OSDN Git Service

f10ec266b3afb65c1072924ff1613fccd405c593
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32         u32 trans1;     /* balance leg enable, de-emph level */
33         u32 trans2;     /* vref sel, vswing */
34 };
35
36 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
37  * them for both DP and FDI transports, allowing those ports to
38  * automatically adapt to HDMI connections as well
39  */
40 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
41         { 0x00FFFFFF, 0x0006000E },
42         { 0x00D75FFF, 0x0005000A },
43         { 0x00C30FFF, 0x00040006 },
44         { 0x80AAAFFF, 0x000B0000 },
45         { 0x00FFFFFF, 0x0005000A },
46         { 0x00D75FFF, 0x000C0004 },
47         { 0x80C30FFF, 0x000B0000 },
48         { 0x00FFFFFF, 0x00040006 },
49         { 0x80D75FFF, 0x000B0000 },
50 };
51
52 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
53         { 0x00FFFFFF, 0x0007000E },
54         { 0x00D75FFF, 0x000F000A },
55         { 0x00C30FFF, 0x00060006 },
56         { 0x00AAAFFF, 0x001E0000 },
57         { 0x00FFFFFF, 0x000F000A },
58         { 0x00D75FFF, 0x00160004 },
59         { 0x00C30FFF, 0x001E0000 },
60         { 0x00FFFFFF, 0x00060006 },
61         { 0x00D75FFF, 0x001E0000 },
62 };
63
64 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
65                                         /* Idx  NT mV d T mV d  db      */
66         { 0x00FFFFFF, 0x0006000E },     /* 0:   400     400     0       */
67         { 0x00E79FFF, 0x000E000C },     /* 1:   400     500     2       */
68         { 0x00D75FFF, 0x0005000A },     /* 2:   400     600     3.5     */
69         { 0x00FFFFFF, 0x0005000A },     /* 3:   600     600     0       */
70         { 0x00E79FFF, 0x001D0007 },     /* 4:   600     750     2       */
71         { 0x00D75FFF, 0x000C0004 },     /* 5:   600     900     3.5     */
72         { 0x00FFFFFF, 0x00040006 },     /* 6:   800     800     0       */
73         { 0x80E79FFF, 0x00030002 },     /* 7:   800     1000    2       */
74         { 0x00FFFFFF, 0x00140005 },     /* 8:   850     850     0       */
75         { 0x00FFFFFF, 0x000C0004 },     /* 9:   900     900     0       */
76         { 0x00FFFFFF, 0x001C0003 },     /* 10:  950     950     0       */
77         { 0x80FFFFFF, 0x00030002 },     /* 11:  1000    1000    0       */
78 };
79
80 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
81         { 0x00FFFFFF, 0x00000012 },
82         { 0x00EBAFFF, 0x00020011 },
83         { 0x00C71FFF, 0x0006000F },
84         { 0x00AAAFFF, 0x000E000A },
85         { 0x00FFFFFF, 0x00020011 },
86         { 0x00DB6FFF, 0x0005000F },
87         { 0x00BEEFFF, 0x000A000C },
88         { 0x00FFFFFF, 0x0005000F },
89         { 0x00DB6FFF, 0x000A000C },
90 };
91
92 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
93         { 0x00FFFFFF, 0x0007000E },
94         { 0x00D75FFF, 0x000E000A },
95         { 0x00BEFFFF, 0x00140006 },
96         { 0x80B2CFFF, 0x001B0002 },
97         { 0x00FFFFFF, 0x000E000A },
98         { 0x00DB6FFF, 0x00160005 },
99         { 0x80C71FFF, 0x001A0002 },
100         { 0x00F7DFFF, 0x00180004 },
101         { 0x80D75FFF, 0x001B0002 },
102 };
103
104 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
105         { 0x00FFFFFF, 0x0001000E },
106         { 0x00D75FFF, 0x0004000A },
107         { 0x00C30FFF, 0x00070006 },
108         { 0x00AAAFFF, 0x000C0000 },
109         { 0x00FFFFFF, 0x0004000A },
110         { 0x00D75FFF, 0x00090004 },
111         { 0x00C30FFF, 0x000C0000 },
112         { 0x00FFFFFF, 0x00070006 },
113         { 0x00D75FFF, 0x000C0000 },
114 };
115
116 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
117                                         /* Idx  NT mV d T mV df db      */
118         { 0x00FFFFFF, 0x0007000E },     /* 0:   400     400     0       */
119         { 0x00D75FFF, 0x000E000A },     /* 1:   400     600     3.5     */
120         { 0x00BEFFFF, 0x00140006 },     /* 2:   400     800     6       */
121         { 0x00FFFFFF, 0x0009000D },     /* 3:   450     450     0       */
122         { 0x00FFFFFF, 0x000E000A },     /* 4:   600     600     0       */
123         { 0x00D7FFFF, 0x00140006 },     /* 5:   600     800     2.5     */
124         { 0x80CB2FFF, 0x001B0002 },     /* 6:   600     1000    4.5     */
125         { 0x00FFFFFF, 0x00140006 },     /* 7:   800     800     0       */
126         { 0x80E79FFF, 0x001B0002 },     /* 8:   800     1000    2       */
127         { 0x80FFFFFF, 0x001B0002 },     /* 9:   1000    1000    0       */
128 };
129
130 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
131         { 0x00000018, 0x000000a2 },
132         { 0x00004014, 0x0000009B },
133         { 0x00006012, 0x00000088 },
134         { 0x00008010, 0x00000087 },
135         { 0x00000018, 0x0000009B },
136         { 0x00004014, 0x00000088 },
137         { 0x00006012, 0x00000087 },
138         { 0x00000018, 0x00000088 },
139         { 0x00004014, 0x00000087 },
140 };
141
142 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
143                                         /* Idx  NT mV   T mV    db  */
144         { 0x00000018, 0x000000a0 },     /* 0:   400     400     0   */
145         { 0x00004014, 0x00000098 },     /* 1:   400     600     3.5 */
146         { 0x00006012, 0x00000088 },     /* 2:   400     800     6   */
147         { 0x00000018, 0x0000003c },     /* 3:   450     450     0   */
148         { 0x00000018, 0x00000098 },     /* 4:   600     600     0   */
149         { 0x00003015, 0x00000088 },     /* 5:   600     800     2.5 */
150         { 0x00005013, 0x00000080 },     /* 6:   600     1000    4.5 */
151         { 0x00000018, 0x00000088 },     /* 7:   800     800     0   */
152         { 0x00000096, 0x00000080 },     /* 8:   800     1000    2   */
153         { 0x00000018, 0x00000080 },     /* 9:   1200    1200    0   */
154 };
155
156 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
157 {
158         struct drm_encoder *encoder = &intel_encoder->base;
159         int type = intel_encoder->type;
160
161         if (type == INTEL_OUTPUT_DP_MST) {
162                 struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
163                 return intel_dig_port->port;
164         } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
165             type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
166                 struct intel_digital_port *intel_dig_port =
167                         enc_to_dig_port(encoder);
168                 return intel_dig_port->port;
169
170         } else if (type == INTEL_OUTPUT_ANALOG) {
171                 return PORT_E;
172
173         } else {
174                 DRM_ERROR("Invalid DDI encoder type %d\n", type);
175                 BUG();
176         }
177 }
178
179 /*
180  * Starting with Haswell, DDI port buffers must be programmed with correct
181  * values in advance. The buffer values are different for FDI and DP modes,
182  * but the HDMI/DVI fields are shared among those. So we program the DDI
183  * in either FDI or DP modes only, as HDMI connections will work with both
184  * of those
185  */
186 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
187 {
188         struct drm_i915_private *dev_priv = dev->dev_private;
189         u32 reg;
190         int i, n_hdmi_entries, hdmi_800mV_0dB;
191         int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
192         const struct ddi_buf_trans *ddi_translations_fdi;
193         const struct ddi_buf_trans *ddi_translations_dp;
194         const struct ddi_buf_trans *ddi_translations_edp;
195         const struct ddi_buf_trans *ddi_translations_hdmi;
196         const struct ddi_buf_trans *ddi_translations;
197
198         if (IS_SKYLAKE(dev)) {
199                 ddi_translations_fdi = NULL;
200                 ddi_translations_dp = skl_ddi_translations_dp;
201                 ddi_translations_edp = skl_ddi_translations_dp;
202                 ddi_translations_hdmi = skl_ddi_translations_hdmi;
203                 n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
204                 hdmi_800mV_0dB = 7;
205         } else if (IS_BROADWELL(dev)) {
206                 ddi_translations_fdi = bdw_ddi_translations_fdi;
207                 ddi_translations_dp = bdw_ddi_translations_dp;
208                 ddi_translations_edp = bdw_ddi_translations_edp;
209                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
210                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
211                 hdmi_800mV_0dB = 7;
212         } else if (IS_HASWELL(dev)) {
213                 ddi_translations_fdi = hsw_ddi_translations_fdi;
214                 ddi_translations_dp = hsw_ddi_translations_dp;
215                 ddi_translations_edp = hsw_ddi_translations_dp;
216                 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
217                 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
218                 hdmi_800mV_0dB = 6;
219         } else {
220                 WARN(1, "ddi translation table missing\n");
221                 ddi_translations_edp = bdw_ddi_translations_dp;
222                 ddi_translations_fdi = bdw_ddi_translations_fdi;
223                 ddi_translations_dp = bdw_ddi_translations_dp;
224                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
225                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
226                 hdmi_800mV_0dB = 7;
227         }
228
229         switch (port) {
230         case PORT_A:
231                 ddi_translations = ddi_translations_edp;
232                 break;
233         case PORT_B:
234         case PORT_C:
235                 ddi_translations = ddi_translations_dp;
236                 break;
237         case PORT_D:
238                 if (intel_dp_is_edp(dev, PORT_D))
239                         ddi_translations = ddi_translations_edp;
240                 else
241                         ddi_translations = ddi_translations_dp;
242                 break;
243         case PORT_E:
244                 if (ddi_translations_fdi)
245                         ddi_translations = ddi_translations_fdi;
246                 else
247                         ddi_translations = ddi_translations_dp;
248                 break;
249         default:
250                 BUG();
251         }
252
253         for (i = 0, reg = DDI_BUF_TRANS(port);
254              i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
255                 I915_WRITE(reg, ddi_translations[i].trans1);
256                 reg += 4;
257                 I915_WRITE(reg, ddi_translations[i].trans2);
258                 reg += 4;
259         }
260
261         /* Choose a good default if VBT is badly populated */
262         if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
263             hdmi_level >= n_hdmi_entries)
264                 hdmi_level = hdmi_800mV_0dB;
265
266         /* Entry 9 is for HDMI: */
267         I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
268         reg += 4;
269         I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
270         reg += 4;
271 }
272
273 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
274  * mode and port E for FDI.
275  */
276 void intel_prepare_ddi(struct drm_device *dev)
277 {
278         int port;
279
280         if (!HAS_DDI(dev))
281                 return;
282
283         for (port = PORT_A; port <= PORT_E; port++)
284                 intel_prepare_ddi_buffers(dev, port);
285 }
286
287 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
288                                     enum port port)
289 {
290         uint32_t reg = DDI_BUF_CTL(port);
291         int i;
292
293         for (i = 0; i < 8; i++) {
294                 udelay(1);
295                 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
296                         return;
297         }
298         DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
299 }
300
301 /* Starting with Haswell, different DDI ports can work in FDI mode for
302  * connection to the PCH-located connectors. For this, it is necessary to train
303  * both the DDI port and PCH receiver for the desired DDI buffer settings.
304  *
305  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
306  * please note that when FDI mode is active on DDI E, it shares 2 lines with
307  * DDI A (which is used for eDP)
308  */
309
310 void hsw_fdi_link_train(struct drm_crtc *crtc)
311 {
312         struct drm_device *dev = crtc->dev;
313         struct drm_i915_private *dev_priv = dev->dev_private;
314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
315         u32 temp, i, rx_ctl_val;
316
317         /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
318          * mode set "sequence for CRT port" document:
319          * - TP1 to TP2 time with the default value
320          * - FDI delay to 90h
321          *
322          * WaFDIAutoLinkSetTimingOverrride:hsw
323          */
324         I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
325                                   FDI_RX_PWRDN_LANE0_VAL(2) |
326                                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
327
328         /* Enable the PCH Receiver FDI PLL */
329         rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
330                      FDI_RX_PLL_ENABLE |
331                      FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
332         I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
333         POSTING_READ(_FDI_RXA_CTL);
334         udelay(220);
335
336         /* Switch from Rawclk to PCDclk */
337         rx_ctl_val |= FDI_PCDCLK;
338         I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
339
340         /* Configure Port Clock Select */
341         I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
342         WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
343
344         /* Start the training iterating through available voltages and emphasis,
345          * testing each value twice. */
346         for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
347                 /* Configure DP_TP_CTL with auto-training */
348                 I915_WRITE(DP_TP_CTL(PORT_E),
349                                         DP_TP_CTL_FDI_AUTOTRAIN |
350                                         DP_TP_CTL_ENHANCED_FRAME_ENABLE |
351                                         DP_TP_CTL_LINK_TRAIN_PAT1 |
352                                         DP_TP_CTL_ENABLE);
353
354                 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
355                  * DDI E does not support port reversal, the functionality is
356                  * achieved on the PCH side in FDI_RX_CTL, so no need to set the
357                  * port reversal bit */
358                 I915_WRITE(DDI_BUF_CTL(PORT_E),
359                            DDI_BUF_CTL_ENABLE |
360                            ((intel_crtc->config->fdi_lanes - 1) << 1) |
361                            DDI_BUF_TRANS_SELECT(i / 2));
362                 POSTING_READ(DDI_BUF_CTL(PORT_E));
363
364                 udelay(600);
365
366                 /* Program PCH FDI Receiver TU */
367                 I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
368
369                 /* Enable PCH FDI Receiver with auto-training */
370                 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
371                 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
372                 POSTING_READ(_FDI_RXA_CTL);
373
374                 /* Wait for FDI receiver lane calibration */
375                 udelay(30);
376
377                 /* Unset FDI_RX_MISC pwrdn lanes */
378                 temp = I915_READ(_FDI_RXA_MISC);
379                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
380                 I915_WRITE(_FDI_RXA_MISC, temp);
381                 POSTING_READ(_FDI_RXA_MISC);
382
383                 /* Wait for FDI auto training time */
384                 udelay(5);
385
386                 temp = I915_READ(DP_TP_STATUS(PORT_E));
387                 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
388                         DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
389
390                         /* Enable normal pixel sending for FDI */
391                         I915_WRITE(DP_TP_CTL(PORT_E),
392                                    DP_TP_CTL_FDI_AUTOTRAIN |
393                                    DP_TP_CTL_LINK_TRAIN_NORMAL |
394                                    DP_TP_CTL_ENHANCED_FRAME_ENABLE |
395                                    DP_TP_CTL_ENABLE);
396
397                         return;
398                 }
399
400                 temp = I915_READ(DDI_BUF_CTL(PORT_E));
401                 temp &= ~DDI_BUF_CTL_ENABLE;
402                 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
403                 POSTING_READ(DDI_BUF_CTL(PORT_E));
404
405                 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
406                 temp = I915_READ(DP_TP_CTL(PORT_E));
407                 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
408                 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
409                 I915_WRITE(DP_TP_CTL(PORT_E), temp);
410                 POSTING_READ(DP_TP_CTL(PORT_E));
411
412                 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
413
414                 rx_ctl_val &= ~FDI_RX_ENABLE;
415                 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
416                 POSTING_READ(_FDI_RXA_CTL);
417
418                 /* Reset FDI_RX_MISC pwrdn lanes */
419                 temp = I915_READ(_FDI_RXA_MISC);
420                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
421                 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
422                 I915_WRITE(_FDI_RXA_MISC, temp);
423                 POSTING_READ(_FDI_RXA_MISC);
424         }
425
426         DRM_ERROR("FDI link training failed!\n");
427 }
428
429 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
430 {
431         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
432         struct intel_digital_port *intel_dig_port =
433                 enc_to_dig_port(&encoder->base);
434
435         intel_dp->DP = intel_dig_port->saved_port_bits |
436                 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
437         intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
438
439 }
440
441 static struct intel_encoder *
442 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
443 {
444         struct drm_device *dev = crtc->dev;
445         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
446         struct intel_encoder *intel_encoder, *ret = NULL;
447         int num_encoders = 0;
448
449         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
450                 ret = intel_encoder;
451                 num_encoders++;
452         }
453
454         if (num_encoders != 1)
455                 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
456                      pipe_name(intel_crtc->pipe));
457
458         BUG_ON(ret == NULL);
459         return ret;
460 }
461
462 static struct intel_encoder *
463 intel_ddi_get_crtc_new_encoder(struct intel_crtc *crtc)
464 {
465         struct drm_device *dev = crtc->base.dev;
466         struct intel_encoder *intel_encoder, *ret = NULL;
467         int num_encoders = 0;
468
469         for_each_intel_encoder(dev, intel_encoder) {
470                 if (intel_encoder->new_crtc == crtc) {
471                         ret = intel_encoder;
472                         num_encoders++;
473                 }
474         }
475
476         WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
477              pipe_name(crtc->pipe));
478
479         BUG_ON(ret == NULL);
480         return ret;
481 }
482
483 #define LC_FREQ 2700
484 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
485
486 #define P_MIN 2
487 #define P_MAX 64
488 #define P_INC 2
489
490 /* Constraints for PLL good behavior */
491 #define REF_MIN 48
492 #define REF_MAX 400
493 #define VCO_MIN 2400
494 #define VCO_MAX 4800
495
496 #define abs_diff(a, b) ({                       \
497         typeof(a) __a = (a);                    \
498         typeof(b) __b = (b);                    \
499         (void) (&__a == &__b);                  \
500         __a > __b ? (__a - __b) : (__b - __a); })
501
502 struct wrpll_rnp {
503         unsigned p, n2, r2;
504 };
505
506 static unsigned wrpll_get_budget_for_freq(int clock)
507 {
508         unsigned budget;
509
510         switch (clock) {
511         case 25175000:
512         case 25200000:
513         case 27000000:
514         case 27027000:
515         case 37762500:
516         case 37800000:
517         case 40500000:
518         case 40541000:
519         case 54000000:
520         case 54054000:
521         case 59341000:
522         case 59400000:
523         case 72000000:
524         case 74176000:
525         case 74250000:
526         case 81000000:
527         case 81081000:
528         case 89012000:
529         case 89100000:
530         case 108000000:
531         case 108108000:
532         case 111264000:
533         case 111375000:
534         case 148352000:
535         case 148500000:
536         case 162000000:
537         case 162162000:
538         case 222525000:
539         case 222750000:
540         case 296703000:
541         case 297000000:
542                 budget = 0;
543                 break;
544         case 233500000:
545         case 245250000:
546         case 247750000:
547         case 253250000:
548         case 298000000:
549                 budget = 1500;
550                 break;
551         case 169128000:
552         case 169500000:
553         case 179500000:
554         case 202000000:
555                 budget = 2000;
556                 break;
557         case 256250000:
558         case 262500000:
559         case 270000000:
560         case 272500000:
561         case 273750000:
562         case 280750000:
563         case 281250000:
564         case 286000000:
565         case 291750000:
566                 budget = 4000;
567                 break;
568         case 267250000:
569         case 268500000:
570                 budget = 5000;
571                 break;
572         default:
573                 budget = 1000;
574                 break;
575         }
576
577         return budget;
578 }
579
580 static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
581                              unsigned r2, unsigned n2, unsigned p,
582                              struct wrpll_rnp *best)
583 {
584         uint64_t a, b, c, d, diff, diff_best;
585
586         /* No best (r,n,p) yet */
587         if (best->p == 0) {
588                 best->p = p;
589                 best->n2 = n2;
590                 best->r2 = r2;
591                 return;
592         }
593
594         /*
595          * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
596          * freq2k.
597          *
598          * delta = 1e6 *
599          *         abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
600          *         freq2k;
601          *
602          * and we would like delta <= budget.
603          *
604          * If the discrepancy is above the PPM-based budget, always prefer to
605          * improve upon the previous solution.  However, if you're within the
606          * budget, try to maximize Ref * VCO, that is N / (P * R^2).
607          */
608         a = freq2k * budget * p * r2;
609         b = freq2k * budget * best->p * best->r2;
610         diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
611         diff_best = abs_diff(freq2k * best->p * best->r2,
612                              LC_FREQ_2K * best->n2);
613         c = 1000000 * diff;
614         d = 1000000 * diff_best;
615
616         if (a < c && b < d) {
617                 /* If both are above the budget, pick the closer */
618                 if (best->p * best->r2 * diff < p * r2 * diff_best) {
619                         best->p = p;
620                         best->n2 = n2;
621                         best->r2 = r2;
622                 }
623         } else if (a >= c && b < d) {
624                 /* If A is below the threshold but B is above it?  Update. */
625                 best->p = p;
626                 best->n2 = n2;
627                 best->r2 = r2;
628         } else if (a >= c && b >= d) {
629                 /* Both are below the limit, so pick the higher n2/(r2*r2) */
630                 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
631                         best->p = p;
632                         best->n2 = n2;
633                         best->r2 = r2;
634                 }
635         }
636         /* Otherwise a < c && b >= d, do nothing */
637 }
638
639 static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
640                                      int reg)
641 {
642         int refclk = LC_FREQ;
643         int n, p, r;
644         u32 wrpll;
645
646         wrpll = I915_READ(reg);
647         switch (wrpll & WRPLL_PLL_REF_MASK) {
648         case WRPLL_PLL_SSC:
649         case WRPLL_PLL_NON_SSC:
650                 /*
651                  * We could calculate spread here, but our checking
652                  * code only cares about 5% accuracy, and spread is a max of
653                  * 0.5% downspread.
654                  */
655                 refclk = 135;
656                 break;
657         case WRPLL_PLL_LCPLL:
658                 refclk = LC_FREQ;
659                 break;
660         default:
661                 WARN(1, "bad wrpll refclk\n");
662                 return 0;
663         }
664
665         r = wrpll & WRPLL_DIVIDER_REF_MASK;
666         p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
667         n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
668
669         /* Convert to KHz, p & r have a fixed point portion */
670         return (refclk * n * 100) / (p * r);
671 }
672
673 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
674                                uint32_t dpll)
675 {
676         uint32_t cfgcr1_reg, cfgcr2_reg;
677         uint32_t cfgcr1_val, cfgcr2_val;
678         uint32_t p0, p1, p2, dco_freq;
679
680         cfgcr1_reg = GET_CFG_CR1_REG(dpll);
681         cfgcr2_reg = GET_CFG_CR2_REG(dpll);
682
683         cfgcr1_val = I915_READ(cfgcr1_reg);
684         cfgcr2_val = I915_READ(cfgcr2_reg);
685
686         p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
687         p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
688
689         if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
690                 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
691         else
692                 p1 = 1;
693
694
695         switch (p0) {
696         case DPLL_CFGCR2_PDIV_1:
697                 p0 = 1;
698                 break;
699         case DPLL_CFGCR2_PDIV_2:
700                 p0 = 2;
701                 break;
702         case DPLL_CFGCR2_PDIV_3:
703                 p0 = 3;
704                 break;
705         case DPLL_CFGCR2_PDIV_7:
706                 p0 = 7;
707                 break;
708         }
709
710         switch (p2) {
711         case DPLL_CFGCR2_KDIV_5:
712                 p2 = 5;
713                 break;
714         case DPLL_CFGCR2_KDIV_2:
715                 p2 = 2;
716                 break;
717         case DPLL_CFGCR2_KDIV_3:
718                 p2 = 3;
719                 break;
720         case DPLL_CFGCR2_KDIV_1:
721                 p2 = 1;
722                 break;
723         }
724
725         dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
726
727         dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
728                 1000) / 0x8000;
729
730         return dco_freq / (p0 * p1 * p2 * 5);
731 }
732
733
734 static void skl_ddi_clock_get(struct intel_encoder *encoder,
735                                 struct intel_crtc_state *pipe_config)
736 {
737         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
738         int link_clock = 0;
739         uint32_t dpll_ctl1, dpll;
740
741         dpll = pipe_config->ddi_pll_sel;
742
743         dpll_ctl1 = I915_READ(DPLL_CTRL1);
744
745         if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
746                 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
747         } else {
748                 link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
749                 link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);
750
751                 switch (link_clock) {
752                 case DPLL_CRTL1_LINK_RATE_810:
753                         link_clock = 81000;
754                         break;
755                 case DPLL_CRTL1_LINK_RATE_1350:
756                         link_clock = 135000;
757                         break;
758                 case DPLL_CRTL1_LINK_RATE_2700:
759                         link_clock = 270000;
760                         break;
761                 default:
762                         WARN(1, "Unsupported link rate\n");
763                         break;
764                 }
765                 link_clock *= 2;
766         }
767
768         pipe_config->port_clock = link_clock;
769
770         if (pipe_config->has_dp_encoder)
771                 pipe_config->base.adjusted_mode.crtc_clock =
772                         intel_dotclock_calculate(pipe_config->port_clock,
773                                                  &pipe_config->dp_m_n);
774         else
775                 pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
776 }
777
778 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
779                               struct intel_crtc_state *pipe_config)
780 {
781         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
782         int link_clock = 0;
783         u32 val, pll;
784
785         val = pipe_config->ddi_pll_sel;
786         switch (val & PORT_CLK_SEL_MASK) {
787         case PORT_CLK_SEL_LCPLL_810:
788                 link_clock = 81000;
789                 break;
790         case PORT_CLK_SEL_LCPLL_1350:
791                 link_clock = 135000;
792                 break;
793         case PORT_CLK_SEL_LCPLL_2700:
794                 link_clock = 270000;
795                 break;
796         case PORT_CLK_SEL_WRPLL1:
797                 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
798                 break;
799         case PORT_CLK_SEL_WRPLL2:
800                 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
801                 break;
802         case PORT_CLK_SEL_SPLL:
803                 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
804                 if (pll == SPLL_PLL_FREQ_810MHz)
805                         link_clock = 81000;
806                 else if (pll == SPLL_PLL_FREQ_1350MHz)
807                         link_clock = 135000;
808                 else if (pll == SPLL_PLL_FREQ_2700MHz)
809                         link_clock = 270000;
810                 else {
811                         WARN(1, "bad spll freq\n");
812                         return;
813                 }
814                 break;
815         default:
816                 WARN(1, "bad port clock sel\n");
817                 return;
818         }
819
820         pipe_config->port_clock = link_clock * 2;
821
822         if (pipe_config->has_pch_encoder)
823                 pipe_config->base.adjusted_mode.crtc_clock =
824                         intel_dotclock_calculate(pipe_config->port_clock,
825                                                  &pipe_config->fdi_m_n);
826         else if (pipe_config->has_dp_encoder)
827                 pipe_config->base.adjusted_mode.crtc_clock =
828                         intel_dotclock_calculate(pipe_config->port_clock,
829                                                  &pipe_config->dp_m_n);
830         else
831                 pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
832 }
833
834 void intel_ddi_clock_get(struct intel_encoder *encoder,
835                          struct intel_crtc_state *pipe_config)
836 {
837         struct drm_device *dev = encoder->base.dev;
838
839         if (INTEL_INFO(dev)->gen <= 8)
840                 hsw_ddi_clock_get(encoder, pipe_config);
841         else
842                 skl_ddi_clock_get(encoder, pipe_config);
843 }
844
845 static void
846 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
847                         unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
848 {
849         uint64_t freq2k;
850         unsigned p, n2, r2;
851         struct wrpll_rnp best = { 0, 0, 0 };
852         unsigned budget;
853
854         freq2k = clock / 100;
855
856         budget = wrpll_get_budget_for_freq(clock);
857
858         /* Special case handling for 540 pixel clock: bypass WR PLL entirely
859          * and directly pass the LC PLL to it. */
860         if (freq2k == 5400000) {
861                 *n2_out = 2;
862                 *p_out = 1;
863                 *r2_out = 2;
864                 return;
865         }
866
867         /*
868          * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
869          * the WR PLL.
870          *
871          * We want R so that REF_MIN <= Ref <= REF_MAX.
872          * Injecting R2 = 2 * R gives:
873          *   REF_MAX * r2 > LC_FREQ * 2 and
874          *   REF_MIN * r2 < LC_FREQ * 2
875          *
876          * Which means the desired boundaries for r2 are:
877          *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
878          *
879          */
880         for (r2 = LC_FREQ * 2 / REF_MAX + 1;
881              r2 <= LC_FREQ * 2 / REF_MIN;
882              r2++) {
883
884                 /*
885                  * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
886                  *
887                  * Once again we want VCO_MIN <= VCO <= VCO_MAX.
888                  * Injecting R2 = 2 * R and N2 = 2 * N, we get:
889                  *   VCO_MAX * r2 > n2 * LC_FREQ and
890                  *   VCO_MIN * r2 < n2 * LC_FREQ)
891                  *
892                  * Which means the desired boundaries for n2 are:
893                  * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
894                  */
895                 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
896                      n2 <= VCO_MAX * r2 / LC_FREQ;
897                      n2++) {
898
899                         for (p = P_MIN; p <= P_MAX; p += P_INC)
900                                 wrpll_update_rnp(freq2k, budget,
901                                                  r2, n2, p, &best);
902                 }
903         }
904
905         *n2_out = best.n2;
906         *p_out = best.p;
907         *r2_out = best.r2;
908 }
909
910 static bool
911 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
912                    struct intel_crtc_state *crtc_state,
913                    struct intel_encoder *intel_encoder,
914                    int clock)
915 {
916         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
917                 struct intel_shared_dpll *pll;
918                 uint32_t val;
919                 unsigned p, n2, r2;
920
921                 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
922
923                 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
924                       WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
925                       WRPLL_DIVIDER_POST(p);
926
927                 crtc_state->dpll_hw_state.wrpll = val;
928
929                 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
930                 if (pll == NULL) {
931                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
932                                          pipe_name(intel_crtc->pipe));
933                         return false;
934                 }
935
936                 crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
937         }
938
939         return true;
940 }
941
942 struct skl_wrpll_params {
943         uint32_t        dco_fraction;
944         uint32_t        dco_integer;
945         uint32_t        qdiv_ratio;
946         uint32_t        qdiv_mode;
947         uint32_t        kdiv;
948         uint32_t        pdiv;
949         uint32_t        central_freq;
950 };
951
952 static void
953 skl_ddi_calculate_wrpll(int clock /* in Hz */,
954                         struct skl_wrpll_params *wrpll_params)
955 {
956         uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
957         uint64_t dco_central_freq[3] = {8400000000ULL,
958                                         9000000000ULL,
959                                         9600000000ULL};
960         uint32_t min_dco_deviation = 400;
961         uint32_t min_dco_index = 3;
962         uint32_t P0[4] = {1, 2, 3, 7};
963         uint32_t P2[4] = {1, 2, 3, 5};
964         bool found = false;
965         uint32_t candidate_p = 0;
966         uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
967         uint32_t candidate_p2[3] = {0};
968         uint32_t dco_central_freq_deviation[3];
969         uint32_t i, P1, k, dco_count;
970         bool retry_with_odd = false;
971         uint64_t dco_freq;
972
973         /* Determine P0, P1 or P2 */
974         for (dco_count = 0; dco_count < 3; dco_count++) {
975                 found = false;
976                 candidate_p =
977                         div64_u64(dco_central_freq[dco_count], afe_clock);
978                 if (retry_with_odd == false)
979                         candidate_p = (candidate_p % 2 == 0 ?
980                                 candidate_p : candidate_p + 1);
981
982                 for (P1 = 1; P1 < candidate_p; P1++) {
983                         for (i = 0; i < 4; i++) {
984                                 if (!(P0[i] != 1 || P1 == 1))
985                                         continue;
986
987                                 for (k = 0; k < 4; k++) {
988                                         if (P1 != 1 && P2[k] != 2)
989                                                 continue;
990
991                                         if (candidate_p == P0[i] * P1 * P2[k]) {
992                                                 /* Found possible P0, P1, P2 */
993                                                 found = true;
994                                                 candidate_p0[dco_count] = P0[i];
995                                                 candidate_p1[dco_count] = P1;
996                                                 candidate_p2[dco_count] = P2[k];
997                                                 goto found;
998                                         }
999
1000                                 }
1001                         }
1002                 }
1003
1004 found:
1005                 if (found) {
1006                         dco_central_freq_deviation[dco_count] =
1007                                 div64_u64(10000 *
1008                                           abs_diff((candidate_p * afe_clock),
1009                                                    dco_central_freq[dco_count]),
1010                                           dco_central_freq[dco_count]);
1011
1012                         if (dco_central_freq_deviation[dco_count] <
1013                                 min_dco_deviation) {
1014                                 min_dco_deviation =
1015                                         dco_central_freq_deviation[dco_count];
1016                                 min_dco_index = dco_count;
1017                         }
1018                 }
1019
1020                 if (min_dco_index > 2 && dco_count == 2) {
1021                         retry_with_odd = true;
1022                         dco_count = 0;
1023                 }
1024         }
1025
1026         if (min_dco_index > 2) {
1027                 WARN(1, "No valid values found for the given pixel clock\n");
1028         } else {
1029                  wrpll_params->central_freq = dco_central_freq[min_dco_index];
1030
1031                  switch (dco_central_freq[min_dco_index]) {
1032                  case 9600000000ULL:
1033                         wrpll_params->central_freq = 0;
1034                         break;
1035                  case 9000000000ULL:
1036                         wrpll_params->central_freq = 1;
1037                         break;
1038                  case 8400000000ULL:
1039                         wrpll_params->central_freq = 3;
1040                  }
1041
1042                  switch (candidate_p0[min_dco_index]) {
1043                  case 1:
1044                         wrpll_params->pdiv = 0;
1045                         break;
1046                  case 2:
1047                         wrpll_params->pdiv = 1;
1048                         break;
1049                  case 3:
1050                         wrpll_params->pdiv = 2;
1051                         break;
1052                  case 7:
1053                         wrpll_params->pdiv = 4;
1054                         break;
1055                  default:
1056                         WARN(1, "Incorrect PDiv\n");
1057                  }
1058
1059                  switch (candidate_p2[min_dco_index]) {
1060                  case 5:
1061                         wrpll_params->kdiv = 0;
1062                         break;
1063                  case 2:
1064                         wrpll_params->kdiv = 1;
1065                         break;
1066                  case 3:
1067                         wrpll_params->kdiv = 2;
1068                         break;
1069                  case 1:
1070                         wrpll_params->kdiv = 3;
1071                         break;
1072                  default:
1073                         WARN(1, "Incorrect KDiv\n");
1074                  }
1075
1076                  wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
1077                  wrpll_params->qdiv_mode =
1078                         (wrpll_params->qdiv_ratio == 1) ? 0 : 1;
1079
1080                  dco_freq = candidate_p0[min_dco_index] *
1081                          candidate_p1[min_dco_index] *
1082                          candidate_p2[min_dco_index] * afe_clock;
1083
1084                 /*
1085                 * Intermediate values are in Hz.
1086                 * Divide by MHz to match bsepc
1087                 */
1088                  wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
1089                  wrpll_params->dco_fraction =
1090                          div_u64(((div_u64(dco_freq, 24) -
1091                                    wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
1092
1093         }
1094 }
1095
1096
1097 static bool
1098 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1099                    struct intel_crtc_state *crtc_state,
1100                    struct intel_encoder *intel_encoder,
1101                    int clock)
1102 {
1103         struct intel_shared_dpll *pll;
1104         uint32_t ctrl1, cfgcr1, cfgcr2;
1105
1106         /*
1107          * See comment in intel_dpll_hw_state to understand why we always use 0
1108          * as the DPLL id in this function.
1109          */
1110
1111         ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1112
1113         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1114                 struct skl_wrpll_params wrpll_params = { 0, };
1115
1116                 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1117
1118                 skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
1119
1120                 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1121                          DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1122                          wrpll_params.dco_integer;
1123
1124                 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1125                          DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1126                          DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1127                          DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1128                          wrpll_params.central_freq;
1129         } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1130                 struct drm_encoder *encoder = &intel_encoder->base;
1131                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1132
1133                 switch (intel_dp->link_bw) {
1134                 case DP_LINK_BW_1_62:
1135                         ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
1136                         break;
1137                 case DP_LINK_BW_2_7:
1138                         ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
1139                         break;
1140                 case DP_LINK_BW_5_4:
1141                         ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
1142                         break;
1143                 }
1144
1145                 cfgcr1 = cfgcr2 = 0;
1146         } else /* eDP */
1147                 return true;
1148
1149         crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1150         crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1151         crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1152
1153         pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1154         if (pll == NULL) {
1155                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1156                                  pipe_name(intel_crtc->pipe));
1157                 return false;
1158         }
1159
1160         /* shared DPLL id 0 is DPLL 1 */
1161         crtc_state->ddi_pll_sel = pll->id + 1;
1162
1163         return true;
1164 }
1165
1166 /*
1167  * Tries to find a *shared* PLL for the CRTC and store it in
1168  * intel_crtc->ddi_pll_sel.
1169  *
1170  * For private DPLLs, compute_config() should do the selection for us. This
1171  * function should be folded into compute_config() eventually.
1172  */
1173 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1174                           struct intel_crtc_state *crtc_state)
1175 {
1176         struct drm_device *dev = intel_crtc->base.dev;
1177         struct intel_encoder *intel_encoder =
1178                 intel_ddi_get_crtc_new_encoder(intel_crtc);
1179         int clock = crtc_state->port_clock;
1180
1181         if (IS_SKYLAKE(dev))
1182                 return skl_ddi_pll_select(intel_crtc, crtc_state,
1183                                           intel_encoder, clock);
1184         else
1185                 return hsw_ddi_pll_select(intel_crtc, crtc_state,
1186                                           intel_encoder, clock);
1187 }
1188
1189 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1190 {
1191         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1193         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1194         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1195         int type = intel_encoder->type;
1196         uint32_t temp;
1197
1198         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1199                 temp = TRANS_MSA_SYNC_CLK;
1200                 switch (intel_crtc->config->pipe_bpp) {
1201                 case 18:
1202                         temp |= TRANS_MSA_6_BPC;
1203                         break;
1204                 case 24:
1205                         temp |= TRANS_MSA_8_BPC;
1206                         break;
1207                 case 30:
1208                         temp |= TRANS_MSA_10_BPC;
1209                         break;
1210                 case 36:
1211                         temp |= TRANS_MSA_12_BPC;
1212                         break;
1213                 default:
1214                         BUG();
1215                 }
1216                 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1217         }
1218 }
1219
1220 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1221 {
1222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1223         struct drm_device *dev = crtc->dev;
1224         struct drm_i915_private *dev_priv = dev->dev_private;
1225         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1226         uint32_t temp;
1227         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1228         if (state == true)
1229                 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1230         else
1231                 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1232         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1233 }
1234
1235 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1236 {
1237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1238         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1239         struct drm_encoder *encoder = &intel_encoder->base;
1240         struct drm_device *dev = crtc->dev;
1241         struct drm_i915_private *dev_priv = dev->dev_private;
1242         enum pipe pipe = intel_crtc->pipe;
1243         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1244         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1245         int type = intel_encoder->type;
1246         uint32_t temp;
1247
1248         /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1249         temp = TRANS_DDI_FUNC_ENABLE;
1250         temp |= TRANS_DDI_SELECT_PORT(port);
1251
1252         switch (intel_crtc->config->pipe_bpp) {
1253         case 18:
1254                 temp |= TRANS_DDI_BPC_6;
1255                 break;
1256         case 24:
1257                 temp |= TRANS_DDI_BPC_8;
1258                 break;
1259         case 30:
1260                 temp |= TRANS_DDI_BPC_10;
1261                 break;
1262         case 36:
1263                 temp |= TRANS_DDI_BPC_12;
1264                 break;
1265         default:
1266                 BUG();
1267         }
1268
1269         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1270                 temp |= TRANS_DDI_PVSYNC;
1271         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1272                 temp |= TRANS_DDI_PHSYNC;
1273
1274         if (cpu_transcoder == TRANSCODER_EDP) {
1275                 switch (pipe) {
1276                 case PIPE_A:
1277                         /* On Haswell, can only use the always-on power well for
1278                          * eDP when not using the panel fitter, and when not
1279                          * using motion blur mitigation (which we don't
1280                          * support). */
1281                         if (IS_HASWELL(dev) &&
1282                             (intel_crtc->config->pch_pfit.enabled ||
1283                              intel_crtc->config->pch_pfit.force_thru))
1284                                 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1285                         else
1286                                 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1287                         break;
1288                 case PIPE_B:
1289                         temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1290                         break;
1291                 case PIPE_C:
1292                         temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1293                         break;
1294                 default:
1295                         BUG();
1296                         break;
1297                 }
1298         }
1299
1300         if (type == INTEL_OUTPUT_HDMI) {
1301                 if (intel_crtc->config->has_hdmi_sink)
1302                         temp |= TRANS_DDI_MODE_SELECT_HDMI;
1303                 else
1304                         temp |= TRANS_DDI_MODE_SELECT_DVI;
1305
1306         } else if (type == INTEL_OUTPUT_ANALOG) {
1307                 temp |= TRANS_DDI_MODE_SELECT_FDI;
1308                 temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1309
1310         } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1311                    type == INTEL_OUTPUT_EDP) {
1312                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1313
1314                 if (intel_dp->is_mst) {
1315                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1316                 } else
1317                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1318
1319                 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1320         } else if (type == INTEL_OUTPUT_DP_MST) {
1321                 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1322
1323                 if (intel_dp->is_mst) {
1324                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1325                 } else
1326                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1327
1328                 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1329         } else {
1330                 WARN(1, "Invalid encoder type %d for pipe %c\n",
1331                      intel_encoder->type, pipe_name(pipe));
1332         }
1333
1334         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1335 }
1336
1337 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1338                                        enum transcoder cpu_transcoder)
1339 {
1340         uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1341         uint32_t val = I915_READ(reg);
1342
1343         val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1344         val |= TRANS_DDI_PORT_NONE;
1345         I915_WRITE(reg, val);
1346 }
1347
1348 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1349 {
1350         struct drm_device *dev = intel_connector->base.dev;
1351         struct drm_i915_private *dev_priv = dev->dev_private;
1352         struct intel_encoder *intel_encoder = intel_connector->encoder;
1353         int type = intel_connector->base.connector_type;
1354         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1355         enum pipe pipe = 0;
1356         enum transcoder cpu_transcoder;
1357         enum intel_display_power_domain power_domain;
1358         uint32_t tmp;
1359
1360         power_domain = intel_display_port_power_domain(intel_encoder);
1361         if (!intel_display_power_is_enabled(dev_priv, power_domain))
1362                 return false;
1363
1364         if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1365                 return false;
1366
1367         if (port == PORT_A)
1368                 cpu_transcoder = TRANSCODER_EDP;
1369         else
1370                 cpu_transcoder = (enum transcoder) pipe;
1371
1372         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1373
1374         switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1375         case TRANS_DDI_MODE_SELECT_HDMI:
1376         case TRANS_DDI_MODE_SELECT_DVI:
1377                 return (type == DRM_MODE_CONNECTOR_HDMIA);
1378
1379         case TRANS_DDI_MODE_SELECT_DP_SST:
1380                 if (type == DRM_MODE_CONNECTOR_eDP)
1381                         return true;
1382                 return (type == DRM_MODE_CONNECTOR_DisplayPort);
1383         case TRANS_DDI_MODE_SELECT_DP_MST:
1384                 /* if the transcoder is in MST state then
1385                  * connector isn't connected */
1386                 return false;
1387
1388         case TRANS_DDI_MODE_SELECT_FDI:
1389                 return (type == DRM_MODE_CONNECTOR_VGA);
1390
1391         default:
1392                 return false;
1393         }
1394 }
1395
1396 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1397                             enum pipe *pipe)
1398 {
1399         struct drm_device *dev = encoder->base.dev;
1400         struct drm_i915_private *dev_priv = dev->dev_private;
1401         enum port port = intel_ddi_get_encoder_port(encoder);
1402         enum intel_display_power_domain power_domain;
1403         u32 tmp;
1404         int i;
1405
1406         power_domain = intel_display_port_power_domain(encoder);
1407         if (!intel_display_power_is_enabled(dev_priv, power_domain))
1408                 return false;
1409
1410         tmp = I915_READ(DDI_BUF_CTL(port));
1411
1412         if (!(tmp & DDI_BUF_CTL_ENABLE))
1413                 return false;
1414
1415         if (port == PORT_A) {
1416                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1417
1418                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1419                 case TRANS_DDI_EDP_INPUT_A_ON:
1420                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
1421                         *pipe = PIPE_A;
1422                         break;
1423                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
1424                         *pipe = PIPE_B;
1425                         break;
1426                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
1427                         *pipe = PIPE_C;
1428                         break;
1429                 }
1430
1431                 return true;
1432         } else {
1433                 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1434                         tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1435
1436                         if ((tmp & TRANS_DDI_PORT_MASK)
1437                             == TRANS_DDI_SELECT_PORT(port)) {
1438                                 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
1439                                         return false;
1440
1441                                 *pipe = i;
1442                                 return true;
1443                         }
1444                 }
1445         }
1446
1447         DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1448
1449         return false;
1450 }
1451
1452 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1453 {
1454         struct drm_crtc *crtc = &intel_crtc->base;
1455         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1456         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1457         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1458         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1459
1460         if (cpu_transcoder != TRANSCODER_EDP)
1461                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1462                            TRANS_CLK_SEL_PORT(port));
1463 }
1464
1465 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1466 {
1467         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1468         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1469
1470         if (cpu_transcoder != TRANSCODER_EDP)
1471                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1472                            TRANS_CLK_SEL_DISABLED);
1473 }
1474
1475 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1476 {
1477         struct drm_encoder *encoder = &intel_encoder->base;
1478         struct drm_device *dev = encoder->dev;
1479         struct drm_i915_private *dev_priv = dev->dev_private;
1480         struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1481         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1482         int type = intel_encoder->type;
1483
1484         if (type == INTEL_OUTPUT_EDP) {
1485                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1486                 intel_edp_panel_on(intel_dp);
1487         }
1488
1489         if (IS_SKYLAKE(dev)) {
1490                 uint32_t dpll = crtc->config->ddi_pll_sel;
1491                 uint32_t val;
1492
1493                 /*
1494                  * DPLL0 is used for eDP and is the only "private" DPLL (as
1495                  * opposed to shared) on SKL
1496                  */
1497                 if (type == INTEL_OUTPUT_EDP) {
1498                         WARN_ON(dpll != SKL_DPLL0);
1499
1500                         val = I915_READ(DPLL_CTRL1);
1501
1502                         val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
1503                                  DPLL_CTRL1_SSC(dpll) |
1504                                  DPLL_CRTL1_LINK_RATE_MASK(dpll));
1505                         val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
1506
1507                         I915_WRITE(DPLL_CTRL1, val);
1508                         POSTING_READ(DPLL_CTRL1);
1509                 }
1510
1511                 /* DDI -> PLL mapping  */
1512                 val = I915_READ(DPLL_CTRL2);
1513
1514                 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1515                         DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1516                 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1517                         DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1518
1519                 I915_WRITE(DPLL_CTRL2, val);
1520
1521         } else {
1522                 WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1523                 I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
1524         }
1525
1526         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1527                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1528
1529                 intel_ddi_init_dp_buf_reg(intel_encoder);
1530
1531                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1532                 intel_dp_start_link_train(intel_dp);
1533                 intel_dp_complete_link_train(intel_dp);
1534                 if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1535                         intel_dp_stop_link_train(intel_dp);
1536         } else if (type == INTEL_OUTPUT_HDMI) {
1537                 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1538
1539                 intel_hdmi->set_infoframes(encoder,
1540                                            crtc->config->has_hdmi_sink,
1541                                            &crtc->config->base.adjusted_mode);
1542         }
1543 }
1544
1545 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1546 {
1547         struct drm_encoder *encoder = &intel_encoder->base;
1548         struct drm_device *dev = encoder->dev;
1549         struct drm_i915_private *dev_priv = dev->dev_private;
1550         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1551         int type = intel_encoder->type;
1552         uint32_t val;
1553         bool wait = false;
1554
1555         val = I915_READ(DDI_BUF_CTL(port));
1556         if (val & DDI_BUF_CTL_ENABLE) {
1557                 val &= ~DDI_BUF_CTL_ENABLE;
1558                 I915_WRITE(DDI_BUF_CTL(port), val);
1559                 wait = true;
1560         }
1561
1562         val = I915_READ(DP_TP_CTL(port));
1563         val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1564         val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1565         I915_WRITE(DP_TP_CTL(port), val);
1566
1567         if (wait)
1568                 intel_wait_ddi_buf_idle(dev_priv, port);
1569
1570         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1571                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1572                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1573                 intel_edp_panel_vdd_on(intel_dp);
1574                 intel_edp_panel_off(intel_dp);
1575         }
1576
1577         if (IS_SKYLAKE(dev))
1578                 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1579                                         DPLL_CTRL2_DDI_CLK_OFF(port)));
1580         else
1581                 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1582 }
1583
1584 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1585 {
1586         struct drm_encoder *encoder = &intel_encoder->base;
1587         struct drm_crtc *crtc = encoder->crtc;
1588         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1589         struct drm_device *dev = encoder->dev;
1590         struct drm_i915_private *dev_priv = dev->dev_private;
1591         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1592         int type = intel_encoder->type;
1593
1594         if (type == INTEL_OUTPUT_HDMI) {
1595                 struct intel_digital_port *intel_dig_port =
1596                         enc_to_dig_port(encoder);
1597
1598                 /* In HDMI/DVI mode, the port width, and swing/emphasis values
1599                  * are ignored so nothing special needs to be done besides
1600                  * enabling the port.
1601                  */
1602                 I915_WRITE(DDI_BUF_CTL(port),
1603                            intel_dig_port->saved_port_bits |
1604                            DDI_BUF_CTL_ENABLE);
1605         } else if (type == INTEL_OUTPUT_EDP) {
1606                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1607
1608                 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1609                         intel_dp_stop_link_train(intel_dp);
1610
1611                 intel_edp_backlight_on(intel_dp);
1612                 intel_psr_enable(intel_dp);
1613         }
1614
1615         if (intel_crtc->config->has_audio) {
1616                 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1617                 intel_audio_codec_enable(intel_encoder);
1618         }
1619 }
1620
1621 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1622 {
1623         struct drm_encoder *encoder = &intel_encoder->base;
1624         struct drm_crtc *crtc = encoder->crtc;
1625         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1626         int type = intel_encoder->type;
1627         struct drm_device *dev = encoder->dev;
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629
1630         if (intel_crtc->config->has_audio) {
1631                 intel_audio_codec_disable(intel_encoder);
1632                 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1633         }
1634
1635         if (type == INTEL_OUTPUT_EDP) {
1636                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1637
1638                 intel_psr_disable(intel_dp);
1639                 intel_edp_backlight_off(intel_dp);
1640         }
1641 }
1642
1643 static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
1644 {
1645         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
1646         uint32_t cdctl = I915_READ(CDCLK_CTL);
1647         uint32_t linkrate;
1648
1649         if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
1650                 WARN(1, "LCPLL1 not enabled\n");
1651                 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652         }
1653
1654         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
1655                 return 540000;
1656
1657         linkrate = (I915_READ(DPLL_CTRL1) &
1658                     DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1659
1660         if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
1661             linkrate == DPLL_CRTL1_LINK_RATE_1080) {
1662                 /* vco 8640 */
1663                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1664                 case CDCLK_FREQ_450_432:
1665                         return 432000;
1666                 case CDCLK_FREQ_337_308:
1667                         return 308570;
1668                 case CDCLK_FREQ_675_617:
1669                         return 617140;
1670                 default:
1671                         WARN(1, "Unknown cd freq selection\n");
1672                 }
1673         } else {
1674                 /* vco 8100 */
1675                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1676                 case CDCLK_FREQ_450_432:
1677                         return 450000;
1678                 case CDCLK_FREQ_337_308:
1679                         return 337500;
1680                 case CDCLK_FREQ_675_617:
1681                         return 675000;
1682                 default:
1683                         WARN(1, "Unknown cd freq selection\n");
1684                 }
1685         }
1686
1687         /* error case, do as if DPLL0 isn't enabled */
1688         return 24000;
1689 }
1690
1691 static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1692 {
1693         uint32_t lcpll = I915_READ(LCPLL_CTL);
1694         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1695
1696         if (lcpll & LCPLL_CD_SOURCE_FCLK)
1697                 return 800000;
1698         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1699                 return 450000;
1700         else if (freq == LCPLL_CLK_FREQ_450)
1701                 return 450000;
1702         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
1703                 return 540000;
1704         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
1705                 return 337500;
1706         else
1707                 return 675000;
1708 }
1709
1710 static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1711 {
1712         struct drm_device *dev = dev_priv->dev;
1713         uint32_t lcpll = I915_READ(LCPLL_CTL);
1714         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1715
1716         if (lcpll & LCPLL_CD_SOURCE_FCLK)
1717                 return 800000;
1718         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1719                 return 450000;
1720         else if (freq == LCPLL_CLK_FREQ_450)
1721                 return 450000;
1722         else if (IS_HSW_ULT(dev))
1723                 return 337500;
1724         else
1725                 return 540000;
1726 }
1727
1728 int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
1729 {
1730         struct drm_device *dev = dev_priv->dev;
1731
1732         if (IS_SKYLAKE(dev))
1733                 return skl_get_cdclk_freq(dev_priv);
1734
1735         if (IS_BROADWELL(dev))
1736                 return bdw_get_cdclk_freq(dev_priv);
1737
1738         /* Haswell */
1739         return hsw_get_cdclk_freq(dev_priv);
1740 }
1741
1742 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
1743                                struct intel_shared_dpll *pll)
1744 {
1745         I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
1746         POSTING_READ(WRPLL_CTL(pll->id));
1747         udelay(20);
1748 }
1749
1750 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
1751                                 struct intel_shared_dpll *pll)
1752 {
1753         uint32_t val;
1754
1755         val = I915_READ(WRPLL_CTL(pll->id));
1756         I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
1757         POSTING_READ(WRPLL_CTL(pll->id));
1758 }
1759
1760 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1761                                      struct intel_shared_dpll *pll,
1762                                      struct intel_dpll_hw_state *hw_state)
1763 {
1764         uint32_t val;
1765
1766         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1767                 return false;
1768
1769         val = I915_READ(WRPLL_CTL(pll->id));
1770         hw_state->wrpll = val;
1771
1772         return val & WRPLL_PLL_ENABLE;
1773 }
1774
1775 static const char * const hsw_ddi_pll_names[] = {
1776         "WRPLL 1",
1777         "WRPLL 2",
1778 };
1779
1780 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
1781 {
1782         int i;
1783
1784         dev_priv->num_shared_dpll = 2;
1785
1786         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1787                 dev_priv->shared_dplls[i].id = i;
1788                 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
1789                 dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
1790                 dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
1791                 dev_priv->shared_dplls[i].get_hw_state =
1792                         hsw_ddi_pll_get_hw_state;
1793         }
1794 }
1795
1796 static const char * const skl_ddi_pll_names[] = {
1797         "DPLL 1",
1798         "DPLL 2",
1799         "DPLL 3",
1800 };
1801
1802 struct skl_dpll_regs {
1803         u32 ctl, cfgcr1, cfgcr2;
1804 };
1805
1806 /* this array is indexed by the *shared* pll id */
1807 static const struct skl_dpll_regs skl_dpll_regs[3] = {
1808         {
1809                 /* DPLL 1 */
1810                 .ctl = LCPLL2_CTL,
1811                 .cfgcr1 = DPLL1_CFGCR1,
1812                 .cfgcr2 = DPLL1_CFGCR2,
1813         },
1814         {
1815                 /* DPLL 2 */
1816                 .ctl = WRPLL_CTL1,
1817                 .cfgcr1 = DPLL2_CFGCR1,
1818                 .cfgcr2 = DPLL2_CFGCR2,
1819         },
1820         {
1821                 /* DPLL 3 */
1822                 .ctl = WRPLL_CTL2,
1823                 .cfgcr1 = DPLL3_CFGCR1,
1824                 .cfgcr2 = DPLL3_CFGCR2,
1825         },
1826 };
1827
1828 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
1829                                struct intel_shared_dpll *pll)
1830 {
1831         uint32_t val;
1832         unsigned int dpll;
1833         const struct skl_dpll_regs *regs = skl_dpll_regs;
1834
1835         /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1836         dpll = pll->id + 1;
1837
1838         val = I915_READ(DPLL_CTRL1);
1839
1840         val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
1841                  DPLL_CRTL1_LINK_RATE_MASK(dpll));
1842         val |= pll->config.hw_state.ctrl1 << (dpll * 6);
1843
1844         I915_WRITE(DPLL_CTRL1, val);
1845         POSTING_READ(DPLL_CTRL1);
1846
1847         I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
1848         I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
1849         POSTING_READ(regs[pll->id].cfgcr1);
1850         POSTING_READ(regs[pll->id].cfgcr2);
1851
1852         /* the enable bit is always bit 31 */
1853         I915_WRITE(regs[pll->id].ctl,
1854                    I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
1855
1856         if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
1857                 DRM_ERROR("DPLL %d not locked\n", dpll);
1858 }
1859
1860 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
1861                                 struct intel_shared_dpll *pll)
1862 {
1863         const struct skl_dpll_regs *regs = skl_dpll_regs;
1864
1865         /* the enable bit is always bit 31 */
1866         I915_WRITE(regs[pll->id].ctl,
1867                    I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
1868         POSTING_READ(regs[pll->id].ctl);
1869 }
1870
1871 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1872                                      struct intel_shared_dpll *pll,
1873                                      struct intel_dpll_hw_state *hw_state)
1874 {
1875         uint32_t val;
1876         unsigned int dpll;
1877         const struct skl_dpll_regs *regs = skl_dpll_regs;
1878
1879         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1880                 return false;
1881
1882         /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1883         dpll = pll->id + 1;
1884
1885         val = I915_READ(regs[pll->id].ctl);
1886         if (!(val & LCPLL_PLL_ENABLE))
1887                 return false;
1888
1889         val = I915_READ(DPLL_CTRL1);
1890         hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
1891
1892         /* avoid reading back stale values if HDMI mode is not enabled */
1893         if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
1894                 hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
1895                 hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
1896         }
1897
1898         return true;
1899 }
1900
1901 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
1902 {
1903         int i;
1904
1905         dev_priv->num_shared_dpll = 3;
1906
1907         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1908                 dev_priv->shared_dplls[i].id = i;
1909                 dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
1910                 dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
1911                 dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
1912                 dev_priv->shared_dplls[i].get_hw_state =
1913                         skl_ddi_pll_get_hw_state;
1914         }
1915 }
1916
1917 void intel_ddi_pll_init(struct drm_device *dev)
1918 {
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         uint32_t val = I915_READ(LCPLL_CTL);
1921
1922         if (IS_SKYLAKE(dev))
1923                 skl_shared_dplls_init(dev_priv);
1924         else
1925                 hsw_shared_dplls_init(dev_priv);
1926
1927         DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
1928                       intel_ddi_get_cdclk_freq(dev_priv));
1929
1930         if (IS_SKYLAKE(dev)) {
1931                 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
1932                         DRM_ERROR("LCPLL1 is disabled\n");
1933         } else {
1934                 /*
1935                  * The LCPLL register should be turned on by the BIOS. For now
1936                  * let's just check its state and print errors in case
1937                  * something is wrong.  Don't even try to turn it on.
1938                  */
1939
1940                 if (val & LCPLL_CD_SOURCE_FCLK)
1941                         DRM_ERROR("CDCLK source is not LCPLL\n");
1942
1943                 if (val & LCPLL_PLL_DISABLE)
1944                         DRM_ERROR("LCPLL is disabled\n");
1945         }
1946 }
1947
1948 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
1949 {
1950         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
1951         struct intel_dp *intel_dp = &intel_dig_port->dp;
1952         struct drm_i915_private *dev_priv = encoder->dev->dev_private;
1953         enum port port = intel_dig_port->port;
1954         uint32_t val;
1955         bool wait = false;
1956
1957         if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
1958                 val = I915_READ(DDI_BUF_CTL(port));
1959                 if (val & DDI_BUF_CTL_ENABLE) {
1960                         val &= ~DDI_BUF_CTL_ENABLE;
1961                         I915_WRITE(DDI_BUF_CTL(port), val);
1962                         wait = true;
1963                 }
1964
1965                 val = I915_READ(DP_TP_CTL(port));
1966                 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1967                 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1968                 I915_WRITE(DP_TP_CTL(port), val);
1969                 POSTING_READ(DP_TP_CTL(port));
1970
1971                 if (wait)
1972                         intel_wait_ddi_buf_idle(dev_priv, port);
1973         }
1974
1975         val = DP_TP_CTL_ENABLE |
1976               DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
1977         if (intel_dp->is_mst)
1978                 val |= DP_TP_CTL_MODE_MST;
1979         else {
1980                 val |= DP_TP_CTL_MODE_SST;
1981                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1982                         val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
1983         }
1984         I915_WRITE(DP_TP_CTL(port), val);
1985         POSTING_READ(DP_TP_CTL(port));
1986
1987         intel_dp->DP |= DDI_BUF_CTL_ENABLE;
1988         I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
1989         POSTING_READ(DDI_BUF_CTL(port));
1990
1991         udelay(600);
1992 }
1993
1994 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
1995 {
1996         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1997         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1998         uint32_t val;
1999
2000         intel_ddi_post_disable(intel_encoder);
2001
2002         val = I915_READ(_FDI_RXA_CTL);
2003         val &= ~FDI_RX_ENABLE;
2004         I915_WRITE(_FDI_RXA_CTL, val);
2005
2006         val = I915_READ(_FDI_RXA_MISC);
2007         val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2008         val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2009         I915_WRITE(_FDI_RXA_MISC, val);
2010
2011         val = I915_READ(_FDI_RXA_CTL);
2012         val &= ~FDI_PCDCLK;
2013         I915_WRITE(_FDI_RXA_CTL, val);
2014
2015         val = I915_READ(_FDI_RXA_CTL);
2016         val &= ~FDI_RX_PLL_ENABLE;
2017         I915_WRITE(_FDI_RXA_CTL, val);
2018 }
2019
2020 static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
2021 {
2022         struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
2023         int type = intel_dig_port->base.type;
2024
2025         if (type != INTEL_OUTPUT_DISPLAYPORT &&
2026             type != INTEL_OUTPUT_EDP &&
2027             type != INTEL_OUTPUT_UNKNOWN) {
2028                 return;
2029         }
2030
2031         intel_dp_hot_plug(intel_encoder);
2032 }
2033
2034 void intel_ddi_get_config(struct intel_encoder *encoder,
2035                           struct intel_crtc_state *pipe_config)
2036 {
2037         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2038         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2039         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2040         struct intel_hdmi *intel_hdmi;
2041         u32 temp, flags = 0;
2042
2043         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2044         if (temp & TRANS_DDI_PHSYNC)
2045                 flags |= DRM_MODE_FLAG_PHSYNC;
2046         else
2047                 flags |= DRM_MODE_FLAG_NHSYNC;
2048         if (temp & TRANS_DDI_PVSYNC)
2049                 flags |= DRM_MODE_FLAG_PVSYNC;
2050         else
2051                 flags |= DRM_MODE_FLAG_NVSYNC;
2052
2053         pipe_config->base.adjusted_mode.flags |= flags;
2054
2055         switch (temp & TRANS_DDI_BPC_MASK) {
2056         case TRANS_DDI_BPC_6:
2057                 pipe_config->pipe_bpp = 18;
2058                 break;
2059         case TRANS_DDI_BPC_8:
2060                 pipe_config->pipe_bpp = 24;
2061                 break;
2062         case TRANS_DDI_BPC_10:
2063                 pipe_config->pipe_bpp = 30;
2064                 break;
2065         case TRANS_DDI_BPC_12:
2066                 pipe_config->pipe_bpp = 36;
2067                 break;
2068         default:
2069                 break;
2070         }
2071
2072         switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2073         case TRANS_DDI_MODE_SELECT_HDMI:
2074                 pipe_config->has_hdmi_sink = true;
2075                 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2076
2077                 if (intel_hdmi->infoframe_enabled(&encoder->base))
2078                         pipe_config->has_infoframe = true;
2079                 break;
2080         case TRANS_DDI_MODE_SELECT_DVI:
2081         case TRANS_DDI_MODE_SELECT_FDI:
2082                 break;
2083         case TRANS_DDI_MODE_SELECT_DP_SST:
2084         case TRANS_DDI_MODE_SELECT_DP_MST:
2085                 pipe_config->has_dp_encoder = true;
2086                 intel_dp_get_m_n(intel_crtc, pipe_config);
2087                 break;
2088         default:
2089                 break;
2090         }
2091
2092         if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2093                 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2094                 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2095                         pipe_config->has_audio = true;
2096         }
2097
2098         if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
2099             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2100                 /*
2101                  * This is a big fat ugly hack.
2102                  *
2103                  * Some machines in UEFI boot mode provide us a VBT that has 18
2104                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2105                  * unknown we fail to light up. Yet the same BIOS boots up with
2106                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2107                  * max, not what it tells us to use.
2108                  *
2109                  * Note: This will still be broken if the eDP panel is not lit
2110                  * up by the BIOS, and thus we can't get the mode at module
2111                  * load.
2112                  */
2113                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2114                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2115                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2116         }
2117
2118         intel_ddi_clock_get(encoder, pipe_config);
2119 }
2120
2121 static void intel_ddi_destroy(struct drm_encoder *encoder)
2122 {
2123         /* HDMI has nothing special to destroy, so we can go with this. */
2124         intel_dp_encoder_destroy(encoder);
2125 }
2126
2127 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2128                                      struct intel_crtc_state *pipe_config)
2129 {
2130         int type = encoder->type;
2131         int port = intel_ddi_get_encoder_port(encoder);
2132
2133         WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2134
2135         if (port == PORT_A)
2136                 pipe_config->cpu_transcoder = TRANSCODER_EDP;
2137
2138         if (type == INTEL_OUTPUT_HDMI)
2139                 return intel_hdmi_compute_config(encoder, pipe_config);
2140         else
2141                 return intel_dp_compute_config(encoder, pipe_config);
2142 }
2143
2144 static const struct drm_encoder_funcs intel_ddi_funcs = {
2145         .destroy = intel_ddi_destroy,
2146 };
2147
2148 static struct intel_connector *
2149 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2150 {
2151         struct intel_connector *connector;
2152         enum port port = intel_dig_port->port;
2153
2154         connector = kzalloc(sizeof(*connector), GFP_KERNEL);
2155         if (!connector)
2156                 return NULL;
2157
2158         intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2159         if (!intel_dp_init_connector(intel_dig_port, connector)) {
2160                 kfree(connector);
2161                 return NULL;
2162         }
2163
2164         return connector;
2165 }
2166
2167 static struct intel_connector *
2168 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2169 {
2170         struct intel_connector *connector;
2171         enum port port = intel_dig_port->port;
2172
2173         connector = kzalloc(sizeof(*connector), GFP_KERNEL);
2174         if (!connector)
2175                 return NULL;
2176
2177         intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2178         intel_hdmi_init_connector(intel_dig_port, connector);
2179
2180         return connector;
2181 }
2182
2183 void intel_ddi_init(struct drm_device *dev, enum port port)
2184 {
2185         struct drm_i915_private *dev_priv = dev->dev_private;
2186         struct intel_digital_port *intel_dig_port;
2187         struct intel_encoder *intel_encoder;
2188         struct drm_encoder *encoder;
2189         bool init_hdmi, init_dp;
2190
2191         init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2192                      dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2193         init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2194         if (!init_dp && !init_hdmi) {
2195                 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2196                               port_name(port));
2197                 init_hdmi = true;
2198                 init_dp = true;
2199         }
2200
2201         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2202         if (!intel_dig_port)
2203                 return;
2204
2205         intel_encoder = &intel_dig_port->base;
2206         encoder = &intel_encoder->base;
2207
2208         drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2209                          DRM_MODE_ENCODER_TMDS);
2210
2211         intel_encoder->compute_config = intel_ddi_compute_config;
2212         intel_encoder->enable = intel_enable_ddi;
2213         intel_encoder->pre_enable = intel_ddi_pre_enable;
2214         intel_encoder->disable = intel_disable_ddi;
2215         intel_encoder->post_disable = intel_ddi_post_disable;
2216         intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2217         intel_encoder->get_config = intel_ddi_get_config;
2218
2219         intel_dig_port->port = port;
2220         intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2221                                           (DDI_BUF_PORT_REVERSAL |
2222                                            DDI_A_4_LANES);
2223
2224         intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2225         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2226         intel_encoder->cloneable = 0;
2227         intel_encoder->hot_plug = intel_ddi_hot_plug;
2228
2229         if (init_dp) {
2230                 if (!intel_ddi_init_dp_connector(intel_dig_port))
2231                         goto err;
2232
2233                 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2234                 dev_priv->hpd_irq_port[port] = intel_dig_port;
2235         }
2236
2237         /* In theory we don't need the encoder->type check, but leave it just in
2238          * case we have some really bad VBTs... */
2239         if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2240                 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2241                         goto err;
2242         }
2243
2244         return;
2245
2246 err:
2247         drm_encoder_cleanup(encoder);
2248         kfree(intel_dig_port);
2249 }