARAM_EU_TOTAL:
296                 value = INTEL_INFO(dev_priv)->sseu.eu_total;
297                 if (!value)
298                         return -ENODEV;
299                 break;
300         case I915_PARAM_HAS_GPU_RESET:
301                 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
302                 break;
303         case I915_PARAM_HAS_RESOURCE_STREAMER:
304                 value = HAS_RESOURCE_STREAMER(dev_priv);
305                 break;
306         case I915_PARAM_HAS_POOLED_EU:
307                 value = HAS_POOLED_EU(dev_priv);
308                 break;
309         case I915_PARAM_MIN_EU_IN_POOL:
310                 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
311                 break;
312         case I915_PARAM_MMAP_GTT_VERSION:
313                 /* Though we've started our numbering from 1, and so class all
314                  * earlier versions as 0, in effect their value is undefined as
315                  * the ioctl will report EINVAL for the unknown param!
316                  */
317                 value = i915_gem_mmap_gtt_version();
318                 break;
319         case I915_PARAM_MMAP_VERSION:
320                 /* Remember to bump this if the version changes! */
321         case I915_PARAM_HAS_GEM:
322         case I915_PARAM_HAS_PAGEFLIPPING:
323         case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
324         case I915_PARAM_HAS_RELAXED_FENCING:
325         case I915_PARAM_HAS_COHERENT_RINGS:
326         case I915_PARAM_HAS_RELAXED_DELTA:
327         case I915_PARAM_HAS_GEN7_SOL_RESET:
328         case I915_PARAM_HAS_WAIT_TIMEOUT:
329         case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
330         case I915_PARAM_HAS_PINNED_BATCHES:
331         case I915_PARAM_HAS_EXEC_NO_RELOC:
332         case I915_PARAM_HAS_EXEC_HANDLE_LUT:
333         case I915_PARAM_HAS_COHERENT_PHYS_GTT:
334         case I915_PARAM_HAS_EXEC_SOFTPIN:
335                 /* For the time being all of these are always true;
336                  * if some supported hardware does not have one of these
337                  * features this value needs to be provided from
338                  * INTEL_INFO(), a feature macro, or similar.
339                  */
340                 value = 1;
341                 break;
342         default:
343                 DRM_DEBUG("Unknown parameter %d\n", param->param);
344                 return -EINVAL;
345         }
346
347         if (put_user(value, param->value))
348                 return -EFAULT;
349
350         return 0;
351 }
352
353 static int i915_get_bridge_dev(struct drm_device *dev)
354 {
355         struct drm_i915_private *dev_priv = to_i915(dev);
356
357         dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
358         if (!dev_priv->bridge_dev) {
359                 DRM_ERROR("bridge device not found\n");
360                 return -1;
361         }
362         return 0;
363 }
364
365 /* Allocate space for the MCH regs if needed, return nonzero on error */
366 static int
367 intel_alloc_mchbar_resource(struct drm_device *dev)
368 {
369         struct drm_i915_private *dev_priv = to_i915(dev);
370         int reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
371         u32 temp_lo, temp_hi = 0;
372         u64 mchbar_addr;
373         int ret;
374
375         if (INTEL_INFO(dev)->gen >= 4)
376                 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
377         pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
378         mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
379
380         /* If ACPI doesn't have it, assume we need to allocate it ourselves */
381 #ifdef CONFIG_PNP
382         if (mchbar_addr &&
383             pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
384                 return 0;
385 #endif
386
387         /* Get some space for it */
388         dev_priv->mch_res.name = "i915 MCHBAR";
389         dev_priv->mch_res.flags = IORESOURCE_MEM;
390         ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
391                                      &dev_priv->mch_res,
392                                      MCHBAR_SIZE, MCHBAR_SIZE,
393                                      PCIBIOS_MIN_MEM,
394                                      0, pcibios_align_resource,
395                                      dev_priv->bridge_dev);
396         if (ret) {
397                 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
398                 dev_priv->mch_res.start = 0;
399                 return ret;
400         }
401
402         if (INTEL_INFO(dev)->gen >= 4)
403                 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
404                                        upper_32_bits(dev_priv->mch_res.start));
405
406         pci_write_config_dword(dev_priv->bridge_dev, reg,
407                                lower_32_bits(dev_priv->mch_res.start));
408         return 0;
409 }
410
411 /* Setup MCHBAR if possible, return true if we should disable it again */
412 static void
413 intel_setup_mchbar(struct drm_device *dev)
414 {
415         struct drm_i915_private *dev_priv = to_i915(dev);
416         int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
417         u32 temp;
418         bool enabled;
419
420         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
421                 return;
422
423         dev_priv->mchbar_need_disable = false;
424
425         if (IS_I915G(dev) || IS_I915GM(dev)) {
426                 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
427                 enabled = !!(temp & DEVEN_MCHBAR_EN);
428         } else {
429                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
430                 enabled = temp & 1;
431         }
432
433         /* If it's already enabled, don't have to do anything */
434         if (enabled)
435                 return;
436
437         if (intel_alloc_mchbar_resource(dev))
438                 return;
439
440         dev_priv->mchbar_need_disable = true;
441
442         /* Space is allocated or reserved, so enable it. */
443         if (IS_I915G(dev) || IS_I915GM(dev)) {
444                 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
445                                        temp | DEVEN_MCHBAR_EN);
446         } else {
447                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
448                 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
449         }
450 }
451
452 static void
453 intel_teardown_mchbar(struct drm_device *dev)
454 {
455         struct drm_i915_private *dev_priv = to_i915(dev);
456         int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
457
458         if (dev_priv->mchbar_need_disable) {
459                 if (IS_I915G(dev) || IS_I915GM(dev)) {
460                         u32 deven_val;
461
462                         pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
463                                               &deven_val);
464                         deven_val &= ~DEVEN_MCHBAR_EN;
465                         pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
466                                                deven_val);
467                 } else {
468                         u32 mchbar_val;
469
470                         pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
471                                               &mchbar_val);
472                         mchbar_val &= ~1;
473                         pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
474                                                mchbar_val);
475                 }
476         }
477
478         if (dev_priv->mch_res.start)
479                 release_resource(&dev_priv->mch_res);
480 }
481
482 /* true = enable decode, false = disable decoder */
483 static unsigned int i915_vga_set_decode(void *cookie, bool state)
484 {
485         struct drm_device *dev = cookie;
486
487         intel_modeset_vga_set_state(dev, state);
488         if (state)
489                 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
490                        VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
491         else
492                 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
493 }
494
495 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
496 {
497         struct drm_device *dev = pci_get_drvdata(pdev);
498         pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
499
500         if (state == VGA_SWITCHEROO_ON) {
501                 pr_info("switched on\n");
502                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
503                 /* i915 resume handler doesn't set to D0 */
504                 pci_set_power_state(pdev, PCI_D0);
505                 i915_resume_switcheroo(dev);
506                 dev->switch_power_state = DRM_SWITCH_POWER_ON;
507         } else {
508                 pr_info("switched off\n");
509                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
510                 i915_suspend_switcheroo(dev, pmm);
511                 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
512         }
513 }
514
515 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
516 {
517         struct drm_device *dev = pci_get_drvdata(pdev);
518
519         /*
520          * FIXME: open_count is protected by drm_global_mutex but that would lead to
521          * locking inversion with the driver load path. And the access here is
522          * completely racy anyway. So don't bother with locking for now.
523          */
524         return dev->open_count == 0;
525 }
526
527 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
528         .set_gpu_state = i915_switcheroo_set_state,
529         .reprobe = NULL,
530         .can_switch = i915_switcheroo_can_switch,
531 };
532
533 static void i915_gem_fini(struct drm_device *dev)
534 {
535         struct drm_i915_private *dev_priv = to_i915(dev);
536
537         /*
538          * Neither the BIOS, ourselves or any other kernel
539          * expects the system to be in execlists mode on startup,
540          * so we need to reset the GPU back to legacy mode. And the only
541          * known way to disable logical contexts is through a GPU reset.
542          *
543          * So in order to leave the system in a known default configuration,
544          * always reset the GPU upon unload. Afterwards we then clean up the
545          * GEM state tracking, flushing off the requests and leaving the
546          * system in a known idle state.
547          *
548          * Note that is of the upmost importance that the GPU is idle and
549          * all stray writes are flushed *before* we dismantle the backing
550          * storage for the pinned objects.
551          *
552          * However, since we are uncertain that reseting the GPU on older
553          * machines is a good idea, we don't - just in case it leaves the
554          * machine in an unusable condition.
555          */
556         if (HAS_HW_CONTEXTS(dev)) {
557                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
558                 WARN_ON(reset && reset != -ENODEV);
559         }
560
561         mutex_lock(&dev->struct_mutex);
562         i915_gem_cleanup_engines(dev);
563         i915_gem_context_fini(dev);
564         mutex_unlock(&dev->struct_mutex);
565
566         WARN_ON(!list_empty(&to_i915(dev)->context_list));
567 }
568
569 static int i915_load_modeset_init(struct drm_device *dev)
570 {
571         struct drm_i915_private *dev_priv = to_i915(dev);
572         struct pci_dev *pdev = dev_priv->drm.pdev;
573         int ret;
574
575         if (i915_inject_load_failure())
576                 return -ENODEV;
577
578         ret = intel_bios_init(dev_priv);
579         if (ret)
580                 DRM_INFO("failed to find VBIOS tables\n");
581
582         /* If we have > 1 VGA cards, then we need to arbitrate access
583          * to the common VGA resources.
584          *
585          * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
586          * then we do not take part in VGA arbitration and the
587          * vga_client_register() fails with -ENODEV.
588          */
589         ret = vga_client_register(pdev, dev, NULL, i915_vga_set_decode);
590         if (ret && ret != -ENODEV)
591                 goto out;
592
593         intel_register_dsm_handler();
594
595         ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
596         if (ret)
597                 goto cleanup_vga_client;
598
599         /* must happen before intel_power_domains_init_hw() on VLV/CHV */
600         intel_update_rawclk(dev_priv);
601
602         intel_power_domains_init_hw(dev_priv, false);
603
604         intel_csr_ucode_init(dev_priv);
605
606         ret = intel_irq_install(dev_priv);
607         if (ret)
608                 goto cleanup_csr;
609
610         intel_setup_gmbus(dev);
611
612         /* Important: The output setup functions called by modeset_init need
613          * working irqs for e.g. gmbus and dp aux transfers. */
614         intel_modeset_init(dev);
615
616         intel_guc_init(dev);
617
618         ret = i915_gem_init(dev);
619         if (ret)
620                 goto cleanup_irq;
621
622         intel_modeset_gem_init(dev);
623
624         if (INTEL_INFO(dev)->num_pipes == 0)
625                 return 0;
626
627         ret = intel_fbdev_init(dev);
628         if (ret)
629                 goto cleanup_gem;
630
631         /* Only enable hotplug handling once the fbdev is fully set up. */
632         intel_hpd_init(dev_priv);
633
634         drm_kms_helper_poll_init(dev);
635
636         return 0;
637
638 cleanup_gem:
639         i915_gem_fini(dev);
640 cleanup_irq:
641         intel_guc_fini(dev);
642         drm_irq_uninstall(dev);
643         intel_teardown_gmbus(dev);
644 cleanup_csr:
645         intel_csr_ucode_fini(dev_priv);
646         intel_power_domains_fini(dev_priv);
647         vga_switcheroo_unregister_client(pdev);
648 cleanup_vga_client:
649         vga_client_register(pdev, NULL, NULL, NULL);
650 out:
651         return ret;
652 }
653
654 #if IS_ENABLED(CONFIG_FB)
655 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
656 {
657         struct apertures_struct *ap;
658         struct pci_dev *pdev = dev_priv->drm.pdev;
659         struct i915_ggtt *ggtt = &dev_priv->ggtt;
660         bool primary;
661         int ret;
662
663         ap = alloc_apertures(1);
664         if (!ap)
665                 return -ENOMEM;
666
667         ap->ranges[0].base = ggtt->mappable_base;
668         ap->ranges[0].size = ggtt->mappable_end;
669
670         primary =
671                 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
672
673         ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
674
675         kfree(ap);
676
677         return ret;
678 }
679 #else
680 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
681 {
682         return 0;
683 }
684 #endif
685
686 #if !defined(CONFIG_VGA_CONSOLE)
687 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
688 {
689         return 0;
690 }
691 #elif !defined(CONFIG_DUMMY_CONSOLE)
692 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
693 {
694         return -ENODEV;
695 }
696 #else
697 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
698 {
699         int ret = 0;
700
701         DRM_INFO("Replacing VGA console driver\n");
702
703         console_lock();
704         if (con_is_bound(&vga_con))
705                 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
706         if (ret == 0) {
707                 ret = do_unregister_con_driver(&vga_con);
708
709                 /* Ignore "already unregistered". */
710                 if (ret == -ENODEV)
711                         ret = 0;
712         }
713         console_unlock();
714
715         return ret;
716 }
717 #endif
718
719 static void intel_init_dpio(struct drm_i915_private *dev_priv)
720 {
721         /*
722          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
723          * CHV x1 PHY (DP/HDMI D)
724          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
725          */
726         if (IS_CHERRYVIEW(dev_priv)) {
727                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
728                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
729         } else if (IS_VALLEYVIEW(dev_priv)) {
730                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
731         }
732 }
733
734 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
735 {
736         /*
737          * The i915 workqueue is primarily used for batched retirement of
738          * requests (and thus managing bo) once the task has been completed
739          * by the GPU. i915_gem_retire_requests() is called directly when we
740          * need high-priority retirement, such as waiting for an explicit
741          * bo.
742          *
743          * It is also used for periodic low-priority events, such as
744          * idle-timers and recording error state.
745          *
746          * All tasks on the workqueue are expected to acquire the dev mutex
747          * so there is no point in running more than one instance of the
748          * workqueue at any time.  Use an ordered one.
749          */
750         dev_priv->wq = alloc_ordered_workqueue("i915", 0);
751         if (dev_priv->wq == NULL)
752                 goto out_err;
753
754         dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
755         if (dev_priv->hotplug.dp_wq == NULL)
756                 goto out_free_wq;
757
758         return 0;
759
760 out_free_wq:
761         destroy_workqueue(dev_priv->wq);
762 out_err:
763         DRM_ERROR("Failed to allocate workqueues.\n");
764
765         return -ENOMEM;
766 }
767
768 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
769 {
770         destroy_workqueue(dev_priv->hotplug.dp_wq);
771         destroy_workqueue(dev_priv->wq);
772 }
773
774 /**
775  * i915_driver_init_early - setup state not requiring device access
776  * @dev_priv: device private
777  *
778  * Initialize everything that is a "SW-only" state, that is state not
779  * requiring accessing the device or exposing the driver via kernel internal
780  * or userspace interfaces. Example steps belonging here: lock initialization,
781  * system memory allocation, setting up device specific attributes and
782  * function hooks not requiring accessing the device.
783  */
784 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
785                                   const struct pci_device_id *ent)
786 {
787         const struct intel_device_info *match_info =
788                 (struct intel_device_info *)ent->driver_data;
789         struct intel_device_info *device_info;
790         int ret = 0;
791
792         if (i915_inject_load_failure())
793                 return -ENODEV;
794
795         /* Setup the write-once "constant" device info */
796         device_info = mkwrite_device_info(dev_priv);
797         memcpy(device_info, match_info, sizeof(*device_info));
798         device_info->device_id = dev_priv->drm.pdev->device;
799
800         BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
801         device_info->gen_mask = BIT(device_info->gen - 1);
802
803         spin_lock_init(&dev_priv->irq_lock);
804         spin_lock_init(&dev_priv->gpu_error.lock);
805         mutex_init(&dev_priv->backlight_lock);
806         spin_lock_init(&dev_priv->uncore.lock);
807         spin_lock_init(&dev_priv->mm.object_stat_lock);
808         spin_lock_init(&dev_priv->mmio_flip_lock);
809         mutex_init(&dev_priv->sb_lock);
810         mutex_init(&dev_priv->modeset_restore_lock);
811         mutex_init(&dev_priv->av_mutex);
812         mutex_init(&dev_priv->wm.wm_mutex);
813         mutex_init(&dev_priv->pps_mutex);
814
815         i915_memcpy_init_early(dev_priv);
816
817         ret = i915_workqueues_init(dev_priv);
818         if (ret < 0)
819                 return ret;
820
821         ret = intel_gvt_init(dev_priv);
822         if (ret < 0)
823                 goto err_workqueues;
824
825         /* This must be called before any calls to HAS_PCH_* */
826         intel_detect_pch(&dev_priv->drm);
827
828         intel_pm_setup(&dev_priv->drm);
829         intel_init_dpio(dev_priv);
830         intel_power_domains_init(dev_priv);
831         intel_irq_init(dev_priv);
832         intel_init_display_hooks(dev_priv);
833         intel_init_clock_gating_hooks(dev_priv);
834         intel_init_audio_hooks(dev_priv);
835         i915_gem_load_init(&dev_priv->drm);
836
837         intel_display_crc_init(dev_priv);
838
839         intel_device_info_dump(dev_priv);
840
841         /* Not all pre-production machines fall into this category, only the
842          * very first ones. Almost everything should work, except for maybe
843          * suspend/resume. And we don't implement workarounds that affect only
844          * pre-production machines. */
845         if (IS_HSW_EARLY_SDV(dev_priv))
846                 DRM_INFO("This is an early pre-production Haswell machine. "
847                          "It may not be fully functional.\n");
848
849         return 0;
850
851 err_workqueues:
852         i915_workqueues_cleanup(dev_priv);
853         return ret;
854 }
855
856 /**
857  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
858  * @dev_priv: device private
859  */
860 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
861 {
862         i915_gem_load_cleanup(&dev_priv->drm);
863         i915_workqueues_cleanup(dev_priv);
864 }
865
866 static int i915_mmio_setup(struct drm_device *dev)
867 {
868         struct drm_i915_private *dev_priv = to_i915(dev);
869         struct pci_dev *pdev = dev_priv->drm.pdev;
870         int mmio_bar;
871         int mmio_size;
872
873         mmio_bar = IS_GEN2(dev) ? 1 : 0;
874         /*
875          * Before gen4, the registers and the GTT are behind different BARs.
876          * However, from gen4 onwards, the registers and the GTT are shared
877          * in the same BAR, so we want to restrict this ioremap from
878          * clobbering the GTT which we want ioremap_wc instead. Fortunately,
879          * the register BAR remains the same size for all the earlier
880          * generations up to Ironlake.
881          */
882         if (INTEL_INFO(dev)->gen < 5)
883                 mmio_size = 512 * 1024;
884         else
885                 mmio_size = 2 * 1024 * 1024;
886         dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
887         if (dev_priv->regs == NULL) {
888                 DRM_ERROR("failed to map registers\n");
889
890                 return -EIO;
891         }
892
893         /* Try to make sure MCHBAR is enabled before poking at it */
894         intel_setup_mchbar(dev);
895
896         return 0;
897 }
898
899 static void i915_mmio_cleanup(struct drm_device *dev)
900 {
901         struct drm_i915_private *dev_priv = to_i915(dev);
902         struct pci_dev *pdev = dev_priv->drm.pdev;
903
904         intel_teardown_mchbar(dev);
905         pci_iounmap(pdev, dev_priv->regs);
906 }
907
908 /**
909  * i915_driver_init_mmio - setup device MMIO
910  * @dev_priv: device private
911  *
912  * Setup minimal device state necessary for MMIO accesses later in the
913  * initialization sequence. The setup here should avoid any other device-wide
914  * side effects or exposing the driver via kernel internal or user space
915  * interfaces.
916  */
917 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
918 {
919         struct drm_device *dev = &dev_priv->drm;
920         int ret;
921
922         if (i915_inject_load_failure())
923                 return -ENODEV;
924
925         if (i915_get_bridge_dev(dev))
926                 return -EIO;
927
928         ret = i915_mmio_setup(dev);
929         if (ret < 0)
930                 goto put_bridge;
931
932         intel_uncore_init(dev_priv);
933
934         return 0;
935
936 put_bridge:
937         pci_dev_put(dev_priv->bridge_dev);
938
939         return ret;
940 }
941
942 /**
943  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
944  * @dev_priv: device private
945  */
946 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
947 {
948         struct drm_device *dev = &dev_priv->drm;
949
950         intel_uncore_fini(dev_priv);
951         i915_mmio_cleanup(dev);
952         pci_dev_put(dev_priv->bridge_dev);
953 }
954
955 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
956 {
957         i915.enable_execlists =
958                 intel_sanitize_enable_execlists(dev_priv,
959                                                 i915.enable_execlists);
960
961         /*
962          * i915.enable_ppgtt is read-only, so do an early pass to validate the
963          * user's requested state against the hardware/driver capabilities.  We
964          * do this now so that we can print out any log messages once rather
965          * than every time we check intel_enable_ppgtt().
966          */
967         i915.enable_ppgtt =
968                 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
969         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
970
971         i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
972         DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
973 }
974
975 /**
976  * i915_driver_init_hw - setup state requiring device access
977  * @dev_priv: device private
978  *
979  * Setup state that requires accessing the device, but doesn't require
980  * exposing the driver via kernel internal or userspace interfaces.
981  */
982 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
983 {
984         struct pci_dev *pdev = dev_priv->drm.pdev;
985         struct drm_device *dev = &dev_priv->drm;
986         int ret;
987
988         if (i915_inject_load_failure())
989                 return -ENODEV;
990
991         intel_device_info_runtime_init(dev_priv);
992
993         intel_sanitize_options(dev_priv);
994
995         ret = i915_ggtt_probe_hw(dev_priv);
996         if (ret)
997                 return ret;
998
999         /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1000          * otherwise the vga fbdev driver falls over. */
1001         ret = i915_kick_out_firmware_fb(dev_priv);
1002         if (ret) {
1003                 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1004                 goto out_ggtt;
1005         }
1006
1007         ret = i915_kick_out_vgacon(dev_priv);
1008         if (ret) {
1009                 DRM_ERROR("failed to remove conflicting VGA console\n");
1010                 goto out_ggtt;
1011         }
1012
1013         ret = i915_ggtt_init_hw(dev_priv);
1014         if (ret)
1015                 return ret;
1016
1017         ret = i915_ggtt_enable_hw(dev_priv);
1018         if (ret) {
1019                 DRM_ERROR("failed to enable GGTT\n");
1020                 goto out_ggtt;
1021         }
1022
1023         pci_set_master(pdev);
1024
1025         /* overlay on gen2 is broken and can't address above 1G */
1026         if (IS_GEN2(dev)) {
1027                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1028                 if (ret) {
1029                         DRM_ERROR("failed to set DMA mask\n");
1030
1031                         goto out_ggtt;
1032                 }
1033         }
1034
1035         /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1036          * using 32bit addressing, overwriting memory if HWS is located
1037          * above 4GB.
1038          *
1039          * The documentation also mentions an issue with undefined
1040          * behaviour if any general state is accessed within a page above 4GB,
1041          * which also needs to be handled carefully.
1042          */
1043         if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) {
1044                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1045
1046                 if (ret) {
1047                         DRM_ERROR("failed to set DMA mask\n");
1048
1049                         goto out_ggtt;
1050                 }
1051         }
1052
1053         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1054                            PM_QOS_DEFAULT_VALUE);
1055
1056         intel_uncore_sanitize(dev_priv);
1057
1058         intel_opregion_setup(dev_priv);
1059
1060         i915_gem_load_init_fences(dev_priv);
1061
1062         /* On the 945G/GM, the chipset reports the MSI capability on the
1063          * integrated graphics even though the support isn't actually there
1064          * according to the published specs.  It doesn't appear to function
1065          * correctly in testing on 945G.
1066          * This may be a side effect of MSI having been made available for PEG
1067          * and the registers being closely associated.
1068          *
1069          * According to chipset errata, on the 965GM, MSI interrupts may
1070          * be lost or delayed, but we use them anyways to avoid
1071          * stuck interrupts on some machines.
1072          */
1073         if (!IS_I945G(dev) && !IS_I945GM(dev)) {
1074                 if (pci_enable_msi(pdev) < 0)
1075                         DRM_DEBUG_DRIVER("can't enable MSI");
1076         }
1077
1078         return 0;
1079
1080 out_ggtt:
1081         i915_ggtt_cleanup_hw(dev_priv);
1082
1083         return ret;
1084 }
1085
1086 /**
1087  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1088  * @dev_priv: device private
1089  */
1090 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1091 {
1092         struct pci_dev *pdev = dev_priv->drm.pdev;
1093
1094         if (pdev->msi_enabled)
1095                 pci_disable_msi(pdev);
1096
1097         pm_qos_remove_request(&dev_priv->pm_qos);
1098         i915_ggtt_cleanup_hw(dev_priv);
1099 }
1100
1101 /**
1102  * i915_driver_register - register the driver with the rest of the system
1103  * @dev_priv: device private
1104  *
1105  * Perform any steps necessary to make the driver available via kernel
1106  * internal or userspace interfaces.
1107  */
1108 static void i915_driver_register(struct drm_i915_private *dev_priv)
1109 {
1110         struct drm_device *dev = &dev_priv->drm;
1111
1112         i915_gem_shrinker_init(dev_priv);
1113
1114         /*
1115          * Notify a valid surface after modesetting,
1116          * when running inside a VM.
1117          */
1118         if (intel_vgpu_active(dev_priv))
1119                 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1120
1121         /* Reveal our presence to userspace */
1122         if (drm_dev_register(dev, 0) == 0) {
1123                 i915_debugfs_register(dev_priv);
1124                 i915_setup_sysfs(dev_priv);
1125         } else
1126                 DRM_ERROR("Failed to register driver for userspace access!\n");
1127
1128         if (INTEL_INFO(dev_priv)->num_pipes) {
1129                 /* Must be done after probing outputs */
1130                 intel_opregion_register(dev_priv);
1131                 acpi_video_register();
1132         }
1133
1134         if (IS_GEN5(dev_priv))
1135                 intel_gpu_ips_init(dev_priv);
1136
1137         if (intel_lpe_audio_init(dev_priv) < 0)
1138                 i915_audio_component_init(dev_priv);
1139
1140         /*
1141          * Some ports require correctly set-up hpd registers for detection to
1142          * work properly (leading to ghost connected connector status), e.g. VGA
1143          * on gm45.  Hence we can only set up the initial fbdev config after hpd
1144          * irqs are fully enabled. We do it last so that the async config
1145          * cannot run before the connectors are registered.
1146          */
1147         intel_fbdev_initial_config_async(dev);
1148 }
1149
1150 /**
1151  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1152  * @dev_priv: device private
1153  */
1154 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1155 {
1156         if (HAS_LPE_AUDIO(dev_priv))
1157                 intel_lpe_audio_teardown(dev_priv);
1158         else
1159                 i915_audio_component_cleanup(dev_priv);
1160
1161         intel_gpu_ips_teardown();
1162         acpi_video_unregister();
1163         intel_opregion_unregister(dev_priv);
1164
1165         i915_teardown_sysfs(dev_priv);
1166         i915_debugfs_unregister(dev_priv);
1167         drm_dev_unregister(&dev_priv->drm);
1168
1169         i915_gem_shrinker_cleanup(dev_priv);
1170 }
1171
1172 /**
1173  * i915_driver_load - setup chip and create an initial config
1174  * @dev: DRM device
1175  * @flags: startup flags
1176  *
1177  * The driver load routine has to do several things:
1178  *   - drive output discovery via intel_modeset_init()
1179  *   - initialize the memory manager
1180  *   - allocate initial config memory
1181  *   - setup the DRM framebuffer with the allocated memory
1182  */
1183 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1184 {
1185         struct drm_i915_private *dev_priv;
1186         int ret;
1187
1188         if (i915.nuclear_pageflip)
1189                 driver.driver_features |= DRIVER_ATOMIC;
1190
1191         ret = -ENOMEM;
1192         dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1193         if (dev_priv)
1194                 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1195         if (ret) {
1196                 dev_printk(KERN_ERR, &pdev->dev,
1197                            "[" DRM_NAME ":%s] allocation failed\n", __func__);
1198                 kfree(dev_priv);
1199                 return ret;
1200         }
1201
1202         dev_priv->drm.pdev = pdev;
1203         dev_priv->drm.dev_private = dev_priv;
1204
1205         ret = pci_enable_device(pdev);
1206         if (ret)
1207                 goto out_free_priv;
1208
1209         pci_set_drvdata(pdev, &dev_priv->drm);
1210
1211         ret = i915_driver_init_early(dev_priv, ent);
1212         if (ret < 0)
1213                 goto out_pci_disable;
1214
1215         intel_runtime_pm_get(dev_priv);
1216
1217         ret = i915_driver_init_mmio(dev_priv);
1218         if (ret < 0)
1219                 goto out_runtime_pm_put;
1220
1221         ret = i915_driver_init_hw(dev_priv);
1222         if (ret < 0)
1223                 goto out_cleanup_mmio;
1224
1225         /*
1226          * TODO: move the vblank init and parts of modeset init steps into one
1227          * of the i915_driver_init_/i915_driver_register functions according
1228          * to the role/effect of the given init step.
1229          */
1230         if (INTEL_INFO(dev_priv)->num_pipes) {
1231                 ret = drm_vblank_init(&dev_priv->drm,
1232                                       INTEL_INFO(dev_priv)->num_pipes);
1233                 if (ret)
1234                         goto out_cleanup_hw;
1235         }
1236
1237         ret = i915_load_modeset_init(&dev_priv->drm);
1238         if (ret < 0)
1239                 goto out_cleanup_vblank;
1240
1241         i915_driver_register(dev_priv);
1242
1243         intel_runtime_pm_enable(dev_priv);
1244
1245         /* Everything is in place, we can now relax! */
1246         DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1247                  driver.name, driver.major, driver.minor, driver.patchlevel,
1248                  driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1249
1250         intel_runtime_pm_put(dev_priv);
1251
1252         return 0;
1253
1254 out_cleanup_vblank:
1255         drm_vblank_cleanup(&dev_priv->drm);
1256 out_cleanup_hw:
1257         i915_driver_cleanup_hw(dev_priv);
1258 out_cleanup_mmio:
1259         i915_driver_cleanup_mmio(dev_priv);
1260 out_runtime_pm_put:
1261         intel_runtime_pm_put(dev_priv);
1262         i915_driver_cleanup_early(dev_priv);
1263 out_pci_disable:
1264         pci_disable_device(pdev);
1265 out_free_priv:
1266         i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1267         drm_dev_unref(&dev_priv->drm);
1268         return ret;
1269 }
1270
1271 void i915_driver_unload(struct drm_device *dev)
1272 {
1273         struct drm_i915_private *dev_priv = to_i915(dev);
1274         struct pci_dev *pdev = dev_priv->drm.pdev;
1275
1276         intel_fbdev_fini(dev);
1277
1278         if (i915_gem_suspend(dev))
1279                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1280
1281         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1282
1283         i915_driver_unregister(dev_priv);
1284
1285         drm_vblank_cleanup(dev);
1286
1287         intel_modeset_cleanup(dev);
1288
1289         /*
1290          * free the memory space allocated for the child device
1291          * config parsed from VBT
1292          */
1293         if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1294                 kfree(dev_priv->vbt.child_dev);
1295                 dev_priv->vbt.child_dev = NULL;
1296                 dev_priv->vbt.child_dev_num = 0;
1297         }
1298         kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1299         dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1300         kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1301         dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1302
1303         vga_switcheroo_unregister_client(pdev);
1304         vga_client_register(pdev, NULL, NULL, NULL);
1305
1306         intel_csr_ucode_fini(dev_priv);
1307
1308         /* Free error state after interrupts are fully disabled. */
1309         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1310         i915_destroy_error_state(dev);
1311
1312         /* Flush any outstanding unpin_work. */
1313         drain_workqueue(dev_priv->wq);
1314
1315         intel_guc_fini(dev);
1316         i915_gem_fini(dev);
1317         intel_fbc_cleanup_cfb(dev_priv);
1318
1319         intel_power_domains_fini(dev_priv);
1320
1321         i915_driver_cleanup_hw(dev_priv);
1322         i915_driver_cleanup_mmio(dev_priv);
1323
1324         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1325
1326         i915_driver_cleanup_early(dev_priv);
1327 }
1328
1329 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1330 {
1331         int ret;
1332
1333         ret = i915_gem_open(dev, file);
1334         if (ret)
1335                 return ret;
1336
1337         return 0;
1338 }
1339
1340 /**
1341  * i915_driver_lastclose - clean up after all DRM clients have exited
1342  * @dev: DRM device
1343  *
1344  * Take care of cleaning up after all DRM clients have exited.  In the
1345  * mode setting case, we want to restore the kernel's initial mode (just
1346  * in case the last client left us in a bad state).
1347  *
1348  * Additionally, in the non-mode setting case, we'll tear down the GTT
1349  * and DMA structures, since the kernel won't be using them, and clea
1350  * up any GEM state.
1351  */
1352 static void i915_driver_lastclose(struct drm_device *dev)
1353 {
1354         intel_fbdev_restore_mode(dev);
1355         vga_switcheroo_process_delayed_switch();
1356 }
1357
1358 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1359 {
1360         mutex_lock(&dev->struct_mutex);
1361         i915_gem_context_close(dev, file);
1362         i915_gem_release(dev, file);
1363         mutex_unlock(&dev->struct_mutex);
1364 }
1365
1366 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1367 {
1368         struct drm_i915_file_private *file_priv = file->driver_priv;
1369
1370         kfree(file_priv);
1371 }
1372
1373 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1374 {
1375         struct drm_device *dev = &dev_priv->drm;
1376         struct intel_encoder *encoder;
1377
1378         drm_modeset_lock_all(dev);
1379         for_each_intel_encoder(dev, encoder)
1380                 if (encoder->suspend)
1381                         encoder->suspend(encoder);
1382         drm_modeset_unlock_all(dev);
1383 }
1384
1385 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1386                               bool rpm_resume);
1387 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1388
1389 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1390 {
1391 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1392         if (acpi_target_system_state() < ACPI_STATE_S3)
1393                 return true;
1394 #endif
1395         return false;
1396 }
1397
1398 static int i915_drm_suspend(struct drm_device *dev)
1399 {
1400         struct drm_i915_private *dev_priv = to_i915(dev);
1401         struct pci_dev *pdev = dev_priv->drm.pdev;
1402         pci_power_t opregion_target_state;
1403         int error;
1404
1405         /* ignore lid events during suspend */
1406         mutex_lock(&dev_priv->modeset_restore_lock);
1407         dev_priv->modeset_restore = MODESET_SUSPENDED;
1408         mutex_unlock(&dev_priv->modeset_restore_lock);
1409
1410         disable_rpm_wakeref_asserts(dev_priv);
1411
1412         /* We do a lot of poking in a lot of registers, make sure they work
1413          * properly. */
1414         intel_display_set_init_power(dev_priv, true);
1415
1416         drm_kms_helper_poll_disable(dev);
1417
1418         pci_save_state(pdev);
1419
1420         error = i915_gem_suspend(dev);
1421         if (error) {
1422                 dev_err(&pdev->dev,
1423                         "GEM idle failed, resume might fail\n");
1424                 goto out;
1425         }
1426
1427         intel_guc_suspend(dev);
1428
1429         intel_display_suspend(dev);
1430
1431         intel_dp_mst_suspend(dev);
1432
1433         intel_runtime_pm_disable_interrupts(dev_priv);
1434         intel_hpd_cancel_work(dev_priv);
1435
1436         intel_suspend_encoders(dev_priv);
1437
1438         intel_suspend_hw(dev);
1439
1440         i915_gem_suspend_gtt_mappings(dev);
1441
1442         i915_save_state(dev);
1443
1444         opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1445         intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1446
1447         intel_uncore_forcewake_reset(dev_priv, false);
1448         intel_opregion_unregister(dev_priv);
1449
1450         intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1451
1452         dev_priv->suspend_count++;
1453
1454         intel_csr_ucode_suspend(dev_priv);
1455
1456 out:
1457         enable_rpm_wakeref_asserts(dev_priv);
1458
1459         return error;
1460 }
1461
1462 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1463 {
1464         struct drm_i915_private *dev_priv = to_i915(dev);
1465         struct pci_dev *pdev = dev_priv->drm.pdev;
1466         bool fw_csr;
1467         int ret;
1468
1469         disable_rpm_wakeref_asserts(dev_priv);
1470
1471         intel_display_set_init_power(dev_priv, false);
1472
1473         fw_csr = !IS_BROXTON(dev_priv) &&
1474                 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1475         /*
1476          * In case of firmware assisted context save/restore don't manually
1477          * deinit the power domains. This also means the CSR/DMC firmware will
1478          * stay active, it will power down any HW resources as required and
1479          * also enable deeper system power states that would be blocked if the
1480          * firmware was inactive.
1481          */
1482         if (!fw_csr)
1483                 intel_power_domains_suspend(dev_priv);
1484
1485         ret = 0;
1486         if (IS_BROXTON(dev_priv))
1487                 bxt_enable_dc9(dev_priv);
1488         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1489                 hsw_enable_pc8(dev_priv);
1490         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1491                 ret = vlv_suspend_complete(dev_priv);
1492
1493         if (ret) {
1494                 DRM_ERROR("Suspend complete failed: %d\n", ret);
1495                 if (!fw_csr)
1496                         intel_power_domains_init_hw(dev_priv, true);
1497
1498                 goto out;
1499         }
1500
1501         pci_disable_device(pdev);
1502         /*
1503          * During hibernation on some platforms the BIOS may try to access
1504          * the device even though it's already in D3 and hang the machine. So
1505          * leave the device in D0 on those platforms and hope the BIOS will
1506          * power down the device properly. The issue was seen on multiple old
1507          * GENs with different BIOS vendors, so having an explicit blacklist
1508          * is inpractical; apply the workaround on everything pre GEN6. The
1509          * platforms where the issue was seen:
1510          * Lenovo Thinkpad X301, X61s, X60, T60, X41
1511          * Fujitsu FSC S7110
1512          * Acer Aspire 1830T
1513          */
1514         if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
1515                 pci_set_power_state(pdev, PCI_D3hot);
1516
1517         dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1518
1519 out:
1520         enable_rpm_wakeref_asserts(dev_priv);
1521
1522         return ret;
1523 }
1524
1525 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1526 {
1527         int error;
1528
1529         if (!dev) {
1530                 DRM_ERROR("dev: %p\n", dev);
1531                 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1532                 return -ENODEV;
1533         }
1534
1535         if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1536                          state.event != PM_EVENT_FREEZE))
1537                 return -EINVAL;
1538
1539         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1540                 return 0;
1541
1542         error = i915_drm_suspend(dev);
1543         if (error)
1544                 return error;
1545
1546         return i915_drm_suspend_late(dev, false);
1547 }
1548
1549 static int i915_drm_resume(struct drm_device *dev)
1550 {
1551         struct drm_i915_private *dev_priv = to_i915(dev);
1552         int ret;
1553
1554         disable_rpm_wakeref_asserts(dev_priv);
1555         intel_sanitize_gt_powersave(dev_priv);
1556
1557         ret = i915_ggtt_enable_hw(dev_priv);
1558         if (ret)
1559                 DRM_ERROR("failed to re-enable GGTT\n");
1560
1561         intel_csr_ucode_resume(dev_priv);
1562
1563         i915_gem_resume(dev);
1564
1565         i915_restore_state(dev);
1566         intel_pps_unlock_regs_wa(dev_priv);
1567         intel_opregion_setup(dev_priv);
1568
1569         intel_init_pch_refclk(dev);
1570         drm_mode_config_reset(dev);
1571
1572         /*
1573          * Interrupts have to be enabled before any batches are run. If not the
1574          * GPU will hang. i915_gem_init_hw() will initiate batches to
1575          * update/restore the context.
1576          *
1577          * Modeset enabling in intel_modeset_init_hw() also needs working
1578          * interrupts.
1579          */
1580         intel_runtime_pm_enable_interrupts(dev_priv);
1581
1582         mutex_lock(&dev->struct_mutex);
1583         if (i915_gem_init_hw(dev)) {
1584                 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1585                 i915_gem_set_wedged(dev_priv);
1586         }
1587         mutex_unlock(&dev->struct_mutex);
1588
1589         intel_guc_resume(dev);
1590
1591         intel_modeset_init_hw(dev);
1592
1593         spin_lock_irq(&dev_priv->irq_lock);
1594         if (dev_priv->display.hpd_irq_setup)
1595                 dev_priv->display.hpd_irq_setup(dev_priv);
1596         spin_unlock_irq(&dev_priv->irq_lock);
1597
1598         intel_dp_mst_resume(dev);
1599
1600         intel_display_resume(dev);
1601
1602         /*
1603          * ... but also need to make sure that hotplug processing
1604          * doesn't cause havoc. Like in the driver load code we don't
1605          * bother with the tiny race here where we might loose hotplug
1606          * notifications.
1607          * */
1608         intel_hpd_init(dev_priv);
1609         /* Config may have changed between suspend and resume */
1610         drm_helper_hpd_irq_event(dev);
1611
1612         intel_opregion_register(dev_priv);
1613
1614         intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1615
1616         mutex_lock(&dev_priv->modeset_restore_lock);
1617         dev_priv->modeset_restore = MODESET_DONE;
1618         mutex_unlock(&dev_priv->modeset_restore_lock);
1619
1620         intel_opregion_notify_adapter(dev_priv, PCI_D0);
1621
1622         intel_autoenable_gt_powersave(dev_priv);
1623         drm_kms_helper_poll_enable(dev);
1624
1625         enable_rpm_wakeref_asserts(dev_priv);
1626
1627         return 0;
1628 }
1629
1630 static int i915_drm_resume_early(struct drm_device *dev)
1631 {
1632         struct drm_i915_private *dev_priv = to_i915(dev);
1633         struct pci_dev *pdev = dev_priv->drm.pdev;
1634         int ret;
1635
1636         /*
1637          * We have a resume ordering issue with the snd-hda driver also
1638          * requiring our device to be power up. Due to the lack of a
1639          * parent/child relationship we currently solve this with an early
1640          * resume hook.
1641          *
1642          * FIXME: This should be solved with a special hdmi sink device or
1643          * similar so that power domains can be employed.
1644          */
1645
1646         /*
1647          * Note that we need to set the power state explicitly, since we
1648          * powered off the device during freeze and the PCI core won't power
1649          * it back up for us during thaw. Powering off the device during
1650          * freeze is not a hard requirement though, and during the
1651          * suspend/resume phases the PCI core makes sure we get here with the
1652          * device powered on. So in case we change our freeze logic and keep
1653          * the device powered we can also remove the following set power state
1654          * call.
1655          */
1656         ret = pci_set_power_state(pdev, PCI_D0);
1657         if (ret) {
1658                 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1659                 goto out;
1660         }
1661
1662         /*
1663          * Note that pci_enable_device() first enables any parent bridge
1664          * device and only then sets the power state for this device. The
1665          * bridge enabling is a nop though, since bridge devices are resumed
1666          * first. The order of enabling power and enabling the device is
1667          * imposed by the PCI core as described above, so here we preserve the
1668          * same order for the freeze/thaw phases.
1669          *
1670          * TODO: eventually we should remove pci_disable_device() /
1671          * pci_enable_enable_device() from suspend/resume. Due to how they
1672          * depend on the device enable refcount we can't anyway depend on them
1673          * disabling/enabling the device.
1674          */
1675         if (pci_enable_device(pdev)) {
1676                 ret = -EIO;
1677                 goto out;
1678         }
1679
1680         pci_set_master(pdev);
1681
1682         disable_rpm_wakeref_asserts(dev_priv);
1683
1684         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1685                 ret = vlv_resume_prepare(dev_priv, false);
1686         if (ret)
1687                 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1688                           ret);
1689
1690         intel_uncore_early_sanitize(dev_priv, true);
1691
1692         if (IS_BROXTON(dev_priv)) {
1693                 if (!dev_priv->suspended_to_idle)
1694                         gen9_sanitize_dc_state(dev_priv);
1695                 bxt_disable_dc9(dev_priv);
1696         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1697                 hsw_disable_pc8(dev_priv);
1698         }
1699
1700         intel_uncore_sanitize(dev_priv);
1701
1702         if (IS_BROXTON(dev_priv) ||
1703             !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1704                 intel_power_domains_init_hw(dev_priv, true);
1705
1706         enable_rpm_wakeref_asserts(dev_priv);
1707
1708 out:
1709         dev_priv->suspended_to_idle = false;
1710
1711         return ret;
1712 }
1713
1714 int i915_resume_switcheroo(struct drm_device *dev)
1715 {
1716         int ret;
1717
1718         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1719                 return 0;
1720
1721         ret = i915_drm_resume_early(dev);
1722         if (ret)
1723                 return ret;
1724
1725         return i915_drm_resume(dev);
1726 }
1727
1728 /**
1729  * i915_reset - reset chip after a hang
1730  * @dev: drm device to reset
1731  *
1732  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1733  * on failure.
1734  *
1735  * Caller must hold the struct_mutex.
1736  *
1737  * Procedure is fairly simple:
1738  *   - reset the chip using the reset reg
1739  *   - re-init context state
1740  *   - re-init hardware status page
1741  *   - re-init ring buffer
1742  *   - re-init interrupt state
1743  *   - re-init display
1744  */
1745 void i915_reset(struct drm_i915_private *dev_priv)
1746 {
1747         struct drm_device *dev = &dev_priv->drm;
1748         struct i915_gpu_error *error = &dev_priv->gpu_error;
1749         int ret;
1750
1751         lockdep_assert_held(&dev->struct_mutex);
1752
1753         if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1754                 return;
1755
1756         /* Clear any previous failed attempts at recovery. Time to try again. */
1757         __clear_bit(I915_WEDGED, &error->flags);
1758         error->reset_count++;
1759
1760         pr_notice("drm/i915: Resetting chip after gpu hang\n");
1761         ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1762         if (ret) {
1763                 if (ret != -ENODEV)
1764                         DRM_ERROR("Failed to reset chip: %i\n", ret);
1765                 else
1766                         DRM_DEBUG_DRIVER("GPU reset disabled\n");
1767                 goto error;
1768         }
1769
1770         i915_gem_reset(dev_priv);
1771         intel_overlay_reset(dev_priv);
1772
1773         /* Ok, now get things going again... */
1774
1775         /*
1776          * Everything depends on having the GTT running, so we need to start
1777          * there.  Fortunately we don't need to do this unless we reset the
1778          * chip at a PCI level.
1779          *
1780          * Next we need to restore the context, but we don't use those
1781          * yet either...
1782          *
1783          * Ring buffer needs to be re-initialized in the KMS case, or if X
1784          * was running at the time of the reset (i.e. we weren't VT
1785          * switched away).
1786          */
1787         ret = i915_gem_init_hw(dev);
1788         if (ret) {
1789                 DRM_ERROR("Failed hw init on reset %d\n", ret);
1790                 goto error;
1791         }
1792
1793 wakeup:
1794         wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1795         return;
1796
1797 error:
1798         i915_gem_set_wedged(dev_priv);
1799         goto wakeup;
1800 }
1801
1802 static int i915_pm_suspend(struct device *kdev)
1803 {
1804         struct pci_dev *pdev = to_pci_dev(kdev);
1805         struct drm_device *dev = pci_get_drvdata(pdev);
1806
1807         if (!dev) {
1808                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1809                 return -ENODEV;
1810         }
1811
1812         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1813                 return 0;
1814
1815         return i915_drm_suspend(dev);
1816 }
1817
1818 static int i915_pm_suspend_late(struct device *kdev)
1819 {
1820         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1821
1822         /*
1823          * We have a suspend ordering issue with the snd-hda driver also
1824          * requiring our device to be power up. Due to the lack of a
1825          * parent/child relationship we currently solve this with an late
1826          * suspend hook.
1827          *
1828          * FIXME: This should be solved with a special hdmi sink device or
1829          * similar so that power domains can be employed.
1830          */
1831         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1832                 return 0;
1833
1834         return i915_drm_suspend_late(dev, false);
1835 }
1836
1837 static int i915_pm_poweroff_late(struct device *kdev)
1838 {
1839         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1840
1841         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1842                 return 0;
1843
1844         return i915_drm_suspend_late(dev, true);
1845 }
1846
1847 static int i915_pm_resume_early(struct device *kdev)
1848 {
1849         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1850
1851         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1852                 return 0;
1853
1854         return i915_drm_resume_early(dev);
1855 }
1856
1857 static int i915_pm_resume(struct device *kdev)
1858 {
1859         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1860
1861         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1862                 return 0;
1863
1864         return i915_drm_resume(dev);
1865 }
1866
1867 /* freeze: before creating the hibernation_image */
1868 static int i915_pm_freeze(struct device *kdev)
1869 {
1870         int ret;
1871
1872         ret = i915_pm_suspend(kdev);
1873         if (ret)
1874                 return ret;
1875
1876         ret = i915_gem_freeze(kdev_to_i915(kdev));
1877         if (ret)
1878                 return ret;
1879
1880         return 0;
1881 }
1882
1883 static int i915_pm_freeze_late(struct device *kdev)
1884 {
1885         int ret;
1886
1887         ret = i915_pm_suspend_late(kdev);
1888         if (ret)
1889                 return ret;
1890
1891         ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1892         if (ret)
1893                 return ret;
1894
1895         return 0;
1896 }
1897
1898 /* thaw: called after creating the hibernation image, but before turning off. */
1899 static int i915_pm_thaw_early(struct device *kdev)
1900 {
1901         return i915_pm_resume_early(kdev);
1902 }
1903
1904 static int i915_pm_thaw(struct device *kdev)
1905 {
1906         return i915_pm_resume(kdev);
1907 }
1908
1909 /* restore: called after loading the hibernation image. */
1910 static int i915_pm_restore_early(struct device *kdev)
1911 {
1912         return i915_pm_resume_early(kdev);
1913 }
1914
1915 static int i915_pm_restore(struct device *kdev)
1916 {
1917         return i915_pm_resume(kdev);
1918 }
1919
1920 /*
1921  * Save all Gunit registers that may be lost after a D3 and a subsequent
1922  * S0i[R123] transition. The list of registers needing a save/restore is
1923  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1924  * registers in the following way:
1925  * - Driver: saved/restored by the driver
1926  * - Punit : saved/restored by the Punit firmware
1927  * - No, w/o marking: no need to save/restore, since the register is R/O or
1928  *                    used internally by the HW in a way that doesn't depend
1929  *                    keeping the content across a suspend/resume.
1930  * - Debug : used for debugging
1931  *
1932  * We save/restore all registers marked with 'Driver', with the following
1933  * exceptions:
1934  * - Registers out of use, including also registers marked with 'Debug'.
1935  *   These have no effect on the driver's operation, so we don't save/restore
1936  *   them to reduce the overhead.
1937  * - Registers that are fully setup by an initialization function called from
1938  *   the resume path. For example many clock gating and RPS/RC6 registers.
1939  * - Registers that provide the right functionality with their reset defaults.
1940  *
1941  * TODO: Except for registers that based on the above 3 criteria can be safely
1942  * ignored, we save/restore all others, practically treating the HW context as
1943  * a black-box for the driver. Further investigation is needed to reduce the
1944  * saved/restored registers even further, by following the same 3 criteria.
1945  */
1946 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1947 {
1948         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1949         int i;
1950
1951         /* GAM 0x4000-0x4770 */
1952         s->wr_watermark         = I915_READ(GEN7_WR_WATERMARK);
1953         s->gfx_prio_ctrl        = I915_READ(GEN7_GFX_PRIO_CTRL);
1954         s->arb_mode             = I915_READ(ARB_MODE);
1955         s->gfx_pend_tlb0        = I915_READ(GEN7_GFX_PEND_TLB0);
1956         s->gfx_pend_tlb1        = I915_READ(GEN7_GFX_PEND_TLB1);
1957
1958         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1959                 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1960
1961         s->media_max_req_count  = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1962         s->gfx_max_req_count    = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1963
1964         s->render_hwsp          = I915_READ(RENDER_HWS_PGA_GEN7);
1965         s->ecochk               = I915_READ(GAM_ECOCHK);
1966         s->bsd_hwsp             = I915_READ(BSD_HWS_PGA_GEN7);
1967         s->blt_hwsp             = I915_READ(BLT_HWS_PGA_GEN7);
1968
1969         s->tlb_rd_addr          = I915_READ(GEN7_TLB_RD_ADDR);
1970
1971         /* MBC 0x9024-0x91D0, 0x8500 */
1972         s->g3dctl               = I915_READ(VLV_G3DCTL);
1973         s->gsckgctl             = I915_READ(VLV_GSCKGCTL);
1974         s->mbctl                = I915_READ(GEN6_MBCTL);
1975
1976         /* GCP 0x9400-0x9424, 0x8100-0x810C */
1977         s->ucgctl1              = I915_READ(GEN6_UCGCTL1);
1978         s->ucgctl3              = I915_READ(GEN6_UCGCTL3);
1979         s->rcgctl1              = I915_READ(GEN6_RCGCTL1);
1980         s->rcgctl2              = I915_READ(GEN6_RCGCTL2);
1981         s->rstctl               = I915_READ(GEN6_RSTCTL);
1982         s->misccpctl            = I915_READ(GEN7_MISCCPCTL);
1983
1984         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1985         s->gfxpause             = I915_READ(GEN6_GFXPAUSE);
1986         s->rpdeuhwtc            = I915_READ(GEN6_RPDEUHWTC);
1987         s->rpdeuc               = I915_READ(GEN6_RPDEUC);
1988         s->ecobus               = I915_READ(ECOBUS);
1989         s->pwrdwnupctl          = I915_READ(VLV_PWRDWNUPCTL);
1990         s->rp_down_timeout      = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1991         s->rp_deucsw            = I915_READ(GEN6_RPDEUCSW);
1992         s->rcubmabdtmr          = I915_READ(GEN6_RCUBMABDTMR);
1993         s->rcedata              = I915_READ(VLV_RCEDATA);
1994         s->spare2gh             = I915_READ(VLV_SPAREG2H);
1995
1996         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1997         s->gt_imr               = I915_READ(GTIMR);
1998         s->gt_ier               = I915_READ(GTIER);
1999         s->pm_imr               = I915_READ(GEN6_PMIMR);
2000         s->pm_ier               = I915_READ(GEN6_PMIER);
2001
2002         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2003                 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2004
2005         /* GT SA CZ domain, 0x100000-0x138124 */
2006         s->tilectl              = I915_READ(TILECTL);
2007         s->gt_fifoctl           = I915_READ(GTFIFOCTL);
2008         s->gtlc_wake_ctrl       = I915_READ(VLV_GTLC_WAKE_CTRL);
2009         s->gtlc_survive         = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2010         s->pmwgicz              = I915_READ(VLV_PMWGICZ);
2011
2012         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2013         s->gu_ctl0              = I915_READ(VLV_GU_CTL0);
2014         s->gu_ctl1              = I915_READ(VLV_GU_CTL1);
2015         s->pcbr                 = I915_READ(VLV_PCBR);
2016         s->clock_gate_dis2      = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2017
2018         /*
2019          * Not saving any of:
2020          * DFT,         0x9800-0x9EC0
2021          * SARB,        0xB000-0xB1FC
2022          * GAC,         0x5208-0x524C, 0x14000-0x14C000
2023          * PCI CFG
2024          */
2025 }
2026
2027 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2028 {
2029         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2030         u32 val;
2031         int i;
2032
2033         /* GAM 0x4000-0x4770 */
2034         I915_WRITE(GEN7_WR_WATERMARK,   s->wr_watermark);
2035         I915_WRITE(GEN7_GFX_PRIO_CTRL,  s->gfx_prio_ctrl);
2036         I915_WRITE(ARB_MODE,            s->arb_mode | (0xffff << 16));
2037         I915_WRITE(GEN7_GFX_PEND_TLB0,  s->gfx_pend_tlb0);
2038         I915_WRITE(GEN7_GFX_PEND_TLB1,  s->gfx_pend_tlb1);
2039
2040         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2041                 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2042
2043         I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2044         I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2045
2046         I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2047         I915_WRITE(GAM_ECOCHK,          s->ecochk);
2048         I915_WRITE(BSD_HWS_PGA_GEN7,    s->bsd_hwsp);
2049         I915_WRITE(BLT_HWS_PGA_GEN7,    s->blt_hwsp);
2050
2051         I915_WRITE(GEN7_TLB_RD_ADDR,    s->tlb_rd_addr);
2052
2053         /* MBC 0x9024-0x91D0, 0x8500 */
2054         I915_WRITE(VLV_G3DCTL,          s->g3dctl);
2055         I915_WRITE(VLV_GSCKGCTL,        s->gsckgctl);
2056         I915_WRITE(GEN6_MBCTL,          s->mbctl);
2057
2058         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2059         I915_WRITE(GEN6_UCGCTL1,        s->ucgctl1);
2060         I915_WRITE(GEN6_UCGCTL3,        s->ucgctl3);
2061         I915_WRITE(GEN6_RCGCTL1,        s->rcgctl1);
2062         I915_WRITE(GEN6_RCGCTL2,        s->rcgctl2);
2063         I915_WRITE(GEN6_RSTCTL,         s->rstctl);
2064         I915_WRITE(GEN7_MISCCPCTL,      s->misccpctl);
2065
2066         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2067         I915_WRITE(GEN6_GFXPAUSE,       s->gfxpause);
2068         I915_WRITE(GEN6_RPDEUHWTC,      s->rpdeuhwtc);
2069         I915_WRITE(GEN6_RPDEUC,         s->rpdeuc);
2070         I915_WRITE(ECOBUS,              s->ecobus);
2071         I915_WRITE(VLV_PWRDWNUPCTL,     s->pwrdwnupctl);
2072         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2073         I915_WRITE(GEN6_RPDEUCSW,       s->rp_deucsw);
2074         I915_WRITE(GEN6_RCUBMABDTMR,    s->rcubmabdtmr);
2075         I915_WRITE(VLV_RCEDATA,         s->rcedata);
2076         I915_WRITE(VLV_SPAREG2H,        s->spare2gh);
2077
2078         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2079         I915_WRITE(GTIMR,               s->gt_imr);
2080         I915_WRITE(GTIER,               s->gt_ier);
2081         I915_WRITE(GEN6_PMIMR,          s->pm_imr);
2082         I915_WRITE(GEN6_PMIER,          s->pm_ier);
2083
2084         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2085                 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2086
2087         /* GT SA CZ domain, 0x100000-0x138124 */
2088         I915_WRITE(TILECTL,                     s->tilectl);
2089         I915_WRITE(GTFIFOCTL,                   s->gt_fifoctl);
2090         /*
2091          * Preserve the GT allow wake and GFX force clock bit, they are not
2092          * be restored, as they are used to control the s0ix suspend/resume
2093          * sequence by the caller.
2094          */
2095         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2096         val &= VLV_GTLC_ALLOWWAKEREQ;
2097         val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2098         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2099
2100         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2101         val &= VLV_GFX_CLK_FORCE_ON_BIT;
2102         val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2103         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2104
2105         I915_WRITE(VLV_PMWGICZ,                 s->pmwgicz);
2106
2107         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2108         I915_WRITE(VLV_GU_CTL0,                 s->gu_ctl0);
2109         I915_WRITE(VLV_GU_CTL1,                 s->gu_ctl1);
2110         I915_WRITE(VLV_PCBR,                    s->pcbr);
2111         I915_WRITE(VLV_GUNIT_CLOCK_GATE2,       s->clock_gate_dis2);
2112 }
2113
2114 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2115 {
2116         u32 val;
2117         int err;
2118
2119         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2120         val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2121         if (force_on)
2122                 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2123         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2124
2125         if (!force_on)
2126                 return 0;
2127
2128         err = intel_wait_for_register(dev_priv,
2129                                       VLV_GTLC_SURVIVABILITY_REG,
2130                                       VLV_GFX_CLK_STATUS_BIT,
2131                                       VLV_GFX_CLK_STATUS_BIT,
2132                                       20);
2133         if (err)
2134                 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2135                           I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2136
2137         return err;
2138 }
2139
2140 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2141 {
2142         u32 val;
2143         int err = 0;
2144
2145         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2146         val &= ~VLV_GTLC_ALLOWWAKEREQ;
2147         if (allow)
2148                 val |= VLV_GTLC_ALLOWWAKEREQ;
2149         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2150         POSTING_READ(VLV_GTLC_WAKE_CTRL);
2151
2152         err = intel_wait_for_register(dev_priv,
2153                                       VLV_GTLC_PW_STATUS,
2154                                       VLV_GTLC_ALLOWWAKEACK,
2155                                       allow,
2156                                       1);
2157         if (err)
2158                 DRM_ERROR("timeout disabling GT waking\n");
2159
2160         return err;
2161 }
2162
2163 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2164                                  bool wait_for_on)
2165 {
2166         u32 mask;
2167         u32 val;
2168         int err;
2169
2170         mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2171         val = wait_for_on ? mask : 0;
2172         if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2173                 return 0;
2174
2175         DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2176                       onoff(wait_for_on),
2177                       I915_READ(VLV_GTLC_PW_STATUS));
2178
2179         /*
2180          * RC6 transitioning can be delayed up to 2 msec (see
2181          * valleyview_enable_rps), use 3 msec for safety.
2182          */
2183         err = intel_wait_for_register(dev_priv,
2184                                       VLV_GTLC_PW_STATUS, mask, val,
2185                                       3);
2186         if (err)
2187                 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2188                           onoff(wait_for_on));
2189
2190         return err;
2191 }
2192
2193 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2194 {
2195         if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2196                 return;
2197
2198         DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2199         I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2200 }
2201
2202 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2203 {
2204         u32 mask;
2205         int err;
2206
2207         /*
2208          * Bspec defines the following GT well on flags as debug only, so
2209          * don't treat them as hard failures.
2210          */
2211         (void)vlv_wait_for_gt_wells(dev_priv, false);
2212
2213         mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2214         WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2215
2216         vlv_check_no_gt_access(dev_priv);
2217
2218         err = vlv_force_gfx_clock(dev_priv, true);
2219         if (err)
2220                 goto err1;
2221
2222         err = vlv_allow_gt_wake(dev_priv, false);
2223         if (err)
2224                 goto err2;
2225
2226         if (!IS_CHERRYVIEW(dev_priv))
2227                 vlv_save_gunit_s0ix_state(dev_priv);
2228
2229         err = vlv_force_gfx_clock(dev_priv, false);
2230         if (err)
2231                 goto err2;
2232
2233         return 0;
2234
2235 err2:
2236         /* For safety always re-enable waking and disable gfx clock forcing */
2237         vlv_allow_gt_wake(dev_priv, true);
2238 err1:
2239         vlv_force_gfx_clock(dev_priv, false);
2240
2241         return err;
2242 }
2243
2244 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2245                                 bool rpm_resume)
2246 {
2247         struct drm_device *dev = &dev_priv->drm;
2248         int err;
2249         int ret;
2250
2251         /*
2252          * If any of the steps fail just try to continue, that's the best we
2253          * can do at this point. Return the first error code (which will also
2254          * leave RPM permanently disabled).
2255          */
2256         ret = vlv_force_gfx_clock(dev_priv, true);
2257
2258         if (!IS_CHERRYVIEW(dev_priv))
2259                 vlv_restore_gunit_s0ix_state(dev_priv);
2260
2261         err = vlv_allow_gt_wake(dev_priv, true);
2262         if (!ret)
2263                 ret = err;
2264
2265         err = vlv_force_gfx_clock(dev_priv, false);
2266         if (!ret)
2267                 ret = err;
2268
2269         vlv_check_no_gt_access(dev_priv);
2270
2271         if (rpm_resume) {
2272                 intel_init_clock_gating(dev);
2273                 i915_gem_restore_fences(dev);
2274         }
2275
2276         return ret;
2277 }
2278
2279 static int intel_runtime_suspend(struct device *kdev)
2280 {
2281         struct pci_dev *pdev = to_pci_dev(kdev);
2282         struct drm_device *dev = pci_get_drvdata(pdev);
2283         struct drm_i915_private *dev_priv = to_i915(dev);
2284         int ret;
2285
2286         if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2287                 return -ENODEV;
2288
2289         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2290                 return -ENODEV;
2291
2292         DRM_DEBUG_KMS("Suspending device\n");
2293
2294         /*
2295          * We could deadlock here in case another thread holding struct_mutex
2296          * calls RPM suspend concurrently, since the RPM suspend will wait
2297          * first for this RPM suspend to finish. In this case the concurrent
2298          * RPM resume will be followed by its RPM suspend counterpart. Still
2299          * for consistency return -EAGAIN, which will reschedule this suspend.
2300          */
2301         if (!mutex_trylock(&dev->struct_mutex)) {
2302                 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
2303                 /*
2304                  * Bump the expiration timestamp, otherwise the suspend won't
2305                  * be rescheduled.
2306                  */
2307                 pm_runtime_mark_last_busy(kdev);
2308
2309                 return -EAGAIN;
2310         }
2311
2312         disable_rpm_wakeref_asserts(dev_priv);
2313
2314         /*
2315          * We are safe here against re-faults, since the fault handler takes
2316          * an RPM reference.
2317          */
2318         i915_gem_release_all_mmaps(dev_priv);
2319         mutex_unlock(&dev->struct_mutex);
2320
2321         intel_guc_suspend(dev);
2322
2323         intel_runtime_pm_disable_interrupts(dev_priv);
2324
2325         ret = 0;
2326         if (IS_BROXTON(dev_priv)) {
2327                 bxt_display_core_uninit(dev_priv);
2328                 bxt_enable_dc9(dev_priv);
2329         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2330                 hsw_enable_pc8(dev_priv);
2331         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2332                 ret = vlv_suspend_complete(dev_priv);
2333         }
2334
2335         if (ret) {
2336                 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2337                 intel_runtime_pm_enable_interrupts(dev_priv);
2338
2339                 enable_rpm_wakeref_asserts(dev_priv);
2340
2341                 return ret;
2342         }
2343
2344         intel_uncore_forcewake_reset(dev_priv, false);
2345
2346         enable_rpm_wakeref_asserts(dev_priv);
2347         WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2348
2349         if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2350                 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2351
2352         dev_priv->pm.suspended = true;
2353
2354         /*
2355          * FIXME: We really should find a document that references the arguments
2356          * used below!
2357          */
2358         if (IS_BROADWELL(dev_priv)) {
2359                 /*
2360                  * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2361                  * being detected, and the call we do at intel_runtime_resume()
2362                  * won't be able to restore them. Since PCI_D3hot matches the
2363                  * actual specification and appears to be working, use it.
2364                  */
2365                 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2366         } else {
2367                 /*
2368                  * current versions of firmware which depend on this opregion
2369                  * notification have repurposed the D1 definition to mean
2370                  * "runtime suspended" vs. what you would normally expect (D3)
2371                  * to distinguish it from notifications that might be sent via
2372                  * the suspend path.
2373                  */
2374                 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2375         }
2376
2377         assert_forcewakes_inactive(dev_priv);
2378
2379         if (!IS_VALLEYVIEW(dev_priv) || !IS_CHERRYVIEW(dev_priv))
2380                 intel_hpd_poll_init(dev_priv);
2381
2382         DRM_DEBUG_KMS("Device suspended\n");
2383         return 0;
2384 }
2385
2386 static int intel_runtime_resume(struct device *kdev)
2387 {
2388         struct pci_dev *pdev = to_pci_dev(kdev);
2389         struct drm_device *dev = pci_get_drvdata(pdev);
2390         struct drm_i915_private *dev_priv = to_i915(dev);
2391         int ret = 0;
2392
2393         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2394                 return -ENODEV;
2395
2396         DRM_DEBUG_KMS("Resuming device\n");
2397
2398         WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2399         disable_rpm_wakeref_asserts(dev_priv);
2400
2401         intel_opregion_notify_adapter(dev_priv, PCI_D0);
2402         dev_priv->pm.suspended = false;
2403         if (intel_uncore_unclaimed_mmio(dev_priv))
2404                 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2405
2406         intel_guc_resume(dev);
2407
2408         if (IS_GEN6(dev_priv))
2409                 intel_init_pch_refclk(dev);
2410
2411         if (IS_BROXTON(dev)) {
2412                 bxt_disable_dc9(dev_priv);
2413                 bxt_display_core_init(dev_priv, true);
2414                 if (dev_priv->csr.dmc_payload &&
2415                     (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2416                         gen9_enable_dc5(dev_priv);
2417         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2418                 hsw_disable_pc8(dev_priv);
2419         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2420                 ret = vlv_resume_prepare(dev_priv, true);
2421         }
2422
2423         /*
2424          * No point of rolling back things in case of an error, as the best
2425          * we can do is to hope that things will still work (and disable RPM).
2426          */
2427         i915_gem_init_swizzling(dev);
2428
2429         intel_runtime_pm_enable_interrupts(dev_priv);
2430
2431         /*
2432          * On VLV/CHV display interrupts are part of the display
2433          * power well, so hpd is reinitialized from there. For
2434          * everyone else do it here.
2435          */
2436         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2437                 intel_hpd_init(dev_priv);
2438
2439         enable_rpm_wakeref_asserts(dev_priv);
2440
2441         if (ret)
2442                 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2443         else
2444                 DRM_DEBUG_KMS("Device resumed\n");
2445
2446         return ret;
2447 }
2448
2449 const struct dev_pm_ops i915_pm_ops = {
2450         /*
2451          * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2452          * PMSG_RESUME]
2453          */
2454         .suspend = i915_pm_suspend,
2455         .suspend_late = i915_pm_suspend_late,
2456         .resume_early = i915_pm_resume_early,
2457         .resume = i915_pm_resume,
2458
2459         /*
2460          * S4 event handlers
2461          * @freeze, @freeze_late    : called (1) before creating the
2462          *                            hibernation image [PMSG_FREEZE] and
2463          *                            (2) after rebooting, before restoring
2464          *                            the image [PMSG_QUIESCE]
2465          * @thaw, @thaw_early       : called (1) after creating the hibernation
2466          *                            image, before writing it [PMSG_THAW]
2467          *                            and (2) after failing to create or
2468          *                            restore the image [PMSG_RECOVER]
2469          * @poweroff, @poweroff_late: called after writing the hibernation
2470          *                            image, before rebooting [PMSG_HIBERNATE]
2471          * @restore, @restore_early : called after rebooting and restoring the
2472          *                            hibernation image [PMSG_RESTORE]
2473          */
2474         .freeze = i915_pm_freeze,
2475         .freeze_late = i915_pm_freeze_late,
2476         .thaw_early = i915_pm_thaw_early,
2477         .thaw = i915_pm_thaw,
2478         .poweroff = i915_pm_suspend,
2479         .poweroff_late = i915_pm_poweroff_late,
2480         .restore_early = i915_pm_restore_early,
2481         .restore = i915_pm_restore,
2482
2483         /* S0ix (via runtime suspend) event handlers */
2484         .runtime_suspend = intel_runtime_suspend,
2485         .runtime_resume = intel_runtime_resume,
2486 };
2487
2488 static const struct vm_operations_struct i915_gem_vm_ops = {
2489         .fault = i915_gem_fault,
2490         .open = drm_gem_vm_open,
2491         .close = drm_gem_vm_close,
2492 };
2493
2494 static const struct file_operations i915_driver_fops = {
2495         .owner = THIS_MODULE,
2496         .open = drm_open,
2497         .release = drm_release,
2498         .unlocked_ioctl = drm_ioctl,
2499         .mmap = drm_gem_mmap,
2500         .poll = drm_poll,
2501         .read = drm_read,
2502 #ifdef CONFIG_COMPAT
2503         .compat_ioctl = i915_compat_ioctl,
2504 #endif
2505         .llseek = noop_llseek,
2506 };
2507
2508 static int
2509 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2510                           struct drm_file *file)
2511 {
2512         return -ENODEV;
2513 }
2514
2515 static const struct drm_ioctl_desc i915_ioctls[] = {
2516         DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2517         DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2518         DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2519         DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2520         DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2521         DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2522         DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2523         DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2524         DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2525         DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2526         DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2527         DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2528         DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2529         DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2530         DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2531         DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2532         DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2533         DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2534         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2535         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2536         DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2537         DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2538         DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2539         DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2540         DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2541         DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2542         DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2543         DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2544         DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2545         DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2546         DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2547         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2548         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2549         DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2550         DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2551         DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_RENDER_ALLOW),
2552         DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_RENDER_ALLOW),
2553         DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2554         DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2555         DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2556         DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2557         DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2558         DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2559         DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2560         DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2561         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2562         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2563         DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2564         DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2565         DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2566         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2567         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2568 };
2569
2570 static struct drm_driver driver = {
2571         /* Don't use MTRRs here; the Xserver or userspace app should
2572          * deal with them for Intel hardware.
2573          */
2574         .driver_features =
2575             DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2576             DRIVER_RENDER | DRIVER_MODESET,
2577         .open = i915_driver_open,
2578         .lastclose = i915_driver_lastclose,
2579         .preclose = i915_driver_preclose,
2580         .postclose = i915_driver_postclose,
2581         .set_busid = drm_pci_set_busid,
2582
2583         .gem_close_object = i915_gem_close_object,
2584         .gem_free_object = i915_gem_free_object,
2585         .gem_vm_ops = &i915_gem_vm_ops,
2586
2587         .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2588         .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2589         .gem_prime_export = i915_gem_prime_export,
2590         .gem_prime_import = i915_gem_prime_import,
2591
2592         .dumb_create = i915_gem_dumb_create,
2593         .dumb_map_offset = i915_gem_mmap_gtt,
2594         .dumb_destroy = drm_gem_dumb_destroy,
2595         .ioctls = i915_ioctls,
2596         .num_ioctls = ARRAY_SIZE(i915_ioctls),
2597         .fops = &i915_driver_fops,
2598         .name = DRIVER_NAME,
2599         .desc = DRIVER_DESC,
2600         .date = DRIVER_DATE,
2601         .major = DRIVER_MAJOR,
2602         .minor = DRIVER_MINOR,
2603         .patchlevel = DRIVER_PATCHLEVEL,
2604 };