OSDN Git Service

drm/i915: Postpone fake breadcrumb interrupt until real interrupts cease
[android-x86/kernel.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/kthread.h>
26
27 #include "i915_drv.h"
28
29 static unsigned long wait_timeout(void)
30 {
31         return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
32 }
33
34 static void intel_breadcrumbs_hangcheck(unsigned long data)
35 {
36         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
37         struct intel_breadcrumbs *b = &engine->breadcrumbs;
38
39         if (!b->irq_enabled)
40                 return;
41
42         if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
43                 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
44                 mod_timer(&b->hangcheck, wait_timeout());
45                 return;
46         }
47
48         DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name);
49         set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
50         mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
51
52         /* Ensure that even if the GPU hangs, we get woken up.
53          *
54          * However, note that if no one is waiting, we never notice
55          * a gpu hang. Eventually, we will have to wait for a resource
56          * held by the GPU and so trigger a hangcheck. In the most
57          * pathological case, this will be upon memory starvation! To
58          * prevent this, we also queue the hangcheck from the retire
59          * worker.
60          */
61         i915_queue_hangcheck(engine->i915);
62 }
63
64 static void intel_breadcrumbs_fake_irq(unsigned long data)
65 {
66         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
67
68         /*
69          * The timer persists in case we cannot enable interrupts,
70          * or if we have previously seen seqno/interrupt incoherency
71          * ("missed interrupt" syndrome). Here the worker will wake up
72          * every jiffie in order to kick the oldest waiter to do the
73          * coherent seqno check.
74          */
75         if (intel_engine_wakeup(engine))
76                 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
77 }
78
79 static void irq_enable(struct intel_engine_cs *engine)
80 {
81         /* Enabling the IRQ may miss the generation of the interrupt, but
82          * we still need to force the barrier before reading the seqno,
83          * just in case.
84          */
85         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
86
87         /* Caller disables interrupts */
88         spin_lock(&engine->i915->irq_lock);
89         engine->irq_enable(engine);
90         spin_unlock(&engine->i915->irq_lock);
91 }
92
93 static void irq_disable(struct intel_engine_cs *engine)
94 {
95         /* Caller disables interrupts */
96         spin_lock(&engine->i915->irq_lock);
97         engine->irq_disable(engine);
98         spin_unlock(&engine->i915->irq_lock);
99 }
100
101 static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
102 {
103         struct intel_engine_cs *engine =
104                 container_of(b, struct intel_engine_cs, breadcrumbs);
105         struct drm_i915_private *i915 = engine->i915;
106
107         assert_spin_locked(&b->lock);
108         if (b->rpm_wakelock)
109                 return;
110
111         if (I915_SELFTEST_ONLY(b->mock)) {
112                 /* For our mock objects we want to avoid interaction
113                  * with the real hardware (which is not set up). So
114                  * we simply pretend we have enabled the powerwell
115                  * and the irq, and leave it up to the mock
116                  * implementation to call intel_engine_wakeup()
117                  * itself when it wants to simulate a user interrupt,
118                  */
119                 b->rpm_wakelock = true;
120                 return;
121         }
122
123         /* Since we are waiting on a request, the GPU should be busy
124          * and should have its own rpm reference. For completeness,
125          * record an rpm reference for ourselves to cover the
126          * interrupt we unmask.
127          */
128         intel_runtime_pm_get_noresume(i915);
129         b->rpm_wakelock = true;
130
131         /* No interrupts? Kick the waiter every jiffie! */
132         if (intel_irqs_enabled(i915)) {
133                 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
134                         irq_enable(engine);
135                 b->irq_enabled = true;
136         }
137
138         if (!b->irq_enabled ||
139             test_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
140                 mod_timer(&b->fake_irq, jiffies + 1);
141                 i915_queue_hangcheck(i915);
142         } else {
143                 /* Ensure we never sleep indefinitely */
144                 mod_timer(&b->hangcheck, wait_timeout());
145         }
146 }
147
148 static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
149 {
150         struct intel_engine_cs *engine =
151                 container_of(b, struct intel_engine_cs, breadcrumbs);
152
153         assert_spin_locked(&b->lock);
154         if (!b->rpm_wakelock)
155                 return;
156
157         if (I915_SELFTEST_ONLY(b->mock)) {
158                 b->rpm_wakelock = false;
159                 return;
160         }
161
162         if (b->irq_enabled) {
163                 irq_disable(engine);
164                 b->irq_enabled = false;
165         }
166
167         intel_runtime_pm_put(engine->i915);
168         b->rpm_wakelock = false;
169 }
170
171 static inline struct intel_wait *to_wait(struct rb_node *node)
172 {
173         return rb_entry(node, struct intel_wait, node);
174 }
175
176 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
177                                               struct intel_wait *wait)
178 {
179         assert_spin_locked(&b->lock);
180
181         /* This request is completed, so remove it from the tree, mark it as
182          * complete, and *then* wake up the associated task.
183          */
184         rb_erase(&wait->node, &b->waiters);
185         RB_CLEAR_NODE(&wait->node);
186
187         wake_up_process(wait->tsk); /* implicit smp_wmb() */
188 }
189
190 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
191                                     struct intel_wait *wait)
192 {
193         struct intel_breadcrumbs *b = &engine->breadcrumbs;
194         struct rb_node **p, *parent, *completed;
195         bool first;
196         u32 seqno;
197
198         /* Insert the request into the retirement ordered list
199          * of waiters by walking the rbtree. If we are the oldest
200          * seqno in the tree (the first to be retired), then
201          * set ourselves as the bottom-half.
202          *
203          * As we descend the tree, prune completed branches since we hold the
204          * spinlock we know that the first_waiter must be delayed and can
205          * reduce some of the sequential wake up latency if we take action
206          * ourselves and wake up the completed tasks in parallel. Also, by
207          * removing stale elements in the tree, we may be able to reduce the
208          * ping-pong between the old bottom-half and ourselves as first-waiter.
209          */
210         first = true;
211         parent = NULL;
212         completed = NULL;
213         seqno = intel_engine_get_seqno(engine);
214
215          /* If the request completed before we managed to grab the spinlock,
216           * return now before adding ourselves to the rbtree. We let the
217           * current bottom-half handle any pending wakeups and instead
218           * try and get out of the way quickly.
219           */
220         if (i915_seqno_passed(seqno, wait->seqno)) {
221                 RB_CLEAR_NODE(&wait->node);
222                 return first;
223         }
224
225         p = &b->waiters.rb_node;
226         while (*p) {
227                 parent = *p;
228                 if (wait->seqno == to_wait(parent)->seqno) {
229                         /* We have multiple waiters on the same seqno, select
230                          * the highest priority task (that with the smallest
231                          * task->prio) to serve as the bottom-half for this
232                          * group.
233                          */
234                         if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
235                                 p = &parent->rb_right;
236                                 first = false;
237                         } else {
238                                 p = &parent->rb_left;
239                         }
240                 } else if (i915_seqno_passed(wait->seqno,
241                                              to_wait(parent)->seqno)) {
242                         p = &parent->rb_right;
243                         if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
244                                 completed = parent;
245                         else
246                                 first = false;
247                 } else {
248                         p = &parent->rb_left;
249                 }
250         }
251         rb_link_node(&wait->node, parent, p);
252         rb_insert_color(&wait->node, &b->waiters);
253         GEM_BUG_ON(!first && !rcu_access_pointer(b->irq_seqno_bh));
254
255         if (completed) {
256                 struct rb_node *next = rb_next(completed);
257
258                 GEM_BUG_ON(!next && !first);
259                 if (next && next != &wait->node) {
260                         GEM_BUG_ON(first);
261                         b->first_wait = to_wait(next);
262                         rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
263                         /* As there is a delay between reading the current
264                          * seqno, processing the completed tasks and selecting
265                          * the next waiter, we may have missed the interrupt
266                          * and so need for the next bottom-half to wakeup.
267                          *
268                          * Also as we enable the IRQ, we may miss the
269                          * interrupt for that seqno, so we have to wake up
270                          * the next bottom-half in order to do a coherent check
271                          * in case the seqno passed.
272                          */
273                         __intel_breadcrumbs_enable_irq(b);
274                         if (test_bit(ENGINE_IRQ_BREADCRUMB,
275                                      &engine->irq_posted))
276                                 wake_up_process(to_wait(next)->tsk);
277                 }
278
279                 do {
280                         struct intel_wait *crumb = to_wait(completed);
281                         completed = rb_prev(completed);
282                         __intel_breadcrumbs_finish(b, crumb);
283                 } while (completed);
284         }
285
286         if (first) {
287                 GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
288                 b->first_wait = wait;
289                 rcu_assign_pointer(b->irq_seqno_bh, wait->tsk);
290                 /* After assigning ourselves as the new bottom-half, we must
291                  * perform a cursory check to prevent a missed interrupt.
292                  * Either we miss the interrupt whilst programming the hardware,
293                  * or if there was a previous waiter (for a later seqno) they
294                  * may be woken instead of us (due to the inherent race
295                  * in the unlocked read of b->irq_seqno_bh in the irq handler)
296                  * and so we miss the wake up.
297                  */
298                 __intel_breadcrumbs_enable_irq(b);
299         }
300         GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh));
301         GEM_BUG_ON(!b->first_wait);
302         GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);
303
304         return first;
305 }
306
307 bool intel_engine_add_wait(struct intel_engine_cs *engine,
308                            struct intel_wait *wait)
309 {
310         struct intel_breadcrumbs *b = &engine->breadcrumbs;
311         bool first;
312
313         spin_lock_irq(&b->lock);
314         first = __intel_engine_add_wait(engine, wait);
315         spin_unlock_irq(&b->lock);
316
317         return first;
318 }
319
320 static inline bool chain_wakeup(struct rb_node *rb, int priority)
321 {
322         return rb && to_wait(rb)->tsk->prio <= priority;
323 }
324
325 static inline int wakeup_priority(struct intel_breadcrumbs *b,
326                                   struct task_struct *tsk)
327 {
328         if (tsk == b->signaler)
329                 return INT_MIN;
330         else
331                 return tsk->prio;
332 }
333
334 void intel_engine_remove_wait(struct intel_engine_cs *engine,
335                               struct intel_wait *wait)
336 {
337         struct intel_breadcrumbs *b = &engine->breadcrumbs;
338
339         /* Quick check to see if this waiter was already decoupled from
340          * the tree by the bottom-half to avoid contention on the spinlock
341          * by the herd.
342          */
343         if (RB_EMPTY_NODE(&wait->node))
344                 return;
345
346         spin_lock_irq(&b->lock);
347
348         if (RB_EMPTY_NODE(&wait->node))
349                 goto out_unlock;
350
351         if (b->first_wait == wait) {
352                 const int priority = wakeup_priority(b, wait->tsk);
353                 struct rb_node *next;
354
355                 GEM_BUG_ON(rcu_access_pointer(b->irq_seqno_bh) != wait->tsk);
356
357                 /* We are the current bottom-half. Find the next candidate,
358                  * the first waiter in the queue on the remaining oldest
359                  * request. As multiple seqnos may complete in the time it
360                  * takes us to wake up and find the next waiter, we have to
361                  * wake up that waiter for it to perform its own coherent
362                  * completion check.
363                  */
364                 next = rb_next(&wait->node);
365                 if (chain_wakeup(next, priority)) {
366                         /* If the next waiter is already complete,
367                          * wake it up and continue onto the next waiter. So
368                          * if have a small herd, they will wake up in parallel
369                          * rather than sequentially, which should reduce
370                          * the overall latency in waking all the completed
371                          * clients.
372                          *
373                          * However, waking up a chain adds extra latency to
374                          * the first_waiter. This is undesirable if that
375                          * waiter is a high priority task.
376                          */
377                         u32 seqno = intel_engine_get_seqno(engine);
378
379                         while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
380                                 struct rb_node *n = rb_next(next);
381
382                                 __intel_breadcrumbs_finish(b, to_wait(next));
383                                 next = n;
384                                 if (!chain_wakeup(next, priority))
385                                         break;
386                         }
387                 }
388
389                 if (next) {
390                         /* In our haste, we may have completed the first waiter
391                          * before we enabled the interrupt. Do so now as we
392                          * have a second waiter for a future seqno. Afterwards,
393                          * we have to wake up that waiter in case we missed
394                          * the interrupt, or if we have to handle an
395                          * exception rather than a seqno completion.
396                          */
397                         b->first_wait = to_wait(next);
398                         rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
399                         if (b->first_wait->seqno != wait->seqno)
400                                 __intel_breadcrumbs_enable_irq(b);
401                         wake_up_process(b->first_wait->tsk);
402                 } else {
403                         b->first_wait = NULL;
404                         rcu_assign_pointer(b->irq_seqno_bh, NULL);
405                         __intel_breadcrumbs_disable_irq(b);
406                 }
407         } else {
408                 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
409         }
410
411         GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
412         rb_erase(&wait->node, &b->waiters);
413
414 out_unlock:
415         GEM_BUG_ON(b->first_wait == wait);
416         GEM_BUG_ON(rb_first(&b->waiters) !=
417                    (b->first_wait ? &b->first_wait->node : NULL));
418         GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh) ^ RB_EMPTY_ROOT(&b->waiters));
419         spin_unlock_irq(&b->lock);
420 }
421
422 static bool signal_complete(struct drm_i915_gem_request *request)
423 {
424         if (!request)
425                 return false;
426
427         /* If another process served as the bottom-half it may have already
428          * signalled that this wait is already completed.
429          */
430         if (intel_wait_complete(&request->signaling.wait))
431                 return true;
432
433         /* Carefully check if the request is complete, giving time for the
434          * seqno to be visible or if the GPU hung.
435          */
436         if (__i915_request_irq_complete(request))
437                 return true;
438
439         return false;
440 }
441
442 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
443 {
444         return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
445 }
446
447 static void signaler_set_rtpriority(void)
448 {
449          struct sched_param param = { .sched_priority = 1 };
450
451          sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
452 }
453
454 static int intel_breadcrumbs_signaler(void *arg)
455 {
456         struct intel_engine_cs *engine = arg;
457         struct intel_breadcrumbs *b = &engine->breadcrumbs;
458         struct drm_i915_gem_request *request;
459
460         /* Install ourselves with high priority to reduce signalling latency */
461         signaler_set_rtpriority();
462
463         do {
464                 set_current_state(TASK_INTERRUPTIBLE);
465
466                 /* We are either woken up by the interrupt bottom-half,
467                  * or by a client adding a new signaller. In both cases,
468                  * the GPU seqno may have advanced beyond our oldest signal.
469                  * If it has, propagate the signal, remove the waiter and
470                  * check again with the next oldest signal. Otherwise we
471                  * need to wait for a new interrupt from the GPU or for
472                  * a new client.
473                  */
474                 request = READ_ONCE(b->first_signal);
475                 if (signal_complete(request)) {
476                         local_bh_disable();
477                         dma_fence_signal(&request->fence);
478                         local_bh_enable(); /* kick start the tasklets */
479
480                         /* Wake up all other completed waiters and select the
481                          * next bottom-half for the next user interrupt.
482                          */
483                         intel_engine_remove_wait(engine,
484                                                  &request->signaling.wait);
485
486                         /* Find the next oldest signal. Note that as we have
487                          * not been holding the lock, another client may
488                          * have installed an even older signal than the one
489                          * we just completed - so double check we are still
490                          * the oldest before picking the next one.
491                          */
492                         spin_lock_irq(&b->lock);
493                         if (request == b->first_signal) {
494                                 struct rb_node *rb =
495                                         rb_next(&request->signaling.node);
496                                 b->first_signal = rb ? to_signaler(rb) : NULL;
497                         }
498                         rb_erase(&request->signaling.node, &b->signals);
499                         spin_unlock_irq(&b->lock);
500
501                         i915_gem_request_put(request);
502                 } else {
503                         if (kthread_should_stop())
504                                 break;
505
506                         schedule();
507
508                         if (kthread_should_park())
509                                 kthread_parkme();
510                 }
511         } while (1);
512         __set_current_state(TASK_RUNNING);
513
514         return 0;
515 }
516
517 void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
518 {
519         struct intel_engine_cs *engine = request->engine;
520         struct intel_breadcrumbs *b = &engine->breadcrumbs;
521         struct rb_node *parent, **p;
522         bool first, wakeup;
523
524         /* Note that we may be called from an interrupt handler on another
525          * device (e.g. nouveau signaling a fence completion causing us
526          * to submit a request, and so enable signaling). As such,
527          * we need to make sure that all other users of b->lock protect
528          * against interrupts, i.e. use spin_lock_irqsave.
529          */
530
531         /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
532         assert_spin_locked(&request->lock);
533         if (!request->global_seqno)
534                 return;
535
536         request->signaling.wait.tsk = b->signaler;
537         request->signaling.wait.seqno = request->global_seqno;
538         i915_gem_request_get(request);
539
540         spin_lock(&b->lock);
541
542         /* First add ourselves into the list of waiters, but register our
543          * bottom-half as the signaller thread. As per usual, only the oldest
544          * waiter (not just signaller) is tasked as the bottom-half waking
545          * up all completed waiters after the user interrupt.
546          *
547          * If we are the oldest waiter, enable the irq (after which we
548          * must double check that the seqno did not complete).
549          */
550         wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
551
552         /* Now insert ourselves into the retirement ordered list of signals
553          * on this engine. We track the oldest seqno as that will be the
554          * first signal to complete.
555          */
556         parent = NULL;
557         first = true;
558         p = &b->signals.rb_node;
559         while (*p) {
560                 parent = *p;
561                 if (i915_seqno_passed(request->global_seqno,
562                                       to_signaler(parent)->global_seqno)) {
563                         p = &parent->rb_right;
564                         first = false;
565                 } else {
566                         p = &parent->rb_left;
567                 }
568         }
569         rb_link_node(&request->signaling.node, parent, p);
570         rb_insert_color(&request->signaling.node, &b->signals);
571         if (first)
572                 smp_store_mb(b->first_signal, request);
573
574         spin_unlock(&b->lock);
575
576         if (wakeup)
577                 wake_up_process(b->signaler);
578 }
579
580 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
581 {
582         struct intel_breadcrumbs *b = &engine->breadcrumbs;
583         struct task_struct *tsk;
584
585         spin_lock_init(&b->lock);
586         setup_timer(&b->fake_irq,
587                     intel_breadcrumbs_fake_irq,
588                     (unsigned long)engine);
589         setup_timer(&b->hangcheck,
590                     intel_breadcrumbs_hangcheck,
591                     (unsigned long)engine);
592
593         /* Spawn a thread to provide a common bottom-half for all signals.
594          * As this is an asynchronous interface we cannot steal the current
595          * task for handling the bottom-half to the user interrupt, therefore
596          * we create a thread to do the coherent seqno dance after the
597          * interrupt and then signal the waitqueue (via the dma-buf/fence).
598          */
599         tsk = kthread_run(intel_breadcrumbs_signaler, engine,
600                           "i915/signal:%d", engine->id);
601         if (IS_ERR(tsk))
602                 return PTR_ERR(tsk);
603
604         b->signaler = tsk;
605
606         return 0;
607 }
608
609 static void cancel_fake_irq(struct intel_engine_cs *engine)
610 {
611         struct intel_breadcrumbs *b = &engine->breadcrumbs;
612
613         del_timer_sync(&b->hangcheck);
614         del_timer_sync(&b->fake_irq);
615         clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
616 }
617
618 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
619 {
620         struct intel_breadcrumbs *b = &engine->breadcrumbs;
621
622         cancel_fake_irq(engine);
623         spin_lock_irq(&b->lock);
624
625         __intel_breadcrumbs_disable_irq(b);
626         if (intel_engine_has_waiter(engine)) {
627                 __intel_breadcrumbs_enable_irq(b);
628                 if (test_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted))
629                         wake_up_process(b->first_wait->tsk);
630         } else {
631                 /* sanitize the IMR and unmask any auxiliary interrupts */
632                 irq_disable(engine);
633         }
634
635         spin_unlock_irq(&b->lock);
636 }
637
638 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
639 {
640         struct intel_breadcrumbs *b = &engine->breadcrumbs;
641
642         /* The engines should be idle and all requests accounted for! */
643         WARN_ON(READ_ONCE(b->first_wait));
644         WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
645         WARN_ON(READ_ONCE(b->first_signal));
646         WARN_ON(!RB_EMPTY_ROOT(&b->signals));
647
648         if (!IS_ERR_OR_NULL(b->signaler))
649                 kthread_stop(b->signaler);
650
651         cancel_fake_irq(engine);
652 }
653
654 unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915)
655 {
656         struct intel_engine_cs *engine;
657         enum intel_engine_id id;
658         unsigned int mask = 0;
659
660         for_each_engine(engine, i915, id) {
661                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
662
663                 spin_lock_irq(&b->lock);
664
665                 if (b->first_wait) {
666                         wake_up_process(b->first_wait->tsk);
667                         mask |= intel_engine_flag(engine);
668                 }
669
670                 if (b->first_signal) {
671                         wake_up_process(b->signaler);
672                         mask |= intel_engine_flag(engine);
673                 }
674
675                 spin_unlock_irq(&b->lock);
676         }
677
678         return mask;
679 }
680
681 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
682 #include "selftests/intel_breadcrumbs.c"
683 #endif