OSDN Git Service

drm/i915: Mock the GEM device for self-testing
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/kthread.h>
39 #include <linux/reservation.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/slab.h>
42 #include <linux/stop_machine.h>
43 #include <linux/swap.h>
44 #include <linux/pci.h>
45 #include <linux/dma-buf.h>
46
47 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
48 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
49 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
50
51 static bool cpu_cache_is_coherent(struct drm_device *dev,
52                                   enum i915_cache_level level)
53 {
54         return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
55 }
56
57 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
58 {
59         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
60                 return false;
61
62         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
63                 return true;
64
65         return obj->pin_display;
66 }
67
68 static int
69 insert_mappable_node(struct i915_ggtt *ggtt,
70                      struct drm_mm_node *node, u32 size)
71 {
72         memset(node, 0, sizeof(*node));
73         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
74                                            size, 0, I915_COLOR_UNEVICTABLE,
75                                            0, ggtt->mappable_end,
76                                            DRM_MM_INSERT_LOW);
77 }
78
79 static void
80 remove_mappable_node(struct drm_mm_node *node)
81 {
82         drm_mm_remove_node(node);
83 }
84
85 /* some bookkeeping */
86 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87                                   u64 size)
88 {
89         spin_lock(&dev_priv->mm.object_stat_lock);
90         dev_priv->mm.object_count++;
91         dev_priv->mm.object_memory += size;
92         spin_unlock(&dev_priv->mm.object_stat_lock);
93 }
94
95 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96                                      u64 size)
97 {
98         spin_lock(&dev_priv->mm.object_stat_lock);
99         dev_priv->mm.object_count--;
100         dev_priv->mm.object_memory -= size;
101         spin_unlock(&dev_priv->mm.object_stat_lock);
102 }
103
104 static int
105 i915_gem_wait_for_error(struct i915_gpu_error *error)
106 {
107         int ret;
108
109         might_sleep();
110
111         if (!i915_reset_in_progress(error))
112                 return 0;
113
114         /*
115          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
116          * userspace. If it takes that long something really bad is going on and
117          * we should simply try to bail out and fail as gracefully as possible.
118          */
119         ret = wait_event_interruptible_timeout(error->reset_queue,
120                                                !i915_reset_in_progress(error),
121                                                I915_RESET_TIMEOUT);
122         if (ret == 0) {
123                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
124                 return -EIO;
125         } else if (ret < 0) {
126                 return ret;
127         } else {
128                 return 0;
129         }
130 }
131
132 int i915_mutex_lock_interruptible(struct drm_device *dev)
133 {
134         struct drm_i915_private *dev_priv = to_i915(dev);
135         int ret;
136
137         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
138         if (ret)
139                 return ret;
140
141         ret = mutex_lock_interruptible(&dev->struct_mutex);
142         if (ret)
143                 return ret;
144
145         return 0;
146 }
147
148 int
149 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150                             struct drm_file *file)
151 {
152         struct drm_i915_private *dev_priv = to_i915(dev);
153         struct i915_ggtt *ggtt = &dev_priv->ggtt;
154         struct drm_i915_gem_get_aperture *args = data;
155         struct i915_vma *vma;
156         size_t pinned;
157
158         pinned = 0;
159         mutex_lock(&dev->struct_mutex);
160         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161                 if (i915_vma_is_pinned(vma))
162                         pinned += vma->node.size;
163         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164                 if (i915_vma_is_pinned(vma))
165                         pinned += vma->node.size;
166         mutex_unlock(&dev->struct_mutex);
167
168         args->aper_size = ggtt->base.total;
169         args->aper_available_size = args->aper_size - pinned;
170
171         return 0;
172 }
173
174 static struct sg_table *
175 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176 {
177         struct address_space *mapping = obj->base.filp->f_mapping;
178         drm_dma_handle_t *phys;
179         struct sg_table *st;
180         struct scatterlist *sg;
181         char *vaddr;
182         int i;
183
184         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
185                 return ERR_PTR(-EINVAL);
186
187         /* Always aligning to the object size, allows a single allocation
188          * to handle all possible callers, and given typical object sizes,
189          * the alignment of the buddy allocation will naturally match.
190          */
191         phys = drm_pci_alloc(obj->base.dev,
192                              obj->base.size,
193                              roundup_pow_of_two(obj->base.size));
194         if (!phys)
195                 return ERR_PTR(-ENOMEM);
196
197         vaddr = phys->vaddr;
198         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
199                 struct page *page;
200                 char *src;
201
202                 page = shmem_read_mapping_page(mapping, i);
203                 if (IS_ERR(page)) {
204                         st = ERR_CAST(page);
205                         goto err_phys;
206                 }
207
208                 src = kmap_atomic(page);
209                 memcpy(vaddr, src, PAGE_SIZE);
210                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
211                 kunmap_atomic(src);
212
213                 put_page(page);
214                 vaddr += PAGE_SIZE;
215         }
216
217         i915_gem_chipset_flush(to_i915(obj->base.dev));
218
219         st = kmalloc(sizeof(*st), GFP_KERNEL);
220         if (!st) {
221                 st = ERR_PTR(-ENOMEM);
222                 goto err_phys;
223         }
224
225         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
226                 kfree(st);
227                 st = ERR_PTR(-ENOMEM);
228                 goto err_phys;
229         }
230
231         sg = st->sgl;
232         sg->offset = 0;
233         sg->length = obj->base.size;
234
235         sg_dma_address(sg) = phys->busaddr;
236         sg_dma_len(sg) = obj->base.size;
237
238         obj->phys_handle = phys;
239         return st;
240
241 err_phys:
242         drm_pci_free(obj->base.dev, phys);
243         return st;
244 }
245
246 static void
247 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
248                                 struct sg_table *pages,
249                                 bool needs_clflush)
250 {
251         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
252
253         if (obj->mm.madv == I915_MADV_DONTNEED)
254                 obj->mm.dirty = false;
255
256         if (needs_clflush &&
257             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
258             !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
259                 drm_clflush_sg(pages);
260
261         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
262         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
263 }
264
265 static void
266 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
267                                struct sg_table *pages)
268 {
269         __i915_gem_object_release_shmem(obj, pages, false);
270
271         if (obj->mm.dirty) {
272                 struct address_space *mapping = obj->base.filp->f_mapping;
273                 char *vaddr = obj->phys_handle->vaddr;
274                 int i;
275
276                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
277                         struct page *page;
278                         char *dst;
279
280                         page = shmem_read_mapping_page(mapping, i);
281                         if (IS_ERR(page))
282                                 continue;
283
284                         dst = kmap_atomic(page);
285                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
286                         memcpy(dst, vaddr, PAGE_SIZE);
287                         kunmap_atomic(dst);
288
289                         set_page_dirty(page);
290                         if (obj->mm.madv == I915_MADV_WILLNEED)
291                                 mark_page_accessed(page);
292                         put_page(page);
293                         vaddr += PAGE_SIZE;
294                 }
295                 obj->mm.dirty = false;
296         }
297
298         sg_free_table(pages);
299         kfree(pages);
300
301         drm_pci_free(obj->base.dev, obj->phys_handle);
302 }
303
304 static void
305 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
306 {
307         i915_gem_object_unpin_pages(obj);
308 }
309
310 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
311         .get_pages = i915_gem_object_get_pages_phys,
312         .put_pages = i915_gem_object_put_pages_phys,
313         .release = i915_gem_object_release_phys,
314 };
315
316 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
317 {
318         struct i915_vma *vma;
319         LIST_HEAD(still_in_list);
320         int ret;
321
322         lockdep_assert_held(&obj->base.dev->struct_mutex);
323
324         /* Closed vma are removed from the obj->vma_list - but they may
325          * still have an active binding on the object. To remove those we
326          * must wait for all rendering to complete to the object (as unbinding
327          * must anyway), and retire the requests.
328          */
329         ret = i915_gem_object_wait(obj,
330                                    I915_WAIT_INTERRUPTIBLE |
331                                    I915_WAIT_LOCKED |
332                                    I915_WAIT_ALL,
333                                    MAX_SCHEDULE_TIMEOUT,
334                                    NULL);
335         if (ret)
336                 return ret;
337
338         i915_gem_retire_requests(to_i915(obj->base.dev));
339
340         while ((vma = list_first_entry_or_null(&obj->vma_list,
341                                                struct i915_vma,
342                                                obj_link))) {
343                 list_move_tail(&vma->obj_link, &still_in_list);
344                 ret = i915_vma_unbind(vma);
345                 if (ret)
346                         break;
347         }
348         list_splice(&still_in_list, &obj->vma_list);
349
350         return ret;
351 }
352
353 static long
354 i915_gem_object_wait_fence(struct dma_fence *fence,
355                            unsigned int flags,
356                            long timeout,
357                            struct intel_rps_client *rps)
358 {
359         struct drm_i915_gem_request *rq;
360
361         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
362
363         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
364                 return timeout;
365
366         if (!dma_fence_is_i915(fence))
367                 return dma_fence_wait_timeout(fence,
368                                               flags & I915_WAIT_INTERRUPTIBLE,
369                                               timeout);
370
371         rq = to_request(fence);
372         if (i915_gem_request_completed(rq))
373                 goto out;
374
375         /* This client is about to stall waiting for the GPU. In many cases
376          * this is undesirable and limits the throughput of the system, as
377          * many clients cannot continue processing user input/output whilst
378          * blocked. RPS autotuning may take tens of milliseconds to respond
379          * to the GPU load and thus incurs additional latency for the client.
380          * We can circumvent that by promoting the GPU frequency to maximum
381          * before we wait. This makes the GPU throttle up much more quickly
382          * (good for benchmarks and user experience, e.g. window animations),
383          * but at a cost of spending more power processing the workload
384          * (bad for battery). Not all clients even want their results
385          * immediately and for them we should just let the GPU select its own
386          * frequency to maximise efficiency. To prevent a single client from
387          * forcing the clocks too high for the whole system, we only allow
388          * each client to waitboost once in a busy period.
389          */
390         if (rps) {
391                 if (INTEL_GEN(rq->i915) >= 6)
392                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
393                 else
394                         rps = NULL;
395         }
396
397         timeout = i915_wait_request(rq, flags, timeout);
398
399 out:
400         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
401                 i915_gem_request_retire_upto(rq);
402
403         if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
404                 /* The GPU is now idle and this client has stalled.
405                  * Since no other client has submitted a request in the
406                  * meantime, assume that this client is the only one
407                  * supplying work to the GPU but is unable to keep that
408                  * work supplied because it is waiting. Since the GPU is
409                  * then never kept fully busy, RPS autoclocking will
410                  * keep the clocks relatively low, causing further delays.
411                  * Compensate by giving the synchronous client credit for
412                  * a waitboost next time.
413                  */
414                 spin_lock(&rq->i915->rps.client_lock);
415                 list_del_init(&rps->link);
416                 spin_unlock(&rq->i915->rps.client_lock);
417         }
418
419         return timeout;
420 }
421
422 static long
423 i915_gem_object_wait_reservation(struct reservation_object *resv,
424                                  unsigned int flags,
425                                  long timeout,
426                                  struct intel_rps_client *rps)
427 {
428         struct dma_fence *excl;
429
430         if (flags & I915_WAIT_ALL) {
431                 struct dma_fence **shared;
432                 unsigned int count, i;
433                 int ret;
434
435                 ret = reservation_object_get_fences_rcu(resv,
436                                                         &excl, &count, &shared);
437                 if (ret)
438                         return ret;
439
440                 for (i = 0; i < count; i++) {
441                         timeout = i915_gem_object_wait_fence(shared[i],
442                                                              flags, timeout,
443                                                              rps);
444                         if (timeout <= 0)
445                                 break;
446
447                         dma_fence_put(shared[i]);
448                 }
449
450                 for (; i < count; i++)
451                         dma_fence_put(shared[i]);
452                 kfree(shared);
453         } else {
454                 excl = reservation_object_get_excl_rcu(resv);
455         }
456
457         if (excl && timeout > 0)
458                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
459
460         dma_fence_put(excl);
461
462         return timeout;
463 }
464
465 static void __fence_set_priority(struct dma_fence *fence, int prio)
466 {
467         struct drm_i915_gem_request *rq;
468         struct intel_engine_cs *engine;
469
470         if (!dma_fence_is_i915(fence))
471                 return;
472
473         rq = to_request(fence);
474         engine = rq->engine;
475         if (!engine->schedule)
476                 return;
477
478         engine->schedule(rq, prio);
479 }
480
481 static void fence_set_priority(struct dma_fence *fence, int prio)
482 {
483         /* Recurse once into a fence-array */
484         if (dma_fence_is_array(fence)) {
485                 struct dma_fence_array *array = to_dma_fence_array(fence);
486                 int i;
487
488                 for (i = 0; i < array->num_fences; i++)
489                         __fence_set_priority(array->fences[i], prio);
490         } else {
491                 __fence_set_priority(fence, prio);
492         }
493 }
494
495 int
496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
497                               unsigned int flags,
498                               int prio)
499 {
500         struct dma_fence *excl;
501
502         if (flags & I915_WAIT_ALL) {
503                 struct dma_fence **shared;
504                 unsigned int count, i;
505                 int ret;
506
507                 ret = reservation_object_get_fences_rcu(obj->resv,
508                                                         &excl, &count, &shared);
509                 if (ret)
510                         return ret;
511
512                 for (i = 0; i < count; i++) {
513                         fence_set_priority(shared[i], prio);
514                         dma_fence_put(shared[i]);
515                 }
516
517                 kfree(shared);
518         } else {
519                 excl = reservation_object_get_excl_rcu(obj->resv);
520         }
521
522         if (excl) {
523                 fence_set_priority(excl, prio);
524                 dma_fence_put(excl);
525         }
526         return 0;
527 }
528
529 /**
530  * Waits for rendering to the object to be completed
531  * @obj: i915 gem object
532  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533  * @timeout: how long to wait
534  * @rps: client (user process) to charge for any waitboosting
535  */
536 int
537 i915_gem_object_wait(struct drm_i915_gem_object *obj,
538                      unsigned int flags,
539                      long timeout,
540                      struct intel_rps_client *rps)
541 {
542         might_sleep();
543 #if IS_ENABLED(CONFIG_LOCKDEP)
544         GEM_BUG_ON(debug_locks &&
545                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546                    !!(flags & I915_WAIT_LOCKED));
547 #endif
548         GEM_BUG_ON(timeout < 0);
549
550         timeout = i915_gem_object_wait_reservation(obj->resv,
551                                                    flags, timeout,
552                                                    rps);
553         return timeout < 0 ? timeout : 0;
554 }
555
556 static struct intel_rps_client *to_rps_client(struct drm_file *file)
557 {
558         struct drm_i915_file_private *fpriv = file->driver_priv;
559
560         return &fpriv->rps;
561 }
562
563 int
564 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
565                             int align)
566 {
567         int ret;
568
569         if (align > obj->base.size)
570                 return -EINVAL;
571
572         if (obj->ops == &i915_gem_phys_ops)
573                 return 0;
574
575         if (obj->mm.madv != I915_MADV_WILLNEED)
576                 return -EFAULT;
577
578         if (obj->base.filp == NULL)
579                 return -EINVAL;
580
581         ret = i915_gem_object_unbind(obj);
582         if (ret)
583                 return ret;
584
585         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
586         if (obj->mm.pages)
587                 return -EBUSY;
588
589         obj->ops = &i915_gem_phys_ops;
590
591         return i915_gem_object_pin_pages(obj);
592 }
593
594 static int
595 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pwrite *args,
597                      struct drm_file *file)
598 {
599         void *vaddr = obj->phys_handle->vaddr + args->offset;
600         char __user *user_data = u64_to_user_ptr(args->data_ptr);
601
602         /* We manually control the domain here and pretend that it
603          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
604          */
605         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
606         if (copy_from_user(vaddr, user_data, args->size))
607                 return -EFAULT;
608
609         drm_clflush_virt_range(vaddr, args->size);
610         i915_gem_chipset_flush(to_i915(obj->base.dev));
611
612         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
613         return 0;
614 }
615
616 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
617 {
618         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
619 }
620
621 void i915_gem_object_free(struct drm_i915_gem_object *obj)
622 {
623         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
624         kmem_cache_free(dev_priv->objects, obj);
625 }
626
627 static int
628 i915_gem_create(struct drm_file *file,
629                 struct drm_i915_private *dev_priv,
630                 uint64_t size,
631                 uint32_t *handle_p)
632 {
633         struct drm_i915_gem_object *obj;
634         int ret;
635         u32 handle;
636
637         size = roundup(size, PAGE_SIZE);
638         if (size == 0)
639                 return -EINVAL;
640
641         /* Allocate the new object */
642         obj = i915_gem_object_create(dev_priv, size);
643         if (IS_ERR(obj))
644                 return PTR_ERR(obj);
645
646         ret = drm_gem_handle_create(file, &obj->base, &handle);
647         /* drop reference from allocate - handle holds it now */
648         i915_gem_object_put(obj);
649         if (ret)
650                 return ret;
651
652         *handle_p = handle;
653         return 0;
654 }
655
656 int
657 i915_gem_dumb_create(struct drm_file *file,
658                      struct drm_device *dev,
659                      struct drm_mode_create_dumb *args)
660 {
661         /* have to work out size/pitch and return them */
662         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
663         args->size = args->pitch * args->height;
664         return i915_gem_create(file, to_i915(dev),
665                                args->size, &args->handle);
666 }
667
668 /**
669  * Creates a new mm object and returns a handle to it.
670  * @dev: drm device pointer
671  * @data: ioctl data blob
672  * @file: drm file pointer
673  */
674 int
675 i915_gem_create_ioctl(struct drm_device *dev, void *data,
676                       struct drm_file *file)
677 {
678         struct drm_i915_private *dev_priv = to_i915(dev);
679         struct drm_i915_gem_create *args = data;
680
681         i915_gem_flush_free_objects(dev_priv);
682
683         return i915_gem_create(file, dev_priv,
684                                args->size, &args->handle);
685 }
686
687 static inline int
688 __copy_to_user_swizzled(char __user *cpu_vaddr,
689                         const char *gpu_vaddr, int gpu_offset,
690                         int length)
691 {
692         int ret, cpu_offset = 0;
693
694         while (length > 0) {
695                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
696                 int this_length = min(cacheline_end - gpu_offset, length);
697                 int swizzled_gpu_offset = gpu_offset ^ 64;
698
699                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
700                                      gpu_vaddr + swizzled_gpu_offset,
701                                      this_length);
702                 if (ret)
703                         return ret + length;
704
705                 cpu_offset += this_length;
706                 gpu_offset += this_length;
707                 length -= this_length;
708         }
709
710         return 0;
711 }
712
713 static inline int
714 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
715                           const char __user *cpu_vaddr,
716                           int length)
717 {
718         int ret, cpu_offset = 0;
719
720         while (length > 0) {
721                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
722                 int this_length = min(cacheline_end - gpu_offset, length);
723                 int swizzled_gpu_offset = gpu_offset ^ 64;
724
725                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
726                                        cpu_vaddr + cpu_offset,
727                                        this_length);
728                 if (ret)
729                         return ret + length;
730
731                 cpu_offset += this_length;
732                 gpu_offset += this_length;
733                 length -= this_length;
734         }
735
736         return 0;
737 }
738
739 /*
740  * Pins the specified object's pages and synchronizes the object with
741  * GPU accesses. Sets needs_clflush to non-zero if the caller should
742  * flush the object from the CPU cache.
743  */
744 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
745                                     unsigned int *needs_clflush)
746 {
747         int ret;
748
749         lockdep_assert_held(&obj->base.dev->struct_mutex);
750
751         *needs_clflush = 0;
752         if (!i915_gem_object_has_struct_page(obj))
753                 return -ENODEV;
754
755         ret = i915_gem_object_wait(obj,
756                                    I915_WAIT_INTERRUPTIBLE |
757                                    I915_WAIT_LOCKED,
758                                    MAX_SCHEDULE_TIMEOUT,
759                                    NULL);
760         if (ret)
761                 return ret;
762
763         ret = i915_gem_object_pin_pages(obj);
764         if (ret)
765                 return ret;
766
767         i915_gem_object_flush_gtt_write_domain(obj);
768
769         /* If we're not in the cpu read domain, set ourself into the gtt
770          * read domain and manually flush cachelines (if required). This
771          * optimizes for the case when the gpu will dirty the data
772          * anyway again before the next pread happens.
773          */
774         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
775                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
776                                                         obj->cache_level);
777
778         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
779                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
780                 if (ret)
781                         goto err_unpin;
782
783                 *needs_clflush = 0;
784         }
785
786         /* return with the pages pinned */
787         return 0;
788
789 err_unpin:
790         i915_gem_object_unpin_pages(obj);
791         return ret;
792 }
793
794 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
795                                      unsigned int *needs_clflush)
796 {
797         int ret;
798
799         lockdep_assert_held(&obj->base.dev->struct_mutex);
800
801         *needs_clflush = 0;
802         if (!i915_gem_object_has_struct_page(obj))
803                 return -ENODEV;
804
805         ret = i915_gem_object_wait(obj,
806                                    I915_WAIT_INTERRUPTIBLE |
807                                    I915_WAIT_LOCKED |
808                                    I915_WAIT_ALL,
809                                    MAX_SCHEDULE_TIMEOUT,
810                                    NULL);
811         if (ret)
812                 return ret;
813
814         ret = i915_gem_object_pin_pages(obj);
815         if (ret)
816                 return ret;
817
818         i915_gem_object_flush_gtt_write_domain(obj);
819
820         /* If we're not in the cpu write domain, set ourself into the
821          * gtt write domain and manually flush cachelines (as required).
822          * This optimizes for the case when the gpu will use the data
823          * right away and we therefore have to clflush anyway.
824          */
825         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
826                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
827
828         /* Same trick applies to invalidate partially written cachelines read
829          * before writing.
830          */
831         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
832                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
833                                                          obj->cache_level);
834
835         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
836                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
837                 if (ret)
838                         goto err_unpin;
839
840                 *needs_clflush = 0;
841         }
842
843         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
844                 obj->cache_dirty = true;
845
846         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
847         obj->mm.dirty = true;
848         /* return with the pages pinned */
849         return 0;
850
851 err_unpin:
852         i915_gem_object_unpin_pages(obj);
853         return ret;
854 }
855
856 static void
857 shmem_clflush_swizzled_range(char *addr, unsigned long length,
858                              bool swizzled)
859 {
860         if (unlikely(swizzled)) {
861                 unsigned long start = (unsigned long) addr;
862                 unsigned long end = (unsigned long) addr + length;
863
864                 /* For swizzling simply ensure that we always flush both
865                  * channels. Lame, but simple and it works. Swizzled
866                  * pwrite/pread is far from a hotpath - current userspace
867                  * doesn't use it at all. */
868                 start = round_down(start, 128);
869                 end = round_up(end, 128);
870
871                 drm_clflush_virt_range((void *)start, end - start);
872         } else {
873                 drm_clflush_virt_range(addr, length);
874         }
875
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879  * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pread_slow(struct page *page, int offset, int length,
882                  char __user *user_data,
883                  bool page_do_bit17_swizzling, bool needs_clflush)
884 {
885         char *vaddr;
886         int ret;
887
888         vaddr = kmap(page);
889         if (needs_clflush)
890                 shmem_clflush_swizzled_range(vaddr + offset, length,
891                                              page_do_bit17_swizzling);
892
893         if (page_do_bit17_swizzling)
894                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
895         else
896                 ret = __copy_to_user(user_data, vaddr + offset, length);
897         kunmap(page);
898
899         return ret ? - EFAULT : 0;
900 }
901
902 static int
903 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
904             bool page_do_bit17_swizzling, bool needs_clflush)
905 {
906         int ret;
907
908         ret = -ENODEV;
909         if (!page_do_bit17_swizzling) {
910                 char *vaddr = kmap_atomic(page);
911
912                 if (needs_clflush)
913                         drm_clflush_virt_range(vaddr + offset, length);
914                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
915                 kunmap_atomic(vaddr);
916         }
917         if (ret == 0)
918                 return 0;
919
920         return shmem_pread_slow(page, offset, length, user_data,
921                                 page_do_bit17_swizzling, needs_clflush);
922 }
923
924 static int
925 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
926                      struct drm_i915_gem_pread *args)
927 {
928         char __user *user_data;
929         u64 remain;
930         unsigned int obj_do_bit17_swizzling;
931         unsigned int needs_clflush;
932         unsigned int idx, offset;
933         int ret;
934
935         obj_do_bit17_swizzling = 0;
936         if (i915_gem_object_needs_bit17_swizzle(obj))
937                 obj_do_bit17_swizzling = BIT(17);
938
939         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
940         if (ret)
941                 return ret;
942
943         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
944         mutex_unlock(&obj->base.dev->struct_mutex);
945         if (ret)
946                 return ret;
947
948         remain = args->size;
949         user_data = u64_to_user_ptr(args->data_ptr);
950         offset = offset_in_page(args->offset);
951         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
952                 struct page *page = i915_gem_object_get_page(obj, idx);
953                 int length;
954
955                 length = remain;
956                 if (offset + length > PAGE_SIZE)
957                         length = PAGE_SIZE - offset;
958
959                 ret = shmem_pread(page, offset, length, user_data,
960                                   page_to_phys(page) & obj_do_bit17_swizzling,
961                                   needs_clflush);
962                 if (ret)
963                         break;
964
965                 remain -= length;
966                 user_data += length;
967                 offset = 0;
968         }
969
970         i915_gem_obj_finish_shmem_access(obj);
971         return ret;
972 }
973
974 static inline bool
975 gtt_user_read(struct io_mapping *mapping,
976               loff_t base, int offset,
977               char __user *user_data, int length)
978 {
979         void *vaddr;
980         unsigned long unwritten;
981
982         /* We can use the cpu mem copy function because this is X86. */
983         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
984         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
985         io_mapping_unmap_atomic(vaddr);
986         if (unwritten) {
987                 vaddr = (void __force *)
988                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
989                 unwritten = copy_to_user(user_data, vaddr + offset, length);
990                 io_mapping_unmap(vaddr);
991         }
992         return unwritten;
993 }
994
995 static int
996 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
997                    const struct drm_i915_gem_pread *args)
998 {
999         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1000         struct i915_ggtt *ggtt = &i915->ggtt;
1001         struct drm_mm_node node;
1002         struct i915_vma *vma;
1003         void __user *user_data;
1004         u64 remain, offset;
1005         int ret;
1006
1007         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1008         if (ret)
1009                 return ret;
1010
1011         intel_runtime_pm_get(i915);
1012         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1013                                        PIN_MAPPABLE | PIN_NONBLOCK);
1014         if (!IS_ERR(vma)) {
1015                 node.start = i915_ggtt_offset(vma);
1016                 node.allocated = false;
1017                 ret = i915_vma_put_fence(vma);
1018                 if (ret) {
1019                         i915_vma_unpin(vma);
1020                         vma = ERR_PTR(ret);
1021                 }
1022         }
1023         if (IS_ERR(vma)) {
1024                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1025                 if (ret)
1026                         goto out_unlock;
1027                 GEM_BUG_ON(!node.allocated);
1028         }
1029
1030         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1031         if (ret)
1032                 goto out_unpin;
1033
1034         mutex_unlock(&i915->drm.struct_mutex);
1035
1036         user_data = u64_to_user_ptr(args->data_ptr);
1037         remain = args->size;
1038         offset = args->offset;
1039
1040         while (remain > 0) {
1041                 /* Operation in this page
1042                  *
1043                  * page_base = page offset within aperture
1044                  * page_offset = offset within page
1045                  * page_length = bytes to copy for this page
1046                  */
1047                 u32 page_base = node.start;
1048                 unsigned page_offset = offset_in_page(offset);
1049                 unsigned page_length = PAGE_SIZE - page_offset;
1050                 page_length = remain < page_length ? remain : page_length;
1051                 if (node.allocated) {
1052                         wmb();
1053                         ggtt->base.insert_page(&ggtt->base,
1054                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1055                                                node.start, I915_CACHE_NONE, 0);
1056                         wmb();
1057                 } else {
1058                         page_base += offset & PAGE_MASK;
1059                 }
1060
1061                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1062                                   user_data, page_length)) {
1063                         ret = -EFAULT;
1064                         break;
1065                 }
1066
1067                 remain -= page_length;
1068                 user_data += page_length;
1069                 offset += page_length;
1070         }
1071
1072         mutex_lock(&i915->drm.struct_mutex);
1073 out_unpin:
1074         if (node.allocated) {
1075                 wmb();
1076                 ggtt->base.clear_range(&ggtt->base,
1077                                        node.start, node.size);
1078                 remove_mappable_node(&node);
1079         } else {
1080                 i915_vma_unpin(vma);
1081         }
1082 out_unlock:
1083         intel_runtime_pm_put(i915);
1084         mutex_unlock(&i915->drm.struct_mutex);
1085
1086         return ret;
1087 }
1088
1089 /**
1090  * Reads data from the object referenced by handle.
1091  * @dev: drm device pointer
1092  * @data: ioctl data blob
1093  * @file: drm file pointer
1094  *
1095  * On error, the contents of *data are undefined.
1096  */
1097 int
1098 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1099                      struct drm_file *file)
1100 {
1101         struct drm_i915_gem_pread *args = data;
1102         struct drm_i915_gem_object *obj;
1103         int ret;
1104
1105         if (args->size == 0)
1106                 return 0;
1107
1108         if (!access_ok(VERIFY_WRITE,
1109                        u64_to_user_ptr(args->data_ptr),
1110                        args->size))
1111                 return -EFAULT;
1112
1113         obj = i915_gem_object_lookup(file, args->handle);
1114         if (!obj)
1115                 return -ENOENT;
1116
1117         /* Bounds check source.  */
1118         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1119                 ret = -EINVAL;
1120                 goto out;
1121         }
1122
1123         trace_i915_gem_object_pread(obj, args->offset, args->size);
1124
1125         ret = i915_gem_object_wait(obj,
1126                                    I915_WAIT_INTERRUPTIBLE,
1127                                    MAX_SCHEDULE_TIMEOUT,
1128                                    to_rps_client(file));
1129         if (ret)
1130                 goto out;
1131
1132         ret = i915_gem_object_pin_pages(obj);
1133         if (ret)
1134                 goto out;
1135
1136         ret = i915_gem_shmem_pread(obj, args);
1137         if (ret == -EFAULT || ret == -ENODEV)
1138                 ret = i915_gem_gtt_pread(obj, args);
1139
1140         i915_gem_object_unpin_pages(obj);
1141 out:
1142         i915_gem_object_put(obj);
1143         return ret;
1144 }
1145
1146 /* This is the fast write path which cannot handle
1147  * page faults in the source data
1148  */
1149
1150 static inline bool
1151 ggtt_write(struct io_mapping *mapping,
1152            loff_t base, int offset,
1153            char __user *user_data, int length)
1154 {
1155         void *vaddr;
1156         unsigned long unwritten;
1157
1158         /* We can use the cpu mem copy function because this is X86. */
1159         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1160         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1161                                                       user_data, length);
1162         io_mapping_unmap_atomic(vaddr);
1163         if (unwritten) {
1164                 vaddr = (void __force *)
1165                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1167                 io_mapping_unmap(vaddr);
1168         }
1169
1170         return unwritten;
1171 }
1172
1173 /**
1174  * This is the fast pwrite path, where we copy the data directly from the
1175  * user into the GTT, uncached.
1176  * @obj: i915 GEM object
1177  * @args: pwrite arguments structure
1178  */
1179 static int
1180 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1181                          const struct drm_i915_gem_pwrite *args)
1182 {
1183         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1184         struct i915_ggtt *ggtt = &i915->ggtt;
1185         struct drm_mm_node node;
1186         struct i915_vma *vma;
1187         u64 remain, offset;
1188         void __user *user_data;
1189         int ret;
1190
1191         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1192         if (ret)
1193                 return ret;
1194
1195         intel_runtime_pm_get(i915);
1196         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1197                                        PIN_MAPPABLE | PIN_NONBLOCK);
1198         if (!IS_ERR(vma)) {
1199                 node.start = i915_ggtt_offset(vma);
1200                 node.allocated = false;
1201                 ret = i915_vma_put_fence(vma);
1202                 if (ret) {
1203                         i915_vma_unpin(vma);
1204                         vma = ERR_PTR(ret);
1205                 }
1206         }
1207         if (IS_ERR(vma)) {
1208                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209                 if (ret)
1210                         goto out_unlock;
1211                 GEM_BUG_ON(!node.allocated);
1212         }
1213
1214         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1215         if (ret)
1216                 goto out_unpin;
1217
1218         mutex_unlock(&i915->drm.struct_mutex);
1219
1220         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221
1222         user_data = u64_to_user_ptr(args->data_ptr);
1223         offset = args->offset;
1224         remain = args->size;
1225         while (remain) {
1226                 /* Operation in this page
1227                  *
1228                  * page_base = page offset within aperture
1229                  * page_offset = offset within page
1230                  * page_length = bytes to copy for this page
1231                  */
1232                 u32 page_base = node.start;
1233                 unsigned int page_offset = offset_in_page(offset);
1234                 unsigned int page_length = PAGE_SIZE - page_offset;
1235                 page_length = remain < page_length ? remain : page_length;
1236                 if (node.allocated) {
1237                         wmb(); /* flush the write before we modify the GGTT */
1238                         ggtt->base.insert_page(&ggtt->base,
1239                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1240                                                node.start, I915_CACHE_NONE, 0);
1241                         wmb(); /* flush modifications to the GGTT (insert_page) */
1242                 } else {
1243                         page_base += offset & PAGE_MASK;
1244                 }
1245                 /* If we get a fault while copying data, then (presumably) our
1246                  * source page isn't available.  Return the error and we'll
1247                  * retry in the slow path.
1248                  * If the object is non-shmem backed, we retry again with the
1249                  * path that handles page fault.
1250                  */
1251                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1252                                user_data, page_length)) {
1253                         ret = -EFAULT;
1254                         break;
1255                 }
1256
1257                 remain -= page_length;
1258                 user_data += page_length;
1259                 offset += page_length;
1260         }
1261         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1262
1263         mutex_lock(&i915->drm.struct_mutex);
1264 out_unpin:
1265         if (node.allocated) {
1266                 wmb();
1267                 ggtt->base.clear_range(&ggtt->base,
1268                                        node.start, node.size);
1269                 remove_mappable_node(&node);
1270         } else {
1271                 i915_vma_unpin(vma);
1272         }
1273 out_unlock:
1274         intel_runtime_pm_put(i915);
1275         mutex_unlock(&i915->drm.struct_mutex);
1276         return ret;
1277 }
1278
1279 static int
1280 shmem_pwrite_slow(struct page *page, int offset, int length,
1281                   char __user *user_data,
1282                   bool page_do_bit17_swizzling,
1283                   bool needs_clflush_before,
1284                   bool needs_clflush_after)
1285 {
1286         char *vaddr;
1287         int ret;
1288
1289         vaddr = kmap(page);
1290         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1291                 shmem_clflush_swizzled_range(vaddr + offset, length,
1292                                              page_do_bit17_swizzling);
1293         if (page_do_bit17_swizzling)
1294                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1295                                                 length);
1296         else
1297                 ret = __copy_from_user(vaddr + offset, user_data, length);
1298         if (needs_clflush_after)
1299                 shmem_clflush_swizzled_range(vaddr + offset, length,
1300                                              page_do_bit17_swizzling);
1301         kunmap(page);
1302
1303         return ret ? -EFAULT : 0;
1304 }
1305
1306 /* Per-page copy function for the shmem pwrite fastpath.
1307  * Flushes invalid cachelines before writing to the target if
1308  * needs_clflush_before is set and flushes out any written cachelines after
1309  * writing if needs_clflush is set.
1310  */
1311 static int
1312 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1313              bool page_do_bit17_swizzling,
1314              bool needs_clflush_before,
1315              bool needs_clflush_after)
1316 {
1317         int ret;
1318
1319         ret = -ENODEV;
1320         if (!page_do_bit17_swizzling) {
1321                 char *vaddr = kmap_atomic(page);
1322
1323                 if (needs_clflush_before)
1324                         drm_clflush_virt_range(vaddr + offset, len);
1325                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1326                 if (needs_clflush_after)
1327                         drm_clflush_virt_range(vaddr + offset, len);
1328
1329                 kunmap_atomic(vaddr);
1330         }
1331         if (ret == 0)
1332                 return ret;
1333
1334         return shmem_pwrite_slow(page, offset, len, user_data,
1335                                  page_do_bit17_swizzling,
1336                                  needs_clflush_before,
1337                                  needs_clflush_after);
1338 }
1339
1340 static int
1341 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1342                       const struct drm_i915_gem_pwrite *args)
1343 {
1344         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1345         void __user *user_data;
1346         u64 remain;
1347         unsigned int obj_do_bit17_swizzling;
1348         unsigned int partial_cacheline_write;
1349         unsigned int needs_clflush;
1350         unsigned int offset, idx;
1351         int ret;
1352
1353         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1354         if (ret)
1355                 return ret;
1356
1357         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1358         mutex_unlock(&i915->drm.struct_mutex);
1359         if (ret)
1360                 return ret;
1361
1362         obj_do_bit17_swizzling = 0;
1363         if (i915_gem_object_needs_bit17_swizzle(obj))
1364                 obj_do_bit17_swizzling = BIT(17);
1365
1366         /* If we don't overwrite a cacheline completely we need to be
1367          * careful to have up-to-date data by first clflushing. Don't
1368          * overcomplicate things and flush the entire patch.
1369          */
1370         partial_cacheline_write = 0;
1371         if (needs_clflush & CLFLUSH_BEFORE)
1372                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1373
1374         user_data = u64_to_user_ptr(args->data_ptr);
1375         remain = args->size;
1376         offset = offset_in_page(args->offset);
1377         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1378                 struct page *page = i915_gem_object_get_page(obj, idx);
1379                 int length;
1380
1381                 length = remain;
1382                 if (offset + length > PAGE_SIZE)
1383                         length = PAGE_SIZE - offset;
1384
1385                 ret = shmem_pwrite(page, offset, length, user_data,
1386                                    page_to_phys(page) & obj_do_bit17_swizzling,
1387                                    (offset | length) & partial_cacheline_write,
1388                                    needs_clflush & CLFLUSH_AFTER);
1389                 if (ret)
1390                         break;
1391
1392                 remain -= length;
1393                 user_data += length;
1394                 offset = 0;
1395         }
1396
1397         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1398         i915_gem_obj_finish_shmem_access(obj);
1399         return ret;
1400 }
1401
1402 /**
1403  * Writes data to the object referenced by handle.
1404  * @dev: drm device
1405  * @data: ioctl data blob
1406  * @file: drm file
1407  *
1408  * On error, the contents of the buffer that were to be modified are undefined.
1409  */
1410 int
1411 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1412                       struct drm_file *file)
1413 {
1414         struct drm_i915_gem_pwrite *args = data;
1415         struct drm_i915_gem_object *obj;
1416         int ret;
1417
1418         if (args->size == 0)
1419                 return 0;
1420
1421         if (!access_ok(VERIFY_READ,
1422                        u64_to_user_ptr(args->data_ptr),
1423                        args->size))
1424                 return -EFAULT;
1425
1426         obj = i915_gem_object_lookup(file, args->handle);
1427         if (!obj)
1428                 return -ENOENT;
1429
1430         /* Bounds check destination. */
1431         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1432                 ret = -EINVAL;
1433                 goto err;
1434         }
1435
1436         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1437
1438         ret = i915_gem_object_wait(obj,
1439                                    I915_WAIT_INTERRUPTIBLE |
1440                                    I915_WAIT_ALL,
1441                                    MAX_SCHEDULE_TIMEOUT,
1442                                    to_rps_client(file));
1443         if (ret)
1444                 goto err;
1445
1446         ret = i915_gem_object_pin_pages(obj);
1447         if (ret)
1448                 goto err;
1449
1450         ret = -EFAULT;
1451         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1452          * it would end up going through the fenced access, and we'll get
1453          * different detiling behavior between reading and writing.
1454          * pread/pwrite currently are reading and writing from the CPU
1455          * perspective, requiring manual detiling by the client.
1456          */
1457         if (!i915_gem_object_has_struct_page(obj) ||
1458             cpu_write_needs_clflush(obj))
1459                 /* Note that the gtt paths might fail with non-page-backed user
1460                  * pointers (e.g. gtt mappings when moving data between
1461                  * textures). Fallback to the shmem path in that case.
1462                  */
1463                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1464
1465         if (ret == -EFAULT || ret == -ENOSPC) {
1466                 if (obj->phys_handle)
1467                         ret = i915_gem_phys_pwrite(obj, args, file);
1468                 else
1469                         ret = i915_gem_shmem_pwrite(obj, args);
1470         }
1471
1472         i915_gem_object_unpin_pages(obj);
1473 err:
1474         i915_gem_object_put(obj);
1475         return ret;
1476 }
1477
1478 static inline enum fb_op_origin
1479 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1480 {
1481         return (domain == I915_GEM_DOMAIN_GTT ?
1482                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1483 }
1484
1485 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1486 {
1487         struct drm_i915_private *i915;
1488         struct list_head *list;
1489         struct i915_vma *vma;
1490
1491         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1492                 if (!i915_vma_is_ggtt(vma))
1493                         break;
1494
1495                 if (i915_vma_is_active(vma))
1496                         continue;
1497
1498                 if (!drm_mm_node_allocated(&vma->node))
1499                         continue;
1500
1501                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1502         }
1503
1504         i915 = to_i915(obj->base.dev);
1505         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1506         list_move_tail(&obj->global_link, list);
1507 }
1508
1509 /**
1510  * Called when user space prepares to use an object with the CPU, either
1511  * through the mmap ioctl's mapping or a GTT mapping.
1512  * @dev: drm device
1513  * @data: ioctl data blob
1514  * @file: drm file
1515  */
1516 int
1517 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1518                           struct drm_file *file)
1519 {
1520         struct drm_i915_gem_set_domain *args = data;
1521         struct drm_i915_gem_object *obj;
1522         uint32_t read_domains = args->read_domains;
1523         uint32_t write_domain = args->write_domain;
1524         int err;
1525
1526         /* Only handle setting domains to types used by the CPU. */
1527         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1528                 return -EINVAL;
1529
1530         /* Having something in the write domain implies it's in the read
1531          * domain, and only that read domain.  Enforce that in the request.
1532          */
1533         if (write_domain != 0 && read_domains != write_domain)
1534                 return -EINVAL;
1535
1536         obj = i915_gem_object_lookup(file, args->handle);
1537         if (!obj)
1538                 return -ENOENT;
1539
1540         /* Try to flush the object off the GPU without holding the lock.
1541          * We will repeat the flush holding the lock in the normal manner
1542          * to catch cases where we are gazumped.
1543          */
1544         err = i915_gem_object_wait(obj,
1545                                    I915_WAIT_INTERRUPTIBLE |
1546                                    (write_domain ? I915_WAIT_ALL : 0),
1547                                    MAX_SCHEDULE_TIMEOUT,
1548                                    to_rps_client(file));
1549         if (err)
1550                 goto out;
1551
1552         /* Flush and acquire obj->pages so that we are coherent through
1553          * direct access in memory with previous cached writes through
1554          * shmemfs and that our cache domain tracking remains valid.
1555          * For example, if the obj->filp was moved to swap without us
1556          * being notified and releasing the pages, we would mistakenly
1557          * continue to assume that the obj remained out of the CPU cached
1558          * domain.
1559          */
1560         err = i915_gem_object_pin_pages(obj);
1561         if (err)
1562                 goto out;
1563
1564         err = i915_mutex_lock_interruptible(dev);
1565         if (err)
1566                 goto out_unpin;
1567
1568         if (read_domains & I915_GEM_DOMAIN_GTT)
1569                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1570         else
1571                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1572
1573         /* And bump the LRU for this access */
1574         i915_gem_object_bump_inactive_ggtt(obj);
1575
1576         mutex_unlock(&dev->struct_mutex);
1577
1578         if (write_domain != 0)
1579                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1580
1581 out_unpin:
1582         i915_gem_object_unpin_pages(obj);
1583 out:
1584         i915_gem_object_put(obj);
1585         return err;
1586 }
1587
1588 /**
1589  * Called when user space has done writes to this buffer
1590  * @dev: drm device
1591  * @data: ioctl data blob
1592  * @file: drm file
1593  */
1594 int
1595 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1596                          struct drm_file *file)
1597 {
1598         struct drm_i915_gem_sw_finish *args = data;
1599         struct drm_i915_gem_object *obj;
1600         int err = 0;
1601
1602         obj = i915_gem_object_lookup(file, args->handle);
1603         if (!obj)
1604                 return -ENOENT;
1605
1606         /* Pinned buffers may be scanout, so flush the cache */
1607         if (READ_ONCE(obj->pin_display)) {
1608                 err = i915_mutex_lock_interruptible(dev);
1609                 if (!err) {
1610                         i915_gem_object_flush_cpu_write_domain(obj);
1611                         mutex_unlock(&dev->struct_mutex);
1612                 }
1613         }
1614
1615         i915_gem_object_put(obj);
1616         return err;
1617 }
1618
1619 /**
1620  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1621  *                       it is mapped to.
1622  * @dev: drm device
1623  * @data: ioctl data blob
1624  * @file: drm file
1625  *
1626  * While the mapping holds a reference on the contents of the object, it doesn't
1627  * imply a ref on the object itself.
1628  *
1629  * IMPORTANT:
1630  *
1631  * DRM driver writers who look a this function as an example for how to do GEM
1632  * mmap support, please don't implement mmap support like here. The modern way
1633  * to implement DRM mmap support is with an mmap offset ioctl (like
1634  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1635  * That way debug tooling like valgrind will understand what's going on, hiding
1636  * the mmap call in a driver private ioctl will break that. The i915 driver only
1637  * does cpu mmaps this way because we didn't know better.
1638  */
1639 int
1640 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1641                     struct drm_file *file)
1642 {
1643         struct drm_i915_gem_mmap *args = data;
1644         struct drm_i915_gem_object *obj;
1645         unsigned long addr;
1646
1647         if (args->flags & ~(I915_MMAP_WC))
1648                 return -EINVAL;
1649
1650         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1651                 return -ENODEV;
1652
1653         obj = i915_gem_object_lookup(file, args->handle);
1654         if (!obj)
1655                 return -ENOENT;
1656
1657         /* prime objects have no backing filp to GEM mmap
1658          * pages from.
1659          */
1660         if (!obj->base.filp) {
1661                 i915_gem_object_put(obj);
1662                 return -EINVAL;
1663         }
1664
1665         addr = vm_mmap(obj->base.filp, 0, args->size,
1666                        PROT_READ | PROT_WRITE, MAP_SHARED,
1667                        args->offset);
1668         if (args->flags & I915_MMAP_WC) {
1669                 struct mm_struct *mm = current->mm;
1670                 struct vm_area_struct *vma;
1671
1672                 if (down_write_killable(&mm->mmap_sem)) {
1673                         i915_gem_object_put(obj);
1674                         return -EINTR;
1675                 }
1676                 vma = find_vma(mm, addr);
1677                 if (vma)
1678                         vma->vm_page_prot =
1679                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1680                 else
1681                         addr = -ENOMEM;
1682                 up_write(&mm->mmap_sem);
1683
1684                 /* This may race, but that's ok, it only gets set */
1685                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1686         }
1687         i915_gem_object_put(obj);
1688         if (IS_ERR((void *)addr))
1689                 return addr;
1690
1691         args->addr_ptr = (uint64_t) addr;
1692
1693         return 0;
1694 }
1695
1696 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1697 {
1698         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1699 }
1700
1701 /**
1702  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1703  *
1704  * A history of the GTT mmap interface:
1705  *
1706  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1707  *     aligned and suitable for fencing, and still fit into the available
1708  *     mappable space left by the pinned display objects. A classic problem
1709  *     we called the page-fault-of-doom where we would ping-pong between
1710  *     two objects that could not fit inside the GTT and so the memcpy
1711  *     would page one object in at the expense of the other between every
1712  *     single byte.
1713  *
1714  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1715  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1716  *     object is too large for the available space (or simply too large
1717  *     for the mappable aperture!), a view is created instead and faulted
1718  *     into userspace. (This view is aligned and sized appropriately for
1719  *     fenced access.)
1720  *
1721  * Restrictions:
1722  *
1723  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1724  *    hangs on some architectures, corruption on others. An attempt to service
1725  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1726  *
1727  *  * the object must be able to fit into RAM (physical memory, though no
1728  *    limited to the mappable aperture).
1729  *
1730  *
1731  * Caveats:
1732  *
1733  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1734  *    all data to system memory. Subsequent access will not be synchronized.
1735  *
1736  *  * all mappings are revoked on runtime device suspend.
1737  *
1738  *  * there are only 8, 16 or 32 fence registers to share between all users
1739  *    (older machines require fence register for display and blitter access
1740  *    as well). Contention of the fence registers will cause the previous users
1741  *    to be unmapped and any new access will generate new page faults.
1742  *
1743  *  * running out of memory while servicing a fault may generate a SIGBUS,
1744  *    rather than the expected SIGSEGV.
1745  */
1746 int i915_gem_mmap_gtt_version(void)
1747 {
1748         return 1;
1749 }
1750
1751 static inline struct i915_ggtt_view
1752 compute_partial_view(struct drm_i915_gem_object *obj,
1753                      pgoff_t page_offset,
1754                      unsigned int chunk)
1755 {
1756         struct i915_ggtt_view view;
1757
1758         if (i915_gem_object_is_tiled(obj))
1759                 chunk = roundup(chunk, tile_row_pages(obj));
1760
1761         view.type = I915_GGTT_VIEW_PARTIAL;
1762         view.partial.offset = rounddown(page_offset, chunk);
1763         view.partial.size =
1764                 min_t(unsigned int, chunk,
1765                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1766
1767         /* If the partial covers the entire object, just create a normal VMA. */
1768         if (chunk >= obj->base.size >> PAGE_SHIFT)
1769                 view.type = I915_GGTT_VIEW_NORMAL;
1770
1771         return view;
1772 }
1773
1774 /**
1775  * i915_gem_fault - fault a page into the GTT
1776  * @area: CPU VMA in question
1777  * @vmf: fault info
1778  *
1779  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1780  * from userspace.  The fault handler takes care of binding the object to
1781  * the GTT (if needed), allocating and programming a fence register (again,
1782  * only if needed based on whether the old reg is still valid or the object
1783  * is tiled) and inserting a new PTE into the faulting process.
1784  *
1785  * Note that the faulting process may involve evicting existing objects
1786  * from the GTT and/or fence registers to make room.  So performance may
1787  * suffer if the GTT working set is large or there are few fence registers
1788  * left.
1789  *
1790  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1791  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1792  */
1793 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1794 {
1795 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1796         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1797         struct drm_device *dev = obj->base.dev;
1798         struct drm_i915_private *dev_priv = to_i915(dev);
1799         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1800         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801         struct i915_vma *vma;
1802         pgoff_t page_offset;
1803         unsigned int flags;
1804         int ret;
1805
1806         /* We don't use vmf->pgoff since that has the fake offset */
1807         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1808
1809         trace_i915_gem_object_fault(obj, page_offset, true, write);
1810
1811         /* Try to flush the object off the GPU first without holding the lock.
1812          * Upon acquiring the lock, we will perform our sanity checks and then
1813          * repeat the flush holding the lock in the normal manner to catch cases
1814          * where we are gazumped.
1815          */
1816         ret = i915_gem_object_wait(obj,
1817                                    I915_WAIT_INTERRUPTIBLE,
1818                                    MAX_SCHEDULE_TIMEOUT,
1819                                    NULL);
1820         if (ret)
1821                 goto err;
1822
1823         ret = i915_gem_object_pin_pages(obj);
1824         if (ret)
1825                 goto err;
1826
1827         intel_runtime_pm_get(dev_priv);
1828
1829         ret = i915_mutex_lock_interruptible(dev);
1830         if (ret)
1831                 goto err_rpm;
1832
1833         /* Access to snoopable pages through the GTT is incoherent. */
1834         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1835                 ret = -EFAULT;
1836                 goto err_unlock;
1837         }
1838
1839         /* If the object is smaller than a couple of partial vma, it is
1840          * not worth only creating a single partial vma - we may as well
1841          * clear enough space for the full object.
1842          */
1843         flags = PIN_MAPPABLE;
1844         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1845                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1846
1847         /* Now pin it into the GTT as needed */
1848         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1849         if (IS_ERR(vma)) {
1850                 /* Use a partial view if it is bigger than available space */
1851                 struct i915_ggtt_view view =
1852                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1853
1854                 /* Userspace is now writing through an untracked VMA, abandon
1855                  * all hope that the hardware is able to track future writes.
1856                  */
1857                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858
1859                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860         }
1861         if (IS_ERR(vma)) {
1862                 ret = PTR_ERR(vma);
1863                 goto err_unlock;
1864         }
1865
1866         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867         if (ret)
1868                 goto err_unpin;
1869
1870         ret = i915_vma_get_fence(vma);
1871         if (ret)
1872                 goto err_unpin;
1873
1874         /* Mark as being mmapped into userspace for later revocation */
1875         assert_rpm_wakelock_held(dev_priv);
1876         if (list_empty(&obj->userfault_link))
1877                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1878
1879         /* Finally, remap it using the new GTT offset */
1880         ret = remap_io_mapping(area,
1881                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1882                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1884                                &ggtt->mappable);
1885
1886 err_unpin:
1887         __i915_vma_unpin(vma);
1888 err_unlock:
1889         mutex_unlock(&dev->struct_mutex);
1890 err_rpm:
1891         intel_runtime_pm_put(dev_priv);
1892         i915_gem_object_unpin_pages(obj);
1893 err:
1894         switch (ret) {
1895         case -EIO:
1896                 /*
1897                  * We eat errors when the gpu is terminally wedged to avoid
1898                  * userspace unduly crashing (gl has no provisions for mmaps to
1899                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900                  * and so needs to be reported.
1901                  */
1902                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1903                         ret = VM_FAULT_SIGBUS;
1904                         break;
1905                 }
1906         case -EAGAIN:
1907                 /*
1908                  * EAGAIN means the gpu is hung and we'll wait for the error
1909                  * handler to reset everything when re-faulting in
1910                  * i915_mutex_lock_interruptible.
1911                  */
1912         case 0:
1913         case -ERESTARTSYS:
1914         case -EINTR:
1915         case -EBUSY:
1916                 /*
1917                  * EBUSY is ok: this just means that another thread
1918                  * already did the job.
1919                  */
1920                 ret = VM_FAULT_NOPAGE;
1921                 break;
1922         case -ENOMEM:
1923                 ret = VM_FAULT_OOM;
1924                 break;
1925         case -ENOSPC:
1926         case -EFAULT:
1927                 ret = VM_FAULT_SIGBUS;
1928                 break;
1929         default:
1930                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1931                 ret = VM_FAULT_SIGBUS;
1932                 break;
1933         }
1934         return ret;
1935 }
1936
1937 /**
1938  * i915_gem_release_mmap - remove physical page mappings
1939  * @obj: obj in question
1940  *
1941  * Preserve the reservation of the mmapping with the DRM core code, but
1942  * relinquish ownership of the pages back to the system.
1943  *
1944  * It is vital that we remove the page mapping if we have mapped a tiled
1945  * object through the GTT and then lose the fence register due to
1946  * resource pressure. Similarly if the object has been moved out of the
1947  * aperture, than pages mapped into userspace must be revoked. Removing the
1948  * mapping will then trigger a page fault on the next user access, allowing
1949  * fixup by i915_gem_fault().
1950  */
1951 void
1952 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1953 {
1954         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1955
1956         /* Serialisation between user GTT access and our code depends upon
1957          * revoking the CPU's PTE whilst the mutex is held. The next user
1958          * pagefault then has to wait until we release the mutex.
1959          *
1960          * Note that RPM complicates somewhat by adding an additional
1961          * requirement that operations to the GGTT be made holding the RPM
1962          * wakeref.
1963          */
1964         lockdep_assert_held(&i915->drm.struct_mutex);
1965         intel_runtime_pm_get(i915);
1966
1967         if (list_empty(&obj->userfault_link))
1968                 goto out;
1969
1970         list_del_init(&obj->userfault_link);
1971         drm_vma_node_unmap(&obj->base.vma_node,
1972                            obj->base.dev->anon_inode->i_mapping);
1973
1974         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1975          * memory transactions from userspace before we return. The TLB
1976          * flushing implied above by changing the PTE above *should* be
1977          * sufficient, an extra barrier here just provides us with a bit
1978          * of paranoid documentation about our requirement to serialise
1979          * memory writes before touching registers / GSM.
1980          */
1981         wmb();
1982
1983 out:
1984         intel_runtime_pm_put(i915);
1985 }
1986
1987 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1988 {
1989         struct drm_i915_gem_object *obj, *on;
1990         int i;
1991
1992         /*
1993          * Only called during RPM suspend. All users of the userfault_list
1994          * must be holding an RPM wakeref to ensure that this can not
1995          * run concurrently with themselves (and use the struct_mutex for
1996          * protection between themselves).
1997          */
1998
1999         list_for_each_entry_safe(obj, on,
2000                                  &dev_priv->mm.userfault_list, userfault_link) {
2001                 list_del_init(&obj->userfault_link);
2002                 drm_vma_node_unmap(&obj->base.vma_node,
2003                                    obj->base.dev->anon_inode->i_mapping);
2004         }
2005
2006         /* The fence will be lost when the device powers down. If any were
2007          * in use by hardware (i.e. they are pinned), we should not be powering
2008          * down! All other fences will be reacquired by the user upon waking.
2009          */
2010         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012
2013                 /* Ideally we want to assert that the fence register is not
2014                  * live at this point (i.e. that no piece of code will be
2015                  * trying to write through fence + GTT, as that both violates
2016                  * our tracking of activity and associated locking/barriers,
2017                  * but also is illegal given that the hw is powered down).
2018                  *
2019                  * Previously we used reg->pin_count as a "liveness" indicator.
2020                  * That is not sufficient, and we need a more fine-grained
2021                  * tool if we want to have a sanity check here.
2022                  */
2023
2024                 if (!reg->vma)
2025                         continue;
2026
2027                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2028                 reg->dirty = true;
2029         }
2030 }
2031
2032 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2033 {
2034         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2035         int err;
2036
2037         err = drm_gem_create_mmap_offset(&obj->base);
2038         if (likely(!err))
2039                 return 0;
2040
2041         /* Attempt to reap some mmap space from dead objects */
2042         do {
2043                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2044                 if (err)
2045                         break;
2046
2047                 i915_gem_drain_freed_objects(dev_priv);
2048                 err = drm_gem_create_mmap_offset(&obj->base);
2049                 if (!err)
2050                         break;
2051
2052         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2053
2054         return err;
2055 }
2056
2057 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2058 {
2059         drm_gem_free_mmap_offset(&obj->base);
2060 }
2061
2062 int
2063 i915_gem_mmap_gtt(struct drm_file *file,
2064                   struct drm_device *dev,
2065                   uint32_t handle,
2066                   uint64_t *offset)
2067 {
2068         struct drm_i915_gem_object *obj;
2069         int ret;
2070
2071         obj = i915_gem_object_lookup(file, handle);
2072         if (!obj)
2073                 return -ENOENT;
2074
2075         ret = i915_gem_object_create_mmap_offset(obj);
2076         if (ret == 0)
2077                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2078
2079         i915_gem_object_put(obj);
2080         return ret;
2081 }
2082
2083 /**
2084  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2085  * @dev: DRM device
2086  * @data: GTT mapping ioctl data
2087  * @file: GEM object info
2088  *
2089  * Simply returns the fake offset to userspace so it can mmap it.
2090  * The mmap call will end up in drm_gem_mmap(), which will set things
2091  * up so we can get faults in the handler above.
2092  *
2093  * The fault handler will take care of binding the object into the GTT
2094  * (since it may have been evicted to make room for something), allocating
2095  * a fence register, and mapping the appropriate aperture address into
2096  * userspace.
2097  */
2098 int
2099 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2100                         struct drm_file *file)
2101 {
2102         struct drm_i915_gem_mmap_gtt *args = data;
2103
2104         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2105 }
2106
2107 /* Immediately discard the backing storage */
2108 static void
2109 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2110 {
2111         i915_gem_object_free_mmap_offset(obj);
2112
2113         if (obj->base.filp == NULL)
2114                 return;
2115
2116         /* Our goal here is to return as much of the memory as
2117          * is possible back to the system as we are called from OOM.
2118          * To do this we must instruct the shmfs to drop all of its
2119          * backing pages, *now*.
2120          */
2121         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2122         obj->mm.madv = __I915_MADV_PURGED;
2123 }
2124
2125 /* Try to discard unwanted pages */
2126 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2127 {
2128         struct address_space *mapping;
2129
2130         lockdep_assert_held(&obj->mm.lock);
2131         GEM_BUG_ON(obj->mm.pages);
2132
2133         switch (obj->mm.madv) {
2134         case I915_MADV_DONTNEED:
2135                 i915_gem_object_truncate(obj);
2136         case __I915_MADV_PURGED:
2137                 return;
2138         }
2139
2140         if (obj->base.filp == NULL)
2141                 return;
2142
2143         mapping = obj->base.filp->f_mapping,
2144         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2145 }
2146
2147 static void
2148 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2149                               struct sg_table *pages)
2150 {
2151         struct sgt_iter sgt_iter;
2152         struct page *page;
2153
2154         __i915_gem_object_release_shmem(obj, pages, true);
2155
2156         i915_gem_gtt_finish_pages(obj, pages);
2157
2158         if (i915_gem_object_needs_bit17_swizzle(obj))
2159                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2160
2161         for_each_sgt_page(page, sgt_iter, pages) {
2162                 if (obj->mm.dirty)
2163                         set_page_dirty(page);
2164
2165                 if (obj->mm.madv == I915_MADV_WILLNEED)
2166                         mark_page_accessed(page);
2167
2168                 put_page(page);
2169         }
2170         obj->mm.dirty = false;
2171
2172         sg_free_table(pages);
2173         kfree(pages);
2174 }
2175
2176 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2177 {
2178         struct radix_tree_iter iter;
2179         void **slot;
2180
2181         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2182                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2183 }
2184
2185 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2186                                  enum i915_mm_subclass subclass)
2187 {
2188         struct sg_table *pages;
2189
2190         if (i915_gem_object_has_pinned_pages(obj))
2191                 return;
2192
2193         GEM_BUG_ON(obj->bind_count);
2194         if (!READ_ONCE(obj->mm.pages))
2195                 return;
2196
2197         /* May be called by shrinker from within get_pages() (on another bo) */
2198         mutex_lock_nested(&obj->mm.lock, subclass);
2199         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2200                 goto unlock;
2201
2202         /* ->put_pages might need to allocate memory for the bit17 swizzle
2203          * array, hence protect them from being reaped by removing them from gtt
2204          * lists early. */
2205         pages = fetch_and_zero(&obj->mm.pages);
2206         GEM_BUG_ON(!pages);
2207
2208         if (obj->mm.mapping) {
2209                 void *ptr;
2210
2211                 ptr = ptr_mask_bits(obj->mm.mapping);
2212                 if (is_vmalloc_addr(ptr))
2213                         vunmap(ptr);
2214                 else
2215                         kunmap(kmap_to_page(ptr));
2216
2217                 obj->mm.mapping = NULL;
2218         }
2219
2220         __i915_gem_object_reset_page_iter(obj);
2221
2222         obj->ops->put_pages(obj, pages);
2223 unlock:
2224         mutex_unlock(&obj->mm.lock);
2225 }
2226
2227 static bool i915_sg_trim(struct sg_table *orig_st)
2228 {
2229         struct sg_table new_st;
2230         struct scatterlist *sg, *new_sg;
2231         unsigned int i;
2232
2233         if (orig_st->nents == orig_st->orig_nents)
2234                 return false;
2235
2236         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2237                 return false;
2238
2239         new_sg = new_st.sgl;
2240         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2241                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2242                 /* called before being DMA mapped, no need to copy sg->dma_* */
2243                 new_sg = sg_next(new_sg);
2244         }
2245         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2246
2247         sg_free_table(orig_st);
2248
2249         *orig_st = new_st;
2250         return true;
2251 }
2252
2253 static struct sg_table *
2254 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2255 {
2256         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2257         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2258         unsigned long i;
2259         struct address_space *mapping;
2260         struct sg_table *st;
2261         struct scatterlist *sg;
2262         struct sgt_iter sgt_iter;
2263         struct page *page;
2264         unsigned long last_pfn = 0;     /* suppress gcc warning */
2265         unsigned int max_segment;
2266         int ret;
2267         gfp_t gfp;
2268
2269         /* Assert that the object is not currently in any GPU domain. As it
2270          * wasn't in the GTT, there shouldn't be any way it could have been in
2271          * a GPU cache
2272          */
2273         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2274         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2275
2276         max_segment = swiotlb_max_segment();
2277         if (!max_segment)
2278                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2279
2280         st = kmalloc(sizeof(*st), GFP_KERNEL);
2281         if (st == NULL)
2282                 return ERR_PTR(-ENOMEM);
2283
2284 rebuild_st:
2285         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2286                 kfree(st);
2287                 return ERR_PTR(-ENOMEM);
2288         }
2289
2290         /* Get the list of pages out of our struct file.  They'll be pinned
2291          * at this point until we release them.
2292          *
2293          * Fail silently without starting the shrinker
2294          */
2295         mapping = obj->base.filp->f_mapping;
2296         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2297         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2298         sg = st->sgl;
2299         st->nents = 0;
2300         for (i = 0; i < page_count; i++) {
2301                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2302                 if (IS_ERR(page)) {
2303                         i915_gem_shrink(dev_priv,
2304                                         page_count,
2305                                         I915_SHRINK_BOUND |
2306                                         I915_SHRINK_UNBOUND |
2307                                         I915_SHRINK_PURGEABLE);
2308                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2309                 }
2310                 if (IS_ERR(page)) {
2311                         /* We've tried hard to allocate the memory by reaping
2312                          * our own buffer, now let the real VM do its job and
2313                          * go down in flames if truly OOM.
2314                          */
2315                         page = shmem_read_mapping_page(mapping, i);
2316                         if (IS_ERR(page)) {
2317                                 ret = PTR_ERR(page);
2318                                 goto err_sg;
2319                         }
2320                 }
2321                 if (!i ||
2322                     sg->length >= max_segment ||
2323                     page_to_pfn(page) != last_pfn + 1) {
2324                         if (i)
2325                                 sg = sg_next(sg);
2326                         st->nents++;
2327                         sg_set_page(sg, page, PAGE_SIZE, 0);
2328                 } else {
2329                         sg->length += PAGE_SIZE;
2330                 }
2331                 last_pfn = page_to_pfn(page);
2332
2333                 /* Check that the i965g/gm workaround works. */
2334                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2335         }
2336         if (sg) /* loop terminated early; short sg table */
2337                 sg_mark_end(sg);
2338
2339         /* Trim unused sg entries to avoid wasting memory. */
2340         i915_sg_trim(st);
2341
2342         ret = i915_gem_gtt_prepare_pages(obj, st);
2343         if (ret) {
2344                 /* DMA remapping failed? One possible cause is that
2345                  * it could not reserve enough large entries, asking
2346                  * for PAGE_SIZE chunks instead may be helpful.
2347                  */
2348                 if (max_segment > PAGE_SIZE) {
2349                         for_each_sgt_page(page, sgt_iter, st)
2350                                 put_page(page);
2351                         sg_free_table(st);
2352
2353                         max_segment = PAGE_SIZE;
2354                         goto rebuild_st;
2355                 } else {
2356                         dev_warn(&dev_priv->drm.pdev->dev,
2357                                  "Failed to DMA remap %lu pages\n",
2358                                  page_count);
2359                         goto err_pages;
2360                 }
2361         }
2362
2363         if (i915_gem_object_needs_bit17_swizzle(obj))
2364                 i915_gem_object_do_bit_17_swizzle(obj, st);
2365
2366         return st;
2367
2368 err_sg:
2369         sg_mark_end(sg);
2370 err_pages:
2371         for_each_sgt_page(page, sgt_iter, st)
2372                 put_page(page);
2373         sg_free_table(st);
2374         kfree(st);
2375
2376         /* shmemfs first checks if there is enough memory to allocate the page
2377          * and reports ENOSPC should there be insufficient, along with the usual
2378          * ENOMEM for a genuine allocation failure.
2379          *
2380          * We use ENOSPC in our driver to mean that we have run out of aperture
2381          * space and so want to translate the error from shmemfs back to our
2382          * usual understanding of ENOMEM.
2383          */
2384         if (ret == -ENOSPC)
2385                 ret = -ENOMEM;
2386
2387         return ERR_PTR(ret);
2388 }
2389
2390 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2391                                  struct sg_table *pages)
2392 {
2393         lockdep_assert_held(&obj->mm.lock);
2394
2395         obj->mm.get_page.sg_pos = pages->sgl;
2396         obj->mm.get_page.sg_idx = 0;
2397
2398         obj->mm.pages = pages;
2399
2400         if (i915_gem_object_is_tiled(obj) &&
2401             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2402                 GEM_BUG_ON(obj->mm.quirked);
2403                 __i915_gem_object_pin_pages(obj);
2404                 obj->mm.quirked = true;
2405         }
2406 }
2407
2408 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2409 {
2410         struct sg_table *pages;
2411
2412         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2413
2414         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2415                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2416                 return -EFAULT;
2417         }
2418
2419         pages = obj->ops->get_pages(obj);
2420         if (unlikely(IS_ERR(pages)))
2421                 return PTR_ERR(pages);
2422
2423         __i915_gem_object_set_pages(obj, pages);
2424         return 0;
2425 }
2426
2427 /* Ensure that the associated pages are gathered from the backing storage
2428  * and pinned into our object. i915_gem_object_pin_pages() may be called
2429  * multiple times before they are released by a single call to
2430  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2431  * either as a result of memory pressure (reaping pages under the shrinker)
2432  * or as the object is itself released.
2433  */
2434 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2435 {
2436         int err;
2437
2438         err = mutex_lock_interruptible(&obj->mm.lock);
2439         if (err)
2440                 return err;
2441
2442         if (unlikely(!obj->mm.pages)) {
2443                 err = ____i915_gem_object_get_pages(obj);
2444                 if (err)
2445                         goto unlock;
2446
2447                 smp_mb__before_atomic();
2448         }
2449         atomic_inc(&obj->mm.pages_pin_count);
2450
2451 unlock:
2452         mutex_unlock(&obj->mm.lock);
2453         return err;
2454 }
2455
2456 /* The 'mapping' part of i915_gem_object_pin_map() below */
2457 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2458                                  enum i915_map_type type)
2459 {
2460         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2461         struct sg_table *sgt = obj->mm.pages;
2462         struct sgt_iter sgt_iter;
2463         struct page *page;
2464         struct page *stack_pages[32];
2465         struct page **pages = stack_pages;
2466         unsigned long i = 0;
2467         pgprot_t pgprot;
2468         void *addr;
2469
2470         /* A single page can always be kmapped */
2471         if (n_pages == 1 && type == I915_MAP_WB)
2472                 return kmap(sg_page(sgt->sgl));
2473
2474         if (n_pages > ARRAY_SIZE(stack_pages)) {
2475                 /* Too big for stack -- allocate temporary array instead */
2476                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2477                 if (!pages)
2478                         return NULL;
2479         }
2480
2481         for_each_sgt_page(page, sgt_iter, sgt)
2482                 pages[i++] = page;
2483
2484         /* Check that we have the expected number of pages */
2485         GEM_BUG_ON(i != n_pages);
2486
2487         switch (type) {
2488         case I915_MAP_WB:
2489                 pgprot = PAGE_KERNEL;
2490                 break;
2491         case I915_MAP_WC:
2492                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2493                 break;
2494         }
2495         addr = vmap(pages, n_pages, 0, pgprot);
2496
2497         if (pages != stack_pages)
2498                 drm_free_large(pages);
2499
2500         return addr;
2501 }
2502
2503 /* get, pin, and map the pages of the object into kernel space */
2504 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2505                               enum i915_map_type type)
2506 {
2507         enum i915_map_type has_type;
2508         bool pinned;
2509         void *ptr;
2510         int ret;
2511
2512         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2513
2514         ret = mutex_lock_interruptible(&obj->mm.lock);
2515         if (ret)
2516                 return ERR_PTR(ret);
2517
2518         pinned = true;
2519         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2520                 if (unlikely(!obj->mm.pages)) {
2521                         ret = ____i915_gem_object_get_pages(obj);
2522                         if (ret)
2523                                 goto err_unlock;
2524
2525                         smp_mb__before_atomic();
2526                 }
2527                 atomic_inc(&obj->mm.pages_pin_count);
2528                 pinned = false;
2529         }
2530         GEM_BUG_ON(!obj->mm.pages);
2531
2532         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2533         if (ptr && has_type != type) {
2534                 if (pinned) {
2535                         ret = -EBUSY;
2536                         goto err_unpin;
2537                 }
2538
2539                 if (is_vmalloc_addr(ptr))
2540                         vunmap(ptr);
2541                 else
2542                         kunmap(kmap_to_page(ptr));
2543
2544                 ptr = obj->mm.mapping = NULL;
2545         }
2546
2547         if (!ptr) {
2548                 ptr = i915_gem_object_map(obj, type);
2549                 if (!ptr) {
2550                         ret = -ENOMEM;
2551                         goto err_unpin;
2552                 }
2553
2554                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2555         }
2556
2557 out_unlock:
2558         mutex_unlock(&obj->mm.lock);
2559         return ptr;
2560
2561 err_unpin:
2562         atomic_dec(&obj->mm.pages_pin_count);
2563 err_unlock:
2564         ptr = ERR_PTR(ret);
2565         goto out_unlock;
2566 }
2567
2568 static bool ban_context(const struct i915_gem_context *ctx)
2569 {
2570         return (i915_gem_context_is_bannable(ctx) &&
2571                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2572 }
2573
2574 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2575 {
2576         ctx->guilty_count++;
2577         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2578         if (ban_context(ctx))
2579                 i915_gem_context_set_banned(ctx);
2580
2581         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2582                          ctx->name, ctx->ban_score,
2583                          yesno(i915_gem_context_is_banned(ctx)));
2584
2585         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2586                 return;
2587
2588         ctx->file_priv->context_bans++;
2589         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2590                          ctx->name, ctx->file_priv->context_bans);
2591 }
2592
2593 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2594 {
2595         ctx->active_count++;
2596 }
2597
2598 struct drm_i915_gem_request *
2599 i915_gem_find_active_request(struct intel_engine_cs *engine)
2600 {
2601         struct drm_i915_gem_request *request;
2602
2603         /* We are called by the error capture and reset at a random
2604          * point in time. In particular, note that neither is crucially
2605          * ordered with an interrupt. After a hang, the GPU is dead and we
2606          * assume that no more writes can happen (we waited long enough for
2607          * all writes that were in transaction to be flushed) - adding an
2608          * extra delay for a recent interrupt is pointless. Hence, we do
2609          * not need an engine->irq_seqno_barrier() before the seqno reads.
2610          */
2611         list_for_each_entry(request, &engine->timeline->requests, link) {
2612                 if (__i915_gem_request_completed(request))
2613                         continue;
2614
2615                 GEM_BUG_ON(request->engine != engine);
2616                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2617                                     &request->fence.flags));
2618                 return request;
2619         }
2620
2621         return NULL;
2622 }
2623
2624 static bool engine_stalled(struct intel_engine_cs *engine)
2625 {
2626         if (!engine->hangcheck.stalled)
2627                 return false;
2628
2629         /* Check for possible seqno movement after hang declaration */
2630         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2631                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2632                 return false;
2633         }
2634
2635         return true;
2636 }
2637
2638 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2639 {
2640         struct intel_engine_cs *engine;
2641         enum intel_engine_id id;
2642         int err = 0;
2643
2644         /* Ensure irq handler finishes, and not run again. */
2645         for_each_engine(engine, dev_priv, id) {
2646                 struct drm_i915_gem_request *request;
2647
2648                 /* Prevent the signaler thread from updating the request
2649                  * state (by calling dma_fence_signal) as we are processing
2650                  * the reset. The write from the GPU of the seqno is
2651                  * asynchronous and the signaler thread may see a different
2652                  * value to us and declare the request complete, even though
2653                  * the reset routine have picked that request as the active
2654                  * (incomplete) request. This conflict is not handled
2655                  * gracefully!
2656                  */
2657                 kthread_park(engine->breadcrumbs.signaler);
2658
2659                 /* Prevent request submission to the hardware until we have
2660                  * completed the reset in i915_gem_reset_finish(). If a request
2661                  * is completed by one engine, it may then queue a request
2662                  * to a second via its engine->irq_tasklet *just* as we are
2663                  * calling engine->init_hw() and also writing the ELSP.
2664                  * Turning off the engine->irq_tasklet until the reset is over
2665                  * prevents the race.
2666                  */
2667                 tasklet_kill(&engine->irq_tasklet);
2668                 tasklet_disable(&engine->irq_tasklet);
2669
2670                 if (engine->irq_seqno_barrier)
2671                         engine->irq_seqno_barrier(engine);
2672
2673                 if (engine_stalled(engine)) {
2674                         request = i915_gem_find_active_request(engine);
2675                         if (request && request->fence.error == -EIO)
2676                                 err = -EIO; /* Previous reset failed! */
2677                 }
2678         }
2679
2680         i915_gem_revoke_fences(dev_priv);
2681
2682         return err;
2683 }
2684
2685 static void skip_request(struct drm_i915_gem_request *request)
2686 {
2687         void *vaddr = request->ring->vaddr;
2688         u32 head;
2689
2690         /* As this request likely depends on state from the lost
2691          * context, clear out all the user operations leaving the
2692          * breadcrumb at the end (so we get the fence notifications).
2693          */
2694         head = request->head;
2695         if (request->postfix < head) {
2696                 memset(vaddr + head, 0, request->ring->size - head);
2697                 head = 0;
2698         }
2699         memset(vaddr + head, 0, request->postfix - head);
2700
2701         dma_fence_set_error(&request->fence, -EIO);
2702 }
2703
2704 static void engine_skip_context(struct drm_i915_gem_request *request)
2705 {
2706         struct intel_engine_cs *engine = request->engine;
2707         struct i915_gem_context *hung_ctx = request->ctx;
2708         struct intel_timeline *timeline;
2709         unsigned long flags;
2710
2711         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2712
2713         spin_lock_irqsave(&engine->timeline->lock, flags);
2714         spin_lock(&timeline->lock);
2715
2716         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2717                 if (request->ctx == hung_ctx)
2718                         skip_request(request);
2719
2720         list_for_each_entry(request, &timeline->requests, link)
2721                 skip_request(request);
2722
2723         spin_unlock(&timeline->lock);
2724         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2725 }
2726
2727 /* Returns true if the request was guilty of hang */
2728 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2729 {
2730         /* Read once and return the resolution */
2731         const bool guilty = engine_stalled(request->engine);
2732
2733         /* The guilty request will get skipped on a hung engine.
2734          *
2735          * Users of client default contexts do not rely on logical
2736          * state preserved between batches so it is safe to execute
2737          * queued requests following the hang. Non default contexts
2738          * rely on preserved state, so skipping a batch loses the
2739          * evolution of the state and it needs to be considered corrupted.
2740          * Executing more queued batches on top of corrupted state is
2741          * risky. But we take the risk by trying to advance through
2742          * the queued requests in order to make the client behaviour
2743          * more predictable around resets, by not throwing away random
2744          * amount of batches it has prepared for execution. Sophisticated
2745          * clients can use gem_reset_stats_ioctl and dma fence status
2746          * (exported via sync_file info ioctl on explicit fences) to observe
2747          * when it loses the context state and should rebuild accordingly.
2748          *
2749          * The context ban, and ultimately the client ban, mechanism are safety
2750          * valves if client submission ends up resulting in nothing more than
2751          * subsequent hangs.
2752          */
2753
2754         if (guilty) {
2755                 i915_gem_context_mark_guilty(request->ctx);
2756                 skip_request(request);
2757         } else {
2758                 i915_gem_context_mark_innocent(request->ctx);
2759                 dma_fence_set_error(&request->fence, -EAGAIN);
2760         }
2761
2762         return guilty;
2763 }
2764
2765 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2766 {
2767         struct drm_i915_gem_request *request;
2768
2769         request = i915_gem_find_active_request(engine);
2770         if (request && i915_gem_reset_request(request)) {
2771                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2772                                  engine->name, request->global_seqno);
2773
2774                 /* If this context is now banned, skip all pending requests. */
2775                 if (i915_gem_context_is_banned(request->ctx))
2776                         engine_skip_context(request);
2777         }
2778
2779         /* Setup the CS to resume from the breadcrumb of the hung request */
2780         engine->reset_hw(engine, request);
2781 }
2782
2783 void i915_gem_reset(struct drm_i915_private *dev_priv)
2784 {
2785         struct intel_engine_cs *engine;
2786         enum intel_engine_id id;
2787
2788         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2789
2790         i915_gem_retire_requests(dev_priv);
2791
2792         for_each_engine(engine, dev_priv, id) {
2793                 struct i915_gem_context *ctx;
2794
2795                 i915_gem_reset_engine(engine);
2796                 ctx = fetch_and_zero(&engine->last_retired_context);
2797                 if (ctx)
2798                         engine->context_unpin(engine, ctx);
2799         }
2800
2801         i915_gem_restore_fences(dev_priv);
2802
2803         if (dev_priv->gt.awake) {
2804                 intel_sanitize_gt_powersave(dev_priv);
2805                 intel_enable_gt_powersave(dev_priv);
2806                 if (INTEL_GEN(dev_priv) >= 6)
2807                         gen6_rps_busy(dev_priv);
2808         }
2809 }
2810
2811 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2812 {
2813         struct intel_engine_cs *engine;
2814         enum intel_engine_id id;
2815
2816         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2817
2818         for_each_engine(engine, dev_priv, id) {
2819                 tasklet_enable(&engine->irq_tasklet);
2820                 kthread_unpark(engine->breadcrumbs.signaler);
2821         }
2822 }
2823
2824 static void nop_submit_request(struct drm_i915_gem_request *request)
2825 {
2826         dma_fence_set_error(&request->fence, -EIO);
2827         i915_gem_request_submit(request);
2828         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2829 }
2830
2831 static void engine_set_wedged(struct intel_engine_cs *engine)
2832 {
2833         struct drm_i915_gem_request *request;
2834         unsigned long flags;
2835
2836         /* We need to be sure that no thread is running the old callback as
2837          * we install the nop handler (otherwise we would submit a request
2838          * to hardware that will never complete). In order to prevent this
2839          * race, we wait until the machine is idle before making the swap
2840          * (using stop_machine()).
2841          */
2842         engine->submit_request = nop_submit_request;
2843
2844         /* Mark all executing requests as skipped */
2845         spin_lock_irqsave(&engine->timeline->lock, flags);
2846         list_for_each_entry(request, &engine->timeline->requests, link)
2847                 dma_fence_set_error(&request->fence, -EIO);
2848         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2849
2850         /* Mark all pending requests as complete so that any concurrent
2851          * (lockless) lookup doesn't try and wait upon the request as we
2852          * reset it.
2853          */
2854         intel_engine_init_global_seqno(engine,
2855                                        intel_engine_last_submit(engine));
2856
2857         /*
2858          * Clear the execlists queue up before freeing the requests, as those
2859          * are the ones that keep the context and ringbuffer backing objects
2860          * pinned in place.
2861          */
2862
2863         if (i915.enable_execlists) {
2864                 unsigned long flags;
2865
2866                 spin_lock_irqsave(&engine->timeline->lock, flags);
2867
2868                 i915_gem_request_put(engine->execlist_port[0].request);
2869                 i915_gem_request_put(engine->execlist_port[1].request);
2870                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2871                 engine->execlist_queue = RB_ROOT;
2872                 engine->execlist_first = NULL;
2873
2874                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2875         }
2876 }
2877
2878 static int __i915_gem_set_wedged_BKL(void *data)
2879 {
2880         struct drm_i915_private *i915 = data;
2881         struct intel_engine_cs *engine;
2882         enum intel_engine_id id;
2883
2884         for_each_engine(engine, i915, id)
2885                 engine_set_wedged(engine);
2886
2887         return 0;
2888 }
2889
2890 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2891 {
2892         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2893         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2894
2895         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2896
2897         i915_gem_context_lost(dev_priv);
2898         i915_gem_retire_requests(dev_priv);
2899
2900         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2901 }
2902
2903 static void
2904 i915_gem_retire_work_handler(struct work_struct *work)
2905 {
2906         struct drm_i915_private *dev_priv =
2907                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2908         struct drm_device *dev = &dev_priv->drm;
2909
2910         /* Come back later if the device is busy... */
2911         if (mutex_trylock(&dev->struct_mutex)) {
2912                 i915_gem_retire_requests(dev_priv);
2913                 mutex_unlock(&dev->struct_mutex);
2914         }
2915
2916         /* Keep the retire handler running until we are finally idle.
2917          * We do not need to do this test under locking as in the worst-case
2918          * we queue the retire worker once too often.
2919          */
2920         if (READ_ONCE(dev_priv->gt.awake)) {
2921                 i915_queue_hangcheck(dev_priv);
2922                 queue_delayed_work(dev_priv->wq,
2923                                    &dev_priv->gt.retire_work,
2924                                    round_jiffies_up_relative(HZ));
2925         }
2926 }
2927
2928 static void
2929 i915_gem_idle_work_handler(struct work_struct *work)
2930 {
2931         struct drm_i915_private *dev_priv =
2932                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2933         struct drm_device *dev = &dev_priv->drm;
2934         struct intel_engine_cs *engine;
2935         enum intel_engine_id id;
2936         bool rearm_hangcheck;
2937
2938         if (!READ_ONCE(dev_priv->gt.awake))
2939                 return;
2940
2941         /*
2942          * Wait for last execlists context complete, but bail out in case a
2943          * new request is submitted.
2944          */
2945         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2946                  intel_execlists_idle(dev_priv), 10);
2947
2948         if (READ_ONCE(dev_priv->gt.active_requests))
2949                 return;
2950
2951         rearm_hangcheck =
2952                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2953
2954         if (!mutex_trylock(&dev->struct_mutex)) {
2955                 /* Currently busy, come back later */
2956                 mod_delayed_work(dev_priv->wq,
2957                                  &dev_priv->gt.idle_work,
2958                                  msecs_to_jiffies(50));
2959                 goto out_rearm;
2960         }
2961
2962         /*
2963          * New request retired after this work handler started, extend active
2964          * period until next instance of the work.
2965          */
2966         if (work_pending(work))
2967                 goto out_unlock;
2968
2969         if (dev_priv->gt.active_requests)
2970                 goto out_unlock;
2971
2972         if (wait_for(intel_execlists_idle(dev_priv), 10))
2973                 DRM_ERROR("Timeout waiting for engines to idle\n");
2974
2975         for_each_engine(engine, dev_priv, id)
2976                 i915_gem_batch_pool_fini(&engine->batch_pool);
2977
2978         GEM_BUG_ON(!dev_priv->gt.awake);
2979         dev_priv->gt.awake = false;
2980         rearm_hangcheck = false;
2981
2982         if (INTEL_GEN(dev_priv) >= 6)
2983                 gen6_rps_idle(dev_priv);
2984         intel_runtime_pm_put(dev_priv);
2985 out_unlock:
2986         mutex_unlock(&dev->struct_mutex);
2987
2988 out_rearm:
2989         if (rearm_hangcheck) {
2990                 GEM_BUG_ON(!dev_priv->gt.awake);
2991                 i915_queue_hangcheck(dev_priv);
2992         }
2993 }
2994
2995 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2996 {
2997         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2998         struct drm_i915_file_private *fpriv = file->driver_priv;
2999         struct i915_vma *vma, *vn;
3000
3001         mutex_lock(&obj->base.dev->struct_mutex);
3002         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3003                 if (vma->vm->file == fpriv)
3004                         i915_vma_close(vma);
3005
3006         if (i915_gem_object_is_active(obj) &&
3007             !i915_gem_object_has_active_reference(obj)) {
3008                 i915_gem_object_set_active_reference(obj);
3009                 i915_gem_object_get(obj);
3010         }
3011         mutex_unlock(&obj->base.dev->struct_mutex);
3012 }
3013
3014 static unsigned long to_wait_timeout(s64 timeout_ns)
3015 {
3016         if (timeout_ns < 0)
3017                 return MAX_SCHEDULE_TIMEOUT;
3018
3019         if (timeout_ns == 0)
3020                 return 0;
3021
3022         return nsecs_to_jiffies_timeout(timeout_ns);
3023 }
3024
3025 /**
3026  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3027  * @dev: drm device pointer
3028  * @data: ioctl data blob
3029  * @file: drm file pointer
3030  *
3031  * Returns 0 if successful, else an error is returned with the remaining time in
3032  * the timeout parameter.
3033  *  -ETIME: object is still busy after timeout
3034  *  -ERESTARTSYS: signal interrupted the wait
3035  *  -ENONENT: object doesn't exist
3036  * Also possible, but rare:
3037  *  -EAGAIN: GPU wedged
3038  *  -ENOMEM: damn
3039  *  -ENODEV: Internal IRQ fail
3040  *  -E?: The add request failed
3041  *
3042  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3043  * non-zero timeout parameter the wait ioctl will wait for the given number of
3044  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3045  * without holding struct_mutex the object may become re-busied before this
3046  * function completes. A similar but shorter * race condition exists in the busy
3047  * ioctl
3048  */
3049 int
3050 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3051 {
3052         struct drm_i915_gem_wait *args = data;
3053         struct drm_i915_gem_object *obj;
3054         ktime_t start;
3055         long ret;
3056
3057         if (args->flags != 0)
3058                 return -EINVAL;
3059
3060         obj = i915_gem_object_lookup(file, args->bo_handle);
3061         if (!obj)
3062                 return -ENOENT;
3063
3064         start = ktime_get();
3065
3066         ret = i915_gem_object_wait(obj,
3067                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3068                                    to_wait_timeout(args->timeout_ns),
3069                                    to_rps_client(file));
3070
3071         if (args->timeout_ns > 0) {
3072                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3073                 if (args->timeout_ns < 0)
3074                         args->timeout_ns = 0;
3075         }
3076
3077         i915_gem_object_put(obj);
3078         return ret;
3079 }
3080
3081 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3082 {
3083         int ret, i;
3084
3085         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3086                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3087                 if (ret)
3088                         return ret;
3089         }
3090
3091         return 0;
3092 }
3093
3094 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3095 {
3096         int ret;
3097
3098         if (flags & I915_WAIT_LOCKED) {
3099                 struct i915_gem_timeline *tl;
3100
3101                 lockdep_assert_held(&i915->drm.struct_mutex);
3102
3103                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3104                         ret = wait_for_timeline(tl, flags);
3105                         if (ret)
3106                                 return ret;
3107                 }
3108         } else {
3109                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3110                 if (ret)
3111                         return ret;
3112         }
3113
3114         return 0;
3115 }
3116
3117 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3118                              bool force)
3119 {
3120         /* If we don't have a page list set up, then we're not pinned
3121          * to GPU, and we can ignore the cache flush because it'll happen
3122          * again at bind time.
3123          */
3124         if (!obj->mm.pages)
3125                 return;
3126
3127         /*
3128          * Stolen memory is always coherent with the GPU as it is explicitly
3129          * marked as wc by the system, or the system is cache-coherent.
3130          */
3131         if (obj->stolen || obj->phys_handle)
3132                 return;
3133
3134         /* If the GPU is snooping the contents of the CPU cache,
3135          * we do not need to manually clear the CPU cache lines.  However,
3136          * the caches are only snooped when the render cache is
3137          * flushed/invalidated.  As we always have to emit invalidations
3138          * and flushes when moving into and out of the RENDER domain, correct
3139          * snooping behaviour occurs naturally as the result of our domain
3140          * tracking.
3141          */
3142         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3143                 obj->cache_dirty = true;
3144                 return;
3145         }
3146
3147         trace_i915_gem_object_clflush(obj);
3148         drm_clflush_sg(obj->mm.pages);
3149         obj->cache_dirty = false;
3150 }
3151
3152 /** Flushes the GTT write domain for the object if it's dirty. */
3153 static void
3154 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3155 {
3156         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3157
3158         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3159                 return;
3160
3161         /* No actual flushing is required for the GTT write domain.  Writes
3162          * to it "immediately" go to main memory as far as we know, so there's
3163          * no chipset flush.  It also doesn't land in render cache.
3164          *
3165          * However, we do have to enforce the order so that all writes through
3166          * the GTT land before any writes to the device, such as updates to
3167          * the GATT itself.
3168          *
3169          * We also have to wait a bit for the writes to land from the GTT.
3170          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3171          * timing. This issue has only been observed when switching quickly
3172          * between GTT writes and CPU reads from inside the kernel on recent hw,
3173          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3174          * system agents we cannot reproduce this behaviour).
3175          */
3176         wmb();
3177         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3178                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3179
3180         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3181
3182         obj->base.write_domain = 0;
3183         trace_i915_gem_object_change_domain(obj,
3184                                             obj->base.read_domains,
3185                                             I915_GEM_DOMAIN_GTT);
3186 }
3187
3188 /** Flushes the CPU write domain for the object if it's dirty. */
3189 static void
3190 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3191 {
3192         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3193                 return;
3194
3195         i915_gem_clflush_object(obj, obj->pin_display);
3196         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3197
3198         obj->base.write_domain = 0;
3199         trace_i915_gem_object_change_domain(obj,
3200                                             obj->base.read_domains,
3201                                             I915_GEM_DOMAIN_CPU);
3202 }
3203
3204 /**
3205  * Moves a single object to the GTT read, and possibly write domain.
3206  * @obj: object to act on
3207  * @write: ask for write access or read only
3208  *
3209  * This function returns when the move is complete, including waiting on
3210  * flushes to occur.
3211  */
3212 int
3213 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3214 {
3215         uint32_t old_write_domain, old_read_domains;
3216         int ret;
3217
3218         lockdep_assert_held(&obj->base.dev->struct_mutex);
3219
3220         ret = i915_gem_object_wait(obj,
3221                                    I915_WAIT_INTERRUPTIBLE |
3222                                    I915_WAIT_LOCKED |
3223                                    (write ? I915_WAIT_ALL : 0),
3224                                    MAX_SCHEDULE_TIMEOUT,
3225                                    NULL);
3226         if (ret)
3227                 return ret;
3228
3229         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3230                 return 0;
3231
3232         /* Flush and acquire obj->pages so that we are coherent through
3233          * direct access in memory with previous cached writes through
3234          * shmemfs and that our cache domain tracking remains valid.
3235          * For example, if the obj->filp was moved to swap without us
3236          * being notified and releasing the pages, we would mistakenly
3237          * continue to assume that the obj remained out of the CPU cached
3238          * domain.
3239          */
3240         ret = i915_gem_object_pin_pages(obj);
3241         if (ret)
3242                 return ret;
3243
3244         i915_gem_object_flush_cpu_write_domain(obj);
3245
3246         /* Serialise direct access to this object with the barriers for
3247          * coherent writes from the GPU, by effectively invalidating the
3248          * GTT domain upon first access.
3249          */
3250         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3251                 mb();
3252
3253         old_write_domain = obj->base.write_domain;
3254         old_read_domains = obj->base.read_domains;
3255
3256         /* It should now be out of any other write domains, and we can update
3257          * the domain values for our changes.
3258          */
3259         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3260         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3261         if (write) {
3262                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3263                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3264                 obj->mm.dirty = true;
3265         }
3266
3267         trace_i915_gem_object_change_domain(obj,
3268                                             old_read_domains,
3269                                             old_write_domain);
3270
3271         i915_gem_object_unpin_pages(obj);
3272         return 0;
3273 }
3274
3275 /**
3276  * Changes the cache-level of an object across all VMA.
3277  * @obj: object to act on
3278  * @cache_level: new cache level to set for the object
3279  *
3280  * After this function returns, the object will be in the new cache-level
3281  * across all GTT and the contents of the backing storage will be coherent,
3282  * with respect to the new cache-level. In order to keep the backing storage
3283  * coherent for all users, we only allow a single cache level to be set
3284  * globally on the object and prevent it from being changed whilst the
3285  * hardware is reading from the object. That is if the object is currently
3286  * on the scanout it will be set to uncached (or equivalent display
3287  * cache coherency) and all non-MOCS GPU access will also be uncached so
3288  * that all direct access to the scanout remains coherent.
3289  */
3290 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3291                                     enum i915_cache_level cache_level)
3292 {
3293         struct i915_vma *vma;
3294         int ret;
3295
3296         lockdep_assert_held(&obj->base.dev->struct_mutex);
3297
3298         if (obj->cache_level == cache_level)
3299                 return 0;
3300
3301         /* Inspect the list of currently bound VMA and unbind any that would
3302          * be invalid given the new cache-level. This is principally to
3303          * catch the issue of the CS prefetch crossing page boundaries and
3304          * reading an invalid PTE on older architectures.
3305          */
3306 restart:
3307         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3308                 if (!drm_mm_node_allocated(&vma->node))
3309                         continue;
3310
3311                 if (i915_vma_is_pinned(vma)) {
3312                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3313                         return -EBUSY;
3314                 }
3315
3316                 if (i915_gem_valid_gtt_space(vma, cache_level))
3317                         continue;
3318
3319                 ret = i915_vma_unbind(vma);
3320                 if (ret)
3321                         return ret;
3322
3323                 /* As unbinding may affect other elements in the
3324                  * obj->vma_list (due to side-effects from retiring
3325                  * an active vma), play safe and restart the iterator.
3326                  */
3327                 goto restart;
3328         }
3329
3330         /* We can reuse the existing drm_mm nodes but need to change the
3331          * cache-level on the PTE. We could simply unbind them all and
3332          * rebind with the correct cache-level on next use. However since
3333          * we already have a valid slot, dma mapping, pages etc, we may as
3334          * rewrite the PTE in the belief that doing so tramples upon less
3335          * state and so involves less work.
3336          */
3337         if (obj->bind_count) {
3338                 /* Before we change the PTE, the GPU must not be accessing it.
3339                  * If we wait upon the object, we know that all the bound
3340                  * VMA are no longer active.
3341                  */
3342                 ret = i915_gem_object_wait(obj,
3343                                            I915_WAIT_INTERRUPTIBLE |
3344                                            I915_WAIT_LOCKED |
3345                                            I915_WAIT_ALL,
3346                                            MAX_SCHEDULE_TIMEOUT,
3347                                            NULL);
3348                 if (ret)
3349                         return ret;
3350
3351                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3352                     cache_level != I915_CACHE_NONE) {
3353                         /* Access to snoopable pages through the GTT is
3354                          * incoherent and on some machines causes a hard
3355                          * lockup. Relinquish the CPU mmaping to force
3356                          * userspace to refault in the pages and we can
3357                          * then double check if the GTT mapping is still
3358                          * valid for that pointer access.
3359                          */
3360                         i915_gem_release_mmap(obj);
3361
3362                         /* As we no longer need a fence for GTT access,
3363                          * we can relinquish it now (and so prevent having
3364                          * to steal a fence from someone else on the next
3365                          * fence request). Note GPU activity would have
3366                          * dropped the fence as all snoopable access is
3367                          * supposed to be linear.
3368                          */
3369                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3370                                 ret = i915_vma_put_fence(vma);
3371                                 if (ret)
3372                                         return ret;
3373                         }
3374                 } else {
3375                         /* We either have incoherent backing store and
3376                          * so no GTT access or the architecture is fully
3377                          * coherent. In such cases, existing GTT mmaps
3378                          * ignore the cache bit in the PTE and we can
3379                          * rewrite it without confusing the GPU or having
3380                          * to force userspace to fault back in its mmaps.
3381                          */
3382                 }
3383
3384                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3385                         if (!drm_mm_node_allocated(&vma->node))
3386                                 continue;
3387
3388                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3389                         if (ret)
3390                                 return ret;
3391                 }
3392         }
3393
3394         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3395             cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3396                 obj->cache_dirty = true;
3397
3398         list_for_each_entry(vma, &obj->vma_list, obj_link)
3399                 vma->node.color = cache_level;
3400         obj->cache_level = cache_level;
3401
3402         return 0;
3403 }
3404
3405 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3406                                struct drm_file *file)
3407 {
3408         struct drm_i915_gem_caching *args = data;
3409         struct drm_i915_gem_object *obj;
3410         int err = 0;
3411
3412         rcu_read_lock();
3413         obj = i915_gem_object_lookup_rcu(file, args->handle);
3414         if (!obj) {
3415                 err = -ENOENT;
3416                 goto out;
3417         }
3418
3419         switch (obj->cache_level) {
3420         case I915_CACHE_LLC:
3421         case I915_CACHE_L3_LLC:
3422                 args->caching = I915_CACHING_CACHED;
3423                 break;
3424
3425         case I915_CACHE_WT:
3426                 args->caching = I915_CACHING_DISPLAY;
3427                 break;
3428
3429         default:
3430                 args->caching = I915_CACHING_NONE;
3431                 break;
3432         }
3433 out:
3434         rcu_read_unlock();
3435         return err;
3436 }
3437
3438 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3439                                struct drm_file *file)
3440 {
3441         struct drm_i915_private *i915 = to_i915(dev);
3442         struct drm_i915_gem_caching *args = data;
3443         struct drm_i915_gem_object *obj;
3444         enum i915_cache_level level;
3445         int ret = 0;
3446
3447         switch (args->caching) {
3448         case I915_CACHING_NONE:
3449                 level = I915_CACHE_NONE;
3450                 break;
3451         case I915_CACHING_CACHED:
3452                 /*
3453                  * Due to a HW issue on BXT A stepping, GPU stores via a
3454                  * snooped mapping may leave stale data in a corresponding CPU
3455                  * cacheline, whereas normally such cachelines would get
3456                  * invalidated.
3457                  */
3458                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3459                         return -ENODEV;
3460
3461                 level = I915_CACHE_LLC;
3462                 break;
3463         case I915_CACHING_DISPLAY:
3464                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3465                 break;
3466         default:
3467                 return -EINVAL;
3468         }
3469
3470         obj = i915_gem_object_lookup(file, args->handle);
3471         if (!obj)
3472                 return -ENOENT;
3473
3474         if (obj->cache_level == level)
3475                 goto out;
3476
3477         ret = i915_gem_object_wait(obj,
3478                                    I915_WAIT_INTERRUPTIBLE,
3479                                    MAX_SCHEDULE_TIMEOUT,
3480                                    to_rps_client(file));
3481         if (ret)
3482                 goto out;
3483
3484         ret = i915_mutex_lock_interruptible(dev);
3485         if (ret)
3486                 goto out;
3487
3488         ret = i915_gem_object_set_cache_level(obj, level);
3489         mutex_unlock(&dev->struct_mutex);
3490
3491 out:
3492         i915_gem_object_put(obj);
3493         return ret;
3494 }
3495
3496 /*
3497  * Prepare buffer for display plane (scanout, cursors, etc).
3498  * Can be called from an uninterruptible phase (modesetting) and allows
3499  * any flushes to be pipelined (for pageflips).
3500  */
3501 struct i915_vma *
3502 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3503                                      u32 alignment,
3504                                      const struct i915_ggtt_view *view)
3505 {
3506         struct i915_vma *vma;
3507         u32 old_read_domains, old_write_domain;
3508         int ret;
3509
3510         lockdep_assert_held(&obj->base.dev->struct_mutex);
3511
3512         /* Mark the pin_display early so that we account for the
3513          * display coherency whilst setting up the cache domains.
3514          */
3515         obj->pin_display++;
3516
3517         /* The display engine is not coherent with the LLC cache on gen6.  As
3518          * a result, we make sure that the pinning that is about to occur is
3519          * done with uncached PTEs. This is lowest common denominator for all
3520          * chipsets.
3521          *
3522          * However for gen6+, we could do better by using the GFDT bit instead
3523          * of uncaching, which would allow us to flush all the LLC-cached data
3524          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3525          */
3526         ret = i915_gem_object_set_cache_level(obj,
3527                                               HAS_WT(to_i915(obj->base.dev)) ?
3528                                               I915_CACHE_WT : I915_CACHE_NONE);
3529         if (ret) {
3530                 vma = ERR_PTR(ret);
3531                 goto err_unpin_display;
3532         }
3533
3534         /* As the user may map the buffer once pinned in the display plane
3535          * (e.g. libkms for the bootup splash), we have to ensure that we
3536          * always use map_and_fenceable for all scanout buffers. However,
3537          * it may simply be too big to fit into mappable, in which case
3538          * put it anyway and hope that userspace can cope (but always first
3539          * try to preserve the existing ABI).
3540          */
3541         vma = ERR_PTR(-ENOSPC);
3542         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3543                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3544                                                PIN_MAPPABLE | PIN_NONBLOCK);
3545         if (IS_ERR(vma)) {
3546                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3547                 unsigned int flags;
3548
3549                 /* Valleyview is definitely limited to scanning out the first
3550                  * 512MiB. Lets presume this behaviour was inherited from the
3551                  * g4x display engine and that all earlier gen are similarly
3552                  * limited. Testing suggests that it is a little more
3553                  * complicated than this. For example, Cherryview appears quite
3554                  * happy to scanout from anywhere within its global aperture.
3555                  */
3556                 flags = 0;
3557                 if (HAS_GMCH_DISPLAY(i915))
3558                         flags = PIN_MAPPABLE;
3559                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3560         }
3561         if (IS_ERR(vma))
3562                 goto err_unpin_display;
3563
3564         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3565
3566         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3567         if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3568                 i915_gem_clflush_object(obj, true);
3569                 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3570         }
3571
3572         old_write_domain = obj->base.write_domain;
3573         old_read_domains = obj->base.read_domains;
3574
3575         /* It should now be out of any other write domains, and we can update
3576          * the domain values for our changes.
3577          */
3578         obj->base.write_domain = 0;
3579         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3580
3581         trace_i915_gem_object_change_domain(obj,
3582                                             old_read_domains,
3583                                             old_write_domain);
3584
3585         return vma;
3586
3587 err_unpin_display:
3588         obj->pin_display--;
3589         return vma;
3590 }
3591
3592 void
3593 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3594 {
3595         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3596
3597         if (WARN_ON(vma->obj->pin_display == 0))
3598                 return;
3599
3600         if (--vma->obj->pin_display == 0)
3601                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3602
3603         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3604         i915_gem_object_bump_inactive_ggtt(vma->obj);
3605
3606         i915_vma_unpin(vma);
3607 }
3608
3609 /**
3610  * Moves a single object to the CPU read, and possibly write domain.
3611  * @obj: object to act on
3612  * @write: requesting write or read-only access
3613  *
3614  * This function returns when the move is complete, including waiting on
3615  * flushes to occur.
3616  */
3617 int
3618 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3619 {
3620         uint32_t old_write_domain, old_read_domains;
3621         int ret;
3622
3623         lockdep_assert_held(&obj->base.dev->struct_mutex);
3624
3625         ret = i915_gem_object_wait(obj,
3626                                    I915_WAIT_INTERRUPTIBLE |
3627                                    I915_WAIT_LOCKED |
3628                                    (write ? I915_WAIT_ALL : 0),
3629                                    MAX_SCHEDULE_TIMEOUT,
3630                                    NULL);
3631         if (ret)
3632                 return ret;
3633
3634         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3635                 return 0;
3636
3637         i915_gem_object_flush_gtt_write_domain(obj);
3638
3639         old_write_domain = obj->base.write_domain;
3640         old_read_domains = obj->base.read_domains;
3641
3642         /* Flush the CPU cache if it's still invalid. */
3643         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3644                 i915_gem_clflush_object(obj, false);
3645
3646                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3647         }
3648
3649         /* It should now be out of any other write domains, and we can update
3650          * the domain values for our changes.
3651          */
3652         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3653
3654         /* If we're writing through the CPU, then the GPU read domains will
3655          * need to be invalidated at next use.
3656          */
3657         if (write) {
3658                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3659                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3660         }
3661
3662         trace_i915_gem_object_change_domain(obj,
3663                                             old_read_domains,
3664                                             old_write_domain);
3665
3666         return 0;
3667 }
3668
3669 /* Throttle our rendering by waiting until the ring has completed our requests
3670  * emitted over 20 msec ago.
3671  *
3672  * Note that if we were to use the current jiffies each time around the loop,
3673  * we wouldn't escape the function with any frames outstanding if the time to
3674  * render a frame was over 20ms.
3675  *
3676  * This should get us reasonable parallelism between CPU and GPU but also
3677  * relatively low latency when blocking on a particular request to finish.
3678  */
3679 static int
3680 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3681 {
3682         struct drm_i915_private *dev_priv = to_i915(dev);
3683         struct drm_i915_file_private *file_priv = file->driver_priv;
3684         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3685         struct drm_i915_gem_request *request, *target = NULL;
3686         long ret;
3687
3688         /* ABI: return -EIO if already wedged */
3689         if (i915_terminally_wedged(&dev_priv->gpu_error))
3690                 return -EIO;
3691
3692         spin_lock(&file_priv->mm.lock);
3693         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3694                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3695                         break;
3696
3697                 /*
3698                  * Note that the request might not have been submitted yet.
3699                  * In which case emitted_jiffies will be zero.
3700                  */
3701                 if (!request->emitted_jiffies)
3702                         continue;
3703
3704                 target = request;
3705         }
3706         if (target)
3707                 i915_gem_request_get(target);
3708         spin_unlock(&file_priv->mm.lock);
3709
3710         if (target == NULL)
3711                 return 0;
3712
3713         ret = i915_wait_request(target,
3714                                 I915_WAIT_INTERRUPTIBLE,
3715                                 MAX_SCHEDULE_TIMEOUT);
3716         i915_gem_request_put(target);
3717
3718         return ret < 0 ? ret : 0;
3719 }
3720
3721 struct i915_vma *
3722 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3723                          const struct i915_ggtt_view *view,
3724                          u64 size,
3725                          u64 alignment,
3726                          u64 flags)
3727 {
3728         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3729         struct i915_address_space *vm = &dev_priv->ggtt.base;
3730         struct i915_vma *vma;
3731         int ret;
3732
3733         lockdep_assert_held(&obj->base.dev->struct_mutex);
3734
3735         vma = i915_vma_instance(obj, vm, view);
3736         if (unlikely(IS_ERR(vma)))
3737                 return vma;
3738
3739         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3740                 if (flags & PIN_NONBLOCK &&
3741                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3742                         return ERR_PTR(-ENOSPC);
3743
3744                 if (flags & PIN_MAPPABLE) {
3745                         /* If the required space is larger than the available
3746                          * aperture, we will not able to find a slot for the
3747                          * object and unbinding the object now will be in
3748                          * vain. Worse, doing so may cause us to ping-pong
3749                          * the object in and out of the Global GTT and
3750                          * waste a lot of cycles under the mutex.
3751                          */
3752                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3753                                 return ERR_PTR(-E2BIG);
3754
3755                         /* If NONBLOCK is set the caller is optimistically
3756                          * trying to cache the full object within the mappable
3757                          * aperture, and *must* have a fallback in place for
3758                          * situations where we cannot bind the object. We
3759                          * can be a little more lax here and use the fallback
3760                          * more often to avoid costly migrations of ourselves
3761                          * and other objects within the aperture.
3762                          *
3763                          * Half-the-aperture is used as a simple heuristic.
3764                          * More interesting would to do search for a free
3765                          * block prior to making the commitment to unbind.
3766                          * That caters for the self-harm case, and with a
3767                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3768                          * we could try to minimise harm to others.
3769                          */
3770                         if (flags & PIN_NONBLOCK &&
3771                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3772                                 return ERR_PTR(-ENOSPC);
3773                 }
3774
3775                 WARN(i915_vma_is_pinned(vma),
3776                      "bo is already pinned in ggtt with incorrect alignment:"
3777                      " offset=%08x, req.alignment=%llx,"
3778                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3779                      i915_ggtt_offset(vma), alignment,
3780                      !!(flags & PIN_MAPPABLE),
3781                      i915_vma_is_map_and_fenceable(vma));
3782                 ret = i915_vma_unbind(vma);
3783                 if (ret)
3784                         return ERR_PTR(ret);
3785         }
3786
3787         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3788         if (ret)
3789                 return ERR_PTR(ret);
3790
3791         return vma;
3792 }
3793
3794 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3795 {
3796         /* Note that we could alias engines in the execbuf API, but
3797          * that would be very unwise as it prevents userspace from
3798          * fine control over engine selection. Ahem.
3799          *
3800          * This should be something like EXEC_MAX_ENGINE instead of
3801          * I915_NUM_ENGINES.
3802          */
3803         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3804         return 0x10000 << id;
3805 }
3806
3807 static __always_inline unsigned int __busy_write_id(unsigned int id)
3808 {
3809         /* The uABI guarantees an active writer is also amongst the read
3810          * engines. This would be true if we accessed the activity tracking
3811          * under the lock, but as we perform the lookup of the object and
3812          * its activity locklessly we can not guarantee that the last_write
3813          * being active implies that we have set the same engine flag from
3814          * last_read - hence we always set both read and write busy for
3815          * last_write.
3816          */
3817         return id | __busy_read_flag(id);
3818 }
3819
3820 static __always_inline unsigned int
3821 __busy_set_if_active(const struct dma_fence *fence,
3822                      unsigned int (*flag)(unsigned int id))
3823 {
3824         struct drm_i915_gem_request *rq;
3825
3826         /* We have to check the current hw status of the fence as the uABI
3827          * guarantees forward progress. We could rely on the idle worker
3828          * to eventually flush us, but to minimise latency just ask the
3829          * hardware.
3830          *
3831          * Note we only report on the status of native fences.
3832          */
3833         if (!dma_fence_is_i915(fence))
3834                 return 0;
3835
3836         /* opencode to_request() in order to avoid const warnings */
3837         rq = container_of(fence, struct drm_i915_gem_request, fence);
3838         if (i915_gem_request_completed(rq))
3839                 return 0;
3840
3841         return flag(rq->engine->exec_id);
3842 }
3843
3844 static __always_inline unsigned int
3845 busy_check_reader(const struct dma_fence *fence)
3846 {
3847         return __busy_set_if_active(fence, __busy_read_flag);
3848 }
3849
3850 static __always_inline unsigned int
3851 busy_check_writer(const struct dma_fence *fence)
3852 {
3853         if (!fence)
3854                 return 0;
3855
3856         return __busy_set_if_active(fence, __busy_write_id);
3857 }
3858
3859 int
3860 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3861                     struct drm_file *file)
3862 {
3863         struct drm_i915_gem_busy *args = data;
3864         struct drm_i915_gem_object *obj;
3865         struct reservation_object_list *list;
3866         unsigned int seq;
3867         int err;
3868
3869         err = -ENOENT;
3870         rcu_read_lock();
3871         obj = i915_gem_object_lookup_rcu(file, args->handle);
3872         if (!obj)
3873                 goto out;
3874
3875         /* A discrepancy here is that we do not report the status of
3876          * non-i915 fences, i.e. even though we may report the object as idle,
3877          * a call to set-domain may still stall waiting for foreign rendering.
3878          * This also means that wait-ioctl may report an object as busy,
3879          * where busy-ioctl considers it idle.
3880          *
3881          * We trade the ability to warn of foreign fences to report on which
3882          * i915 engines are active for the object.
3883          *
3884          * Alternatively, we can trade that extra information on read/write
3885          * activity with
3886          *      args->busy =
3887          *              !reservation_object_test_signaled_rcu(obj->resv, true);
3888          * to report the overall busyness. This is what the wait-ioctl does.
3889          *
3890          */
3891 retry:
3892         seq = raw_read_seqcount(&obj->resv->seq);
3893
3894         /* Translate the exclusive fence to the READ *and* WRITE engine */
3895         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3896
3897         /* Translate shared fences to READ set of engines */
3898         list = rcu_dereference(obj->resv->fence);
3899         if (list) {
3900                 unsigned int shared_count = list->shared_count, i;
3901
3902                 for (i = 0; i < shared_count; ++i) {
3903                         struct dma_fence *fence =
3904                                 rcu_dereference(list->shared[i]);
3905
3906                         args->busy |= busy_check_reader(fence);
3907                 }
3908         }
3909
3910         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3911                 goto retry;
3912
3913         err = 0;
3914 out:
3915         rcu_read_unlock();
3916         return err;
3917 }
3918
3919 int
3920 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3921                         struct drm_file *file_priv)
3922 {
3923         return i915_gem_ring_throttle(dev, file_priv);
3924 }
3925
3926 int
3927 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3928                        struct drm_file *file_priv)
3929 {
3930         struct drm_i915_private *dev_priv = to_i915(dev);
3931         struct drm_i915_gem_madvise *args = data;
3932         struct drm_i915_gem_object *obj;
3933         int err;
3934
3935         switch (args->madv) {
3936         case I915_MADV_DONTNEED:
3937         case I915_MADV_WILLNEED:
3938             break;
3939         default:
3940             return -EINVAL;
3941         }
3942
3943         obj = i915_gem_object_lookup(file_priv, args->handle);
3944         if (!obj)
3945                 return -ENOENT;
3946
3947         err = mutex_lock_interruptible(&obj->mm.lock);
3948         if (err)
3949                 goto out;
3950
3951         if (obj->mm.pages &&
3952             i915_gem_object_is_tiled(obj) &&
3953             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3954                 if (obj->mm.madv == I915_MADV_WILLNEED) {
3955                         GEM_BUG_ON(!obj->mm.quirked);
3956                         __i915_gem_object_unpin_pages(obj);
3957                         obj->mm.quirked = false;
3958                 }
3959                 if (args->madv == I915_MADV_WILLNEED) {
3960                         GEM_BUG_ON(obj->mm.quirked);
3961                         __i915_gem_object_pin_pages(obj);
3962                         obj->mm.quirked = true;
3963                 }
3964         }
3965
3966         if (obj->mm.madv != __I915_MADV_PURGED)
3967                 obj->mm.madv = args->madv;
3968
3969         /* if the object is no longer attached, discard its backing storage */
3970         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3971                 i915_gem_object_truncate(obj);
3972
3973         args->retained = obj->mm.madv != __I915_MADV_PURGED;
3974         mutex_unlock(&obj->mm.lock);
3975
3976 out:
3977         i915_gem_object_put(obj);
3978         return err;
3979 }
3980
3981 static void
3982 frontbuffer_retire(struct i915_gem_active *active,
3983                    struct drm_i915_gem_request *request)
3984 {
3985         struct drm_i915_gem_object *obj =
3986                 container_of(active, typeof(*obj), frontbuffer_write);
3987
3988         intel_fb_obj_flush(obj, true, ORIGIN_CS);
3989 }
3990
3991 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3992                           const struct drm_i915_gem_object_ops *ops)
3993 {
3994         mutex_init(&obj->mm.lock);
3995
3996         INIT_LIST_HEAD(&obj->global_link);
3997         INIT_LIST_HEAD(&obj->userfault_link);
3998         INIT_LIST_HEAD(&obj->obj_exec_link);
3999         INIT_LIST_HEAD(&obj->vma_list);
4000         INIT_LIST_HEAD(&obj->batch_pool_link);
4001
4002         obj->ops = ops;
4003
4004         reservation_object_init(&obj->__builtin_resv);
4005         obj->resv = &obj->__builtin_resv;
4006
4007         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4008         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4009
4010         obj->mm.madv = I915_MADV_WILLNEED;
4011         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4012         mutex_init(&obj->mm.get_page.lock);
4013
4014         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4015 }
4016
4017 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4018         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4019                  I915_GEM_OBJECT_IS_SHRINKABLE,
4020         .get_pages = i915_gem_object_get_pages_gtt,
4021         .put_pages = i915_gem_object_put_pages_gtt,
4022 };
4023
4024 struct drm_i915_gem_object *
4025 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4026 {
4027         struct drm_i915_gem_object *obj;
4028         struct address_space *mapping;
4029         gfp_t mask;
4030         int ret;
4031
4032         /* There is a prevalence of the assumption that we fit the object's
4033          * page count inside a 32bit _signed_ variable. Let's document this and
4034          * catch if we ever need to fix it. In the meantime, if you do spot
4035          * such a local variable, please consider fixing!
4036          */
4037         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4038                 return ERR_PTR(-E2BIG);
4039
4040         if (overflows_type(size, obj->base.size))
4041                 return ERR_PTR(-E2BIG);
4042
4043         obj = i915_gem_object_alloc(dev_priv);
4044         if (obj == NULL)
4045                 return ERR_PTR(-ENOMEM);
4046
4047         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4048         if (ret)
4049                 goto fail;
4050
4051         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4052         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4053                 /* 965gm cannot relocate objects above 4GiB. */
4054                 mask &= ~__GFP_HIGHMEM;
4055                 mask |= __GFP_DMA32;
4056         }
4057
4058         mapping = obj->base.filp->f_mapping;
4059         mapping_set_gfp_mask(mapping, mask);
4060
4061         i915_gem_object_init(obj, &i915_gem_object_ops);
4062
4063         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4064         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4065
4066         if (HAS_LLC(dev_priv)) {
4067                 /* On some devices, we can have the GPU use the LLC (the CPU
4068                  * cache) for about a 10% performance improvement
4069                  * compared to uncached.  Graphics requests other than
4070                  * display scanout are coherent with the CPU in
4071                  * accessing this cache.  This means in this mode we
4072                  * don't need to clflush on the CPU side, and on the
4073                  * GPU side we only need to flush internal caches to
4074                  * get data visible to the CPU.
4075                  *
4076                  * However, we maintain the display planes as UC, and so
4077                  * need to rebind when first used as such.
4078                  */
4079                 obj->cache_level = I915_CACHE_LLC;
4080         } else
4081                 obj->cache_level = I915_CACHE_NONE;
4082
4083         trace_i915_gem_object_create(obj);
4084
4085         return obj;
4086
4087 fail:
4088         i915_gem_object_free(obj);
4089         return ERR_PTR(ret);
4090 }
4091
4092 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4093 {
4094         /* If we are the last user of the backing storage (be it shmemfs
4095          * pages or stolen etc), we know that the pages are going to be
4096          * immediately released. In this case, we can then skip copying
4097          * back the contents from the GPU.
4098          */
4099
4100         if (obj->mm.madv != I915_MADV_WILLNEED)
4101                 return false;
4102
4103         if (obj->base.filp == NULL)
4104                 return true;
4105
4106         /* At first glance, this looks racy, but then again so would be
4107          * userspace racing mmap against close. However, the first external
4108          * reference to the filp can only be obtained through the
4109          * i915_gem_mmap_ioctl() which safeguards us against the user
4110          * acquiring such a reference whilst we are in the middle of
4111          * freeing the object.
4112          */
4113         return atomic_long_read(&obj->base.filp->f_count) == 1;
4114 }
4115
4116 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4117                                     struct llist_node *freed)
4118 {
4119         struct drm_i915_gem_object *obj, *on;
4120
4121         mutex_lock(&i915->drm.struct_mutex);
4122         intel_runtime_pm_get(i915);
4123         llist_for_each_entry(obj, freed, freed) {
4124                 struct i915_vma *vma, *vn;
4125
4126                 trace_i915_gem_object_destroy(obj);
4127
4128                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4129                 list_for_each_entry_safe(vma, vn,
4130                                          &obj->vma_list, obj_link) {
4131                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4132                         GEM_BUG_ON(i915_vma_is_active(vma));
4133                         vma->flags &= ~I915_VMA_PIN_MASK;
4134                         i915_vma_close(vma);
4135                 }
4136                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4137                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4138
4139                 list_del(&obj->global_link);
4140         }
4141         intel_runtime_pm_put(i915);
4142         mutex_unlock(&i915->drm.struct_mutex);
4143
4144         llist_for_each_entry_safe(obj, on, freed, freed) {
4145                 GEM_BUG_ON(obj->bind_count);
4146                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4147
4148                 if (obj->ops->release)
4149                         obj->ops->release(obj);
4150
4151                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4152                         atomic_set(&obj->mm.pages_pin_count, 0);
4153                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4154                 GEM_BUG_ON(obj->mm.pages);
4155
4156                 if (obj->base.import_attach)
4157                         drm_prime_gem_destroy(&obj->base, NULL);
4158
4159                 reservation_object_fini(&obj->__builtin_resv);
4160                 drm_gem_object_release(&obj->base);
4161                 i915_gem_info_remove_obj(i915, obj->base.size);
4162
4163                 kfree(obj->bit_17);
4164                 i915_gem_object_free(obj);
4165         }
4166 }
4167
4168 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4169 {
4170         struct llist_node *freed;
4171
4172         freed = llist_del_all(&i915->mm.free_list);
4173         if (unlikely(freed))
4174                 __i915_gem_free_objects(i915, freed);
4175 }
4176
4177 static void __i915_gem_free_work(struct work_struct *work)
4178 {
4179         struct drm_i915_private *i915 =
4180                 container_of(work, struct drm_i915_private, mm.free_work);
4181         struct llist_node *freed;
4182
4183         /* All file-owned VMA should have been released by this point through
4184          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4185          * However, the object may also be bound into the global GTT (e.g.
4186          * older GPUs without per-process support, or for direct access through
4187          * the GTT either for the user or for scanout). Those VMA still need to
4188          * unbound now.
4189          */
4190
4191         while ((freed = llist_del_all(&i915->mm.free_list)))
4192                 __i915_gem_free_objects(i915, freed);
4193 }
4194
4195 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4196 {
4197         struct drm_i915_gem_object *obj =
4198                 container_of(head, typeof(*obj), rcu);
4199         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4200
4201         /* We can't simply use call_rcu() from i915_gem_free_object()
4202          * as we need to block whilst unbinding, and the call_rcu
4203          * task may be called from softirq context. So we take a
4204          * detour through a worker.
4205          */
4206         if (llist_add(&obj->freed, &i915->mm.free_list))
4207                 schedule_work(&i915->mm.free_work);
4208 }
4209
4210 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4211 {
4212         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4213
4214         if (obj->mm.quirked)
4215                 __i915_gem_object_unpin_pages(obj);
4216
4217         if (discard_backing_storage(obj))
4218                 obj->mm.madv = I915_MADV_DONTNEED;
4219
4220         /* Before we free the object, make sure any pure RCU-only
4221          * read-side critical sections are complete, e.g.
4222          * i915_gem_busy_ioctl(). For the corresponding synchronized
4223          * lookup see i915_gem_object_lookup_rcu().
4224          */
4225         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4226 }
4227
4228 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4229 {
4230         lockdep_assert_held(&obj->base.dev->struct_mutex);
4231
4232         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4233         if (i915_gem_object_is_active(obj))
4234                 i915_gem_object_set_active_reference(obj);
4235         else
4236                 i915_gem_object_put(obj);
4237 }
4238
4239 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4240 {
4241         struct intel_engine_cs *engine;
4242         enum intel_engine_id id;
4243
4244         for_each_engine(engine, dev_priv, id)
4245                 GEM_BUG_ON(engine->last_retired_context &&
4246                            !i915_gem_context_is_kernel(engine->last_retired_context));
4247 }
4248
4249 void i915_gem_sanitize(struct drm_i915_private *i915)
4250 {
4251         /*
4252          * If we inherit context state from the BIOS or earlier occupants
4253          * of the GPU, the GPU may be in an inconsistent state when we
4254          * try to take over. The only way to remove the earlier state
4255          * is by resetting. However, resetting on earlier gen is tricky as
4256          * it may impact the display and we are uncertain about the stability
4257          * of the reset, so we only reset recent machines with logical
4258          * context support (that must be reset to remove any stray contexts).
4259          */
4260         if (HAS_HW_CONTEXTS(i915)) {
4261                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4262                 WARN_ON(reset && reset != -ENODEV);
4263         }
4264 }
4265
4266 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4267 {
4268         struct drm_device *dev = &dev_priv->drm;
4269         int ret;
4270
4271         intel_suspend_gt_powersave(dev_priv);
4272
4273         mutex_lock(&dev->struct_mutex);
4274
4275         /* We have to flush all the executing contexts to main memory so
4276          * that they can saved in the hibernation image. To ensure the last
4277          * context image is coherent, we have to switch away from it. That
4278          * leaves the dev_priv->kernel_context still active when
4279          * we actually suspend, and its image in memory may not match the GPU
4280          * state. Fortunately, the kernel_context is disposable and we do
4281          * not rely on its state.
4282          */
4283         ret = i915_gem_switch_to_kernel_context(dev_priv);
4284         if (ret)
4285                 goto err;
4286
4287         ret = i915_gem_wait_for_idle(dev_priv,
4288                                      I915_WAIT_INTERRUPTIBLE |
4289                                      I915_WAIT_LOCKED);
4290         if (ret)
4291                 goto err;
4292
4293         i915_gem_retire_requests(dev_priv);
4294         GEM_BUG_ON(dev_priv->gt.active_requests);
4295
4296         assert_kernel_context_is_current(dev_priv);
4297         i915_gem_context_lost(dev_priv);
4298         mutex_unlock(&dev->struct_mutex);
4299
4300         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4301         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4302
4303         /* As the idle_work is rearming if it detects a race, play safe and
4304          * repeat the flush until it is definitely idle.
4305          */
4306         while (flush_delayed_work(&dev_priv->gt.idle_work))
4307                 ;
4308
4309         i915_gem_drain_freed_objects(dev_priv);
4310
4311         /* Assert that we sucessfully flushed all the work and
4312          * reset the GPU back to its idle, low power state.
4313          */
4314         WARN_ON(dev_priv->gt.awake);
4315         WARN_ON(!intel_execlists_idle(dev_priv));
4316
4317         /*
4318          * Neither the BIOS, ourselves or any other kernel
4319          * expects the system to be in execlists mode on startup,
4320          * so we need to reset the GPU back to legacy mode. And the only
4321          * known way to disable logical contexts is through a GPU reset.
4322          *
4323          * So in order to leave the system in a known default configuration,
4324          * always reset the GPU upon unload and suspend. Afterwards we then
4325          * clean up the GEM state tracking, flushing off the requests and
4326          * leaving the system in a known idle state.
4327          *
4328          * Note that is of the upmost importance that the GPU is idle and
4329          * all stray writes are flushed *before* we dismantle the backing
4330          * storage for the pinned objects.
4331          *
4332          * However, since we are uncertain that resetting the GPU on older
4333          * machines is a good idea, we don't - just in case it leaves the
4334          * machine in an unusable condition.
4335          */
4336         i915_gem_sanitize(dev_priv);
4337
4338         return 0;
4339
4340 err:
4341         mutex_unlock(&dev->struct_mutex);
4342         return ret;
4343 }
4344
4345 void i915_gem_resume(struct drm_i915_private *dev_priv)
4346 {
4347         struct drm_device *dev = &dev_priv->drm;
4348
4349         WARN_ON(dev_priv->gt.awake);
4350
4351         mutex_lock(&dev->struct_mutex);
4352         i915_gem_restore_gtt_mappings(dev_priv);
4353
4354         /* As we didn't flush the kernel context before suspend, we cannot
4355          * guarantee that the context image is complete. So let's just reset
4356          * it and start again.
4357          */
4358         dev_priv->gt.resume(dev_priv);
4359
4360         mutex_unlock(&dev->struct_mutex);
4361 }
4362
4363 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4364 {
4365         if (INTEL_GEN(dev_priv) < 5 ||
4366             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4367                 return;
4368
4369         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4370                                  DISP_TILE_SURFACE_SWIZZLING);
4371
4372         if (IS_GEN5(dev_priv))
4373                 return;
4374
4375         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4376         if (IS_GEN6(dev_priv))
4377                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4378         else if (IS_GEN7(dev_priv))
4379                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4380         else if (IS_GEN8(dev_priv))
4381                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4382         else
4383                 BUG();
4384 }
4385
4386 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4387 {
4388         I915_WRITE(RING_CTL(base), 0);
4389         I915_WRITE(RING_HEAD(base), 0);
4390         I915_WRITE(RING_TAIL(base), 0);
4391         I915_WRITE(RING_START(base), 0);
4392 }
4393
4394 static void init_unused_rings(struct drm_i915_private *dev_priv)
4395 {
4396         if (IS_I830(dev_priv)) {
4397                 init_unused_ring(dev_priv, PRB1_BASE);
4398                 init_unused_ring(dev_priv, SRB0_BASE);
4399                 init_unused_ring(dev_priv, SRB1_BASE);
4400                 init_unused_ring(dev_priv, SRB2_BASE);
4401                 init_unused_ring(dev_priv, SRB3_BASE);
4402         } else if (IS_GEN2(dev_priv)) {
4403                 init_unused_ring(dev_priv, SRB0_BASE);
4404                 init_unused_ring(dev_priv, SRB1_BASE);
4405         } else if (IS_GEN3(dev_priv)) {
4406                 init_unused_ring(dev_priv, PRB1_BASE);
4407                 init_unused_ring(dev_priv, PRB2_BASE);
4408         }
4409 }
4410
4411 static int __i915_gem_restart_engines(void *data)
4412 {
4413         struct drm_i915_private *i915 = data;
4414         struct intel_engine_cs *engine;
4415         enum intel_engine_id id;
4416         int err;
4417
4418         for_each_engine(engine, i915, id) {
4419                 err = engine->init_hw(engine);
4420                 if (err)
4421                         return err;
4422         }
4423
4424         return 0;
4425 }
4426
4427 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4428 {
4429         int ret;
4430
4431         dev_priv->gt.last_init_time = ktime_get();
4432
4433         /* Double layer security blanket, see i915_gem_init() */
4434         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4435
4436         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4437                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4438
4439         if (IS_HASWELL(dev_priv))
4440                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4441                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4442
4443         if (HAS_PCH_NOP(dev_priv)) {
4444                 if (IS_IVYBRIDGE(dev_priv)) {
4445                         u32 temp = I915_READ(GEN7_MSG_CTL);
4446                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4447                         I915_WRITE(GEN7_MSG_CTL, temp);
4448                 } else if (INTEL_GEN(dev_priv) >= 7) {
4449                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4450                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4451                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4452                 }
4453         }
4454
4455         i915_gem_init_swizzling(dev_priv);
4456
4457         /*
4458          * At least 830 can leave some of the unused rings
4459          * "active" (ie. head != tail) after resume which
4460          * will prevent c3 entry. Makes sure all unused rings
4461          * are totally idle.
4462          */
4463         init_unused_rings(dev_priv);
4464
4465         BUG_ON(!dev_priv->kernel_context);
4466
4467         ret = i915_ppgtt_init_hw(dev_priv);
4468         if (ret) {
4469                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4470                 goto out;
4471         }
4472
4473         /* Need to do basic initialisation of all rings first: */
4474         ret = __i915_gem_restart_engines(dev_priv);
4475         if (ret)
4476                 goto out;
4477
4478         intel_mocs_init_l3cc_table(dev_priv);
4479
4480         /* We can't enable contexts until all firmware is loaded */
4481         ret = intel_guc_setup(dev_priv);
4482         if (ret)
4483                 goto out;
4484
4485 out:
4486         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4487         return ret;
4488 }
4489
4490 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4491 {
4492         if (INTEL_INFO(dev_priv)->gen < 6)
4493                 return false;
4494
4495         /* TODO: make semaphores and Execlists play nicely together */
4496         if (i915.enable_execlists)
4497                 return false;
4498
4499         if (value >= 0)
4500                 return value;
4501
4502 #ifdef CONFIG_INTEL_IOMMU
4503         /* Enable semaphores on SNB when IO remapping is off */
4504         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4505                 return false;
4506 #endif
4507
4508         return true;
4509 }
4510
4511 int i915_gem_init(struct drm_i915_private *dev_priv)
4512 {
4513         int ret;
4514
4515         mutex_lock(&dev_priv->drm.struct_mutex);
4516
4517         if (!i915.enable_execlists) {
4518                 dev_priv->gt.resume = intel_legacy_submission_resume;
4519                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4520         } else {
4521                 dev_priv->gt.resume = intel_lr_context_resume;
4522                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4523         }
4524
4525         /* This is just a security blanket to placate dragons.
4526          * On some systems, we very sporadically observe that the first TLBs
4527          * used by the CS may be stale, despite us poking the TLB reset. If
4528          * we hold the forcewake during initialisation these problems
4529          * just magically go away.
4530          */
4531         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4532
4533         i915_gem_init_userptr(dev_priv);
4534
4535         ret = i915_gem_init_ggtt(dev_priv);
4536         if (ret)
4537                 goto out_unlock;
4538
4539         ret = i915_gem_context_init(dev_priv);
4540         if (ret)
4541                 goto out_unlock;
4542
4543         ret = intel_engines_init(dev_priv);
4544         if (ret)
4545                 goto out_unlock;
4546
4547         ret = i915_gem_init_hw(dev_priv);
4548         if (ret == -EIO) {
4549                 /* Allow engine initialisation to fail by marking the GPU as
4550                  * wedged. But we only want to do this where the GPU is angry,
4551                  * for all other failure, such as an allocation failure, bail.
4552                  */
4553                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4554                 i915_gem_set_wedged(dev_priv);
4555                 ret = 0;
4556         }
4557
4558 out_unlock:
4559         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4560         mutex_unlock(&dev_priv->drm.struct_mutex);
4561
4562         return ret;
4563 }
4564
4565 void i915_gem_init_mmio(struct drm_i915_private *i915)
4566 {
4567         i915_gem_sanitize(i915);
4568 }
4569
4570 void
4571 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4572 {
4573         struct intel_engine_cs *engine;
4574         enum intel_engine_id id;
4575
4576         for_each_engine(engine, dev_priv, id)
4577                 dev_priv->gt.cleanup_engine(engine);
4578 }
4579
4580 void
4581 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4582 {
4583         int i;
4584
4585         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4586             !IS_CHERRYVIEW(dev_priv))
4587                 dev_priv->num_fence_regs = 32;
4588         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4589                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4590                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4591                 dev_priv->num_fence_regs = 16;
4592         else
4593                 dev_priv->num_fence_regs = 8;
4594
4595         if (intel_vgpu_active(dev_priv))
4596                 dev_priv->num_fence_regs =
4597                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4598
4599         /* Initialize fence registers to zero */
4600         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4601                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4602
4603                 fence->i915 = dev_priv;
4604                 fence->id = i;
4605                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4606         }
4607         i915_gem_restore_fences(dev_priv);
4608
4609         i915_gem_detect_bit_6_swizzle(dev_priv);
4610 }
4611
4612 int
4613 i915_gem_load_init(struct drm_i915_private *dev_priv)
4614 {
4615         int err = -ENOMEM;
4616
4617         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4618         if (!dev_priv->objects)
4619                 goto err_out;
4620
4621         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4622         if (!dev_priv->vmas)
4623                 goto err_objects;
4624
4625         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4626                                         SLAB_HWCACHE_ALIGN |
4627                                         SLAB_RECLAIM_ACCOUNT |
4628                                         SLAB_DESTROY_BY_RCU);
4629         if (!dev_priv->requests)
4630                 goto err_vmas;
4631
4632         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4633                                             SLAB_HWCACHE_ALIGN |
4634                                             SLAB_RECLAIM_ACCOUNT);
4635         if (!dev_priv->dependencies)
4636                 goto err_requests;
4637
4638         mutex_lock(&dev_priv->drm.struct_mutex);
4639         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4640         err = i915_gem_timeline_init__global(dev_priv);
4641         mutex_unlock(&dev_priv->drm.struct_mutex);
4642         if (err)
4643                 goto err_dependencies;
4644
4645         INIT_LIST_HEAD(&dev_priv->context_list);
4646         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4647         init_llist_head(&dev_priv->mm.free_list);
4648         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4649         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4650         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4651         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4652         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4653                           i915_gem_retire_work_handler);
4654         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4655                           i915_gem_idle_work_handler);
4656         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4657         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4658
4659         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4660
4661         init_waitqueue_head(&dev_priv->pending_flip_queue);
4662
4663         dev_priv->mm.interruptible = true;
4664
4665         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4666
4667         spin_lock_init(&dev_priv->fb_tracking.lock);
4668
4669         return 0;
4670
4671 err_dependencies:
4672         kmem_cache_destroy(dev_priv->dependencies);
4673 err_requests:
4674         kmem_cache_destroy(dev_priv->requests);
4675 err_vmas:
4676         kmem_cache_destroy(dev_priv->vmas);
4677 err_objects:
4678         kmem_cache_destroy(dev_priv->objects);
4679 err_out:
4680         return err;
4681 }
4682
4683 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4684 {
4685         i915_gem_drain_freed_objects(dev_priv);
4686         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4687         WARN_ON(dev_priv->mm.object_count);
4688
4689         mutex_lock(&dev_priv->drm.struct_mutex);
4690         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4691         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4692         mutex_unlock(&dev_priv->drm.struct_mutex);
4693
4694         kmem_cache_destroy(dev_priv->dependencies);
4695         kmem_cache_destroy(dev_priv->requests);
4696         kmem_cache_destroy(dev_priv->vmas);
4697         kmem_cache_destroy(dev_priv->objects);
4698
4699         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4700         rcu_barrier();
4701 }
4702
4703 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4704 {
4705         mutex_lock(&dev_priv->drm.struct_mutex);
4706         i915_gem_shrink_all(dev_priv);
4707         mutex_unlock(&dev_priv->drm.struct_mutex);
4708
4709         return 0;
4710 }
4711
4712 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4713 {
4714         struct drm_i915_gem_object *obj;
4715         struct list_head *phases[] = {
4716                 &dev_priv->mm.unbound_list,
4717                 &dev_priv->mm.bound_list,
4718                 NULL
4719         }, **p;
4720
4721         /* Called just before we write the hibernation image.
4722          *
4723          * We need to update the domain tracking to reflect that the CPU
4724          * will be accessing all the pages to create and restore from the
4725          * hibernation, and so upon restoration those pages will be in the
4726          * CPU domain.
4727          *
4728          * To make sure the hibernation image contains the latest state,
4729          * we update that state just before writing out the image.
4730          *
4731          * To try and reduce the hibernation image, we manually shrink
4732          * the objects as well.
4733          */
4734
4735         mutex_lock(&dev_priv->drm.struct_mutex);
4736         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4737
4738         for (p = phases; *p; p++) {
4739                 list_for_each_entry(obj, *p, global_link) {
4740                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4741                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4742                 }
4743         }
4744         mutex_unlock(&dev_priv->drm.struct_mutex);
4745
4746         return 0;
4747 }
4748
4749 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4750 {
4751         struct drm_i915_file_private *file_priv = file->driver_priv;
4752         struct drm_i915_gem_request *request;
4753
4754         /* Clean up our request list when the client is going away, so that
4755          * later retire_requests won't dereference our soon-to-be-gone
4756          * file_priv.
4757          */
4758         spin_lock(&file_priv->mm.lock);
4759         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4760                 request->file_priv = NULL;
4761         spin_unlock(&file_priv->mm.lock);
4762
4763         if (!list_empty(&file_priv->rps.link)) {
4764                 spin_lock(&to_i915(dev)->rps.client_lock);
4765                 list_del(&file_priv->rps.link);
4766                 spin_unlock(&to_i915(dev)->rps.client_lock);
4767         }
4768 }
4769
4770 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4771 {
4772         struct drm_i915_file_private *file_priv;
4773         int ret;
4774
4775         DRM_DEBUG("\n");
4776
4777         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4778         if (!file_priv)
4779                 return -ENOMEM;
4780
4781         file->driver_priv = file_priv;
4782         file_priv->dev_priv = to_i915(dev);
4783         file_priv->file = file;
4784         INIT_LIST_HEAD(&file_priv->rps.link);
4785
4786         spin_lock_init(&file_priv->mm.lock);
4787         INIT_LIST_HEAD(&file_priv->mm.request_list);
4788
4789         file_priv->bsd_engine = -1;
4790
4791         ret = i915_gem_context_open(dev, file);
4792         if (ret)
4793                 kfree(file_priv);
4794
4795         return ret;
4796 }
4797
4798 /**
4799  * i915_gem_track_fb - update frontbuffer tracking
4800  * @old: current GEM buffer for the frontbuffer slots
4801  * @new: new GEM buffer for the frontbuffer slots
4802  * @frontbuffer_bits: bitmask of frontbuffer slots
4803  *
4804  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4805  * from @old and setting them in @new. Both @old and @new can be NULL.
4806  */
4807 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4808                        struct drm_i915_gem_object *new,
4809                        unsigned frontbuffer_bits)
4810 {
4811         /* Control of individual bits within the mask are guarded by
4812          * the owning plane->mutex, i.e. we can never see concurrent
4813          * manipulation of individual bits. But since the bitfield as a whole
4814          * is updated using RMW, we need to use atomics in order to update
4815          * the bits.
4816          */
4817         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4818                      sizeof(atomic_t) * BITS_PER_BYTE);
4819
4820         if (old) {
4821                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4822                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4823         }
4824
4825         if (new) {
4826                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4827                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4828         }
4829 }
4830
4831 /* Allocate a new GEM object and fill it with the supplied data */
4832 struct drm_i915_gem_object *
4833 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4834                                  const void *data, size_t size)
4835 {
4836         struct drm_i915_gem_object *obj;
4837         struct sg_table *sg;
4838         size_t bytes;
4839         int ret;
4840
4841         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4842         if (IS_ERR(obj))
4843                 return obj;
4844
4845         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4846         if (ret)
4847                 goto fail;
4848
4849         ret = i915_gem_object_pin_pages(obj);
4850         if (ret)
4851                 goto fail;
4852
4853         sg = obj->mm.pages;
4854         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4855         obj->mm.dirty = true; /* Backing store is now out of date */
4856         i915_gem_object_unpin_pages(obj);
4857
4858         if (WARN_ON(bytes != size)) {
4859                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4860                 ret = -EFAULT;
4861                 goto fail;
4862         }
4863
4864         return obj;
4865
4866 fail:
4867         i915_gem_object_put(obj);
4868         return ERR_PTR(ret);
4869 }
4870
4871 struct scatterlist *
4872 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4873                        unsigned int n,
4874                        unsigned int *offset)
4875 {
4876         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4877         struct scatterlist *sg;
4878         unsigned int idx, count;
4879
4880         might_sleep();
4881         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4882         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4883
4884         /* As we iterate forward through the sg, we record each entry in a
4885          * radixtree for quick repeated (backwards) lookups. If we have seen
4886          * this index previously, we will have an entry for it.
4887          *
4888          * Initial lookup is O(N), but this is amortized to O(1) for
4889          * sequential page access (where each new request is consecutive
4890          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4891          * i.e. O(1) with a large constant!
4892          */
4893         if (n < READ_ONCE(iter->sg_idx))
4894                 goto lookup;
4895
4896         mutex_lock(&iter->lock);
4897
4898         /* We prefer to reuse the last sg so that repeated lookup of this
4899          * (or the subsequent) sg are fast - comparing against the last
4900          * sg is faster than going through the radixtree.
4901          */
4902
4903         sg = iter->sg_pos;
4904         idx = iter->sg_idx;
4905         count = __sg_page_count(sg);
4906
4907         while (idx + count <= n) {
4908                 unsigned long exception, i;
4909                 int ret;
4910
4911                 /* If we cannot allocate and insert this entry, or the
4912                  * individual pages from this range, cancel updating the
4913                  * sg_idx so that on this lookup we are forced to linearly
4914                  * scan onwards, but on future lookups we will try the
4915                  * insertion again (in which case we need to be careful of
4916                  * the error return reporting that we have already inserted
4917                  * this index).
4918                  */
4919                 ret = radix_tree_insert(&iter->radix, idx, sg);
4920                 if (ret && ret != -EEXIST)
4921                         goto scan;
4922
4923                 exception =
4924                         RADIX_TREE_EXCEPTIONAL_ENTRY |
4925                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4926                 for (i = 1; i < count; i++) {
4927                         ret = radix_tree_insert(&iter->radix, idx + i,
4928                                                 (void *)exception);
4929                         if (ret && ret != -EEXIST)
4930                                 goto scan;
4931                 }
4932
4933                 idx += count;
4934                 sg = ____sg_next(sg);
4935                 count = __sg_page_count(sg);
4936         }
4937
4938 scan:
4939         iter->sg_pos = sg;
4940         iter->sg_idx = idx;
4941
4942         mutex_unlock(&iter->lock);
4943
4944         if (unlikely(n < idx)) /* insertion completed by another thread */
4945                 goto lookup;
4946
4947         /* In case we failed to insert the entry into the radixtree, we need
4948          * to look beyond the current sg.
4949          */
4950         while (idx + count <= n) {
4951                 idx += count;
4952                 sg = ____sg_next(sg);
4953                 count = __sg_page_count(sg);
4954         }
4955
4956         *offset = n - idx;
4957         return sg;
4958
4959 lookup:
4960         rcu_read_lock();
4961
4962         sg = radix_tree_lookup(&iter->radix, n);
4963         GEM_BUG_ON(!sg);
4964
4965         /* If this index is in the middle of multi-page sg entry,
4966          * the radixtree will contain an exceptional entry that points
4967          * to the start of that range. We will return the pointer to
4968          * the base page and the offset of this page within the
4969          * sg entry's range.
4970          */
4971         *offset = 0;
4972         if (unlikely(radix_tree_exception(sg))) {
4973                 unsigned long base =
4974                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4975
4976                 sg = radix_tree_lookup(&iter->radix, base);
4977                 GEM_BUG_ON(!sg);
4978
4979                 *offset = n - base;
4980         }
4981
4982         rcu_read_unlock();
4983
4984         return sg;
4985 }
4986
4987 struct page *
4988 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4989 {
4990         struct scatterlist *sg;
4991         unsigned int offset;
4992
4993         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4994
4995         sg = i915_gem_object_get_sg(obj, n, &offset);
4996         return nth_page(sg_page(sg), offset);
4997 }
4998
4999 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5000 struct page *
5001 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5002                                unsigned int n)
5003 {
5004         struct page *page;
5005
5006         page = i915_gem_object_get_page(obj, n);
5007         if (!obj->mm.dirty)
5008                 set_page_dirty(page);
5009
5010         return page;
5011 }
5012
5013 dma_addr_t
5014 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5015                                 unsigned long n)
5016 {
5017         struct scatterlist *sg;
5018         unsigned int offset;
5019
5020         sg = i915_gem_object_get_sg(obj, n, &offset);
5021         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5022 }
5023
5024 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5025 #include "selftests/scatterlist.c"
5026 #include "selftests/mock_gem_device.c"
5027 #endif