OSDN Git Service

clk: at91: fix masterck name
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113         /*
114          * Note that as an uncached mmio write, this will flush the
115          * WCB of the writes into the GGTT before it triggers the invalidate.
116          */
117         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122         gen6_ggtt_invalidate(dev_priv);
123         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128         intel_gtt_chipset_flush();
129 }
130
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133         i915->ggtt.invalidate(i915);
134 }
135
136 static int ppgtt_bind_vma(struct i915_vma *vma,
137                           enum i915_cache_level cache_level,
138                           u32 unused)
139 {
140         u32 pte_flags;
141         int err;
142
143         if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
144                 err = vma->vm->allocate_va_range(vma->vm,
145                                                  vma->node.start, vma->size);
146                 if (err)
147                         return err;
148         }
149
150         /* Applicable to VLV, and gen8+ */
151         pte_flags = 0;
152         if (i915_gem_object_is_readonly(vma->obj))
153                 pte_flags |= PTE_READ_ONLY;
154
155         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156
157         return 0;
158 }
159
160 static void ppgtt_unbind_vma(struct i915_vma *vma)
161 {
162         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163 }
164
165 static int ppgtt_set_pages(struct i915_vma *vma)
166 {
167         GEM_BUG_ON(vma->pages);
168
169         vma->pages = vma->obj->mm.pages;
170
171         vma->page_sizes = vma->obj->mm.page_sizes;
172
173         return 0;
174 }
175
176 static void clear_pages(struct i915_vma *vma)
177 {
178         GEM_BUG_ON(!vma->pages);
179
180         if (vma->pages != vma->obj->mm.pages) {
181                 sg_free_table(vma->pages);
182                 kfree(vma->pages);
183         }
184         vma->pages = NULL;
185
186         memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 }
188
189 static u64 gen8_pte_encode(dma_addr_t addr,
190                            enum i915_cache_level level,
191                            u32 flags)
192 {
193         gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
194
195         if (unlikely(flags & PTE_READ_ONLY))
196                 pte &= ~_PAGE_RW;
197
198         switch (level) {
199         case I915_CACHE_NONE:
200                 pte |= PPAT_UNCACHED;
201                 break;
202         case I915_CACHE_WT:
203                 pte |= PPAT_DISPLAY_ELLC;
204                 break;
205         default:
206                 pte |= PPAT_CACHED;
207                 break;
208         }
209
210         return pte;
211 }
212
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214                                   const enum i915_cache_level level)
215 {
216         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217         pde |= addr;
218         if (level != I915_CACHE_NONE)
219                 pde |= PPAT_CACHED_PDE;
220         else
221                 pde |= PPAT_UNCACHED;
222         return pde;
223 }
224
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227
228 static u64 snb_pte_encode(dma_addr_t addr,
229                           enum i915_cache_level level,
230                           u32 flags)
231 {
232         gen6_pte_t pte = GEN6_PTE_VALID;
233         pte |= GEN6_PTE_ADDR_ENCODE(addr);
234
235         switch (level) {
236         case I915_CACHE_L3_LLC:
237         case I915_CACHE_LLC:
238                 pte |= GEN6_PTE_CACHE_LLC;
239                 break;
240         case I915_CACHE_NONE:
241                 pte |= GEN6_PTE_UNCACHED;
242                 break;
243         default:
244                 MISSING_CASE(level);
245         }
246
247         return pte;
248 }
249
250 static u64 ivb_pte_encode(dma_addr_t addr,
251                           enum i915_cache_level level,
252                           u32 flags)
253 {
254         gen6_pte_t pte = GEN6_PTE_VALID;
255         pte |= GEN6_PTE_ADDR_ENCODE(addr);
256
257         switch (level) {
258         case I915_CACHE_L3_LLC:
259                 pte |= GEN7_PTE_CACHE_L3_LLC;
260                 break;
261         case I915_CACHE_LLC:
262                 pte |= GEN6_PTE_CACHE_LLC;
263                 break;
264         case I915_CACHE_NONE:
265                 pte |= GEN6_PTE_UNCACHED;
266                 break;
267         default:
268                 MISSING_CASE(level);
269         }
270
271         return pte;
272 }
273
274 static u64 byt_pte_encode(dma_addr_t addr,
275                           enum i915_cache_level level,
276                           u32 flags)
277 {
278         gen6_pte_t pte = GEN6_PTE_VALID;
279         pte |= GEN6_PTE_ADDR_ENCODE(addr);
280
281         if (!(flags & PTE_READ_ONLY))
282                 pte |= BYT_PTE_WRITEABLE;
283
284         if (level != I915_CACHE_NONE)
285                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286
287         return pte;
288 }
289
290 static u64 hsw_pte_encode(dma_addr_t addr,
291                           enum i915_cache_level level,
292                           u32 flags)
293 {
294         gen6_pte_t pte = GEN6_PTE_VALID;
295         pte |= HSW_PTE_ADDR_ENCODE(addr);
296
297         if (level != I915_CACHE_NONE)
298                 pte |= HSW_WB_LLC_AGE3;
299
300         return pte;
301 }
302
303 static u64 iris_pte_encode(dma_addr_t addr,
304                            enum i915_cache_level level,
305                            u32 flags)
306 {
307         gen6_pte_t pte = GEN6_PTE_VALID;
308         pte |= HSW_PTE_ADDR_ENCODE(addr);
309
310         switch (level) {
311         case I915_CACHE_NONE:
312                 break;
313         case I915_CACHE_WT:
314                 pte |= HSW_WT_ELLC_LLC_AGE3;
315                 break;
316         default:
317                 pte |= HSW_WB_ELLC_LLC_AGE3;
318                 break;
319         }
320
321         return pte;
322 }
323
324 static void stash_init(struct pagestash *stash)
325 {
326         pagevec_init(&stash->pvec);
327         spin_lock_init(&stash->lock);
328 }
329
330 static struct page *stash_pop_page(struct pagestash *stash)
331 {
332         struct page *page = NULL;
333
334         spin_lock(&stash->lock);
335         if (likely(stash->pvec.nr))
336                 page = stash->pvec.pages[--stash->pvec.nr];
337         spin_unlock(&stash->lock);
338
339         return page;
340 }
341
342 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
343 {
344         int nr;
345
346         spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
347
348         nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
349         memcpy(stash->pvec.pages + stash->pvec.nr,
350                pvec->pages + pvec->nr - nr,
351                sizeof(pvec->pages[0]) * nr);
352         stash->pvec.nr += nr;
353
354         spin_unlock(&stash->lock);
355
356         pvec->nr -= nr;
357 }
358
359 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360 {
361         struct pagevec stack;
362         struct page *page;
363
364         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
365                 i915_gem_shrink_all(vm->i915);
366
367         page = stash_pop_page(&vm->free_pages);
368         if (page)
369                 return page;
370
371         if (!vm->pt_kmap_wc)
372                 return alloc_page(gfp);
373
374         /* Look in our global stash of WC pages... */
375         page = stash_pop_page(&vm->i915->mm.wc_stash);
376         if (page)
377                 return page;
378
379         /*
380          * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381          *
382          * We have to be careful as page allocation may trigger the shrinker
383          * (via direct reclaim) which will fill up the WC stash underneath us.
384          * So we add our WB pages into a temporary pvec on the stack and merge
385          * them into the WC stash after all the allocations are complete.
386          */
387         pagevec_init(&stack);
388         do {
389                 struct page *page;
390
391                 page = alloc_page(gfp);
392                 if (unlikely(!page))
393                         break;
394
395                 stack.pages[stack.nr++] = page;
396         } while (pagevec_space(&stack));
397
398         if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
399                 page = stack.pages[--stack.nr];
400
401                 /* Merge spare WC pages to the global stash */
402                 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403
404                 /* Push any surplus WC pages onto the local VM stash */
405                 if (stack.nr)
406                         stash_push_pagevec(&vm->free_pages, &stack);
407         }
408
409         /* Return unwanted leftovers */
410         if (unlikely(stack.nr)) {
411                 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
412                 __pagevec_release(&stack);
413         }
414
415         return page;
416 }
417
418 static void vm_free_pages_release(struct i915_address_space *vm,
419                                   bool immediate)
420 {
421         struct pagevec *pvec = &vm->free_pages.pvec;
422         struct pagevec stack;
423
424         lockdep_assert_held(&vm->free_pages.lock);
425         GEM_BUG_ON(!pagevec_count(pvec));
426
427         if (vm->pt_kmap_wc) {
428                 /*
429                  * When we use WC, first fill up the global stash and then
430                  * only if full immediately free the overflow.
431                  */
432                 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433
434                 /*
435                  * As we have made some room in the VM's free_pages,
436                  * we can wait for it to fill again. Unless we are
437                  * inside i915_address_space_fini() and must
438                  * immediately release the pages!
439                  */
440                 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
441                         return;
442
443                 /*
444                  * We have to drop the lock to allow ourselves to sleep,
445                  * so take a copy of the pvec and clear the stash for
446                  * others to use it as we sleep.
447                  */
448                 stack = *pvec;
449                 pagevec_reinit(pvec);
450                 spin_unlock(&vm->free_pages.lock);
451
452                 pvec = &stack;
453                 set_pages_array_wb(pvec->pages, pvec->nr);
454
455                 spin_lock(&vm->free_pages.lock);
456         }
457
458         __pagevec_release(pvec);
459 }
460
461 static void vm_free_page(struct i915_address_space *vm, struct page *page)
462 {
463         /*
464          * On !llc, we need to change the pages back to WB. We only do so
465          * in bulk, so we rarely need to change the page attributes here,
466          * but doing so requires a stop_machine() from deep inside arch/x86/mm.
467          * To make detection of the possible sleep more likely, use an
468          * unconditional might_sleep() for everybody.
469          */
470         might_sleep();
471         spin_lock(&vm->free_pages.lock);
472         if (!pagevec_add(&vm->free_pages.pvec, page))
473                 vm_free_pages_release(vm, false);
474         spin_unlock(&vm->free_pages.lock);
475 }
476
477 static void i915_address_space_init(struct i915_address_space *vm,
478                                     struct drm_i915_private *dev_priv)
479 {
480         /*
481          * The vm->mutex must be reclaim safe (for use in the shrinker).
482          * Do a dummy acquire now under fs_reclaim so that any allocation
483          * attempt holding the lock is immediately reported by lockdep.
484          */
485         mutex_init(&vm->mutex);
486         i915_gem_shrinker_taints_mutex(&vm->mutex);
487
488         GEM_BUG_ON(!vm->total);
489         drm_mm_init(&vm->mm, 0, vm->total);
490         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
491
492         stash_init(&vm->free_pages);
493
494         INIT_LIST_HEAD(&vm->active_list);
495         INIT_LIST_HEAD(&vm->inactive_list);
496         INIT_LIST_HEAD(&vm->unbound_list);
497 }
498
499 static void i915_address_space_fini(struct i915_address_space *vm)
500 {
501         spin_lock(&vm->free_pages.lock);
502         if (pagevec_count(&vm->free_pages.pvec))
503                 vm_free_pages_release(vm, true);
504         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
505         spin_unlock(&vm->free_pages.lock);
506
507         drm_mm_takedown(&vm->mm);
508
509         mutex_destroy(&vm->mutex);
510 }
511
512 static int __setup_page_dma(struct i915_address_space *vm,
513                             struct i915_page_dma *p,
514                             gfp_t gfp)
515 {
516         p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
517         if (unlikely(!p->page))
518                 return -ENOMEM;
519
520         p->daddr = dma_map_page_attrs(vm->dma,
521                                       p->page, 0, PAGE_SIZE,
522                                       PCI_DMA_BIDIRECTIONAL,
523                                       DMA_ATTR_SKIP_CPU_SYNC |
524                                       DMA_ATTR_NO_WARN);
525         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
526                 vm_free_page(vm, p->page);
527                 return -ENOMEM;
528         }
529
530         return 0;
531 }
532
533 static int setup_page_dma(struct i915_address_space *vm,
534                           struct i915_page_dma *p)
535 {
536         return __setup_page_dma(vm, p, __GFP_HIGHMEM);
537 }
538
539 static void cleanup_page_dma(struct i915_address_space *vm,
540                              struct i915_page_dma *p)
541 {
542         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
543         vm_free_page(vm, p->page);
544 }
545
546 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
547
548 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
549 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
550 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
551 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
552
553 static void fill_page_dma(struct i915_address_space *vm,
554                           struct i915_page_dma *p,
555                           const u64 val)
556 {
557         u64 * const vaddr = kmap_atomic(p->page);
558
559         memset64(vaddr, val, PAGE_SIZE / sizeof(val));
560
561         kunmap_atomic(vaddr);
562 }
563
564 static void fill_page_dma_32(struct i915_address_space *vm,
565                              struct i915_page_dma *p,
566                              const u32 v)
567 {
568         fill_page_dma(vm, p, (u64)v << 32 | v);
569 }
570
571 static int
572 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
573 {
574         unsigned long size;
575
576         /*
577          * In order to utilize 64K pages for an object with a size < 2M, we will
578          * need to support a 64K scratch page, given that every 16th entry for a
579          * page-table operating in 64K mode must point to a properly aligned 64K
580          * region, including any PTEs which happen to point to scratch.
581          *
582          * This is only relevant for the 48b PPGTT where we support
583          * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
584          * scratch (read-only) between all vm, we create one 64k scratch page
585          * for all.
586          */
587         size = I915_GTT_PAGE_SIZE_4K;
588         if (i915_vm_is_48bit(vm) &&
589             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
590                 size = I915_GTT_PAGE_SIZE_64K;
591                 gfp |= __GFP_NOWARN;
592         }
593         gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
594
595         do {
596                 int order = get_order(size);
597                 struct page *page;
598                 dma_addr_t addr;
599
600                 page = alloc_pages(gfp, order);
601                 if (unlikely(!page))
602                         goto skip;
603
604                 addr = dma_map_page_attrs(vm->dma,
605                                           page, 0, size,
606                                           PCI_DMA_BIDIRECTIONAL,
607                                           DMA_ATTR_SKIP_CPU_SYNC |
608                                           DMA_ATTR_NO_WARN);
609                 if (unlikely(dma_mapping_error(vm->dma, addr)))
610                         goto free_page;
611
612                 if (unlikely(!IS_ALIGNED(addr, size)))
613                         goto unmap_page;
614
615                 vm->scratch_page.page = page;
616                 vm->scratch_page.daddr = addr;
617                 vm->scratch_page.order = order;
618                 return 0;
619
620 unmap_page:
621                 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
622 free_page:
623                 __free_pages(page, order);
624 skip:
625                 if (size == I915_GTT_PAGE_SIZE_4K)
626                         return -ENOMEM;
627
628                 size = I915_GTT_PAGE_SIZE_4K;
629                 gfp &= ~__GFP_NOWARN;
630         } while (1);
631 }
632
633 static void cleanup_scratch_page(struct i915_address_space *vm)
634 {
635         struct i915_page_dma *p = &vm->scratch_page;
636
637         dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
638                        PCI_DMA_BIDIRECTIONAL);
639         __free_pages(p->page, p->order);
640 }
641
642 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
643 {
644         struct i915_page_table *pt;
645
646         pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
647         if (unlikely(!pt))
648                 return ERR_PTR(-ENOMEM);
649
650         if (unlikely(setup_px(vm, pt))) {
651                 kfree(pt);
652                 return ERR_PTR(-ENOMEM);
653         }
654
655         pt->used_ptes = 0;
656         return pt;
657 }
658
659 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
660 {
661         cleanup_px(vm, pt);
662         kfree(pt);
663 }
664
665 static void gen8_initialize_pt(struct i915_address_space *vm,
666                                struct i915_page_table *pt)
667 {
668         fill_px(vm, pt, vm->scratch_pte);
669 }
670
671 static void gen6_initialize_pt(struct i915_address_space *vm,
672                                struct i915_page_table *pt)
673 {
674         fill32_px(vm, pt, vm->scratch_pte);
675 }
676
677 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
678 {
679         struct i915_page_directory *pd;
680
681         pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
682         if (unlikely(!pd))
683                 return ERR_PTR(-ENOMEM);
684
685         if (unlikely(setup_px(vm, pd))) {
686                 kfree(pd);
687                 return ERR_PTR(-ENOMEM);
688         }
689
690         pd->used_pdes = 0;
691         return pd;
692 }
693
694 static void free_pd(struct i915_address_space *vm,
695                     struct i915_page_directory *pd)
696 {
697         cleanup_px(vm, pd);
698         kfree(pd);
699 }
700
701 static void gen8_initialize_pd(struct i915_address_space *vm,
702                                struct i915_page_directory *pd)
703 {
704         fill_px(vm, pd,
705                 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
706         memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
707 }
708
709 static int __pdp_init(struct i915_address_space *vm,
710                       struct i915_page_directory_pointer *pdp)
711 {
712         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
713
714         pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
715                                             I915_GFP_ALLOW_FAIL);
716         if (unlikely(!pdp->page_directory))
717                 return -ENOMEM;
718
719         memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
720
721         return 0;
722 }
723
724 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
725 {
726         kfree(pdp->page_directory);
727         pdp->page_directory = NULL;
728 }
729
730 static inline bool use_4lvl(const struct i915_address_space *vm)
731 {
732         return i915_vm_is_48bit(vm);
733 }
734
735 static struct i915_page_directory_pointer *
736 alloc_pdp(struct i915_address_space *vm)
737 {
738         struct i915_page_directory_pointer *pdp;
739         int ret = -ENOMEM;
740
741         GEM_BUG_ON(!use_4lvl(vm));
742
743         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
744         if (!pdp)
745                 return ERR_PTR(-ENOMEM);
746
747         ret = __pdp_init(vm, pdp);
748         if (ret)
749                 goto fail_bitmap;
750
751         ret = setup_px(vm, pdp);
752         if (ret)
753                 goto fail_page_m;
754
755         return pdp;
756
757 fail_page_m:
758         __pdp_fini(pdp);
759 fail_bitmap:
760         kfree(pdp);
761
762         return ERR_PTR(ret);
763 }
764
765 static void free_pdp(struct i915_address_space *vm,
766                      struct i915_page_directory_pointer *pdp)
767 {
768         __pdp_fini(pdp);
769
770         if (!use_4lvl(vm))
771                 return;
772
773         cleanup_px(vm, pdp);
774         kfree(pdp);
775 }
776
777 static void gen8_initialize_pdp(struct i915_address_space *vm,
778                                 struct i915_page_directory_pointer *pdp)
779 {
780         gen8_ppgtt_pdpe_t scratch_pdpe;
781
782         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
783
784         fill_px(vm, pdp, scratch_pdpe);
785 }
786
787 static void gen8_initialize_pml4(struct i915_address_space *vm,
788                                  struct i915_pml4 *pml4)
789 {
790         fill_px(vm, pml4,
791                 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
792         memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
793 }
794
795 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
796  * the page table structures, we mark them dirty so that
797  * context switching/execlist queuing code takes extra steps
798  * to ensure that tlbs are flushed.
799  */
800 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
801 {
802         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
803 }
804
805 /* Removes entries from a single page table, releasing it if it's empty.
806  * Caller can use the return value to update higher-level entries.
807  */
808 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
809                                 struct i915_page_table *pt,
810                                 u64 start, u64 length)
811 {
812         unsigned int num_entries = gen8_pte_count(start, length);
813         unsigned int pte = gen8_pte_index(start);
814         unsigned int pte_end = pte + num_entries;
815         gen8_pte_t *vaddr;
816
817         GEM_BUG_ON(num_entries > pt->used_ptes);
818
819         pt->used_ptes -= num_entries;
820         if (!pt->used_ptes)
821                 return true;
822
823         vaddr = kmap_atomic_px(pt);
824         while (pte < pte_end)
825                 vaddr[pte++] = vm->scratch_pte;
826         kunmap_atomic(vaddr);
827
828         return false;
829 }
830
831 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
832                                struct i915_page_directory *pd,
833                                struct i915_page_table *pt,
834                                unsigned int pde)
835 {
836         gen8_pde_t *vaddr;
837
838         pd->page_table[pde] = pt;
839
840         vaddr = kmap_atomic_px(pd);
841         vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
842         kunmap_atomic(vaddr);
843 }
844
845 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
846                                 struct i915_page_directory *pd,
847                                 u64 start, u64 length)
848 {
849         struct i915_page_table *pt;
850         u32 pde;
851
852         gen8_for_each_pde(pt, pd, start, length, pde) {
853                 GEM_BUG_ON(pt == vm->scratch_pt);
854
855                 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
856                         continue;
857
858                 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
859                 GEM_BUG_ON(!pd->used_pdes);
860                 pd->used_pdes--;
861
862                 free_pt(vm, pt);
863         }
864
865         return !pd->used_pdes;
866 }
867
868 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
869                                 struct i915_page_directory_pointer *pdp,
870                                 struct i915_page_directory *pd,
871                                 unsigned int pdpe)
872 {
873         gen8_ppgtt_pdpe_t *vaddr;
874
875         pdp->page_directory[pdpe] = pd;
876         if (!use_4lvl(vm))
877                 return;
878
879         vaddr = kmap_atomic_px(pdp);
880         vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
881         kunmap_atomic(vaddr);
882 }
883
884 /* Removes entries from a single page dir pointer, releasing it if it's empty.
885  * Caller can use the return value to update higher-level entries
886  */
887 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
888                                  struct i915_page_directory_pointer *pdp,
889                                  u64 start, u64 length)
890 {
891         struct i915_page_directory *pd;
892         unsigned int pdpe;
893
894         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
895                 GEM_BUG_ON(pd == vm->scratch_pd);
896
897                 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
898                         continue;
899
900                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
901                 GEM_BUG_ON(!pdp->used_pdpes);
902                 pdp->used_pdpes--;
903
904                 free_pd(vm, pd);
905         }
906
907         return !pdp->used_pdpes;
908 }
909
910 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
911                                   u64 start, u64 length)
912 {
913         gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
914 }
915
916 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
917                                  struct i915_page_directory_pointer *pdp,
918                                  unsigned int pml4e)
919 {
920         gen8_ppgtt_pml4e_t *vaddr;
921
922         pml4->pdps[pml4e] = pdp;
923
924         vaddr = kmap_atomic_px(pml4);
925         vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
926         kunmap_atomic(vaddr);
927 }
928
929 /* Removes entries from a single pml4.
930  * This is the top-level structure in 4-level page tables used on gen8+.
931  * Empty entries are always scratch pml4e.
932  */
933 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
934                                   u64 start, u64 length)
935 {
936         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
937         struct i915_pml4 *pml4 = &ppgtt->pml4;
938         struct i915_page_directory_pointer *pdp;
939         unsigned int pml4e;
940
941         GEM_BUG_ON(!use_4lvl(vm));
942
943         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
944                 GEM_BUG_ON(pdp == vm->scratch_pdp);
945
946                 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
947                         continue;
948
949                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
950
951                 free_pdp(vm, pdp);
952         }
953 }
954
955 static inline struct sgt_dma {
956         struct scatterlist *sg;
957         dma_addr_t dma, max;
958 } sgt_dma(struct i915_vma *vma) {
959         struct scatterlist *sg = vma->pages->sgl;
960         dma_addr_t addr = sg_dma_address(sg);
961         return (struct sgt_dma) { sg, addr, addr + sg->length };
962 }
963
964 struct gen8_insert_pte {
965         u16 pml4e;
966         u16 pdpe;
967         u16 pde;
968         u16 pte;
969 };
970
971 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
972 {
973         return (struct gen8_insert_pte) {
974                  gen8_pml4e_index(start),
975                  gen8_pdpe_index(start),
976                  gen8_pde_index(start),
977                  gen8_pte_index(start),
978         };
979 }
980
981 static __always_inline bool
982 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
983                               struct i915_page_directory_pointer *pdp,
984                               struct sgt_dma *iter,
985                               struct gen8_insert_pte *idx,
986                               enum i915_cache_level cache_level,
987                               u32 flags)
988 {
989         struct i915_page_directory *pd;
990         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
991         gen8_pte_t *vaddr;
992         bool ret;
993
994         GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
995         pd = pdp->page_directory[idx->pdpe];
996         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
997         do {
998                 vaddr[idx->pte] = pte_encode | iter->dma;
999
1000                 iter->dma += I915_GTT_PAGE_SIZE;
1001                 if (iter->dma >= iter->max) {
1002                         iter->sg = __sg_next(iter->sg);
1003                         if (!iter->sg) {
1004                                 ret = false;
1005                                 break;
1006                         }
1007
1008                         iter->dma = sg_dma_address(iter->sg);
1009                         iter->max = iter->dma + iter->sg->length;
1010                 }
1011
1012                 if (++idx->pte == GEN8_PTES) {
1013                         idx->pte = 0;
1014
1015                         if (++idx->pde == I915_PDES) {
1016                                 idx->pde = 0;
1017
1018                                 /* Limited by sg length for 3lvl */
1019                                 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1020                                         idx->pdpe = 0;
1021                                         ret = true;
1022                                         break;
1023                                 }
1024
1025                                 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1026                                 pd = pdp->page_directory[idx->pdpe];
1027                         }
1028
1029                         kunmap_atomic(vaddr);
1030                         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1031                 }
1032         } while (1);
1033         kunmap_atomic(vaddr);
1034
1035         return ret;
1036 }
1037
1038 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1039                                    struct i915_vma *vma,
1040                                    enum i915_cache_level cache_level,
1041                                    u32 flags)
1042 {
1043         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1044         struct sgt_dma iter = sgt_dma(vma);
1045         struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1046
1047         gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1048                                       cache_level, flags);
1049
1050         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1051 }
1052
1053 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1054                                            struct i915_page_directory_pointer **pdps,
1055                                            struct sgt_dma *iter,
1056                                            enum i915_cache_level cache_level,
1057                                            u32 flags)
1058 {
1059         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1060         u64 start = vma->node.start;
1061         dma_addr_t rem = iter->sg->length;
1062
1063         do {
1064                 struct gen8_insert_pte idx = gen8_insert_pte(start);
1065                 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1066                 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1067                 unsigned int page_size;
1068                 bool maybe_64K = false;
1069                 gen8_pte_t encode = pte_encode;
1070                 gen8_pte_t *vaddr;
1071                 u16 index, max;
1072
1073                 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1074                     IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1075                     rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1076                         index = idx.pde;
1077                         max = I915_PDES;
1078                         page_size = I915_GTT_PAGE_SIZE_2M;
1079
1080                         encode |= GEN8_PDE_PS_2M;
1081
1082                         vaddr = kmap_atomic_px(pd);
1083                 } else {
1084                         struct i915_page_table *pt = pd->page_table[idx.pde];
1085
1086                         index = idx.pte;
1087                         max = GEN8_PTES;
1088                         page_size = I915_GTT_PAGE_SIZE;
1089
1090                         if (!index &&
1091                             vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1092                             IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1093                             (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1094                              rem >= (max - index) * I915_GTT_PAGE_SIZE))
1095                                 maybe_64K = true;
1096
1097                         vaddr = kmap_atomic_px(pt);
1098                 }
1099
1100                 do {
1101                         GEM_BUG_ON(iter->sg->length < page_size);
1102                         vaddr[index++] = encode | iter->dma;
1103
1104                         start += page_size;
1105                         iter->dma += page_size;
1106                         rem -= page_size;
1107                         if (iter->dma >= iter->max) {
1108                                 iter->sg = __sg_next(iter->sg);
1109                                 if (!iter->sg)
1110                                         break;
1111
1112                                 rem = iter->sg->length;
1113                                 iter->dma = sg_dma_address(iter->sg);
1114                                 iter->max = iter->dma + rem;
1115
1116                                 if (maybe_64K && index < max &&
1117                                     !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1118                                       (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1119                                        rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1120                                         maybe_64K = false;
1121
1122                                 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1123                                         break;
1124                         }
1125                 } while (rem >= page_size && index < max);
1126
1127                 kunmap_atomic(vaddr);
1128
1129                 /*
1130                  * Is it safe to mark the 2M block as 64K? -- Either we have
1131                  * filled whole page-table with 64K entries, or filled part of
1132                  * it and have reached the end of the sg table and we have
1133                  * enough padding.
1134                  */
1135                 if (maybe_64K &&
1136                     (index == max ||
1137                      (i915_vm_has_scratch_64K(vma->vm) &&
1138                       !iter->sg && IS_ALIGNED(vma->node.start +
1139                                               vma->node.size,
1140                                               I915_GTT_PAGE_SIZE_2M)))) {
1141                         vaddr = kmap_atomic_px(pd);
1142                         vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1143                         kunmap_atomic(vaddr);
1144                         page_size = I915_GTT_PAGE_SIZE_64K;
1145
1146                         /*
1147                          * We write all 4K page entries, even when using 64K
1148                          * pages. In order to verify that the HW isn't cheating
1149                          * by using the 4K PTE instead of the 64K PTE, we want
1150                          * to remove all the surplus entries. If the HW skipped
1151                          * the 64K PTE, it will read/write into the scratch page
1152                          * instead - which we detect as missing results during
1153                          * selftests.
1154                          */
1155                         if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1156                                 u16 i;
1157
1158                                 encode = vma->vm->scratch_pte;
1159                                 vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1160
1161                                 for (i = 1; i < index; i += 16)
1162                                         memset64(vaddr + i, encode, 15);
1163
1164                                 kunmap_atomic(vaddr);
1165                         }
1166                 }
1167
1168                 vma->page_sizes.gtt |= page_size;
1169         } while (iter->sg);
1170 }
1171
1172 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1173                                    struct i915_vma *vma,
1174                                    enum i915_cache_level cache_level,
1175                                    u32 flags)
1176 {
1177         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1178         struct sgt_dma iter = sgt_dma(vma);
1179         struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1180
1181         if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1182                 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1183                                                flags);
1184         } else {
1185                 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1186
1187                 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1188                                                      &iter, &idx, cache_level,
1189                                                      flags))
1190                         GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1191
1192                 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1193         }
1194 }
1195
1196 static void gen8_free_page_tables(struct i915_address_space *vm,
1197                                   struct i915_page_directory *pd)
1198 {
1199         int i;
1200
1201         for (i = 0; i < I915_PDES; i++) {
1202                 if (pd->page_table[i] != vm->scratch_pt)
1203                         free_pt(vm, pd->page_table[i]);
1204         }
1205 }
1206
1207 static int gen8_init_scratch(struct i915_address_space *vm)
1208 {
1209         int ret;
1210
1211         /*
1212          * If everybody agrees to not to write into the scratch page,
1213          * we can reuse it for all vm, keeping contexts and processes separate.
1214          */
1215         if (vm->has_read_only &&
1216             vm->i915->kernel_context &&
1217             vm->i915->kernel_context->ppgtt) {
1218                 struct i915_address_space *clone =
1219                         &vm->i915->kernel_context->ppgtt->vm;
1220
1221                 GEM_BUG_ON(!clone->has_read_only);
1222
1223                 vm->scratch_page.order = clone->scratch_page.order;
1224                 vm->scratch_pte = clone->scratch_pte;
1225                 vm->scratch_pt  = clone->scratch_pt;
1226                 vm->scratch_pd  = clone->scratch_pd;
1227                 vm->scratch_pdp = clone->scratch_pdp;
1228                 return 0;
1229         }
1230
1231         ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1232         if (ret)
1233                 return ret;
1234
1235         vm->scratch_pte =
1236                 gen8_pte_encode(vm->scratch_page.daddr,
1237                                 I915_CACHE_LLC,
1238                                 PTE_READ_ONLY);
1239
1240         vm->scratch_pt = alloc_pt(vm);
1241         if (IS_ERR(vm->scratch_pt)) {
1242                 ret = PTR_ERR(vm->scratch_pt);
1243                 goto free_scratch_page;
1244         }
1245
1246         vm->scratch_pd = alloc_pd(vm);
1247         if (IS_ERR(vm->scratch_pd)) {
1248                 ret = PTR_ERR(vm->scratch_pd);
1249                 goto free_pt;
1250         }
1251
1252         if (use_4lvl(vm)) {
1253                 vm->scratch_pdp = alloc_pdp(vm);
1254                 if (IS_ERR(vm->scratch_pdp)) {
1255                         ret = PTR_ERR(vm->scratch_pdp);
1256                         goto free_pd;
1257                 }
1258         }
1259
1260         gen8_initialize_pt(vm, vm->scratch_pt);
1261         gen8_initialize_pd(vm, vm->scratch_pd);
1262         if (use_4lvl(vm))
1263                 gen8_initialize_pdp(vm, vm->scratch_pdp);
1264
1265         return 0;
1266
1267 free_pd:
1268         free_pd(vm, vm->scratch_pd);
1269 free_pt:
1270         free_pt(vm, vm->scratch_pt);
1271 free_scratch_page:
1272         cleanup_scratch_page(vm);
1273
1274         return ret;
1275 }
1276
1277 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1278 {
1279         struct i915_address_space *vm = &ppgtt->vm;
1280         struct drm_i915_private *dev_priv = vm->i915;
1281         enum vgt_g2v_type msg;
1282         int i;
1283
1284         if (use_4lvl(vm)) {
1285                 const u64 daddr = px_dma(&ppgtt->pml4);
1286
1287                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1288                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1289
1290                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1291                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1292         } else {
1293                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1294                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1295
1296                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1297                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1298                 }
1299
1300                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1301                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1302         }
1303
1304         I915_WRITE(vgtif_reg(g2v_notify), msg);
1305
1306         return 0;
1307 }
1308
1309 static void gen8_free_scratch(struct i915_address_space *vm)
1310 {
1311         if (!vm->scratch_page.daddr)
1312                 return;
1313
1314         if (use_4lvl(vm))
1315                 free_pdp(vm, vm->scratch_pdp);
1316         free_pd(vm, vm->scratch_pd);
1317         free_pt(vm, vm->scratch_pt);
1318         cleanup_scratch_page(vm);
1319 }
1320
1321 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1322                                     struct i915_page_directory_pointer *pdp)
1323 {
1324         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1325         int i;
1326
1327         for (i = 0; i < pdpes; i++) {
1328                 if (pdp->page_directory[i] == vm->scratch_pd)
1329                         continue;
1330
1331                 gen8_free_page_tables(vm, pdp->page_directory[i]);
1332                 free_pd(vm, pdp->page_directory[i]);
1333         }
1334
1335         free_pdp(vm, pdp);
1336 }
1337
1338 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1339 {
1340         int i;
1341
1342         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1343                 if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1344                         continue;
1345
1346                 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1347         }
1348
1349         cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1350 }
1351
1352 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1353 {
1354         struct drm_i915_private *dev_priv = vm->i915;
1355         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1356
1357         if (intel_vgpu_active(dev_priv))
1358                 gen8_ppgtt_notify_vgt(ppgtt, false);
1359
1360         if (use_4lvl(vm))
1361                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1362         else
1363                 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1364
1365         gen8_free_scratch(vm);
1366 }
1367
1368 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1369                                struct i915_page_directory *pd,
1370                                u64 start, u64 length)
1371 {
1372         struct i915_page_table *pt;
1373         u64 from = start;
1374         unsigned int pde;
1375
1376         gen8_for_each_pde(pt, pd, start, length, pde) {
1377                 int count = gen8_pte_count(start, length);
1378
1379                 if (pt == vm->scratch_pt) {
1380                         pd->used_pdes++;
1381
1382                         pt = alloc_pt(vm);
1383                         if (IS_ERR(pt)) {
1384                                 pd->used_pdes--;
1385                                 goto unwind;
1386                         }
1387
1388                         if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1389                                 gen8_initialize_pt(vm, pt);
1390
1391                         gen8_ppgtt_set_pde(vm, pd, pt, pde);
1392                         GEM_BUG_ON(pd->used_pdes > I915_PDES);
1393                 }
1394
1395                 pt->used_ptes += count;
1396         }
1397         return 0;
1398
1399 unwind:
1400         gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1401         return -ENOMEM;
1402 }
1403
1404 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1405                                 struct i915_page_directory_pointer *pdp,
1406                                 u64 start, u64 length)
1407 {
1408         struct i915_page_directory *pd;
1409         u64 from = start;
1410         unsigned int pdpe;
1411         int ret;
1412
1413         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1414                 if (pd == vm->scratch_pd) {
1415                         pdp->used_pdpes++;
1416
1417                         pd = alloc_pd(vm);
1418                         if (IS_ERR(pd)) {
1419                                 pdp->used_pdpes--;
1420                                 goto unwind;
1421                         }
1422
1423                         gen8_initialize_pd(vm, pd);
1424                         gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1425                         GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1426
1427                         mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1428                 }
1429
1430                 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1431                 if (unlikely(ret))
1432                         goto unwind_pd;
1433         }
1434
1435         return 0;
1436
1437 unwind_pd:
1438         if (!pd->used_pdes) {
1439                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1440                 GEM_BUG_ON(!pdp->used_pdpes);
1441                 pdp->used_pdpes--;
1442                 free_pd(vm, pd);
1443         }
1444 unwind:
1445         gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1446         return -ENOMEM;
1447 }
1448
1449 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1450                                  u64 start, u64 length)
1451 {
1452         return gen8_ppgtt_alloc_pdp(vm,
1453                                     &i915_vm_to_ppgtt(vm)->pdp, start, length);
1454 }
1455
1456 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1457                                  u64 start, u64 length)
1458 {
1459         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1460         struct i915_pml4 *pml4 = &ppgtt->pml4;
1461         struct i915_page_directory_pointer *pdp;
1462         u64 from = start;
1463         u32 pml4e;
1464         int ret;
1465
1466         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1467                 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1468                         pdp = alloc_pdp(vm);
1469                         if (IS_ERR(pdp))
1470                                 goto unwind;
1471
1472                         gen8_initialize_pdp(vm, pdp);
1473                         gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1474                 }
1475
1476                 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1477                 if (unlikely(ret))
1478                         goto unwind_pdp;
1479         }
1480
1481         return 0;
1482
1483 unwind_pdp:
1484         if (!pdp->used_pdpes) {
1485                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1486                 free_pdp(vm, pdp);
1487         }
1488 unwind:
1489         gen8_ppgtt_clear_4lvl(vm, from, start - from);
1490         return -ENOMEM;
1491 }
1492
1493 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1494                           struct i915_page_directory_pointer *pdp,
1495                           u64 start, u64 length,
1496                           gen8_pte_t scratch_pte,
1497                           struct seq_file *m)
1498 {
1499         struct i915_address_space *vm = &ppgtt->vm;
1500         struct i915_page_directory *pd;
1501         u32 pdpe;
1502
1503         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1504                 struct i915_page_table *pt;
1505                 u64 pd_len = length;
1506                 u64 pd_start = start;
1507                 u32 pde;
1508
1509                 if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1510                         continue;
1511
1512                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1513                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1514                         u32 pte;
1515                         gen8_pte_t *pt_vaddr;
1516
1517                         if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1518                                 continue;
1519
1520                         pt_vaddr = kmap_atomic_px(pt);
1521                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1522                                 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1523                                           pde << GEN8_PDE_SHIFT |
1524                                           pte << GEN8_PTE_SHIFT);
1525                                 int i;
1526                                 bool found = false;
1527
1528                                 for (i = 0; i < 4; i++)
1529                                         if (pt_vaddr[pte + i] != scratch_pte)
1530                                                 found = true;
1531                                 if (!found)
1532                                         continue;
1533
1534                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1535                                 for (i = 0; i < 4; i++) {
1536                                         if (pt_vaddr[pte + i] != scratch_pte)
1537                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1538                                         else
1539                                                 seq_puts(m, "  SCRATCH ");
1540                                 }
1541                                 seq_puts(m, "\n");
1542                         }
1543                         kunmap_atomic(pt_vaddr);
1544                 }
1545         }
1546 }
1547
1548 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1549 {
1550         struct i915_address_space *vm = &ppgtt->vm;
1551         const gen8_pte_t scratch_pte = vm->scratch_pte;
1552         u64 start = 0, length = ppgtt->vm.total;
1553
1554         if (use_4lvl(vm)) {
1555                 u64 pml4e;
1556                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1557                 struct i915_page_directory_pointer *pdp;
1558
1559                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1560                         if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1561                                 continue;
1562
1563                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1564                         gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1565                 }
1566         } else {
1567                 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1568         }
1569 }
1570
1571 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1572 {
1573         struct i915_address_space *vm = &ppgtt->vm;
1574         struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1575         struct i915_page_directory *pd;
1576         u64 start = 0, length = ppgtt->vm.total;
1577         u64 from = start;
1578         unsigned int pdpe;
1579
1580         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1581                 pd = alloc_pd(vm);
1582                 if (IS_ERR(pd))
1583                         goto unwind;
1584
1585                 gen8_initialize_pd(vm, pd);
1586                 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1587                 pdp->used_pdpes++;
1588         }
1589
1590         pdp->used_pdpes++; /* never remove */
1591         return 0;
1592
1593 unwind:
1594         start -= from;
1595         gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1596                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1597                 free_pd(vm, pd);
1598         }
1599         pdp->used_pdpes = 0;
1600         return -ENOMEM;
1601 }
1602
1603 /*
1604  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1605  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1606  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1607  * space.
1608  *
1609  */
1610 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1611 {
1612         struct i915_hw_ppgtt *ppgtt;
1613         int err;
1614
1615         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1616         if (!ppgtt)
1617                 return ERR_PTR(-ENOMEM);
1618
1619         kref_init(&ppgtt->ref);
1620
1621         ppgtt->vm.i915 = i915;
1622         ppgtt->vm.dma = &i915->drm.pdev->dev;
1623
1624         ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1625                 1ULL << 48 :
1626                 1ULL << 32;
1627
1628         /* From bdw, there is support for read-only pages in the PPGTT. */
1629         ppgtt->vm.has_read_only = true;
1630
1631         i915_address_space_init(&ppgtt->vm, i915);
1632
1633         /* There are only few exceptions for gen >=6. chv and bxt.
1634          * And we are not sure about the latter so play safe for now.
1635          */
1636         if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1637                 ppgtt->vm.pt_kmap_wc = true;
1638
1639         err = gen8_init_scratch(&ppgtt->vm);
1640         if (err)
1641                 goto err_free;
1642
1643         if (use_4lvl(&ppgtt->vm)) {
1644                 err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1645                 if (err)
1646                         goto err_scratch;
1647
1648                 gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1649
1650                 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1651                 ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1652                 ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1653         } else {
1654                 err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1655                 if (err)
1656                         goto err_scratch;
1657
1658                 if (intel_vgpu_active(i915)) {
1659                         err = gen8_preallocate_top_level_pdp(ppgtt);
1660                         if (err) {
1661                                 __pdp_fini(&ppgtt->pdp);
1662                                 goto err_scratch;
1663                         }
1664                 }
1665
1666                 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1667                 ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1668                 ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1669         }
1670
1671         if (intel_vgpu_active(i915))
1672                 gen8_ppgtt_notify_vgt(ppgtt, true);
1673
1674         ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1675         ppgtt->debug_dump = gen8_dump_ppgtt;
1676
1677         ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1678         ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1679         ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1680         ppgtt->vm.vma_ops.clear_pages = clear_pages;
1681
1682         return ppgtt;
1683
1684 err_scratch:
1685         gen8_free_scratch(&ppgtt->vm);
1686 err_free:
1687         kfree(ppgtt);
1688         return ERR_PTR(err);
1689 }
1690
1691 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1692 {
1693         struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1694         const gen6_pte_t scratch_pte = base->vm.scratch_pte;
1695         struct i915_page_table *pt;
1696         u32 pte, pde;
1697
1698         gen6_for_all_pdes(pt, &base->pd, pde) {
1699                 gen6_pte_t *vaddr;
1700
1701                 if (pt == base->vm.scratch_pt)
1702                         continue;
1703
1704                 if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1705                         u32 expected =
1706                                 GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1707                                 GEN6_PDE_VALID;
1708                         u32 pd_entry = readl(ppgtt->pd_addr + pde);
1709
1710                         if (pd_entry != expected)
1711                                 seq_printf(m,
1712                                            "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1713                                            pde,
1714                                            pd_entry,
1715                                            expected);
1716
1717                         seq_printf(m, "\tPDE: %x\n", pd_entry);
1718                 }
1719
1720                 vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1721                 for (pte = 0; pte < GEN6_PTES; pte += 4) {
1722                         int i;
1723
1724                         for (i = 0; i < 4; i++)
1725                                 if (vaddr[pte + i] != scratch_pte)
1726                                         break;
1727                         if (i == 4)
1728                                 continue;
1729
1730                         seq_printf(m, "\t\t(%03d, %04d) %08llx: ",
1731                                    pde, pte,
1732                                    (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
1733                         for (i = 0; i < 4; i++) {
1734                                 if (vaddr[pte + i] != scratch_pte)
1735                                         seq_printf(m, " %08x", vaddr[pte + i]);
1736                                 else
1737                                         seq_puts(m, "  SCRATCH");
1738                         }
1739                         seq_puts(m, "\n");
1740                 }
1741                 kunmap_atomic(vaddr);
1742         }
1743 }
1744
1745 /* Write pde (index) from the page directory @pd to the page table @pt */
1746 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1747                                   const unsigned int pde,
1748                                   const struct i915_page_table *pt)
1749 {
1750         /* Caller needs to make sure the write completes if necessary */
1751         iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1752                   ppgtt->pd_addr + pde);
1753 }
1754
1755 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1756 {
1757         struct intel_engine_cs *engine;
1758         u32 ecochk, ecobits;
1759         enum intel_engine_id id;
1760
1761         ecobits = I915_READ(GAC_ECO_BITS);
1762         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1763
1764         ecochk = I915_READ(GAM_ECOCHK);
1765         if (IS_HASWELL(dev_priv)) {
1766                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1767         } else {
1768                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1769                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1770         }
1771         I915_WRITE(GAM_ECOCHK, ecochk);
1772
1773         for_each_engine(engine, dev_priv, id) {
1774                 /* GFX_MODE is per-ring on gen7+ */
1775                 I915_WRITE(RING_MODE_GEN7(engine),
1776                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1777         }
1778 }
1779
1780 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1781 {
1782         u32 ecochk, gab_ctl, ecobits;
1783
1784         ecobits = I915_READ(GAC_ECO_BITS);
1785         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1786                    ECOBITS_PPGTT_CACHE64B);
1787
1788         gab_ctl = I915_READ(GAB_CTL);
1789         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1790
1791         ecochk = I915_READ(GAM_ECOCHK);
1792         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1793
1794         if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
1795                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1796 }
1797
1798 /* PPGTT support for Sandybdrige/Gen6 and later */
1799 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1800                                    u64 start, u64 length)
1801 {
1802         struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1803         unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1804         unsigned int pde = first_entry / GEN6_PTES;
1805         unsigned int pte = first_entry % GEN6_PTES;
1806         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1807         const gen6_pte_t scratch_pte = vm->scratch_pte;
1808
1809         while (num_entries) {
1810                 struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1811                 const unsigned int end = min(pte + num_entries, GEN6_PTES);
1812                 const unsigned int count = end - pte;
1813                 gen6_pte_t *vaddr;
1814
1815                 GEM_BUG_ON(pt == vm->scratch_pt);
1816
1817                 num_entries -= count;
1818
1819                 GEM_BUG_ON(count > pt->used_ptes);
1820                 pt->used_ptes -= count;
1821                 if (!pt->used_ptes)
1822                         ppgtt->scan_for_unused_pt = true;
1823
1824                 /*
1825                  * Note that the hw doesn't support removing PDE on the fly
1826                  * (they are cached inside the context with no means to
1827                  * invalidate the cache), so we can only reset the PTE
1828                  * entries back to scratch.
1829                  */
1830
1831                 vaddr = kmap_atomic_px(pt);
1832                 do {
1833                         vaddr[pte++] = scratch_pte;
1834                 } while (pte < end);
1835                 kunmap_atomic(vaddr);
1836
1837                 pte = 0;
1838         }
1839 }
1840
1841 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1842                                       struct i915_vma *vma,
1843                                       enum i915_cache_level cache_level,
1844                                       u32 flags)
1845 {
1846         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1847         unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1848         unsigned act_pt = first_entry / GEN6_PTES;
1849         unsigned act_pte = first_entry % GEN6_PTES;
1850         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1851         struct sgt_dma iter = sgt_dma(vma);
1852         gen6_pte_t *vaddr;
1853
1854         GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1855
1856         vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1857         do {
1858                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1859
1860                 iter.dma += I915_GTT_PAGE_SIZE;
1861                 if (iter.dma == iter.max) {
1862                         iter.sg = __sg_next(iter.sg);
1863                         if (!iter.sg)
1864                                 break;
1865
1866                         iter.dma = sg_dma_address(iter.sg);
1867                         iter.max = iter.dma + iter.sg->length;
1868                 }
1869
1870                 if (++act_pte == GEN6_PTES) {
1871                         kunmap_atomic(vaddr);
1872                         vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1873                         act_pte = 0;
1874                 }
1875         } while (1);
1876         kunmap_atomic(vaddr);
1877
1878         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1879 }
1880
1881 static int gen6_alloc_va_range(struct i915_address_space *vm,
1882                                u64 start, u64 length)
1883 {
1884         struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1885         struct i915_page_table *pt;
1886         u64 from = start;
1887         unsigned int pde;
1888         bool flush = false;
1889
1890         gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1891                 const unsigned int count = gen6_pte_count(start, length);
1892
1893                 if (pt == vm->scratch_pt) {
1894                         pt = alloc_pt(vm);
1895                         if (IS_ERR(pt))
1896                                 goto unwind_out;
1897
1898                         gen6_initialize_pt(vm, pt);
1899                         ppgtt->base.pd.page_table[pde] = pt;
1900
1901                         if (i915_vma_is_bound(ppgtt->vma,
1902                                               I915_VMA_GLOBAL_BIND)) {
1903                                 gen6_write_pde(ppgtt, pde, pt);
1904                                 flush = true;
1905                         }
1906
1907                         GEM_BUG_ON(pt->used_ptes);
1908                 }
1909
1910                 pt->used_ptes += count;
1911         }
1912
1913         if (flush) {
1914                 mark_tlbs_dirty(&ppgtt->base);
1915                 gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1916         }
1917
1918         return 0;
1919
1920 unwind_out:
1921         gen6_ppgtt_clear_range(vm, from, start - from);
1922         return -ENOMEM;
1923 }
1924
1925 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1926 {
1927         struct i915_address_space * const vm = &ppgtt->base.vm;
1928         struct i915_page_table *unused;
1929         u32 pde;
1930         int ret;
1931
1932         ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1933         if (ret)
1934                 return ret;
1935
1936         vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1937                                          I915_CACHE_NONE,
1938                                          PTE_READ_ONLY);
1939
1940         vm->scratch_pt = alloc_pt(vm);
1941         if (IS_ERR(vm->scratch_pt)) {
1942                 cleanup_scratch_page(vm);
1943                 return PTR_ERR(vm->scratch_pt);
1944         }
1945
1946         gen6_initialize_pt(vm, vm->scratch_pt);
1947         gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
1948                 ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1949
1950         return 0;
1951 }
1952
1953 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1954 {
1955         free_pt(vm, vm->scratch_pt);
1956         cleanup_scratch_page(vm);
1957 }
1958
1959 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1960 {
1961         struct i915_page_table *pt;
1962         u32 pde;
1963
1964         gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1965                 if (pt != ppgtt->base.vm.scratch_pt)
1966                         free_pt(&ppgtt->base.vm, pt);
1967 }
1968
1969 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1970 {
1971         struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1972
1973         i915_vma_destroy(ppgtt->vma);
1974
1975         gen6_ppgtt_free_pd(ppgtt);
1976         gen6_ppgtt_free_scratch(vm);
1977 }
1978
1979 static int pd_vma_set_pages(struct i915_vma *vma)
1980 {
1981         vma->pages = ERR_PTR(-ENODEV);
1982         return 0;
1983 }
1984
1985 static void pd_vma_clear_pages(struct i915_vma *vma)
1986 {
1987         GEM_BUG_ON(!vma->pages);
1988
1989         vma->pages = NULL;
1990 }
1991
1992 static int pd_vma_bind(struct i915_vma *vma,
1993                        enum i915_cache_level cache_level,
1994                        u32 unused)
1995 {
1996         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1997         struct gen6_hw_ppgtt *ppgtt = vma->private;
1998         u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1999         struct i915_page_table *pt;
2000         unsigned int pde;
2001
2002         ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2003         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2004
2005         gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2006                 gen6_write_pde(ppgtt, pde, pt);
2007
2008         mark_tlbs_dirty(&ppgtt->base);
2009         gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2010
2011         return 0;
2012 }
2013
2014 static void pd_vma_unbind(struct i915_vma *vma)
2015 {
2016         struct gen6_hw_ppgtt *ppgtt = vma->private;
2017         struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2018         struct i915_page_table *pt;
2019         unsigned int pde;
2020
2021         if (!ppgtt->scan_for_unused_pt)
2022                 return;
2023
2024         /* Free all no longer used page tables */
2025         gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2026                 if (pt->used_ptes || pt == scratch_pt)
2027                         continue;
2028
2029                 free_pt(&ppgtt->base.vm, pt);
2030                 ppgtt->base.pd.page_table[pde] = scratch_pt;
2031         }
2032
2033         ppgtt->scan_for_unused_pt = false;
2034 }
2035
2036 static const struct i915_vma_ops pd_vma_ops = {
2037         .set_pages = pd_vma_set_pages,
2038         .clear_pages = pd_vma_clear_pages,
2039         .bind_vma = pd_vma_bind,
2040         .unbind_vma = pd_vma_unbind,
2041 };
2042
2043 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2044 {
2045         struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2046         struct i915_ggtt *ggtt = &i915->ggtt;
2047         struct i915_vma *vma;
2048
2049         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2050         GEM_BUG_ON(size > ggtt->vm.total);
2051
2052         vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2053         if (!vma)
2054                 return ERR_PTR(-ENOMEM);
2055
2056         init_request_active(&vma->last_fence, NULL);
2057
2058         vma->vm = &ggtt->vm;
2059         vma->ops = &pd_vma_ops;
2060         vma->private = ppgtt;
2061
2062         vma->active = RB_ROOT;
2063
2064         vma->size = size;
2065         vma->fence_size = size;
2066         vma->flags = I915_VMA_GGTT;
2067         vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2068
2069         INIT_LIST_HEAD(&vma->obj_link);
2070         list_add(&vma->vm_link, &vma->vm->unbound_list);
2071
2072         return vma;
2073 }
2074
2075 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2076 {
2077         struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2078
2079         /*
2080          * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2081          * which will be pinned into every active context.
2082          * (When vma->pin_count becomes atomic, I expect we will naturally
2083          * need a larger, unpacked, type and kill this redundancy.)
2084          */
2085         if (ppgtt->pin_count++)
2086                 return 0;
2087
2088         /*
2089          * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2090          * allocator works in address space sizes, so it's multiplied by page
2091          * size. We allocate at the top of the GTT to avoid fragmentation.
2092          */
2093         return i915_vma_pin(ppgtt->vma,
2094                             0, GEN6_PD_ALIGN,
2095                             PIN_GLOBAL | PIN_HIGH);
2096 }
2097
2098 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2099 {
2100         struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2101
2102         GEM_BUG_ON(!ppgtt->pin_count);
2103         if (--ppgtt->pin_count)
2104                 return;
2105
2106         i915_vma_unpin(ppgtt->vma);
2107 }
2108
2109 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2110 {
2111         struct i915_ggtt * const ggtt = &i915->ggtt;
2112         struct gen6_hw_ppgtt *ppgtt;
2113         int err;
2114
2115         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2116         if (!ppgtt)
2117                 return ERR_PTR(-ENOMEM);
2118
2119         kref_init(&ppgtt->base.ref);
2120
2121         ppgtt->base.vm.i915 = i915;
2122         ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2123
2124         ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2125
2126         i915_address_space_init(&ppgtt->base.vm, i915);
2127
2128         ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2129         ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2130         ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2131         ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2132         ppgtt->base.debug_dump = gen6_dump_ppgtt;
2133
2134         ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2135         ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
2136         ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
2137         ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2138
2139         ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2140
2141         err = gen6_ppgtt_init_scratch(ppgtt);
2142         if (err)
2143                 goto err_free;
2144
2145         ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2146         if (IS_ERR(ppgtt->vma)) {
2147                 err = PTR_ERR(ppgtt->vma);
2148                 goto err_scratch;
2149         }
2150
2151         return &ppgtt->base;
2152
2153 err_scratch:
2154         gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2155 err_free:
2156         kfree(ppgtt);
2157         return ERR_PTR(err);
2158 }
2159
2160 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2161 {
2162         /* This function is for gtt related workarounds. This function is
2163          * called on driver load and after a GPU reset, so you can place
2164          * workarounds here even if they get overwritten by GPU reset.
2165          */
2166         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2167         if (IS_BROADWELL(dev_priv))
2168                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2169         else if (IS_CHERRYVIEW(dev_priv))
2170                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2171         else if (IS_GEN9_LP(dev_priv))
2172                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2173         else if (INTEL_GEN(dev_priv) >= 9)
2174                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2175
2176         /*
2177          * To support 64K PTEs we need to first enable the use of the
2178          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2179          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2180          * shouldn't be needed after GEN10.
2181          *
2182          * 64K pages were first introduced from BDW+, although technically they
2183          * only *work* from gen9+. For pre-BDW we instead have the option for
2184          * 32K pages, but we don't currently have any support for it in our
2185          * driver.
2186          */
2187         if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2188             INTEL_GEN(dev_priv) <= 10)
2189                 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2190                            I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2191                            GAMW_ECO_ENABLE_64K_IPS_FIELD);
2192 }
2193
2194 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2195 {
2196         gtt_write_workarounds(dev_priv);
2197
2198         if (IS_GEN6(dev_priv))
2199                 gen6_ppgtt_enable(dev_priv);
2200         else if (IS_GEN7(dev_priv))
2201                 gen7_ppgtt_enable(dev_priv);
2202
2203         return 0;
2204 }
2205
2206 static struct i915_hw_ppgtt *
2207 __hw_ppgtt_create(struct drm_i915_private *i915)
2208 {
2209         if (INTEL_GEN(i915) < 8)
2210                 return gen6_ppgtt_create(i915);
2211         else
2212                 return gen8_ppgtt_create(i915);
2213 }
2214
2215 struct i915_hw_ppgtt *
2216 i915_ppgtt_create(struct drm_i915_private *i915,
2217                   struct drm_i915_file_private *fpriv)
2218 {
2219         struct i915_hw_ppgtt *ppgtt;
2220
2221         ppgtt = __hw_ppgtt_create(i915);
2222         if (IS_ERR(ppgtt))
2223                 return ppgtt;
2224
2225         ppgtt->vm.file = fpriv;
2226
2227         trace_i915_ppgtt_create(&ppgtt->vm);
2228
2229         return ppgtt;
2230 }
2231
2232 void i915_ppgtt_close(struct i915_address_space *vm)
2233 {
2234         GEM_BUG_ON(vm->closed);
2235         vm->closed = true;
2236 }
2237
2238 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2239 {
2240         struct list_head *phases[] = {
2241                 &vm->active_list,
2242                 &vm->inactive_list,
2243                 &vm->unbound_list,
2244                 NULL,
2245         }, **phase;
2246
2247         vm->closed = true;
2248         for (phase = phases; *phase; phase++) {
2249                 struct i915_vma *vma, *vn;
2250
2251                 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2252                         i915_vma_destroy(vma);
2253         }
2254 }
2255
2256 void i915_ppgtt_release(struct kref *kref)
2257 {
2258         struct i915_hw_ppgtt *ppgtt =
2259                 container_of(kref, struct i915_hw_ppgtt, ref);
2260
2261         trace_i915_ppgtt_release(&ppgtt->vm);
2262
2263         ppgtt_destroy_vma(&ppgtt->vm);
2264
2265         GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2266         GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2267         GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2268
2269         ppgtt->vm.cleanup(&ppgtt->vm);
2270         i915_address_space_fini(&ppgtt->vm);
2271         kfree(ppgtt);
2272 }
2273
2274 /* Certain Gen5 chipsets require require idling the GPU before
2275  * unmapping anything from the GTT when VT-d is enabled.
2276  */
2277 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2278 {
2279         /* Query intel_iommu to see if we need the workaround. Presumably that
2280          * was loaded first.
2281          */
2282         return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2283 }
2284
2285 static void gen6_check_faults(struct drm_i915_private *dev_priv)
2286 {
2287         struct intel_engine_cs *engine;
2288         enum intel_engine_id id;
2289         u32 fault;
2290
2291         for_each_engine(engine, dev_priv, id) {
2292                 fault = I915_READ(RING_FAULT_REG(engine));
2293                 if (fault & RING_FAULT_VALID) {
2294                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2295                                          "\tAddr: 0x%08lx\n"
2296                                          "\tAddress space: %s\n"
2297                                          "\tSource ID: %d\n"
2298                                          "\tType: %d\n",
2299                                          fault & PAGE_MASK,
2300                                          fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2301                                          RING_FAULT_SRCID(fault),
2302                                          RING_FAULT_FAULT_TYPE(fault));
2303                 }
2304         }
2305 }
2306
2307 static void gen8_check_faults(struct drm_i915_private *dev_priv)
2308 {
2309         u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2310
2311         if (fault & RING_FAULT_VALID) {
2312                 u32 fault_data0, fault_data1;
2313                 u64 fault_addr;
2314
2315                 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2316                 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2317                 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2318                              ((u64)fault_data0 << 12);
2319
2320                 DRM_DEBUG_DRIVER("Unexpected fault\n"
2321                                  "\tAddr: 0x%08x_%08x\n"
2322                                  "\tAddress space: %s\n"
2323                                  "\tEngine ID: %d\n"
2324                                  "\tSource ID: %d\n"
2325                                  "\tType: %d\n",
2326                                  upper_32_bits(fault_addr),
2327                                  lower_32_bits(fault_addr),
2328                                  fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2329                                  GEN8_RING_FAULT_ENGINE_ID(fault),
2330                                  RING_FAULT_SRCID(fault),
2331                                  RING_FAULT_FAULT_TYPE(fault));
2332         }
2333 }
2334
2335 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2336 {
2337         /* From GEN8 onwards we only have one 'All Engine Fault Register' */
2338         if (INTEL_GEN(dev_priv) >= 8)
2339                 gen8_check_faults(dev_priv);
2340         else if (INTEL_GEN(dev_priv) >= 6)
2341                 gen6_check_faults(dev_priv);
2342         else
2343                 return;
2344
2345         i915_clear_error_registers(dev_priv);
2346 }
2347
2348 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2349 {
2350         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2351
2352         /* Don't bother messing with faults pre GEN6 as we have little
2353          * documentation supporting that it's a good idea.
2354          */
2355         if (INTEL_GEN(dev_priv) < 6)
2356                 return;
2357
2358         i915_check_and_clear_faults(dev_priv);
2359
2360         ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2361
2362         i915_ggtt_invalidate(dev_priv);
2363 }
2364
2365 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2366                                struct sg_table *pages)
2367 {
2368         do {
2369                 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2370                                      pages->sgl, pages->nents,
2371                                      PCI_DMA_BIDIRECTIONAL,
2372                                      DMA_ATTR_NO_WARN))
2373                         return 0;
2374
2375                 /* If the DMA remap fails, one cause can be that we have
2376                  * too many objects pinned in a small remapping table,
2377                  * such as swiotlb. Incrementally purge all other objects and
2378                  * try again - if there are no more pages to remove from
2379                  * the DMA remapper, i915_gem_shrink will return 0.
2380                  */
2381                 GEM_BUG_ON(obj->mm.pages == pages);
2382         } while (i915_gem_shrink(to_i915(obj->base.dev),
2383                                  obj->base.size >> PAGE_SHIFT, NULL,
2384                                  I915_SHRINK_BOUND |
2385                                  I915_SHRINK_UNBOUND |
2386                                  I915_SHRINK_ACTIVE));
2387
2388         return -ENOSPC;
2389 }
2390
2391 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2392 {
2393         writeq(pte, addr);
2394 }
2395
2396 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2397                                   dma_addr_t addr,
2398                                   u64 offset,
2399                                   enum i915_cache_level level,
2400                                   u32 unused)
2401 {
2402         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2403         gen8_pte_t __iomem *pte =
2404                 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2405
2406         gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2407
2408         ggtt->invalidate(vm->i915);
2409 }
2410
2411 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2412                                      struct i915_vma *vma,
2413                                      enum i915_cache_level level,
2414                                      u32 flags)
2415 {
2416         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2417         struct sgt_iter sgt_iter;
2418         gen8_pte_t __iomem *gtt_entries;
2419         const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2420         dma_addr_t addr;
2421
2422         /*
2423          * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2424          * not to allow the user to override access to a read only page.
2425          */
2426
2427         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2428         gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2429         for_each_sgt_dma(addr, sgt_iter, vma->pages)
2430                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2431
2432         /*
2433          * We want to flush the TLBs only after we're certain all the PTE
2434          * updates have finished.
2435          */
2436         ggtt->invalidate(vm->i915);
2437 }
2438
2439 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2440                                   dma_addr_t addr,
2441                                   u64 offset,
2442                                   enum i915_cache_level level,
2443                                   u32 flags)
2444 {
2445         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2446         gen6_pte_t __iomem *pte =
2447                 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2448
2449         iowrite32(vm->pte_encode(addr, level, flags), pte);
2450
2451         ggtt->invalidate(vm->i915);
2452 }
2453
2454 /*
2455  * Binds an object into the global gtt with the specified cache level. The object
2456  * will be accessible to the GPU via commands whose operands reference offsets
2457  * within the global GTT as well as accessible by the GPU through the GMADR
2458  * mapped BAR (dev_priv->mm.gtt->gtt).
2459  */
2460 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2461                                      struct i915_vma *vma,
2462                                      enum i915_cache_level level,
2463                                      u32 flags)
2464 {
2465         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2466         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2467         unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2468         struct sgt_iter iter;
2469         dma_addr_t addr;
2470         for_each_sgt_dma(addr, iter, vma->pages)
2471                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2472
2473         /*
2474          * We want to flush the TLBs only after we're certain all the PTE
2475          * updates have finished.
2476          */
2477         ggtt->invalidate(vm->i915);
2478 }
2479
2480 static void nop_clear_range(struct i915_address_space *vm,
2481                             u64 start, u64 length)
2482 {
2483 }
2484
2485 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2486                                   u64 start, u64 length)
2487 {
2488         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2489         unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2490         unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2491         const gen8_pte_t scratch_pte = vm->scratch_pte;
2492         gen8_pte_t __iomem *gtt_base =
2493                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2494         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2495         int i;
2496
2497         if (WARN(num_entries > max_entries,
2498                  "First entry = %d; Num entries = %d (max=%d)\n",
2499                  first_entry, num_entries, max_entries))
2500                 num_entries = max_entries;
2501
2502         for (i = 0; i < num_entries; i++)
2503                 gen8_set_pte(&gtt_base[i], scratch_pte);
2504 }
2505
2506 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2507 {
2508         struct drm_i915_private *dev_priv = vm->i915;
2509
2510         /*
2511          * Make sure the internal GAM fifo has been cleared of all GTT
2512          * writes before exiting stop_machine(). This guarantees that
2513          * any aperture accesses waiting to start in another process
2514          * cannot back up behind the GTT writes causing a hang.
2515          * The register can be any arbitrary GAM register.
2516          */
2517         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2518 }
2519
2520 struct insert_page {
2521         struct i915_address_space *vm;
2522         dma_addr_t addr;
2523         u64 offset;
2524         enum i915_cache_level level;
2525 };
2526
2527 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2528 {
2529         struct insert_page *arg = _arg;
2530
2531         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2532         bxt_vtd_ggtt_wa(arg->vm);
2533
2534         return 0;
2535 }
2536
2537 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2538                                           dma_addr_t addr,
2539                                           u64 offset,
2540                                           enum i915_cache_level level,
2541                                           u32 unused)
2542 {
2543         struct insert_page arg = { vm, addr, offset, level };
2544
2545         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2546 }
2547
2548 struct insert_entries {
2549         struct i915_address_space *vm;
2550         struct i915_vma *vma;
2551         enum i915_cache_level level;
2552         u32 flags;
2553 };
2554
2555 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2556 {
2557         struct insert_entries *arg = _arg;
2558
2559         gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2560         bxt_vtd_ggtt_wa(arg->vm);
2561
2562         return 0;
2563 }
2564
2565 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2566                                              struct i915_vma *vma,
2567                                              enum i915_cache_level level,
2568                                              u32 flags)
2569 {
2570         struct insert_entries arg = { vm, vma, level, flags };
2571
2572         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2573 }
2574
2575 struct clear_range {
2576         struct i915_address_space *vm;
2577         u64 start;
2578         u64 length;
2579 };
2580
2581 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2582 {
2583         struct clear_range *arg = _arg;
2584
2585         gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2586         bxt_vtd_ggtt_wa(arg->vm);
2587
2588         return 0;
2589 }
2590
2591 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2592                                           u64 start,
2593                                           u64 length)
2594 {
2595         struct clear_range arg = { vm, start, length };
2596
2597         stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2598 }
2599
2600 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2601                                   u64 start, u64 length)
2602 {
2603         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2604         unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2605         unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2606         gen6_pte_t scratch_pte, __iomem *gtt_base =
2607                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2608         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2609         int i;
2610
2611         if (WARN(num_entries > max_entries,
2612                  "First entry = %d; Num entries = %d (max=%d)\n",
2613                  first_entry, num_entries, max_entries))
2614                 num_entries = max_entries;
2615
2616         scratch_pte = vm->scratch_pte;
2617
2618         for (i = 0; i < num_entries; i++)
2619                 iowrite32(scratch_pte, &gtt_base[i]);
2620 }
2621
2622 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2623                                   dma_addr_t addr,
2624                                   u64 offset,
2625                                   enum i915_cache_level cache_level,
2626                                   u32 unused)
2627 {
2628         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2629                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2630
2631         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2632 }
2633
2634 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2635                                      struct i915_vma *vma,
2636                                      enum i915_cache_level cache_level,
2637                                      u32 unused)
2638 {
2639         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2640                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2641
2642         intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2643                                     flags);
2644 }
2645
2646 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2647                                   u64 start, u64 length)
2648 {
2649         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2650 }
2651
2652 static int ggtt_bind_vma(struct i915_vma *vma,
2653                          enum i915_cache_level cache_level,
2654                          u32 flags)
2655 {
2656         struct drm_i915_private *i915 = vma->vm->i915;
2657         struct drm_i915_gem_object *obj = vma->obj;
2658         u32 pte_flags;
2659
2660         /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2661         pte_flags = 0;
2662         if (i915_gem_object_is_readonly(obj))
2663                 pte_flags |= PTE_READ_ONLY;
2664
2665         intel_runtime_pm_get(i915);
2666         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2667         intel_runtime_pm_put(i915);
2668
2669         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2670
2671         /*
2672          * Without aliasing PPGTT there's no difference between
2673          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2674          * upgrade to both bound if we bind either to avoid double-binding.
2675          */
2676         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2677
2678         return 0;
2679 }
2680
2681 static void ggtt_unbind_vma(struct i915_vma *vma)
2682 {
2683         struct drm_i915_private *i915 = vma->vm->i915;
2684
2685         intel_runtime_pm_get(i915);
2686         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2687         intel_runtime_pm_put(i915);
2688 }
2689
2690 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2691                                  enum i915_cache_level cache_level,
2692                                  u32 flags)
2693 {
2694         struct drm_i915_private *i915 = vma->vm->i915;
2695         u32 pte_flags;
2696         int ret;
2697
2698         /* Currently applicable only to VLV */
2699         pte_flags = 0;
2700         if (i915_gem_object_is_readonly(vma->obj))
2701                 pte_flags |= PTE_READ_ONLY;
2702
2703         if (flags & I915_VMA_LOCAL_BIND) {
2704                 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2705
2706                 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2707                         ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2708                                                            vma->node.start,
2709                                                            vma->size);
2710                         if (ret)
2711                                 return ret;
2712                 }
2713
2714                 appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2715                                           pte_flags);
2716         }
2717
2718         if (flags & I915_VMA_GLOBAL_BIND) {
2719                 intel_runtime_pm_get(i915);
2720                 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2721                 intel_runtime_pm_put(i915);
2722         }
2723
2724         return 0;
2725 }
2726
2727 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2728 {
2729         struct drm_i915_private *i915 = vma->vm->i915;
2730
2731         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2732                 intel_runtime_pm_get(i915);
2733                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2734                 intel_runtime_pm_put(i915);
2735         }
2736
2737         if (vma->flags & I915_VMA_LOCAL_BIND) {
2738                 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2739
2740                 vm->clear_range(vm, vma->node.start, vma->size);
2741         }
2742 }
2743
2744 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2745                                struct sg_table *pages)
2746 {
2747         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2748         struct device *kdev = &dev_priv->drm.pdev->dev;
2749         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2750
2751         if (unlikely(ggtt->do_idle_maps)) {
2752                 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2753                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2754                         /* Wait a bit, in hopes it avoids the hang */
2755                         udelay(10);
2756                 }
2757         }
2758
2759         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2760 }
2761
2762 static int ggtt_set_pages(struct i915_vma *vma)
2763 {
2764         int ret;
2765
2766         GEM_BUG_ON(vma->pages);
2767
2768         ret = i915_get_ggtt_vma_pages(vma);
2769         if (ret)
2770                 return ret;
2771
2772         vma->page_sizes = vma->obj->mm.page_sizes;
2773
2774         return 0;
2775 }
2776
2777 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2778                                   unsigned long color,
2779                                   u64 *start,
2780                                   u64 *end)
2781 {
2782         if (node->allocated && node->color != color)
2783                 *start += I915_GTT_PAGE_SIZE;
2784
2785         /* Also leave a space between the unallocated reserved node after the
2786          * GTT and any objects within the GTT, i.e. we use the color adjustment
2787          * to insert a guard page to prevent prefetches crossing over the
2788          * GTT boundary.
2789          */
2790         node = list_next_entry(node, node_list);
2791         if (node->color != color)
2792                 *end -= I915_GTT_PAGE_SIZE;
2793 }
2794
2795 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2796 {
2797         struct i915_ggtt *ggtt = &i915->ggtt;
2798         struct i915_hw_ppgtt *ppgtt;
2799         int err;
2800
2801         ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2802         if (IS_ERR(ppgtt))
2803                 return PTR_ERR(ppgtt);
2804
2805         if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2806                 err = -ENODEV;
2807                 goto err_ppgtt;
2808         }
2809
2810         /*
2811          * Note we only pre-allocate as far as the end of the global
2812          * GTT. On 48b / 4-level page-tables, the difference is very,
2813          * very significant! We have to preallocate as GVT/vgpu does
2814          * not like the page directory disappearing.
2815          */
2816         err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2817         if (err)
2818                 goto err_ppgtt;
2819
2820         i915->mm.aliasing_ppgtt = ppgtt;
2821
2822         GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2823         ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2824
2825         GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2826         ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2827
2828         return 0;
2829
2830 err_ppgtt:
2831         i915_ppgtt_put(ppgtt);
2832         return err;
2833 }
2834
2835 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2836 {
2837         struct i915_ggtt *ggtt = &i915->ggtt;
2838         struct i915_hw_ppgtt *ppgtt;
2839
2840         ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2841         if (!ppgtt)
2842                 return;
2843
2844         i915_ppgtt_put(ppgtt);
2845
2846         ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2847         ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2848 }
2849
2850 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2851 {
2852         /* Let GEM Manage all of the aperture.
2853          *
2854          * However, leave one page at the end still bound to the scratch page.
2855          * There are a number of places where the hardware apparently prefetches
2856          * past the end of the object, and we've seen multiple hangs with the
2857          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2858          * aperture.  One page should be enough to keep any prefetching inside
2859          * of the aperture.
2860          */
2861         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2862         unsigned long hole_start, hole_end;
2863         struct drm_mm_node *entry;
2864         int ret;
2865
2866         /*
2867          * GuC requires all resources that we're sharing with it to be placed in
2868          * non-WOPCM memory. If GuC is not present or not in use we still need a
2869          * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2870          * why.
2871          */
2872         ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2873                                intel_guc_reserved_gtt_size(&dev_priv->guc));
2874
2875         ret = intel_vgt_balloon(dev_priv);
2876         if (ret)
2877                 return ret;
2878
2879         /* Reserve a mappable slot for our lockless error capture */
2880         ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2881                                           PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2882                                           0, ggtt->mappable_end,
2883                                           DRM_MM_INSERT_LOW);
2884         if (ret)
2885                 return ret;
2886
2887         /* Clear any non-preallocated blocks */
2888         drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2889                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2890                               hole_start, hole_end);
2891                 ggtt->vm.clear_range(&ggtt->vm, hole_start,
2892                                      hole_end - hole_start);
2893         }
2894
2895         /* And finally clear the reserved guard page */
2896         ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2897
2898         if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2899                 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2900                 if (ret)
2901                         goto err;
2902         }
2903
2904         return 0;
2905
2906 err:
2907         drm_mm_remove_node(&ggtt->error_capture);
2908         return ret;
2909 }
2910
2911 /**
2912  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2913  * @dev_priv: i915 device
2914  */
2915 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2916 {
2917         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2918         struct i915_vma *vma, *vn;
2919         struct pagevec *pvec;
2920
2921         ggtt->vm.closed = true;
2922
2923         mutex_lock(&dev_priv->drm.struct_mutex);
2924         i915_gem_fini_aliasing_ppgtt(dev_priv);
2925
2926         GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
2927         list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2928                 WARN_ON(i915_vma_unbind(vma));
2929
2930         if (drm_mm_node_allocated(&ggtt->error_capture))
2931                 drm_mm_remove_node(&ggtt->error_capture);
2932
2933         if (drm_mm_initialized(&ggtt->vm.mm)) {
2934                 intel_vgt_deballoon(dev_priv);
2935                 i915_address_space_fini(&ggtt->vm);
2936         }
2937
2938         ggtt->vm.cleanup(&ggtt->vm);
2939
2940         pvec = &dev_priv->mm.wc_stash.pvec;
2941         if (pvec->nr) {
2942                 set_pages_array_wb(pvec->pages, pvec->nr);
2943                 __pagevec_release(pvec);
2944         }
2945
2946         mutex_unlock(&dev_priv->drm.struct_mutex);
2947
2948         arch_phys_wc_del(ggtt->mtrr);
2949         io_mapping_fini(&ggtt->iomap);
2950
2951         i915_gem_cleanup_stolen(dev_priv);
2952 }
2953
2954 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2955 {
2956         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2957         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2958         return snb_gmch_ctl << 20;
2959 }
2960
2961 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2962 {
2963         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2964         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2965         if (bdw_gmch_ctl)
2966                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2967
2968 #ifdef CONFIG_X86_32
2969         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2970         if (bdw_gmch_ctl > 4)
2971                 bdw_gmch_ctl = 4;
2972 #endif
2973
2974         return bdw_gmch_ctl << 20;
2975 }
2976
2977 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2978 {
2979         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2980         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2981
2982         if (gmch_ctrl)
2983                 return 1 << (20 + gmch_ctrl);
2984
2985         return 0;
2986 }
2987
2988 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2989 {
2990         struct drm_i915_private *dev_priv = ggtt->vm.i915;
2991         struct pci_dev *pdev = dev_priv->drm.pdev;
2992         phys_addr_t phys_addr;
2993         int ret;
2994
2995         /* For Modern GENs the PTEs and register space are split in the BAR */
2996         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2997
2998         /*
2999          * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3000          * will be dropped. For WC mappings in general we have 64 byte burst
3001          * writes when the WC buffer is flushed, so we can't use it, but have to
3002          * resort to an uncached mapping. The WC issue is easily caught by the
3003          * readback check when writing GTT PTE entries.
3004          */
3005         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3006                 ggtt->gsm = ioremap_nocache(phys_addr, size);
3007         else
3008                 ggtt->gsm = ioremap_wc(phys_addr, size);
3009         if (!ggtt->gsm) {
3010                 DRM_ERROR("Failed to map the ggtt page table\n");
3011                 return -ENOMEM;
3012         }
3013
3014         ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3015         if (ret) {
3016                 DRM_ERROR("Scratch setup failed\n");
3017                 /* iounmap will also get called at remove, but meh */
3018                 iounmap(ggtt->gsm);
3019                 return ret;
3020         }
3021
3022         ggtt->vm.scratch_pte =
3023                 ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
3024                                     I915_CACHE_NONE, 0);
3025
3026         return 0;
3027 }
3028
3029 static struct intel_ppat_entry *
3030 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3031 {
3032         struct intel_ppat_entry *entry = &ppat->entries[index];
3033
3034         GEM_BUG_ON(index >= ppat->max_entries);
3035         GEM_BUG_ON(test_bit(index, ppat->used));
3036
3037         entry->ppat = ppat;
3038         entry->value = value;
3039         kref_init(&entry->ref);
3040         set_bit(index, ppat->used);
3041         set_bit(index, ppat->dirty);
3042
3043         return entry;
3044 }
3045
3046 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3047 {
3048         struct intel_ppat *ppat = entry->ppat;
3049         unsigned int index = entry - ppat->entries;
3050
3051         GEM_BUG_ON(index >= ppat->max_entries);
3052         GEM_BUG_ON(!test_bit(index, ppat->used));
3053
3054         entry->value = ppat->clear_value;
3055         clear_bit(index, ppat->used);
3056         set_bit(index, ppat->dirty);
3057 }
3058
3059 /**
3060  * intel_ppat_get - get a usable PPAT entry
3061  * @i915: i915 device instance
3062  * @value: the PPAT value required by the caller
3063  *
3064  * The function tries to search if there is an existing PPAT entry which
3065  * matches with the required value. If perfectly matched, the existing PPAT
3066  * entry will be used. If only partially matched, it will try to check if
3067  * there is any available PPAT index. If yes, it will allocate a new PPAT
3068  * index for the required entry and update the HW. If not, the partially
3069  * matched entry will be used.
3070  */
3071 const struct intel_ppat_entry *
3072 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3073 {
3074         struct intel_ppat *ppat = &i915->ppat;
3075         struct intel_ppat_entry *entry = NULL;
3076         unsigned int scanned, best_score;
3077         int i;
3078
3079         GEM_BUG_ON(!ppat->max_entries);
3080
3081         scanned = best_score = 0;
3082         for_each_set_bit(i, ppat->used, ppat->max_entries) {
3083                 unsigned int score;
3084
3085                 score = ppat->match(ppat->entries[i].value, value);
3086                 if (score > best_score) {
3087                         entry = &ppat->entries[i];
3088                         if (score == INTEL_PPAT_PERFECT_MATCH) {
3089                                 kref_get(&entry->ref);
3090                                 return entry;
3091                         }
3092                         best_score = score;
3093                 }
3094                 scanned++;
3095         }
3096
3097         if (scanned == ppat->max_entries) {
3098                 if (!entry)
3099                         return ERR_PTR(-ENOSPC);
3100
3101                 kref_get(&entry->ref);
3102                 return entry;
3103         }
3104
3105         i = find_first_zero_bit(ppat->used, ppat->max_entries);
3106         entry = __alloc_ppat_entry(ppat, i, value);
3107         ppat->update_hw(i915);
3108         return entry;
3109 }
3110
3111 static void release_ppat(struct kref *kref)
3112 {
3113         struct intel_ppat_entry *entry =
3114                 container_of(kref, struct intel_ppat_entry, ref);
3115         struct drm_i915_private *i915 = entry->ppat->i915;
3116
3117         __free_ppat_entry(entry);
3118         entry->ppat->update_hw(i915);
3119 }
3120
3121 /**
3122  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3123  * @entry: an intel PPAT entry
3124  *
3125  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3126  * entry is dynamically allocated, its reference count will be decreased. Once
3127  * the reference count becomes into zero, the PPAT index becomes free again.
3128  */
3129 void intel_ppat_put(const struct intel_ppat_entry *entry)
3130 {
3131         struct intel_ppat *ppat = entry->ppat;
3132         unsigned int index = entry - ppat->entries;
3133
3134         GEM_BUG_ON(!ppat->max_entries);
3135
3136         kref_put(&ppat->entries[index].ref, release_ppat);
3137 }
3138
3139 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3140 {
3141         struct intel_ppat *ppat = &dev_priv->ppat;
3142         int i;
3143
3144         for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3145                 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3146                 clear_bit(i, ppat->dirty);
3147         }
3148 }
3149
3150 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3151 {
3152         struct intel_ppat *ppat = &dev_priv->ppat;
3153         u64 pat = 0;
3154         int i;
3155
3156         for (i = 0; i < ppat->max_entries; i++)
3157                 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3158
3159         bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3160
3161         I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3162         I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3163 }
3164
3165 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3166 {
3167         unsigned int score = 0;
3168         enum {
3169                 AGE_MATCH = BIT(0),
3170                 TC_MATCH = BIT(1),
3171                 CA_MATCH = BIT(2),
3172         };
3173
3174         /* Cache attribute has to be matched. */
3175         if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3176                 return 0;
3177
3178         score |= CA_MATCH;
3179
3180         if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3181                 score |= TC_MATCH;
3182
3183         if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3184                 score |= AGE_MATCH;
3185
3186         if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3187                 return INTEL_PPAT_PERFECT_MATCH;
3188
3189         return score;
3190 }
3191
3192 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3193 {
3194         return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3195                 INTEL_PPAT_PERFECT_MATCH : 0;
3196 }
3197
3198 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3199 {
3200         ppat->max_entries = 8;
3201         ppat->update_hw = cnl_private_pat_update_hw;
3202         ppat->match = bdw_private_pat_match;
3203         ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3204
3205         __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3206         __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3207         __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3208         __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3209         __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3210         __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3211         __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3212         __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3213 }
3214
3215 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3216  * bits. When using advanced contexts each context stores its own PAT, but
3217  * writing this data shouldn't be harmful even in those cases. */
3218 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3219 {
3220         ppat->max_entries = 8;
3221         ppat->update_hw = bdw_private_pat_update_hw;
3222         ppat->match = bdw_private_pat_match;
3223         ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3224
3225         if (!HAS_PPGTT(ppat->i915)) {
3226                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3227                  * so RTL will always use the value corresponding to
3228                  * pat_sel = 000".
3229                  * So let's disable cache for GGTT to avoid screen corruptions.
3230                  * MOCS still can be used though.
3231                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3232                  * before this patch, i.e. the same uncached + snooping access
3233                  * like on gen6/7 seems to be in effect.
3234                  * - So this just fixes blitter/render access. Again it looks
3235                  * like it's not just uncached access, but uncached + snooping.
3236                  * So we can still hold onto all our assumptions wrt cpu
3237                  * clflushing on LLC machines.
3238                  */
3239                 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3240                 return;
3241         }
3242
3243         __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3244         __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3245         __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3246         __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3247         __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3248         __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3249         __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3250         __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3251 }
3252
3253 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3254 {
3255         ppat->max_entries = 8;
3256         ppat->update_hw = bdw_private_pat_update_hw;
3257         ppat->match = chv_private_pat_match;
3258         ppat->clear_value = CHV_PPAT_SNOOP;
3259
3260         /*
3261          * Map WB on BDW to snooped on CHV.
3262          *
3263          * Only the snoop bit has meaning for CHV, the rest is
3264          * ignored.
3265          *
3266          * The hardware will never snoop for certain types of accesses:
3267          * - CPU GTT (GMADR->GGTT->no snoop->memory)
3268          * - PPGTT page tables
3269          * - some other special cycles
3270          *
3271          * As with BDW, we also need to consider the following for GT accesses:
3272          * "For GGTT, there is NO pat_sel[2:0] from the entry,
3273          * so RTL will always use the value corresponding to
3274          * pat_sel = 000".
3275          * Which means we must set the snoop bit in PAT entry 0
3276          * in order to keep the global status page working.
3277          */
3278
3279         __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3280         __alloc_ppat_entry(ppat, 1, 0);
3281         __alloc_ppat_entry(ppat, 2, 0);
3282         __alloc_ppat_entry(ppat, 3, 0);
3283         __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3284         __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3285         __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3286         __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3287 }
3288
3289 static void gen6_gmch_remove(struct i915_address_space *vm)
3290 {
3291         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3292
3293         iounmap(ggtt->gsm);
3294         cleanup_scratch_page(vm);
3295 }
3296
3297 static void setup_private_pat(struct drm_i915_private *dev_priv)
3298 {
3299         struct intel_ppat *ppat = &dev_priv->ppat;
3300         int i;
3301
3302         ppat->i915 = dev_priv;
3303
3304         if (INTEL_GEN(dev_priv) >= 10)
3305                 cnl_setup_private_ppat(ppat);
3306         else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3307                 chv_setup_private_ppat(ppat);
3308         else
3309                 bdw_setup_private_ppat(ppat);
3310
3311         GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3312
3313         for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3314                 ppat->entries[i].value = ppat->clear_value;
3315                 ppat->entries[i].ppat = ppat;
3316                 set_bit(i, ppat->dirty);
3317         }
3318
3319         ppat->update_hw(dev_priv);
3320 }
3321
3322 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3323 {
3324         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3325         struct pci_dev *pdev = dev_priv->drm.pdev;
3326         unsigned int size;
3327         u16 snb_gmch_ctl;
3328         int err;
3329
3330         /* TODO: We're not aware of mappable constraints on gen8 yet */
3331         ggtt->gmadr =
3332                 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3333                                                  pci_resource_len(pdev, 2));
3334         ggtt->mappable_end = resource_size(&ggtt->gmadr);
3335
3336         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3337         if (!err)
3338                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3339         if (err)
3340                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3341
3342         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3343         if (IS_CHERRYVIEW(dev_priv))
3344                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3345         else
3346                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3347
3348         ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3349         ggtt->vm.cleanup = gen6_gmch_remove;
3350         ggtt->vm.insert_page = gen8_ggtt_insert_page;
3351         ggtt->vm.clear_range = nop_clear_range;
3352         if (intel_scanout_needs_vtd_wa(dev_priv))
3353                 ggtt->vm.clear_range = gen8_ggtt_clear_range;
3354
3355         ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3356
3357         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3358         if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3359                 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3360                 ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3361                 if (ggtt->vm.clear_range != nop_clear_range)
3362                         ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3363
3364                 /* Prevent recursively calling stop_machine() and deadlocks. */
3365                 dev_info(dev_priv->drm.dev,
3366                          "Disabling error capture for VT-d workaround\n");
3367                 i915_disable_error_state(dev_priv, -ENODEV);
3368         }
3369
3370         ggtt->invalidate = gen6_ggtt_invalidate;
3371
3372         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3373         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3374         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3375         ggtt->vm.vma_ops.clear_pages = clear_pages;
3376
3377         ggtt->vm.pte_encode = gen8_pte_encode;
3378
3379         setup_private_pat(dev_priv);
3380
3381         return ggtt_probe_common(ggtt, size);
3382 }
3383
3384 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3385 {
3386         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3387         struct pci_dev *pdev = dev_priv->drm.pdev;
3388         unsigned int size;
3389         u16 snb_gmch_ctl;
3390         int err;
3391
3392         ggtt->gmadr =
3393                 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3394                                                  pci_resource_len(pdev, 2));
3395         ggtt->mappable_end = resource_size(&ggtt->gmadr);
3396
3397         /* 64/512MB is the current min/max we actually know of, but this is just
3398          * a coarse sanity check.
3399          */
3400         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3401                 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3402                 return -ENXIO;
3403         }
3404
3405         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3406         if (!err)
3407                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3408         if (err)
3409                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3410         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3411
3412         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3413         ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3414
3415         ggtt->vm.clear_range = gen6_ggtt_clear_range;
3416         ggtt->vm.insert_page = gen6_ggtt_insert_page;
3417         ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3418         ggtt->vm.cleanup = gen6_gmch_remove;
3419
3420         ggtt->invalidate = gen6_ggtt_invalidate;
3421
3422         if (HAS_EDRAM(dev_priv))
3423                 ggtt->vm.pte_encode = iris_pte_encode;
3424         else if (IS_HASWELL(dev_priv))
3425                 ggtt->vm.pte_encode = hsw_pte_encode;
3426         else if (IS_VALLEYVIEW(dev_priv))
3427                 ggtt->vm.pte_encode = byt_pte_encode;
3428         else if (INTEL_GEN(dev_priv) >= 7)
3429                 ggtt->vm.pte_encode = ivb_pte_encode;
3430         else
3431                 ggtt->vm.pte_encode = snb_pte_encode;
3432
3433         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3434         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3435         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3436         ggtt->vm.vma_ops.clear_pages = clear_pages;
3437
3438         return ggtt_probe_common(ggtt, size);
3439 }
3440
3441 static void i915_gmch_remove(struct i915_address_space *vm)
3442 {
3443         intel_gmch_remove();
3444 }
3445
3446 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3447 {
3448         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3449         phys_addr_t gmadr_base;
3450         int ret;
3451
3452         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3453         if (!ret) {
3454                 DRM_ERROR("failed to set up gmch\n");
3455                 return -EIO;
3456         }
3457
3458         intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3459
3460         ggtt->gmadr =
3461                 (struct resource) DEFINE_RES_MEM(gmadr_base,
3462                                                  ggtt->mappable_end);
3463
3464         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3465         ggtt->vm.insert_page = i915_ggtt_insert_page;
3466         ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3467         ggtt->vm.clear_range = i915_ggtt_clear_range;
3468         ggtt->vm.cleanup = i915_gmch_remove;
3469
3470         ggtt->invalidate = gmch_ggtt_invalidate;
3471
3472         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3473         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3474         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3475         ggtt->vm.vma_ops.clear_pages = clear_pages;
3476
3477         if (unlikely(ggtt->do_idle_maps))
3478                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3479
3480         return 0;
3481 }
3482
3483 /**
3484  * i915_ggtt_probe_hw - Probe GGTT hardware location
3485  * @dev_priv: i915 device
3486  */
3487 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3488 {
3489         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3490         int ret;
3491
3492         ggtt->vm.i915 = dev_priv;
3493         ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3494
3495         if (INTEL_GEN(dev_priv) <= 5)
3496                 ret = i915_gmch_probe(ggtt);
3497         else if (INTEL_GEN(dev_priv) < 8)
3498                 ret = gen6_gmch_probe(ggtt);
3499         else
3500                 ret = gen8_gmch_probe(ggtt);
3501         if (ret)
3502                 return ret;
3503
3504         /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3505          * This is easier than doing range restriction on the fly, as we
3506          * currently don't have any bits spare to pass in this upper
3507          * restriction!
3508          */
3509         if (USES_GUC(dev_priv)) {
3510                 ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3511                 ggtt->mappable_end =
3512                         min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3513         }
3514
3515         if ((ggtt->vm.total - 1) >> 32) {
3516                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3517                           " of address space! Found %lldM!\n",
3518                           ggtt->vm.total >> 20);
3519                 ggtt->vm.total = 1ULL << 32;
3520                 ggtt->mappable_end =
3521                         min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3522         }
3523
3524         if (ggtt->mappable_end > ggtt->vm.total) {
3525                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3526                           " aperture=%pa, total=%llx\n",
3527                           &ggtt->mappable_end, ggtt->vm.total);
3528                 ggtt->mappable_end = ggtt->vm.total;
3529         }
3530
3531         /* GMADR is the PCI mmio aperture into the global GTT. */
3532         DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3533         DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3534         DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3535                          (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3536         if (intel_vtd_active())
3537                 DRM_INFO("VT-d active for gfx access\n");
3538
3539         return 0;
3540 }
3541
3542 /**
3543  * i915_ggtt_init_hw - Initialize GGTT hardware
3544  * @dev_priv: i915 device
3545  */
3546 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3547 {
3548         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3549         int ret;
3550
3551         stash_init(&dev_priv->mm.wc_stash);
3552
3553         /* Note that we use page colouring to enforce a guard page at the
3554          * end of the address space. This is required as the CS may prefetch
3555          * beyond the end of the batch buffer, across the page boundary,
3556          * and beyond the end of the GTT if we do not provide a guard.
3557          */
3558         mutex_lock(&dev_priv->drm.struct_mutex);
3559         i915_address_space_init(&ggtt->vm, dev_priv);
3560
3561         ggtt->vm.is_ggtt = true;
3562
3563         /* Only VLV supports read-only GGTT mappings */
3564         ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3565
3566         if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3567                 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3568         mutex_unlock(&dev_priv->drm.struct_mutex);
3569
3570         if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3571                                 dev_priv->ggtt.gmadr.start,
3572                                 dev_priv->ggtt.mappable_end)) {
3573                 ret = -EIO;
3574                 goto out_gtt_cleanup;
3575         }
3576
3577         ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3578
3579         /*
3580          * Initialise stolen early so that we may reserve preallocated
3581          * objects for the BIOS to KMS transition.
3582          */
3583         ret = i915_gem_init_stolen(dev_priv);
3584         if (ret)
3585                 goto out_gtt_cleanup;
3586
3587         return 0;
3588
3589 out_gtt_cleanup:
3590         ggtt->vm.cleanup(&ggtt->vm);
3591         return ret;
3592 }
3593
3594 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3595 {
3596         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3597                 return -EIO;
3598
3599         return 0;
3600 }
3601
3602 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3603 {
3604         GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3605
3606         i915->ggtt.invalidate = guc_ggtt_invalidate;
3607
3608         i915_ggtt_invalidate(i915);
3609 }
3610
3611 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3612 {
3613         /* XXX Temporary pardon for error unload */
3614         if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
3615                 return;
3616
3617         /* We should only be called after i915_ggtt_enable_guc() */
3618         GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3619
3620         i915->ggtt.invalidate = gen6_ggtt_invalidate;
3621
3622         i915_ggtt_invalidate(i915);
3623 }
3624
3625 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3626 {
3627         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3628         struct i915_vma *vma, *vn;
3629
3630         i915_check_and_clear_faults(dev_priv);
3631
3632         /* First fill our portion of the GTT with scratch pages */
3633         ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3634
3635         ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3636
3637         /* clflush objects bound into the GGTT and rebind them. */
3638         GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3639         list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3640                 struct drm_i915_gem_object *obj = vma->obj;
3641
3642                 if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3643                         continue;
3644
3645                 if (!i915_vma_unbind(vma))
3646                         continue;
3647
3648                 WARN_ON(i915_vma_bind(vma,
3649                                       obj ? obj->cache_level : 0,
3650                                       PIN_UPDATE));
3651                 if (obj)
3652                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3653         }
3654
3655         ggtt->vm.closed = false;
3656         i915_ggtt_invalidate(dev_priv);
3657
3658         if (INTEL_GEN(dev_priv) >= 8) {
3659                 struct intel_ppat *ppat = &dev_priv->ppat;
3660
3661                 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3662                 dev_priv->ppat.update_hw(dev_priv);
3663                 return;
3664         }
3665 }
3666
3667 static struct scatterlist *
3668 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3669              unsigned int width, unsigned int height,
3670              unsigned int stride,
3671              struct sg_table *st, struct scatterlist *sg)
3672 {
3673         unsigned int column, row;
3674         unsigned int src_idx;
3675
3676         for (column = 0; column < width; column++) {
3677                 src_idx = stride * (height - 1) + column + offset;
3678                 for (row = 0; row < height; row++) {
3679                         st->nents++;
3680                         /* We don't need the pages, but need to initialize
3681                          * the entries so the sg list can be happily traversed.
3682                          * The only thing we need are DMA addresses.
3683                          */
3684                         sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3685                         sg_dma_address(sg) =
3686                                 i915_gem_object_get_dma_address(obj, src_idx);
3687                         sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3688                         sg = sg_next(sg);
3689                         src_idx -= stride;
3690                 }
3691         }
3692
3693         return sg;
3694 }
3695
3696 static noinline struct sg_table *
3697 intel_rotate_pages(struct intel_rotation_info *rot_info,
3698                    struct drm_i915_gem_object *obj)
3699 {
3700         unsigned int size = intel_rotation_info_size(rot_info);
3701         struct sg_table *st;
3702         struct scatterlist *sg;
3703         int ret = -ENOMEM;
3704         int i;
3705
3706         /* Allocate target SG list. */
3707         st = kmalloc(sizeof(*st), GFP_KERNEL);
3708         if (!st)
3709                 goto err_st_alloc;
3710
3711         ret = sg_alloc_table(st, size, GFP_KERNEL);
3712         if (ret)
3713                 goto err_sg_alloc;
3714
3715         st->nents = 0;
3716         sg = st->sgl;
3717
3718         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3719                 sg = rotate_pages(obj, rot_info->plane[i].offset,
3720                                   rot_info->plane[i].width, rot_info->plane[i].height,
3721                                   rot_info->plane[i].stride, st, sg);
3722         }
3723
3724         return st;
3725
3726 err_sg_alloc:
3727         kfree(st);
3728 err_st_alloc:
3729
3730         DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3731                          obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3732
3733         return ERR_PTR(ret);
3734 }
3735
3736 static noinline struct sg_table *
3737 intel_partial_pages(const struct i915_ggtt_view *view,
3738                     struct drm_i915_gem_object *obj)
3739 {
3740         struct sg_table *st;
3741         struct scatterlist *sg, *iter;
3742         unsigned int count = view->partial.size;
3743         unsigned int offset;
3744         int ret = -ENOMEM;
3745
3746         st = kmalloc(sizeof(*st), GFP_KERNEL);
3747         if (!st)
3748                 goto err_st_alloc;
3749
3750         ret = sg_alloc_table(st, count, GFP_KERNEL);
3751         if (ret)
3752                 goto err_sg_alloc;
3753
3754         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3755         GEM_BUG_ON(!iter);
3756
3757         sg = st->sgl;
3758         st->nents = 0;
3759         do {
3760                 unsigned int len;
3761
3762                 len = min(iter->length - (offset << PAGE_SHIFT),
3763                           count << PAGE_SHIFT);
3764                 sg_set_page(sg, NULL, len, 0);
3765                 sg_dma_address(sg) =
3766                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3767                 sg_dma_len(sg) = len;
3768
3769                 st->nents++;
3770                 count -= len >> PAGE_SHIFT;
3771                 if (count == 0) {
3772                         sg_mark_end(sg);
3773                         i915_sg_trim(st); /* Drop any unused tail entries. */
3774
3775                         return st;
3776                 }
3777
3778                 sg = __sg_next(sg);
3779                 iter = __sg_next(iter);
3780                 offset = 0;
3781         } while (1);
3782
3783 err_sg_alloc:
3784         kfree(st);
3785 err_st_alloc:
3786         return ERR_PTR(ret);
3787 }
3788
3789 static int
3790 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3791 {
3792         int ret;
3793
3794         /* The vma->pages are only valid within the lifespan of the borrowed
3795          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3796          * must be the vma->pages. A simple rule is that vma->pages must only
3797          * be accessed when the obj->mm.pages are pinned.
3798          */
3799         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3800
3801         switch (vma->ggtt_view.type) {
3802         default:
3803                 GEM_BUG_ON(vma->ggtt_view.type);
3804                 /* fall through */
3805         case I915_GGTT_VIEW_NORMAL:
3806                 vma->pages = vma->obj->mm.pages;
3807                 return 0;
3808
3809         case I915_GGTT_VIEW_ROTATED:
3810                 vma->pages =
3811                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3812                 break;
3813
3814         case I915_GGTT_VIEW_PARTIAL:
3815                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3816                 break;
3817         }
3818
3819         ret = 0;
3820         if (unlikely(IS_ERR(vma->pages))) {
3821                 ret = PTR_ERR(vma->pages);
3822                 vma->pages = NULL;
3823                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3824                           vma->ggtt_view.type, ret);
3825         }
3826         return ret;
3827 }
3828
3829 /**
3830  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3831  * @vm: the &struct i915_address_space
3832  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3833  * @size: how much space to allocate inside the GTT,
3834  *        must be #I915_GTT_PAGE_SIZE aligned
3835  * @offset: where to insert inside the GTT,
3836  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3837  *          (@offset + @size) must fit within the address space
3838  * @color: color to apply to node, if this node is not from a VMA,
3839  *         color must be #I915_COLOR_UNEVICTABLE
3840  * @flags: control search and eviction behaviour
3841  *
3842  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3843  * the address space (using @size and @color). If the @node does not fit, it
3844  * tries to evict any overlapping nodes from the GTT, including any
3845  * neighbouring nodes if the colors do not match (to ensure guard pages between
3846  * differing domains). See i915_gem_evict_for_node() for the gory details
3847  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3848  * evicting active overlapping objects, and any overlapping node that is pinned
3849  * or marked as unevictable will also result in failure.
3850  *
3851  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3852  * asked to wait for eviction and interrupted.
3853  */
3854 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3855                          struct drm_mm_node *node,
3856                          u64 size, u64 offset, unsigned long color,
3857                          unsigned int flags)
3858 {
3859         int err;
3860
3861         GEM_BUG_ON(!size);
3862         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3863         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3864         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3865         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3866         GEM_BUG_ON(drm_mm_node_allocated(node));
3867
3868         node->size = size;
3869         node->start = offset;
3870         node->color = color;
3871
3872         err = drm_mm_reserve_node(&vm->mm, node);
3873         if (err != -ENOSPC)
3874                 return err;
3875
3876         if (flags & PIN_NOEVICT)
3877                 return -ENOSPC;
3878
3879         err = i915_gem_evict_for_node(vm, node, flags);
3880         if (err == 0)
3881                 err = drm_mm_reserve_node(&vm->mm, node);
3882
3883         return err;
3884 }
3885
3886 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3887 {
3888         u64 range, addr;
3889
3890         GEM_BUG_ON(range_overflows(start, len, end));
3891         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3892
3893         range = round_down(end - len, align) - round_up(start, align);
3894         if (range) {
3895                 if (sizeof(unsigned long) == sizeof(u64)) {
3896                         addr = get_random_long();
3897                 } else {
3898                         addr = get_random_int();
3899                         if (range > U32_MAX) {
3900                                 addr <<= 32;
3901                                 addr |= get_random_int();
3902                         }
3903                 }
3904                 div64_u64_rem(addr, range, &addr);
3905                 start += addr;
3906         }
3907
3908         return round_up(start, align);
3909 }
3910
3911 /**
3912  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3913  * @vm: the &struct i915_address_space
3914  * @node: the &struct drm_mm_node (typically i915_vma.node)
3915  * @size: how much space to allocate inside the GTT,
3916  *        must be #I915_GTT_PAGE_SIZE aligned
3917  * @alignment: required alignment of starting offset, may be 0 but
3918  *             if specified, this must be a power-of-two and at least
3919  *             #I915_GTT_MIN_ALIGNMENT
3920  * @color: color to apply to node
3921  * @start: start of any range restriction inside GTT (0 for all),
3922  *         must be #I915_GTT_PAGE_SIZE aligned
3923  * @end: end of any range restriction inside GTT (U64_MAX for all),
3924  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3925  * @flags: control search and eviction behaviour
3926  *
3927  * i915_gem_gtt_insert() first searches for an available hole into which
3928  * is can insert the node. The hole address is aligned to @alignment and
3929  * its @size must then fit entirely within the [@start, @end] bounds. The
3930  * nodes on either side of the hole must match @color, or else a guard page
3931  * will be inserted between the two nodes (or the node evicted). If no
3932  * suitable hole is found, first a victim is randomly selected and tested
3933  * for eviction, otherwise then the LRU list of objects within the GTT
3934  * is scanned to find the first set of replacement nodes to create the hole.
3935  * Those old overlapping nodes are evicted from the GTT (and so must be
3936  * rebound before any future use). Any node that is currently pinned cannot
3937  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3938  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3939  * searching for an eviction candidate. See i915_gem_evict_something() for
3940  * the gory details on the eviction algorithm.
3941  *
3942  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3943  * asked to wait for eviction and interrupted.
3944  */
3945 int i915_gem_gtt_insert(struct i915_address_space *vm,
3946                         struct drm_mm_node *node,
3947                         u64 size, u64 alignment, unsigned long color,
3948                         u64 start, u64 end, unsigned int flags)
3949 {
3950         enum drm_mm_insert_mode mode;
3951         u64 offset;
3952         int err;
3953
3954         lockdep_assert_held(&vm->i915->drm.struct_mutex);
3955         GEM_BUG_ON(!size);
3956         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3957         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3958         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3959         GEM_BUG_ON(start >= end);
3960         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3961         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3962         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3963         GEM_BUG_ON(drm_mm_node_allocated(node));
3964
3965         if (unlikely(range_overflows(start, size, end)))
3966                 return -ENOSPC;
3967
3968         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3969                 return -ENOSPC;
3970
3971         mode = DRM_MM_INSERT_BEST;
3972         if (flags & PIN_HIGH)
3973                 mode = DRM_MM_INSERT_HIGHEST;
3974         if (flags & PIN_MAPPABLE)
3975                 mode = DRM_MM_INSERT_LOW;
3976
3977         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3978          * so we know that we always have a minimum alignment of 4096.
3979          * The drm_mm range manager is optimised to return results
3980          * with zero alignment, so where possible use the optimal
3981          * path.
3982          */
3983         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3984         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3985                 alignment = 0;
3986
3987         err = drm_mm_insert_node_in_range(&vm->mm, node,
3988                                           size, alignment, color,
3989                                           start, end, mode);
3990         if (err != -ENOSPC)
3991                 return err;
3992
3993         if (mode & DRM_MM_INSERT_ONCE) {
3994                 err = drm_mm_insert_node_in_range(&vm->mm, node,
3995                                                   size, alignment, color,
3996                                                   start, end,
3997                                                   DRM_MM_INSERT_BEST);
3998                 if (err != -ENOSPC)
3999                         return err;
4000         }
4001
4002         if (flags & PIN_NOEVICT)
4003                 return -ENOSPC;
4004
4005         /* No free space, pick a slot at random.
4006          *
4007          * There is a pathological case here using a GTT shared between
4008          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4009          *
4010          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4011          *         (64k objects)             (448k objects)
4012          *
4013          * Now imagine that the eviction LRU is ordered top-down (just because
4014          * pathology meets real life), and that we need to evict an object to
4015          * make room inside the aperture. The eviction scan then has to walk
4016          * the 448k list before it finds one within range. And now imagine that
4017          * it has to search for a new hole between every byte inside the memcpy,
4018          * for several simultaneous clients.
4019          *
4020          * On a full-ppgtt system, if we have run out of available space, there
4021          * will be lots and lots of objects in the eviction list! Again,
4022          * searching that LRU list may be slow if we are also applying any
4023          * range restrictions (e.g. restriction to low 4GiB) and so, for
4024          * simplicity and similarilty between different GTT, try the single
4025          * random replacement first.
4026          */
4027         offset = random_offset(start, end,
4028                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4029         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4030         if (err != -ENOSPC)
4031                 return err;
4032
4033         /* Randomly selected placement is pinned, do a search */
4034         err = i915_gem_evict_something(vm, size, alignment, color,
4035                                        start, end, flags);
4036         if (err)
4037                 return err;
4038
4039         return drm_mm_insert_node_in_range(&vm->mm, node,
4040                                            size, alignment, color,
4041                                            start, end, DRM_MM_INSERT_EVICT);
4042 }
4043
4044 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4045 #include "selftests/mock_gtt.c"
4046 #include "selftests/i915_gem_gtt.c"
4047 #endif