OSDN Git Service

3c8801cecd3ff7fd824501acbbf5fe2e13c8241d
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50         DRM_FORMAT_C8, \
51         DRM_FORMAT_RGB565, \
52         DRM_FORMAT_XRGB8888, \
53         DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57         COMMON_PRIMARY_FORMATS,
58         DRM_FORMAT_XRGB1555,
59         DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64         COMMON_PRIMARY_FORMATS, \
65         DRM_FORMAT_XBGR8888,
66         DRM_FORMAT_ABGR8888,
67         DRM_FORMAT_XRGB2101010,
68         DRM_FORMAT_ARGB2101010,
69         DRM_FORMAT_XBGR2101010,
70         DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75         DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81                                 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83                                    struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc,
86                           struct drm_atomic_state *state);
87 static int intel_framebuffer_init(struct drm_device *dev,
88                                   struct intel_framebuffer *ifb,
89                                   struct drm_mode_fb_cmd2 *mode_cmd,
90                                   struct drm_i915_gem_object *obj);
91 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
92 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
93 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
94                                          struct intel_link_m_n *m_n,
95                                          struct intel_link_m_n *m2_n2);
96 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
97 static void haswell_set_pipeconf(struct drm_crtc *crtc);
98 static void intel_set_pipe_csc(struct drm_crtc *crtc);
99 static void vlv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_state *pipe_config);
101 static void chv_prepare_pll(struct intel_crtc *crtc,
102                             const struct intel_crtc_state *pipe_config);
103 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
104 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
105 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
106         struct intel_crtc_state *crtc_state);
107 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
108                            int num_connectors);
109 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
110 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
111
112 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
113 {
114         if (!connector->mst_port)
115                 return connector->encoder;
116         else
117                 return &connector->mst_port->mst_encoders[pipe]->base;
118 }
119
120 typedef struct {
121         int     min, max;
122 } intel_range_t;
123
124 typedef struct {
125         int     dot_limit;
126         int     p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
132         intel_p2_t          p2;
133 };
134
135 int
136 intel_pch_rawclk(struct drm_device *dev)
137 {
138         struct drm_i915_private *dev_priv = dev->dev_private;
139
140         WARN_ON(!HAS_PCH_SPLIT(dev));
141
142         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
143 }
144
145 static inline u32 /* units of 100MHz */
146 intel_fdi_link_freq(struct drm_device *dev)
147 {
148         if (IS_GEN5(dev)) {
149                 struct drm_i915_private *dev_priv = dev->dev_private;
150                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
151         } else
152                 return 27;
153 }
154
155 static const intel_limit_t intel_limits_i8xx_dac = {
156         .dot = { .min = 25000, .max = 350000 },
157         .vco = { .min = 908000, .max = 1512000 },
158         .n = { .min = 2, .max = 16 },
159         .m = { .min = 96, .max = 140 },
160         .m1 = { .min = 18, .max = 26 },
161         .m2 = { .min = 6, .max = 16 },
162         .p = { .min = 4, .max = 128 },
163         .p1 = { .min = 2, .max = 33 },
164         .p2 = { .dot_limit = 165000,
165                 .p2_slow = 4, .p2_fast = 2 },
166 };
167
168 static const intel_limit_t intel_limits_i8xx_dvo = {
169         .dot = { .min = 25000, .max = 350000 },
170         .vco = { .min = 908000, .max = 1512000 },
171         .n = { .min = 2, .max = 16 },
172         .m = { .min = 96, .max = 140 },
173         .m1 = { .min = 18, .max = 26 },
174         .m2 = { .min = 6, .max = 16 },
175         .p = { .min = 4, .max = 128 },
176         .p1 = { .min = 2, .max = 33 },
177         .p2 = { .dot_limit = 165000,
178                 .p2_slow = 4, .p2_fast = 4 },
179 };
180
181 static const intel_limit_t intel_limits_i8xx_lvds = {
182         .dot = { .min = 25000, .max = 350000 },
183         .vco = { .min = 908000, .max = 1512000 },
184         .n = { .min = 2, .max = 16 },
185         .m = { .min = 96, .max = 140 },
186         .m1 = { .min = 18, .max = 26 },
187         .m2 = { .min = 6, .max = 16 },
188         .p = { .min = 4, .max = 128 },
189         .p1 = { .min = 1, .max = 6 },
190         .p2 = { .dot_limit = 165000,
191                 .p2_slow = 14, .p2_fast = 7 },
192 };
193
194 static const intel_limit_t intel_limits_i9xx_sdvo = {
195         .dot = { .min = 20000, .max = 400000 },
196         .vco = { .min = 1400000, .max = 2800000 },
197         .n = { .min = 1, .max = 6 },
198         .m = { .min = 70, .max = 120 },
199         .m1 = { .min = 8, .max = 18 },
200         .m2 = { .min = 3, .max = 7 },
201         .p = { .min = 5, .max = 80 },
202         .p1 = { .min = 1, .max = 8 },
203         .p2 = { .dot_limit = 200000,
204                 .p2_slow = 10, .p2_fast = 5 },
205 };
206
207 static const intel_limit_t intel_limits_i9xx_lvds = {
208         .dot = { .min = 20000, .max = 400000 },
209         .vco = { .min = 1400000, .max = 2800000 },
210         .n = { .min = 1, .max = 6 },
211         .m = { .min = 70, .max = 120 },
212         .m1 = { .min = 8, .max = 18 },
213         .m2 = { .min = 3, .max = 7 },
214         .p = { .min = 7, .max = 98 },
215         .p1 = { .min = 1, .max = 8 },
216         .p2 = { .dot_limit = 112000,
217                 .p2_slow = 14, .p2_fast = 7 },
218 };
219
220
221 static const intel_limit_t intel_limits_g4x_sdvo = {
222         .dot = { .min = 25000, .max = 270000 },
223         .vco = { .min = 1750000, .max = 3500000},
224         .n = { .min = 1, .max = 4 },
225         .m = { .min = 104, .max = 138 },
226         .m1 = { .min = 17, .max = 23 },
227         .m2 = { .min = 5, .max = 11 },
228         .p = { .min = 10, .max = 30 },
229         .p1 = { .min = 1, .max = 3},
230         .p2 = { .dot_limit = 270000,
231                 .p2_slow = 10,
232                 .p2_fast = 10
233         },
234 };
235
236 static const intel_limit_t intel_limits_g4x_hdmi = {
237         .dot = { .min = 22000, .max = 400000 },
238         .vco = { .min = 1750000, .max = 3500000},
239         .n = { .min = 1, .max = 4 },
240         .m = { .min = 104, .max = 138 },
241         .m1 = { .min = 16, .max = 23 },
242         .m2 = { .min = 5, .max = 11 },
243         .p = { .min = 5, .max = 80 },
244         .p1 = { .min = 1, .max = 8},
245         .p2 = { .dot_limit = 165000,
246                 .p2_slow = 10, .p2_fast = 5 },
247 };
248
249 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
250         .dot = { .min = 20000, .max = 115000 },
251         .vco = { .min = 1750000, .max = 3500000 },
252         .n = { .min = 1, .max = 3 },
253         .m = { .min = 104, .max = 138 },
254         .m1 = { .min = 17, .max = 23 },
255         .m2 = { .min = 5, .max = 11 },
256         .p = { .min = 28, .max = 112 },
257         .p1 = { .min = 2, .max = 8 },
258         .p2 = { .dot_limit = 0,
259                 .p2_slow = 14, .p2_fast = 14
260         },
261 };
262
263 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
264         .dot = { .min = 80000, .max = 224000 },
265         .vco = { .min = 1750000, .max = 3500000 },
266         .n = { .min = 1, .max = 3 },
267         .m = { .min = 104, .max = 138 },
268         .m1 = { .min = 17, .max = 23 },
269         .m2 = { .min = 5, .max = 11 },
270         .p = { .min = 14, .max = 42 },
271         .p1 = { .min = 2, .max = 6 },
272         .p2 = { .dot_limit = 0,
273                 .p2_slow = 7, .p2_fast = 7
274         },
275 };
276
277 static const intel_limit_t intel_limits_pineview_sdvo = {
278         .dot = { .min = 20000, .max = 400000},
279         .vco = { .min = 1700000, .max = 3500000 },
280         /* Pineview's Ncounter is a ring counter */
281         .n = { .min = 3, .max = 6 },
282         .m = { .min = 2, .max = 256 },
283         /* Pineview only has one combined m divider, which we treat as m2. */
284         .m1 = { .min = 0, .max = 0 },
285         .m2 = { .min = 0, .max = 254 },
286         .p = { .min = 5, .max = 80 },
287         .p1 = { .min = 1, .max = 8 },
288         .p2 = { .dot_limit = 200000,
289                 .p2_slow = 10, .p2_fast = 5 },
290 };
291
292 static const intel_limit_t intel_limits_pineview_lvds = {
293         .dot = { .min = 20000, .max = 400000 },
294         .vco = { .min = 1700000, .max = 3500000 },
295         .n = { .min = 3, .max = 6 },
296         .m = { .min = 2, .max = 256 },
297         .m1 = { .min = 0, .max = 0 },
298         .m2 = { .min = 0, .max = 254 },
299         .p = { .min = 7, .max = 112 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 112000,
302                 .p2_slow = 14, .p2_fast = 14 },
303 };
304
305 /* Ironlake / Sandybridge
306  *
307  * We calculate clock using (register_value + 2) for N/M1/M2, so here
308  * the range value for them is (actual_value - 2).
309  */
310 static const intel_limit_t intel_limits_ironlake_dac = {
311         .dot = { .min = 25000, .max = 350000 },
312         .vco = { .min = 1760000, .max = 3510000 },
313         .n = { .min = 1, .max = 5 },
314         .m = { .min = 79, .max = 127 },
315         .m1 = { .min = 12, .max = 22 },
316         .m2 = { .min = 5, .max = 9 },
317         .p = { .min = 5, .max = 80 },
318         .p1 = { .min = 1, .max = 8 },
319         .p2 = { .dot_limit = 225000,
320                 .p2_slow = 10, .p2_fast = 5 },
321 };
322
323 static const intel_limit_t intel_limits_ironlake_single_lvds = {
324         .dot = { .min = 25000, .max = 350000 },
325         .vco = { .min = 1760000, .max = 3510000 },
326         .n = { .min = 1, .max = 3 },
327         .m = { .min = 79, .max = 118 },
328         .m1 = { .min = 12, .max = 22 },
329         .m2 = { .min = 5, .max = 9 },
330         .p = { .min = 28, .max = 112 },
331         .p1 = { .min = 2, .max = 8 },
332         .p2 = { .dot_limit = 225000,
333                 .p2_slow = 14, .p2_fast = 14 },
334 };
335
336 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
337         .dot = { .min = 25000, .max = 350000 },
338         .vco = { .min = 1760000, .max = 3510000 },
339         .n = { .min = 1, .max = 3 },
340         .m = { .min = 79, .max = 127 },
341         .m1 = { .min = 12, .max = 22 },
342         .m2 = { .min = 5, .max = 9 },
343         .p = { .min = 14, .max = 56 },
344         .p1 = { .min = 2, .max = 8 },
345         .p2 = { .dot_limit = 225000,
346                 .p2_slow = 7, .p2_fast = 7 },
347 };
348
349 /* LVDS 100mhz refclk limits. */
350 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
351         .dot = { .min = 25000, .max = 350000 },
352         .vco = { .min = 1760000, .max = 3510000 },
353         .n = { .min = 1, .max = 2 },
354         .m = { .min = 79, .max = 126 },
355         .m1 = { .min = 12, .max = 22 },
356         .m2 = { .min = 5, .max = 9 },
357         .p = { .min = 28, .max = 112 },
358         .p1 = { .min = 2, .max = 8 },
359         .p2 = { .dot_limit = 225000,
360                 .p2_slow = 14, .p2_fast = 14 },
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374 };
375
376 static const intel_limit_t intel_limits_vlv = {
377          /*
378           * These are the data rate limits (measured in fast clocks)
379           * since those are the strictest limits we have. The fast
380           * clock and actual rate limits are more relaxed, so checking
381           * them would make no difference.
382           */
383         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
384         .vco = { .min = 4000000, .max = 6000000 },
385         .n = { .min = 1, .max = 7 },
386         .m1 = { .min = 2, .max = 3 },
387         .m2 = { .min = 11, .max = 156 },
388         .p1 = { .min = 2, .max = 3 },
389         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
390 };
391
392 static const intel_limit_t intel_limits_chv = {
393         /*
394          * These are the data rate limits (measured in fast clocks)
395          * since those are the strictest limits we have.  The fast
396          * clock and actual rate limits are more relaxed, so checking
397          * them would make no difference.
398          */
399         .dot = { .min = 25000 * 5, .max = 540000 * 5},
400         .vco = { .min = 4800000, .max = 6480000 },
401         .n = { .min = 1, .max = 1 },
402         .m1 = { .min = 2, .max = 2 },
403         .m2 = { .min = 24 << 22, .max = 175 << 22 },
404         .p1 = { .min = 2, .max = 4 },
405         .p2 = { .p2_slow = 1, .p2_fast = 14 },
406 };
407
408 static const intel_limit_t intel_limits_bxt = {
409         /* FIXME: find real dot limits */
410         .dot = { .min = 0, .max = INT_MAX },
411         .vco = { .min = 4800000, .max = 6480000 },
412         .n = { .min = 1, .max = 1 },
413         .m1 = { .min = 2, .max = 2 },
414         /* FIXME: find real m2 limits */
415         .m2 = { .min = 2 << 22, .max = 255 << 22 },
416         .p1 = { .min = 2, .max = 4 },
417         .p2 = { .p2_slow = 1, .p2_fast = 20 },
418 };
419
420 static void vlv_clock(int refclk, intel_clock_t *clock)
421 {
422         clock->m = clock->m1 * clock->m2;
423         clock->p = clock->p1 * clock->p2;
424         if (WARN_ON(clock->n == 0 || clock->p == 0))
425                 return;
426         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
427         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
428 }
429
430 /**
431  * Returns whether any output on the specified pipe is of the specified type
432  */
433 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
434 {
435         struct drm_device *dev = crtc->base.dev;
436         struct intel_encoder *encoder;
437
438         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
439                 if (encoder->type == type)
440                         return true;
441
442         return false;
443 }
444
445 /**
446  * Returns whether any output on the specified pipe will have the specified
447  * type after a staged modeset is complete, i.e., the same as
448  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
449  * encoder->crtc.
450  */
451 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
452                                       int type)
453 {
454         struct drm_atomic_state *state = crtc_state->base.state;
455         struct drm_connector *connector;
456         struct drm_connector_state *connector_state;
457         struct intel_encoder *encoder;
458         int i, num_connectors = 0;
459
460         for_each_connector_in_state(state, connector, connector_state, i) {
461                 if (connector_state->crtc != crtc_state->base.crtc)
462                         continue;
463
464                 num_connectors++;
465
466                 encoder = to_intel_encoder(connector_state->best_encoder);
467                 if (encoder->type == type)
468                         return true;
469         }
470
471         WARN_ON(num_connectors == 0);
472
473         return false;
474 }
475
476 static const intel_limit_t *
477 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
478 {
479         struct drm_device *dev = crtc_state->base.crtc->dev;
480         const intel_limit_t *limit;
481
482         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
483                 if (intel_is_dual_link_lvds(dev)) {
484                         if (refclk == 100000)
485                                 limit = &intel_limits_ironlake_dual_lvds_100m;
486                         else
487                                 limit = &intel_limits_ironlake_dual_lvds;
488                 } else {
489                         if (refclk == 100000)
490                                 limit = &intel_limits_ironlake_single_lvds_100m;
491                         else
492                                 limit = &intel_limits_ironlake_single_lvds;
493                 }
494         } else
495                 limit = &intel_limits_ironlake_dac;
496
497         return limit;
498 }
499
500 static const intel_limit_t *
501 intel_g4x_limit(struct intel_crtc_state *crtc_state)
502 {
503         struct drm_device *dev = crtc_state->base.crtc->dev;
504         const intel_limit_t *limit;
505
506         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
507                 if (intel_is_dual_link_lvds(dev))
508                         limit = &intel_limits_g4x_dual_channel_lvds;
509                 else
510                         limit = &intel_limits_g4x_single_channel_lvds;
511         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
512                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
513                 limit = &intel_limits_g4x_hdmi;
514         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
515                 limit = &intel_limits_g4x_sdvo;
516         } else /* The option is for other outputs */
517                 limit = &intel_limits_i9xx_sdvo;
518
519         return limit;
520 }
521
522 static const intel_limit_t *
523 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
524 {
525         struct drm_device *dev = crtc_state->base.crtc->dev;
526         const intel_limit_t *limit;
527
528         if (IS_BROXTON(dev))
529                 limit = &intel_limits_bxt;
530         else if (HAS_PCH_SPLIT(dev))
531                 limit = intel_ironlake_limit(crtc_state, refclk);
532         else if (IS_G4X(dev)) {
533                 limit = intel_g4x_limit(crtc_state);
534         } else if (IS_PINEVIEW(dev)) {
535                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
536                         limit = &intel_limits_pineview_lvds;
537                 else
538                         limit = &intel_limits_pineview_sdvo;
539         } else if (IS_CHERRYVIEW(dev)) {
540                 limit = &intel_limits_chv;
541         } else if (IS_VALLEYVIEW(dev)) {
542                 limit = &intel_limits_vlv;
543         } else if (!IS_GEN2(dev)) {
544                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
545                         limit = &intel_limits_i9xx_lvds;
546                 else
547                         limit = &intel_limits_i9xx_sdvo;
548         } else {
549                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
550                         limit = &intel_limits_i8xx_lvds;
551                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
552                         limit = &intel_limits_i8xx_dvo;
553                 else
554                         limit = &intel_limits_i8xx_dac;
555         }
556         return limit;
557 }
558
559 /* m1 is reserved as 0 in Pineview, n is a ring counter */
560 static void pineview_clock(int refclk, intel_clock_t *clock)
561 {
562         clock->m = clock->m2 + 2;
563         clock->p = clock->p1 * clock->p2;
564         if (WARN_ON(clock->n == 0 || clock->p == 0))
565                 return;
566         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
567         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568 }
569
570 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
571 {
572         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
573 }
574
575 static void i9xx_clock(int refclk, intel_clock_t *clock)
576 {
577         clock->m = i9xx_dpll_compute_m(clock);
578         clock->p = clock->p1 * clock->p2;
579         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
580                 return;
581         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
582         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
583 }
584
585 static void chv_clock(int refclk, intel_clock_t *clock)
586 {
587         clock->m = clock->m1 * clock->m2;
588         clock->p = clock->p1 * clock->p2;
589         if (WARN_ON(clock->n == 0 || clock->p == 0))
590                 return;
591         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
592                         clock->n << 22);
593         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594 }
595
596 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
597 /**
598  * Returns whether the given set of divisors are valid for a given refclk with
599  * the given connectors.
600  */
601
602 static bool intel_PLL_is_valid(struct drm_device *dev,
603                                const intel_limit_t *limit,
604                                const intel_clock_t *clock)
605 {
606         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
607                 INTELPllInvalid("n out of range\n");
608         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
609                 INTELPllInvalid("p1 out of range\n");
610         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
611                 INTELPllInvalid("m2 out of range\n");
612         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
613                 INTELPllInvalid("m1 out of range\n");
614
615         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
616                 if (clock->m1 <= clock->m2)
617                         INTELPllInvalid("m1 <= m2\n");
618
619         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
620                 if (clock->p < limit->p.min || limit->p.max < clock->p)
621                         INTELPllInvalid("p out of range\n");
622                 if (clock->m < limit->m.min || limit->m.max < clock->m)
623                         INTELPllInvalid("m out of range\n");
624         }
625
626         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
627                 INTELPllInvalid("vco out of range\n");
628         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
629          * connector, etc., rather than just a single range.
630          */
631         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
632                 INTELPllInvalid("dot out of range\n");
633
634         return true;
635 }
636
637 static bool
638 i9xx_find_best_dpll(const intel_limit_t *limit,
639                     struct intel_crtc_state *crtc_state,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642 {
643         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
644         struct drm_device *dev = crtc->base.dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         if (clock.m2 >= clock.m1)
672                                 break;
673                         for (clock.n = limit->n.min;
674                              clock.n <= limit->n.max; clock.n++) {
675                                 for (clock.p1 = limit->p1.min;
676                                         clock.p1 <= limit->p1.max; clock.p1++) {
677                                         int this_err;
678
679                                         i9xx_clock(refclk, &clock);
680                                         if (!intel_PLL_is_valid(dev, limit,
681                                                                 &clock))
682                                                 continue;
683                                         if (match_clock &&
684                                             clock.p != match_clock->p)
685                                                 continue;
686
687                                         this_err = abs(clock.dot - target);
688                                         if (this_err < err) {
689                                                 *best_clock = clock;
690                                                 err = this_err;
691                                         }
692                                 }
693                         }
694                 }
695         }
696
697         return (err != target);
698 }
699
700 static bool
701 pnv_find_best_dpll(const intel_limit_t *limit,
702                    struct intel_crtc_state *crtc_state,
703                    int target, int refclk, intel_clock_t *match_clock,
704                    intel_clock_t *best_clock)
705 {
706         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
707         struct drm_device *dev = crtc->base.dev;
708         intel_clock_t clock;
709         int err = target;
710
711         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
712                 /*
713                  * For LVDS just rely on its current settings for dual-channel.
714                  * We haven't figured out how to reliably set up different
715                  * single/dual channel state, if we even can.
716                  */
717                 if (intel_is_dual_link_lvds(dev))
718                         clock.p2 = limit->p2.p2_fast;
719                 else
720                         clock.p2 = limit->p2.p2_slow;
721         } else {
722                 if (target < limit->p2.dot_limit)
723                         clock.p2 = limit->p2.p2_slow;
724                 else
725                         clock.p2 = limit->p2.p2_fast;
726         }
727
728         memset(best_clock, 0, sizeof(*best_clock));
729
730         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
731              clock.m1++) {
732                 for (clock.m2 = limit->m2.min;
733                      clock.m2 <= limit->m2.max; clock.m2++) {
734                         for (clock.n = limit->n.min;
735                              clock.n <= limit->n.max; clock.n++) {
736                                 for (clock.p1 = limit->p1.min;
737                                         clock.p1 <= limit->p1.max; clock.p1++) {
738                                         int this_err;
739
740                                         pineview_clock(refclk, &clock);
741                                         if (!intel_PLL_is_valid(dev, limit,
742                                                                 &clock))
743                                                 continue;
744                                         if (match_clock &&
745                                             clock.p != match_clock->p)
746                                                 continue;
747
748                                         this_err = abs(clock.dot - target);
749                                         if (this_err < err) {
750                                                 *best_clock = clock;
751                                                 err = this_err;
752                                         }
753                                 }
754                         }
755                 }
756         }
757
758         return (err != target);
759 }
760
761 static bool
762 g4x_find_best_dpll(const intel_limit_t *limit,
763                    struct intel_crtc_state *crtc_state,
764                    int target, int refclk, intel_clock_t *match_clock,
765                    intel_clock_t *best_clock)
766 {
767         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
768         struct drm_device *dev = crtc->base.dev;
769         intel_clock_t clock;
770         int max_n;
771         bool found;
772         /* approximately equals target * 0.00585 */
773         int err_most = (target >> 8) + (target >> 9);
774         found = false;
775
776         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
777                 if (intel_is_dual_link_lvds(dev))
778                         clock.p2 = limit->p2.p2_fast;
779                 else
780                         clock.p2 = limit->p2.p2_slow;
781         } else {
782                 if (target < limit->p2.dot_limit)
783                         clock.p2 = limit->p2.p2_slow;
784                 else
785                         clock.p2 = limit->p2.p2_fast;
786         }
787
788         memset(best_clock, 0, sizeof(*best_clock));
789         max_n = limit->n.max;
790         /* based on hardware requirement, prefer smaller n to precision */
791         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
792                 /* based on hardware requirement, prefere larger m1,m2 */
793                 for (clock.m1 = limit->m1.max;
794                      clock.m1 >= limit->m1.min; clock.m1--) {
795                         for (clock.m2 = limit->m2.max;
796                              clock.m2 >= limit->m2.min; clock.m2--) {
797                                 for (clock.p1 = limit->p1.max;
798                                      clock.p1 >= limit->p1.min; clock.p1--) {
799                                         int this_err;
800
801                                         i9xx_clock(refclk, &clock);
802                                         if (!intel_PLL_is_valid(dev, limit,
803                                                                 &clock))
804                                                 continue;
805
806                                         this_err = abs(clock.dot - target);
807                                         if (this_err < err_most) {
808                                                 *best_clock = clock;
809                                                 err_most = this_err;
810                                                 max_n = clock.n;
811                                                 found = true;
812                                         }
813                                 }
814                         }
815                 }
816         }
817         return found;
818 }
819
820 /*
821  * Check if the calculated PLL configuration is more optimal compared to the
822  * best configuration and error found so far. Return the calculated error.
823  */
824 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
825                                const intel_clock_t *calculated_clock,
826                                const intel_clock_t *best_clock,
827                                unsigned int best_error_ppm,
828                                unsigned int *error_ppm)
829 {
830         /*
831          * For CHV ignore the error and consider only the P value.
832          * Prefer a bigger P value based on HW requirements.
833          */
834         if (IS_CHERRYVIEW(dev)) {
835                 *error_ppm = 0;
836
837                 return calculated_clock->p > best_clock->p;
838         }
839
840         if (WARN_ON_ONCE(!target_freq))
841                 return false;
842
843         *error_ppm = div_u64(1000000ULL *
844                                 abs(target_freq - calculated_clock->dot),
845                              target_freq);
846         /*
847          * Prefer a better P value over a better (smaller) error if the error
848          * is small. Ensure this preference for future configurations too by
849          * setting the error to 0.
850          */
851         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
852                 *error_ppm = 0;
853
854                 return true;
855         }
856
857         return *error_ppm + 10 < best_error_ppm;
858 }
859
860 static bool
861 vlv_find_best_dpll(const intel_limit_t *limit,
862                    struct intel_crtc_state *crtc_state,
863                    int target, int refclk, intel_clock_t *match_clock,
864                    intel_clock_t *best_clock)
865 {
866         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
867         struct drm_device *dev = crtc->base.dev;
868         intel_clock_t clock;
869         unsigned int bestppm = 1000000;
870         /* min update 19.2 MHz */
871         int max_n = min(limit->n.max, refclk / 19200);
872         bool found = false;
873
874         target *= 5; /* fast clock */
875
876         memset(best_clock, 0, sizeof(*best_clock));
877
878         /* based on hardware requirement, prefer smaller n to precision */
879         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
880                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
881                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
882                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
883                                 clock.p = clock.p1 * clock.p2;
884                                 /* based on hardware requirement, prefer bigger m1,m2 values */
885                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
886                                         unsigned int ppm;
887
888                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
889                                                                      refclk * clock.m1);
890
891                                         vlv_clock(refclk, &clock);
892
893                                         if (!intel_PLL_is_valid(dev, limit,
894                                                                 &clock))
895                                                 continue;
896
897                                         if (!vlv_PLL_is_optimal(dev, target,
898                                                                 &clock,
899                                                                 best_clock,
900                                                                 bestppm, &ppm))
901                                                 continue;
902
903                                         *best_clock = clock;
904                                         bestppm = ppm;
905                                         found = true;
906                                 }
907                         }
908                 }
909         }
910
911         return found;
912 }
913
914 static bool
915 chv_find_best_dpll(const intel_limit_t *limit,
916                    struct intel_crtc_state *crtc_state,
917                    int target, int refclk, intel_clock_t *match_clock,
918                    intel_clock_t *best_clock)
919 {
920         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
921         struct drm_device *dev = crtc->base.dev;
922         unsigned int best_error_ppm;
923         intel_clock_t clock;
924         uint64_t m2;
925         int found = false;
926
927         memset(best_clock, 0, sizeof(*best_clock));
928         best_error_ppm = 1000000;
929
930         /*
931          * Based on hardware doc, the n always set to 1, and m1 always
932          * set to 2.  If requires to support 200Mhz refclk, we need to
933          * revisit this because n may not 1 anymore.
934          */
935         clock.n = 1, clock.m1 = 2;
936         target *= 5;    /* fast clock */
937
938         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
939                 for (clock.p2 = limit->p2.p2_fast;
940                                 clock.p2 >= limit->p2.p2_slow;
941                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
942                         unsigned int error_ppm;
943
944                         clock.p = clock.p1 * clock.p2;
945
946                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
947                                         clock.n) << 22, refclk * clock.m1);
948
949                         if (m2 > INT_MAX/clock.m1)
950                                 continue;
951
952                         clock.m2 = m2;
953
954                         chv_clock(refclk, &clock);
955
956                         if (!intel_PLL_is_valid(dev, limit, &clock))
957                                 continue;
958
959                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
960                                                 best_error_ppm, &error_ppm))
961                                 continue;
962
963                         *best_clock = clock;
964                         best_error_ppm = error_ppm;
965                         found = true;
966                 }
967         }
968
969         return found;
970 }
971
972 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
973                         intel_clock_t *best_clock)
974 {
975         int refclk = i9xx_get_refclk(crtc_state, 0);
976
977         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
978                                   target_clock, refclk, NULL, best_clock);
979 }
980
981 bool intel_crtc_active(struct drm_crtc *crtc)
982 {
983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
984
985         /* Be paranoid as we can arrive here with only partial
986          * state retrieved from the hardware during setup.
987          *
988          * We can ditch the adjusted_mode.crtc_clock check as soon
989          * as Haswell has gained clock readout/fastboot support.
990          *
991          * We can ditch the crtc->primary->fb check as soon as we can
992          * properly reconstruct framebuffers.
993          *
994          * FIXME: The intel_crtc->active here should be switched to
995          * crtc->state->active once we have proper CRTC states wired up
996          * for atomic.
997          */
998         return intel_crtc->active && crtc->primary->state->fb &&
999                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1000 }
1001
1002 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1003                                              enum pipe pipe)
1004 {
1005         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1007
1008         return intel_crtc->config->cpu_transcoder;
1009 }
1010
1011 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1012 {
1013         struct drm_i915_private *dev_priv = dev->dev_private;
1014         u32 reg = PIPEDSL(pipe);
1015         u32 line1, line2;
1016         u32 line_mask;
1017
1018         if (IS_GEN2(dev))
1019                 line_mask = DSL_LINEMASK_GEN2;
1020         else
1021                 line_mask = DSL_LINEMASK_GEN3;
1022
1023         line1 = I915_READ(reg) & line_mask;
1024         mdelay(5);
1025         line2 = I915_READ(reg) & line_mask;
1026
1027         return line1 == line2;
1028 }
1029
1030 /*
1031  * intel_wait_for_pipe_off - wait for pipe to turn off
1032  * @crtc: crtc whose pipe to wait for
1033  *
1034  * After disabling a pipe, we can't wait for vblank in the usual way,
1035  * spinning on the vblank interrupt status bit, since we won't actually
1036  * see an interrupt when the pipe is disabled.
1037  *
1038  * On Gen4 and above:
1039  *   wait for the pipe register state bit to turn off
1040  *
1041  * Otherwise:
1042  *   wait for the display line value to settle (it usually
1043  *   ends up stopping at the start of the next frame).
1044  *
1045  */
1046 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1047 {
1048         struct drm_device *dev = crtc->base.dev;
1049         struct drm_i915_private *dev_priv = dev->dev_private;
1050         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1051         enum pipe pipe = crtc->pipe;
1052
1053         if (INTEL_INFO(dev)->gen >= 4) {
1054                 int reg = PIPECONF(cpu_transcoder);
1055
1056                 /* Wait for the Pipe State to go off */
1057                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1058                              100))
1059                         WARN(1, "pipe_off wait timed out\n");
1060         } else {
1061                 /* Wait for the display line to settle */
1062                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1063                         WARN(1, "pipe_off wait timed out\n");
1064         }
1065 }
1066
1067 /*
1068  * ibx_digital_port_connected - is the specified port connected?
1069  * @dev_priv: i915 private structure
1070  * @port: the port to test
1071  *
1072  * Returns true if @port is connected, false otherwise.
1073  */
1074 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1075                                 struct intel_digital_port *port)
1076 {
1077         u32 bit;
1078
1079         if (HAS_PCH_IBX(dev_priv->dev)) {
1080                 switch (port->port) {
1081                 case PORT_B:
1082                         bit = SDE_PORTB_HOTPLUG;
1083                         break;
1084                 case PORT_C:
1085                         bit = SDE_PORTC_HOTPLUG;
1086                         break;
1087                 case PORT_D:
1088                         bit = SDE_PORTD_HOTPLUG;
1089                         break;
1090                 default:
1091                         return true;
1092                 }
1093         } else {
1094                 switch (port->port) {
1095                 case PORT_B:
1096                         bit = SDE_PORTB_HOTPLUG_CPT;
1097                         break;
1098                 case PORT_C:
1099                         bit = SDE_PORTC_HOTPLUG_CPT;
1100                         break;
1101                 case PORT_D:
1102                         bit = SDE_PORTD_HOTPLUG_CPT;
1103                         break;
1104                 default:
1105                         return true;
1106                 }
1107         }
1108
1109         return I915_READ(SDEISR) & bit;
1110 }
1111
1112 static const char *state_string(bool enabled)
1113 {
1114         return enabled ? "on" : "off";
1115 }
1116
1117 /* Only for pre-ILK configs */
1118 void assert_pll(struct drm_i915_private *dev_priv,
1119                 enum pipe pipe, bool state)
1120 {
1121         int reg;
1122         u32 val;
1123         bool cur_state;
1124
1125         reg = DPLL(pipe);
1126         val = I915_READ(reg);
1127         cur_state = !!(val & DPLL_VCO_ENABLE);
1128         I915_STATE_WARN(cur_state != state,
1129              "PLL state assertion failure (expected %s, current %s)\n",
1130              state_string(state), state_string(cur_state));
1131 }
1132
1133 /* XXX: the dsi pll is shared between MIPI DSI ports */
1134 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1135 {
1136         u32 val;
1137         bool cur_state;
1138
1139         mutex_lock(&dev_priv->dpio_lock);
1140         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1141         mutex_unlock(&dev_priv->dpio_lock);
1142
1143         cur_state = val & DSI_PLL_VCO_EN;
1144         I915_STATE_WARN(cur_state != state,
1145              "DSI PLL state assertion failure (expected %s, current %s)\n",
1146              state_string(state), state_string(cur_state));
1147 }
1148 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1149 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1150
1151 struct intel_shared_dpll *
1152 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1153 {
1154         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1155
1156         if (crtc->config->shared_dpll < 0)
1157                 return NULL;
1158
1159         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1160 }
1161
1162 /* For ILK+ */
1163 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1164                         struct intel_shared_dpll *pll,
1165                         bool state)
1166 {
1167         bool cur_state;
1168         struct intel_dpll_hw_state hw_state;
1169
1170         if (WARN (!pll,
1171                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1172                 return;
1173
1174         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1175         I915_STATE_WARN(cur_state != state,
1176              "%s assertion failure (expected %s, current %s)\n",
1177              pll->name, state_string(state), state_string(cur_state));
1178 }
1179
1180 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1181                           enum pipe pipe, bool state)
1182 {
1183         int reg;
1184         u32 val;
1185         bool cur_state;
1186         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1187                                                                       pipe);
1188
1189         if (HAS_DDI(dev_priv->dev)) {
1190                 /* DDI does not have a specific FDI_TX register */
1191                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1192                 val = I915_READ(reg);
1193                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1194         } else {
1195                 reg = FDI_TX_CTL(pipe);
1196                 val = I915_READ(reg);
1197                 cur_state = !!(val & FDI_TX_ENABLE);
1198         }
1199         I915_STATE_WARN(cur_state != state,
1200              "FDI TX state assertion failure (expected %s, current %s)\n",
1201              state_string(state), state_string(cur_state));
1202 }
1203 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1204 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1205
1206 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1207                           enum pipe pipe, bool state)
1208 {
1209         int reg;
1210         u32 val;
1211         bool cur_state;
1212
1213         reg = FDI_RX_CTL(pipe);
1214         val = I915_READ(reg);
1215         cur_state = !!(val & FDI_RX_ENABLE);
1216         I915_STATE_WARN(cur_state != state,
1217              "FDI RX state assertion failure (expected %s, current %s)\n",
1218              state_string(state), state_string(cur_state));
1219 }
1220 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1221 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1222
1223 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1224                                       enum pipe pipe)
1225 {
1226         int reg;
1227         u32 val;
1228
1229         /* ILK FDI PLL is always enabled */
1230         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1231                 return;
1232
1233         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1234         if (HAS_DDI(dev_priv->dev))
1235                 return;
1236
1237         reg = FDI_TX_CTL(pipe);
1238         val = I915_READ(reg);
1239         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1240 }
1241
1242 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1243                        enum pipe pipe, bool state)
1244 {
1245         int reg;
1246         u32 val;
1247         bool cur_state;
1248
1249         reg = FDI_RX_CTL(pipe);
1250         val = I915_READ(reg);
1251         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1252         I915_STATE_WARN(cur_state != state,
1253              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1254              state_string(state), state_string(cur_state));
1255 }
1256
1257 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1258                            enum pipe pipe)
1259 {
1260         struct drm_device *dev = dev_priv->dev;
1261         int pp_reg;
1262         u32 val;
1263         enum pipe panel_pipe = PIPE_A;
1264         bool locked = true;
1265
1266         if (WARN_ON(HAS_DDI(dev)))
1267                 return;
1268
1269         if (HAS_PCH_SPLIT(dev)) {
1270                 u32 port_sel;
1271
1272                 pp_reg = PCH_PP_CONTROL;
1273                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1274
1275                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1276                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1277                         panel_pipe = PIPE_B;
1278                 /* XXX: else fix for eDP */
1279         } else if (IS_VALLEYVIEW(dev)) {
1280                 /* presumably write lock depends on pipe, not port select */
1281                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1282                 panel_pipe = pipe;
1283         } else {
1284                 pp_reg = PP_CONTROL;
1285                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1286                         panel_pipe = PIPE_B;
1287         }
1288
1289         val = I915_READ(pp_reg);
1290         if (!(val & PANEL_POWER_ON) ||
1291             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1292                 locked = false;
1293
1294         I915_STATE_WARN(panel_pipe == pipe && locked,
1295              "panel assertion failure, pipe %c regs locked\n",
1296              pipe_name(pipe));
1297 }
1298
1299 static void assert_cursor(struct drm_i915_private *dev_priv,
1300                           enum pipe pipe, bool state)
1301 {
1302         struct drm_device *dev = dev_priv->dev;
1303         bool cur_state;
1304
1305         if (IS_845G(dev) || IS_I865G(dev))
1306                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1307         else
1308                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1309
1310         I915_STATE_WARN(cur_state != state,
1311              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1312              pipe_name(pipe), state_string(state), state_string(cur_state));
1313 }
1314 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1315 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1316
1317 void assert_pipe(struct drm_i915_private *dev_priv,
1318                  enum pipe pipe, bool state)
1319 {
1320         int reg;
1321         u32 val;
1322         bool cur_state;
1323         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1324                                                                       pipe);
1325
1326         /* if we need the pipe quirk it must be always on */
1327         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1328             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1329                 state = true;
1330
1331         if (!intel_display_power_is_enabled(dev_priv,
1332                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1333                 cur_state = false;
1334         } else {
1335                 reg = PIPECONF(cpu_transcoder);
1336                 val = I915_READ(reg);
1337                 cur_state = !!(val & PIPECONF_ENABLE);
1338         }
1339
1340         I915_STATE_WARN(cur_state != state,
1341              "pipe %c assertion failure (expected %s, current %s)\n",
1342              pipe_name(pipe), state_string(state), state_string(cur_state));
1343 }
1344
1345 static void assert_plane(struct drm_i915_private *dev_priv,
1346                          enum plane plane, bool state)
1347 {
1348         int reg;
1349         u32 val;
1350         bool cur_state;
1351
1352         reg = DSPCNTR(plane);
1353         val = I915_READ(reg);
1354         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1355         I915_STATE_WARN(cur_state != state,
1356              "plane %c assertion failure (expected %s, current %s)\n",
1357              plane_name(plane), state_string(state), state_string(cur_state));
1358 }
1359
1360 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1361 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1362
1363 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1364                                    enum pipe pipe)
1365 {
1366         struct drm_device *dev = dev_priv->dev;
1367         int reg, i;
1368         u32 val;
1369         int cur_pipe;
1370
1371         /* Primary planes are fixed to pipes on gen4+ */
1372         if (INTEL_INFO(dev)->gen >= 4) {
1373                 reg = DSPCNTR(pipe);
1374                 val = I915_READ(reg);
1375                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1376                      "plane %c assertion failure, should be disabled but not\n",
1377                      plane_name(pipe));
1378                 return;
1379         }
1380
1381         /* Need to check both planes against the pipe */
1382         for_each_pipe(dev_priv, i) {
1383                 reg = DSPCNTR(i);
1384                 val = I915_READ(reg);
1385                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1386                         DISPPLANE_SEL_PIPE_SHIFT;
1387                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1388                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1389                      plane_name(i), pipe_name(pipe));
1390         }
1391 }
1392
1393 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1394                                     enum pipe pipe)
1395 {
1396         struct drm_device *dev = dev_priv->dev;
1397         int reg, sprite;
1398         u32 val;
1399
1400         if (INTEL_INFO(dev)->gen >= 9) {
1401                 for_each_sprite(dev_priv, pipe, sprite) {
1402                         val = I915_READ(PLANE_CTL(pipe, sprite));
1403                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1404                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1405                              sprite, pipe_name(pipe));
1406                 }
1407         } else if (IS_VALLEYVIEW(dev)) {
1408                 for_each_sprite(dev_priv, pipe, sprite) {
1409                         reg = SPCNTR(pipe, sprite);
1410                         val = I915_READ(reg);
1411                         I915_STATE_WARN(val & SP_ENABLE,
1412                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1413                              sprite_name(pipe, sprite), pipe_name(pipe));
1414                 }
1415         } else if (INTEL_INFO(dev)->gen >= 7) {
1416                 reg = SPRCTL(pipe);
1417                 val = I915_READ(reg);
1418                 I915_STATE_WARN(val & SPRITE_ENABLE,
1419                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1420                      plane_name(pipe), pipe_name(pipe));
1421         } else if (INTEL_INFO(dev)->gen >= 5) {
1422                 reg = DVSCNTR(pipe);
1423                 val = I915_READ(reg);
1424                 I915_STATE_WARN(val & DVS_ENABLE,
1425                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1426                      plane_name(pipe), pipe_name(pipe));
1427         }
1428 }
1429
1430 static void assert_vblank_disabled(struct drm_crtc *crtc)
1431 {
1432         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1433                 drm_crtc_vblank_put(crtc);
1434 }
1435
1436 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1437 {
1438         u32 val;
1439         bool enabled;
1440
1441         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1442
1443         val = I915_READ(PCH_DREF_CONTROL);
1444         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1445                             DREF_SUPERSPREAD_SOURCE_MASK));
1446         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1447 }
1448
1449 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1450                                            enum pipe pipe)
1451 {
1452         int reg;
1453         u32 val;
1454         bool enabled;
1455
1456         reg = PCH_TRANSCONF(pipe);
1457         val = I915_READ(reg);
1458         enabled = !!(val & TRANS_ENABLE);
1459         I915_STATE_WARN(enabled,
1460              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1461              pipe_name(pipe));
1462 }
1463
1464 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1465                             enum pipe pipe, u32 port_sel, u32 val)
1466 {
1467         if ((val & DP_PORT_EN) == 0)
1468                 return false;
1469
1470         if (HAS_PCH_CPT(dev_priv->dev)) {
1471                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1472                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1473                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1474                         return false;
1475         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1476                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1477                         return false;
1478         } else {
1479                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1480                         return false;
1481         }
1482         return true;
1483 }
1484
1485 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1486                               enum pipe pipe, u32 val)
1487 {
1488         if ((val & SDVO_ENABLE) == 0)
1489                 return false;
1490
1491         if (HAS_PCH_CPT(dev_priv->dev)) {
1492                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1493                         return false;
1494         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1495                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1496                         return false;
1497         } else {
1498                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1499                         return false;
1500         }
1501         return true;
1502 }
1503
1504 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1505                               enum pipe pipe, u32 val)
1506 {
1507         if ((val & LVDS_PORT_EN) == 0)
1508                 return false;
1509
1510         if (HAS_PCH_CPT(dev_priv->dev)) {
1511                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1512                         return false;
1513         } else {
1514                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1515                         return false;
1516         }
1517         return true;
1518 }
1519
1520 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1521                               enum pipe pipe, u32 val)
1522 {
1523         if ((val & ADPA_DAC_ENABLE) == 0)
1524                 return false;
1525         if (HAS_PCH_CPT(dev_priv->dev)) {
1526                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1527                         return false;
1528         } else {
1529                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1530                         return false;
1531         }
1532         return true;
1533 }
1534
1535 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1536                                    enum pipe pipe, int reg, u32 port_sel)
1537 {
1538         u32 val = I915_READ(reg);
1539         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1540              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1541              reg, pipe_name(pipe));
1542
1543         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1544              && (val & DP_PIPEB_SELECT),
1545              "IBX PCH dp port still using transcoder B\n");
1546 }
1547
1548 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1549                                      enum pipe pipe, int reg)
1550 {
1551         u32 val = I915_READ(reg);
1552         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1553              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1554              reg, pipe_name(pipe));
1555
1556         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1557              && (val & SDVO_PIPE_B_SELECT),
1558              "IBX PCH hdmi port still using transcoder B\n");
1559 }
1560
1561 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1562                                       enum pipe pipe)
1563 {
1564         int reg;
1565         u32 val;
1566
1567         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1568         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1569         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1570
1571         reg = PCH_ADPA;
1572         val = I915_READ(reg);
1573         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1574              "PCH VGA enabled on transcoder %c, should be disabled\n",
1575              pipe_name(pipe));
1576
1577         reg = PCH_LVDS;
1578         val = I915_READ(reg);
1579         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1580              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1581              pipe_name(pipe));
1582
1583         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1584         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1585         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1586 }
1587
1588 static void intel_init_dpio(struct drm_device *dev)
1589 {
1590         struct drm_i915_private *dev_priv = dev->dev_private;
1591
1592         if (!IS_VALLEYVIEW(dev))
1593                 return;
1594
1595         /*
1596          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1597          * CHV x1 PHY (DP/HDMI D)
1598          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1599          */
1600         if (IS_CHERRYVIEW(dev)) {
1601                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1602                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1603         } else {
1604                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1605         }
1606 }
1607
1608 static void vlv_enable_pll(struct intel_crtc *crtc,
1609                            const struct intel_crtc_state *pipe_config)
1610 {
1611         struct drm_device *dev = crtc->base.dev;
1612         struct drm_i915_private *dev_priv = dev->dev_private;
1613         int reg = DPLL(crtc->pipe);
1614         u32 dpll = pipe_config->dpll_hw_state.dpll;
1615
1616         assert_pipe_disabled(dev_priv, crtc->pipe);
1617
1618         /* No really, not for ILK+ */
1619         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1620
1621         /* PLL is protected by panel, make sure we can write it */
1622         if (IS_MOBILE(dev_priv->dev))
1623                 assert_panel_unlocked(dev_priv, crtc->pipe);
1624
1625         I915_WRITE(reg, dpll);
1626         POSTING_READ(reg);
1627         udelay(150);
1628
1629         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1630                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1631
1632         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1633         POSTING_READ(DPLL_MD(crtc->pipe));
1634
1635         /* We do this three times for luck */
1636         I915_WRITE(reg, dpll);
1637         POSTING_READ(reg);
1638         udelay(150); /* wait for warmup */
1639         I915_WRITE(reg, dpll);
1640         POSTING_READ(reg);
1641         udelay(150); /* wait for warmup */
1642         I915_WRITE(reg, dpll);
1643         POSTING_READ(reg);
1644         udelay(150); /* wait for warmup */
1645 }
1646
1647 static void chv_enable_pll(struct intel_crtc *crtc,
1648                            const struct intel_crtc_state *pipe_config)
1649 {
1650         struct drm_device *dev = crtc->base.dev;
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652         int pipe = crtc->pipe;
1653         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1654         u32 tmp;
1655
1656         assert_pipe_disabled(dev_priv, crtc->pipe);
1657
1658         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1659
1660         mutex_lock(&dev_priv->dpio_lock);
1661
1662         /* Enable back the 10bit clock to display controller */
1663         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1664         tmp |= DPIO_DCLKP_EN;
1665         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1666
1667         /*
1668          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1669          */
1670         udelay(1);
1671
1672         /* Enable PLL */
1673         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1674
1675         /* Check PLL is locked */
1676         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1677                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1678
1679         /* not sure when this should be written */
1680         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1681         POSTING_READ(DPLL_MD(pipe));
1682
1683         mutex_unlock(&dev_priv->dpio_lock);
1684 }
1685
1686 static int intel_num_dvo_pipes(struct drm_device *dev)
1687 {
1688         struct intel_crtc *crtc;
1689         int count = 0;
1690
1691         for_each_intel_crtc(dev, crtc)
1692                 count += crtc->active &&
1693                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1694
1695         return count;
1696 }
1697
1698 static void i9xx_enable_pll(struct intel_crtc *crtc)
1699 {
1700         struct drm_device *dev = crtc->base.dev;
1701         struct drm_i915_private *dev_priv = dev->dev_private;
1702         int reg = DPLL(crtc->pipe);
1703         u32 dpll = crtc->config->dpll_hw_state.dpll;
1704
1705         assert_pipe_disabled(dev_priv, crtc->pipe);
1706
1707         /* No really, not for ILK+ */
1708         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1709
1710         /* PLL is protected by panel, make sure we can write it */
1711         if (IS_MOBILE(dev) && !IS_I830(dev))
1712                 assert_panel_unlocked(dev_priv, crtc->pipe);
1713
1714         /* Enable DVO 2x clock on both PLLs if necessary */
1715         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1716                 /*
1717                  * It appears to be important that we don't enable this
1718                  * for the current pipe before otherwise configuring the
1719                  * PLL. No idea how this should be handled if multiple
1720                  * DVO outputs are enabled simultaneosly.
1721                  */
1722                 dpll |= DPLL_DVO_2X_MODE;
1723                 I915_WRITE(DPLL(!crtc->pipe),
1724                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1725         }
1726
1727         /* Wait for the clocks to stabilize. */
1728         POSTING_READ(reg);
1729         udelay(150);
1730
1731         if (INTEL_INFO(dev)->gen >= 4) {
1732                 I915_WRITE(DPLL_MD(crtc->pipe),
1733                            crtc->config->dpll_hw_state.dpll_md);
1734         } else {
1735                 /* The pixel multiplier can only be updated once the
1736                  * DPLL is enabled and the clocks are stable.
1737                  *
1738                  * So write it again.
1739                  */
1740                 I915_WRITE(reg, dpll);
1741         }
1742
1743         /* We do this three times for luck */
1744         I915_WRITE(reg, dpll);
1745         POSTING_READ(reg);
1746         udelay(150); /* wait for warmup */
1747         I915_WRITE(reg, dpll);
1748         POSTING_READ(reg);
1749         udelay(150); /* wait for warmup */
1750         I915_WRITE(reg, dpll);
1751         POSTING_READ(reg);
1752         udelay(150); /* wait for warmup */
1753 }
1754
1755 /**
1756  * i9xx_disable_pll - disable a PLL
1757  * @dev_priv: i915 private structure
1758  * @pipe: pipe PLL to disable
1759  *
1760  * Disable the PLL for @pipe, making sure the pipe is off first.
1761  *
1762  * Note!  This is for pre-ILK only.
1763  */
1764 static void i9xx_disable_pll(struct intel_crtc *crtc)
1765 {
1766         struct drm_device *dev = crtc->base.dev;
1767         struct drm_i915_private *dev_priv = dev->dev_private;
1768         enum pipe pipe = crtc->pipe;
1769
1770         /* Disable DVO 2x clock on both PLLs if necessary */
1771         if (IS_I830(dev) &&
1772             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1773             intel_num_dvo_pipes(dev) == 1) {
1774                 I915_WRITE(DPLL(PIPE_B),
1775                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1776                 I915_WRITE(DPLL(PIPE_A),
1777                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1778         }
1779
1780         /* Don't disable pipe or pipe PLLs if needed */
1781         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1782             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1783                 return;
1784
1785         /* Make sure the pipe isn't still relying on us */
1786         assert_pipe_disabled(dev_priv, pipe);
1787
1788         I915_WRITE(DPLL(pipe), 0);
1789         POSTING_READ(DPLL(pipe));
1790 }
1791
1792 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1793 {
1794         u32 val = 0;
1795
1796         /* Make sure the pipe isn't still relying on us */
1797         assert_pipe_disabled(dev_priv, pipe);
1798
1799         /*
1800          * Leave integrated clock source and reference clock enabled for pipe B.
1801          * The latter is needed for VGA hotplug / manual detection.
1802          */
1803         if (pipe == PIPE_B)
1804                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1805         I915_WRITE(DPLL(pipe), val);
1806         POSTING_READ(DPLL(pipe));
1807
1808 }
1809
1810 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811 {
1812         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813         u32 val;
1814
1815         /* Make sure the pipe isn't still relying on us */
1816         assert_pipe_disabled(dev_priv, pipe);
1817
1818         /* Set PLL en = 0 */
1819         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1820         if (pipe != PIPE_A)
1821                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822         I915_WRITE(DPLL(pipe), val);
1823         POSTING_READ(DPLL(pipe));
1824
1825         mutex_lock(&dev_priv->dpio_lock);
1826
1827         /* Disable 10bit clock to display controller */
1828         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829         val &= ~DPIO_DCLKP_EN;
1830         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
1832         /* disable left/right clock distribution */
1833         if (pipe != PIPE_B) {
1834                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1835                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1836                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1837         } else {
1838                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1839                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1840                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1841         }
1842
1843         mutex_unlock(&dev_priv->dpio_lock);
1844 }
1845
1846 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1847                          struct intel_digital_port *dport,
1848                          unsigned int expected_mask)
1849 {
1850         u32 port_mask;
1851         int dpll_reg;
1852
1853         switch (dport->port) {
1854         case PORT_B:
1855                 port_mask = DPLL_PORTB_READY_MASK;
1856                 dpll_reg = DPLL(0);
1857                 break;
1858         case PORT_C:
1859                 port_mask = DPLL_PORTC_READY_MASK;
1860                 dpll_reg = DPLL(0);
1861                 expected_mask <<= 4;
1862                 break;
1863         case PORT_D:
1864                 port_mask = DPLL_PORTD_READY_MASK;
1865                 dpll_reg = DPIO_PHY_STATUS;
1866                 break;
1867         default:
1868                 BUG();
1869         }
1870
1871         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1872                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1873                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1874 }
1875
1876 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1877 {
1878         struct drm_device *dev = crtc->base.dev;
1879         struct drm_i915_private *dev_priv = dev->dev_private;
1880         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1881
1882         if (WARN_ON(pll == NULL))
1883                 return;
1884
1885         WARN_ON(!pll->config.crtc_mask);
1886         if (pll->active == 0) {
1887                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1888                 WARN_ON(pll->on);
1889                 assert_shared_dpll_disabled(dev_priv, pll);
1890
1891                 pll->mode_set(dev_priv, pll);
1892         }
1893 }
1894
1895 /**
1896  * intel_enable_shared_dpll - enable PCH PLL
1897  * @dev_priv: i915 private structure
1898  * @pipe: pipe PLL to enable
1899  *
1900  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1901  * drives the transcoder clock.
1902  */
1903 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1904 {
1905         struct drm_device *dev = crtc->base.dev;
1906         struct drm_i915_private *dev_priv = dev->dev_private;
1907         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1908
1909         if (WARN_ON(pll == NULL))
1910                 return;
1911
1912         if (WARN_ON(pll->config.crtc_mask == 0))
1913                 return;
1914
1915         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1916                       pll->name, pll->active, pll->on,
1917                       crtc->base.base.id);
1918
1919         if (pll->active++) {
1920                 WARN_ON(!pll->on);
1921                 assert_shared_dpll_enabled(dev_priv, pll);
1922                 return;
1923         }
1924         WARN_ON(pll->on);
1925
1926         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1927
1928         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1929         pll->enable(dev_priv, pll);
1930         pll->on = true;
1931 }
1932
1933 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1934 {
1935         struct drm_device *dev = crtc->base.dev;
1936         struct drm_i915_private *dev_priv = dev->dev_private;
1937         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1938
1939         /* PCH only available on ILK+ */
1940         BUG_ON(INTEL_INFO(dev)->gen < 5);
1941         if (WARN_ON(pll == NULL))
1942                return;
1943
1944         if (WARN_ON(pll->config.crtc_mask == 0))
1945                 return;
1946
1947         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1948                       pll->name, pll->active, pll->on,
1949                       crtc->base.base.id);
1950
1951         if (WARN_ON(pll->active == 0)) {
1952                 assert_shared_dpll_disabled(dev_priv, pll);
1953                 return;
1954         }
1955
1956         assert_shared_dpll_enabled(dev_priv, pll);
1957         WARN_ON(!pll->on);
1958         if (--pll->active)
1959                 return;
1960
1961         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1962         pll->disable(dev_priv, pll);
1963         pll->on = false;
1964
1965         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1966 }
1967
1968 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1969                                            enum pipe pipe)
1970 {
1971         struct drm_device *dev = dev_priv->dev;
1972         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1973         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1974         uint32_t reg, val, pipeconf_val;
1975
1976         /* PCH only available on ILK+ */
1977         BUG_ON(!HAS_PCH_SPLIT(dev));
1978
1979         /* Make sure PCH DPLL is enabled */
1980         assert_shared_dpll_enabled(dev_priv,
1981                                    intel_crtc_to_shared_dpll(intel_crtc));
1982
1983         /* FDI must be feeding us bits for PCH ports */
1984         assert_fdi_tx_enabled(dev_priv, pipe);
1985         assert_fdi_rx_enabled(dev_priv, pipe);
1986
1987         if (HAS_PCH_CPT(dev)) {
1988                 /* Workaround: Set the timing override bit before enabling the
1989                  * pch transcoder. */
1990                 reg = TRANS_CHICKEN2(pipe);
1991                 val = I915_READ(reg);
1992                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1993                 I915_WRITE(reg, val);
1994         }
1995
1996         reg = PCH_TRANSCONF(pipe);
1997         val = I915_READ(reg);
1998         pipeconf_val = I915_READ(PIPECONF(pipe));
1999
2000         if (HAS_PCH_IBX(dev_priv->dev)) {
2001                 /*
2002                  * make the BPC in transcoder be consistent with
2003                  * that in pipeconf reg.
2004                  */
2005                 val &= ~PIPECONF_BPC_MASK;
2006                 val |= pipeconf_val & PIPECONF_BPC_MASK;
2007         }
2008
2009         val &= ~TRANS_INTERLACE_MASK;
2010         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2011                 if (HAS_PCH_IBX(dev_priv->dev) &&
2012                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2013                         val |= TRANS_LEGACY_INTERLACED_ILK;
2014                 else
2015                         val |= TRANS_INTERLACED;
2016         else
2017                 val |= TRANS_PROGRESSIVE;
2018
2019         I915_WRITE(reg, val | TRANS_ENABLE);
2020         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2021                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2022 }
2023
2024 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2025                                       enum transcoder cpu_transcoder)
2026 {
2027         u32 val, pipeconf_val;
2028
2029         /* PCH only available on ILK+ */
2030         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2031
2032         /* FDI must be feeding us bits for PCH ports */
2033         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2034         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2035
2036         /* Workaround: set timing override bit. */
2037         val = I915_READ(_TRANSA_CHICKEN2);
2038         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2039         I915_WRITE(_TRANSA_CHICKEN2, val);
2040
2041         val = TRANS_ENABLE;
2042         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2043
2044         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2045             PIPECONF_INTERLACED_ILK)
2046                 val |= TRANS_INTERLACED;
2047         else
2048                 val |= TRANS_PROGRESSIVE;
2049
2050         I915_WRITE(LPT_TRANSCONF, val);
2051         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2052                 DRM_ERROR("Failed to enable PCH transcoder\n");
2053 }
2054
2055 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2056                                             enum pipe pipe)
2057 {
2058         struct drm_device *dev = dev_priv->dev;
2059         uint32_t reg, val;
2060
2061         /* FDI relies on the transcoder */
2062         assert_fdi_tx_disabled(dev_priv, pipe);
2063         assert_fdi_rx_disabled(dev_priv, pipe);
2064
2065         /* Ports must be off as well */
2066         assert_pch_ports_disabled(dev_priv, pipe);
2067
2068         reg = PCH_TRANSCONF(pipe);
2069         val = I915_READ(reg);
2070         val &= ~TRANS_ENABLE;
2071         I915_WRITE(reg, val);
2072         /* wait for PCH transcoder off, transcoder state */
2073         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2074                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2075
2076         if (!HAS_PCH_IBX(dev)) {
2077                 /* Workaround: Clear the timing override chicken bit again. */
2078                 reg = TRANS_CHICKEN2(pipe);
2079                 val = I915_READ(reg);
2080                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2081                 I915_WRITE(reg, val);
2082         }
2083 }
2084
2085 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2086 {
2087         u32 val;
2088
2089         val = I915_READ(LPT_TRANSCONF);
2090         val &= ~TRANS_ENABLE;
2091         I915_WRITE(LPT_TRANSCONF, val);
2092         /* wait for PCH transcoder off, transcoder state */
2093         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2094                 DRM_ERROR("Failed to disable PCH transcoder\n");
2095
2096         /* Workaround: clear timing override bit. */
2097         val = I915_READ(_TRANSA_CHICKEN2);
2098         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2099         I915_WRITE(_TRANSA_CHICKEN2, val);
2100 }
2101
2102 /**
2103  * intel_enable_pipe - enable a pipe, asserting requirements
2104  * @crtc: crtc responsible for the pipe
2105  *
2106  * Enable @crtc's pipe, making sure that various hardware specific requirements
2107  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2108  */
2109 static void intel_enable_pipe(struct intel_crtc *crtc)
2110 {
2111         struct drm_device *dev = crtc->base.dev;
2112         struct drm_i915_private *dev_priv = dev->dev_private;
2113         enum pipe pipe = crtc->pipe;
2114         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2115                                                                       pipe);
2116         enum pipe pch_transcoder;
2117         int reg;
2118         u32 val;
2119
2120         assert_planes_disabled(dev_priv, pipe);
2121         assert_cursor_disabled(dev_priv, pipe);
2122         assert_sprites_disabled(dev_priv, pipe);
2123
2124         if (HAS_PCH_LPT(dev_priv->dev))
2125                 pch_transcoder = TRANSCODER_A;
2126         else
2127                 pch_transcoder = pipe;
2128
2129         /*
2130          * A pipe without a PLL won't actually be able to drive bits from
2131          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2132          * need the check.
2133          */
2134         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2135                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2136                         assert_dsi_pll_enabled(dev_priv);
2137                 else
2138                         assert_pll_enabled(dev_priv, pipe);
2139         else {
2140                 if (crtc->config->has_pch_encoder) {
2141                         /* if driving the PCH, we need FDI enabled */
2142                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2143                         assert_fdi_tx_pll_enabled(dev_priv,
2144                                                   (enum pipe) cpu_transcoder);
2145                 }
2146                 /* FIXME: assert CPU port conditions for SNB+ */
2147         }
2148
2149         reg = PIPECONF(cpu_transcoder);
2150         val = I915_READ(reg);
2151         if (val & PIPECONF_ENABLE) {
2152                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2153                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2154                 return;
2155         }
2156
2157         I915_WRITE(reg, val | PIPECONF_ENABLE);
2158         POSTING_READ(reg);
2159 }
2160
2161 /**
2162  * intel_disable_pipe - disable a pipe, asserting requirements
2163  * @crtc: crtc whose pipes is to be disabled
2164  *
2165  * Disable the pipe of @crtc, making sure that various hardware
2166  * specific requirements are met, if applicable, e.g. plane
2167  * disabled, panel fitter off, etc.
2168  *
2169  * Will wait until the pipe has shut down before returning.
2170  */
2171 static void intel_disable_pipe(struct intel_crtc *crtc)
2172 {
2173         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2174         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2175         enum pipe pipe = crtc->pipe;
2176         int reg;
2177         u32 val;
2178
2179         /*
2180          * Make sure planes won't keep trying to pump pixels to us,
2181          * or we might hang the display.
2182          */
2183         assert_planes_disabled(dev_priv, pipe);
2184         assert_cursor_disabled(dev_priv, pipe);
2185         assert_sprites_disabled(dev_priv, pipe);
2186
2187         reg = PIPECONF(cpu_transcoder);
2188         val = I915_READ(reg);
2189         if ((val & PIPECONF_ENABLE) == 0)
2190                 return;
2191
2192         /*
2193          * Double wide has implications for planes
2194          * so best keep it disabled when not needed.
2195          */
2196         if (crtc->config->double_wide)
2197                 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199         /* Don't disable pipe or pipe PLLs if needed */
2200         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202                 val &= ~PIPECONF_ENABLE;
2203
2204         I915_WRITE(reg, val);
2205         if ((val & PIPECONF_ENABLE) == 0)
2206                 intel_wait_for_pipe_off(crtc);
2207 }
2208
2209 /*
2210  * Plane regs are double buffered, going from enabled->disabled needs a
2211  * trigger in order to latch.  The display address reg provides this.
2212  */
2213 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2214                                enum plane plane)
2215 {
2216         struct drm_device *dev = dev_priv->dev;
2217         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2218
2219         I915_WRITE(reg, I915_READ(reg));
2220         POSTING_READ(reg);
2221 }
2222
2223 /**
2224  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2225  * @plane:  plane to be enabled
2226  * @crtc: crtc for the plane
2227  *
2228  * Enable @plane on @crtc, making sure that the pipe is running first.
2229  */
2230 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2231                                           struct drm_crtc *crtc)
2232 {
2233         struct drm_device *dev = plane->dev;
2234         struct drm_i915_private *dev_priv = dev->dev_private;
2235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2236
2237         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2238         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2239         to_intel_plane_state(plane->state)->visible = true;
2240
2241         dev_priv->display.update_primary_plane(crtc, plane->fb,
2242                                                crtc->x, crtc->y);
2243 }
2244
2245 static bool need_vtd_wa(struct drm_device *dev)
2246 {
2247 #ifdef CONFIG_INTEL_IOMMU
2248         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2249                 return true;
2250 #endif
2251         return false;
2252 }
2253
2254 unsigned int
2255 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2256                   uint64_t fb_format_modifier)
2257 {
2258         unsigned int tile_height;
2259         uint32_t pixel_bytes;
2260
2261         switch (fb_format_modifier) {
2262         case DRM_FORMAT_MOD_NONE:
2263                 tile_height = 1;
2264                 break;
2265         case I915_FORMAT_MOD_X_TILED:
2266                 tile_height = IS_GEN2(dev) ? 16 : 8;
2267                 break;
2268         case I915_FORMAT_MOD_Y_TILED:
2269                 tile_height = 32;
2270                 break;
2271         case I915_FORMAT_MOD_Yf_TILED:
2272                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2273                 switch (pixel_bytes) {
2274                 default:
2275                 case 1:
2276                         tile_height = 64;
2277                         break;
2278                 case 2:
2279                 case 4:
2280                         tile_height = 32;
2281                         break;
2282                 case 8:
2283                         tile_height = 16;
2284                         break;
2285                 case 16:
2286                         WARN_ONCE(1,
2287                                   "128-bit pixels are not supported for display!");
2288                         tile_height = 16;
2289                         break;
2290                 }
2291                 break;
2292         default:
2293                 MISSING_CASE(fb_format_modifier);
2294                 tile_height = 1;
2295                 break;
2296         }
2297
2298         return tile_height;
2299 }
2300
2301 unsigned int
2302 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2303                       uint32_t pixel_format, uint64_t fb_format_modifier)
2304 {
2305         return ALIGN(height, intel_tile_height(dev, pixel_format,
2306                                                fb_format_modifier));
2307 }
2308
2309 static int
2310 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2311                         const struct drm_plane_state *plane_state)
2312 {
2313         struct intel_rotation_info *info = &view->rotation_info;
2314
2315         *view = i915_ggtt_view_normal;
2316
2317         if (!plane_state)
2318                 return 0;
2319
2320         if (!intel_rotation_90_or_270(plane_state->rotation))
2321                 return 0;
2322
2323         *view = i915_ggtt_view_rotated;
2324
2325         info->height = fb->height;
2326         info->pixel_format = fb->pixel_format;
2327         info->pitch = fb->pitches[0];
2328         info->fb_modifier = fb->modifier[0];
2329
2330         return 0;
2331 }
2332
2333 int
2334 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2335                            struct drm_framebuffer *fb,
2336                            const struct drm_plane_state *plane_state,
2337                            struct intel_engine_cs *pipelined)
2338 {
2339         struct drm_device *dev = fb->dev;
2340         struct drm_i915_private *dev_priv = dev->dev_private;
2341         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2342         struct i915_ggtt_view view;
2343         u32 alignment;
2344         int ret;
2345
2346         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2347
2348         switch (fb->modifier[0]) {
2349         case DRM_FORMAT_MOD_NONE:
2350                 if (INTEL_INFO(dev)->gen >= 9)
2351                         alignment = 256 * 1024;
2352                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2353                         alignment = 128 * 1024;
2354                 else if (INTEL_INFO(dev)->gen >= 4)
2355                         alignment = 4 * 1024;
2356                 else
2357                         alignment = 64 * 1024;
2358                 break;
2359         case I915_FORMAT_MOD_X_TILED:
2360                 if (INTEL_INFO(dev)->gen >= 9)
2361                         alignment = 256 * 1024;
2362                 else {
2363                         /* pin() will align the object as required by fence */
2364                         alignment = 0;
2365                 }
2366                 break;
2367         case I915_FORMAT_MOD_Y_TILED:
2368         case I915_FORMAT_MOD_Yf_TILED:
2369                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2370                           "Y tiling bo slipped through, driver bug!\n"))
2371                         return -EINVAL;
2372                 alignment = 1 * 1024 * 1024;
2373                 break;
2374         default:
2375                 MISSING_CASE(fb->modifier[0]);
2376                 return -EINVAL;
2377         }
2378
2379         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2380         if (ret)
2381                 return ret;
2382
2383         /* Note that the w/a also requires 64 PTE of padding following the
2384          * bo. We currently fill all unused PTE with the shadow page and so
2385          * we should always have valid PTE following the scanout preventing
2386          * the VT-d warning.
2387          */
2388         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2389                 alignment = 256 * 1024;
2390
2391         /*
2392          * Global gtt pte registers are special registers which actually forward
2393          * writes to a chunk of system memory. Which means that there is no risk
2394          * that the register values disappear as soon as we call
2395          * intel_runtime_pm_put(), so it is correct to wrap only the
2396          * pin/unpin/fence and not more.
2397          */
2398         intel_runtime_pm_get(dev_priv);
2399
2400         dev_priv->mm.interruptible = false;
2401         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2402                                                    &view);
2403         if (ret)
2404                 goto err_interruptible;
2405
2406         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2407          * fence, whereas 965+ only requires a fence if using
2408          * framebuffer compression.  For simplicity, we always install
2409          * a fence as the cost is not that onerous.
2410          */
2411         ret = i915_gem_object_get_fence(obj);
2412         if (ret)
2413                 goto err_unpin;
2414
2415         i915_gem_object_pin_fence(obj);
2416
2417         dev_priv->mm.interruptible = true;
2418         intel_runtime_pm_put(dev_priv);
2419         return 0;
2420
2421 err_unpin:
2422         i915_gem_object_unpin_from_display_plane(obj, &view);
2423 err_interruptible:
2424         dev_priv->mm.interruptible = true;
2425         intel_runtime_pm_put(dev_priv);
2426         return ret;
2427 }
2428
2429 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2430                                const struct drm_plane_state *plane_state)
2431 {
2432         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2433         struct i915_ggtt_view view;
2434         int ret;
2435
2436         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2437
2438         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2439         WARN_ONCE(ret, "Couldn't get view from plane state!");
2440
2441         i915_gem_object_unpin_fence(obj);
2442         i915_gem_object_unpin_from_display_plane(obj, &view);
2443 }
2444
2445 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2446  * is assumed to be a power-of-two. */
2447 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2448                                              unsigned int tiling_mode,
2449                                              unsigned int cpp,
2450                                              unsigned int pitch)
2451 {
2452         if (tiling_mode != I915_TILING_NONE) {
2453                 unsigned int tile_rows, tiles;
2454
2455                 tile_rows = *y / 8;
2456                 *y %= 8;
2457
2458                 tiles = *x / (512/cpp);
2459                 *x %= 512/cpp;
2460
2461                 return tile_rows * pitch * 8 + tiles * 4096;
2462         } else {
2463                 unsigned int offset;
2464
2465                 offset = *y * pitch + *x * cpp;
2466                 *y = 0;
2467                 *x = (offset & 4095) / cpp;
2468                 return offset & -4096;
2469         }
2470 }
2471
2472 static int i9xx_format_to_fourcc(int format)
2473 {
2474         switch (format) {
2475         case DISPPLANE_8BPP:
2476                 return DRM_FORMAT_C8;
2477         case DISPPLANE_BGRX555:
2478                 return DRM_FORMAT_XRGB1555;
2479         case DISPPLANE_BGRX565:
2480                 return DRM_FORMAT_RGB565;
2481         default:
2482         case DISPPLANE_BGRX888:
2483                 return DRM_FORMAT_XRGB8888;
2484         case DISPPLANE_RGBX888:
2485                 return DRM_FORMAT_XBGR8888;
2486         case DISPPLANE_BGRX101010:
2487                 return DRM_FORMAT_XRGB2101010;
2488         case DISPPLANE_RGBX101010:
2489                 return DRM_FORMAT_XBGR2101010;
2490         }
2491 }
2492
2493 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2494 {
2495         switch (format) {
2496         case PLANE_CTL_FORMAT_RGB_565:
2497                 return DRM_FORMAT_RGB565;
2498         default:
2499         case PLANE_CTL_FORMAT_XRGB_8888:
2500                 if (rgb_order) {
2501                         if (alpha)
2502                                 return DRM_FORMAT_ABGR8888;
2503                         else
2504                                 return DRM_FORMAT_XBGR8888;
2505                 } else {
2506                         if (alpha)
2507                                 return DRM_FORMAT_ARGB8888;
2508                         else
2509                                 return DRM_FORMAT_XRGB8888;
2510                 }
2511         case PLANE_CTL_FORMAT_XRGB_2101010:
2512                 if (rgb_order)
2513                         return DRM_FORMAT_XBGR2101010;
2514                 else
2515                         return DRM_FORMAT_XRGB2101010;
2516         }
2517 }
2518
2519 static bool
2520 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2521                               struct intel_initial_plane_config *plane_config)
2522 {
2523         struct drm_device *dev = crtc->base.dev;
2524         struct drm_i915_gem_object *obj = NULL;
2525         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2526         struct drm_framebuffer *fb = &plane_config->fb->base;
2527         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2528         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2529                                     PAGE_SIZE);
2530
2531         size_aligned -= base_aligned;
2532
2533         if (plane_config->size == 0)
2534                 return false;
2535
2536         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2537                                                              base_aligned,
2538                                                              base_aligned,
2539                                                              size_aligned);
2540         if (!obj)
2541                 return false;
2542
2543         obj->tiling_mode = plane_config->tiling;
2544         if (obj->tiling_mode == I915_TILING_X)
2545                 obj->stride = fb->pitches[0];
2546
2547         mode_cmd.pixel_format = fb->pixel_format;
2548         mode_cmd.width = fb->width;
2549         mode_cmd.height = fb->height;
2550         mode_cmd.pitches[0] = fb->pitches[0];
2551         mode_cmd.modifier[0] = fb->modifier[0];
2552         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2553
2554         mutex_lock(&dev->struct_mutex);
2555         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2556                                    &mode_cmd, obj)) {
2557                 DRM_DEBUG_KMS("intel fb init failed\n");
2558                 goto out_unref_obj;
2559         }
2560         mutex_unlock(&dev->struct_mutex);
2561
2562         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2563         return true;
2564
2565 out_unref_obj:
2566         drm_gem_object_unreference(&obj->base);
2567         mutex_unlock(&dev->struct_mutex);
2568         return false;
2569 }
2570
2571 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2572 static void
2573 update_state_fb(struct drm_plane *plane)
2574 {
2575         if (plane->fb == plane->state->fb)
2576                 return;
2577
2578         if (plane->state->fb)
2579                 drm_framebuffer_unreference(plane->state->fb);
2580         plane->state->fb = plane->fb;
2581         if (plane->state->fb)
2582                 drm_framebuffer_reference(plane->state->fb);
2583 }
2584
2585 static void
2586 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2587                              struct intel_initial_plane_config *plane_config)
2588 {
2589         struct drm_device *dev = intel_crtc->base.dev;
2590         struct drm_i915_private *dev_priv = dev->dev_private;
2591         struct drm_crtc *c;
2592         struct intel_crtc *i;
2593         struct drm_i915_gem_object *obj;
2594         struct drm_plane *primary = intel_crtc->base.primary;
2595         struct drm_framebuffer *fb;
2596
2597         if (!plane_config->fb)
2598                 return;
2599
2600         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2601                 fb = &plane_config->fb->base;
2602                 goto valid_fb;
2603         }
2604
2605         kfree(plane_config->fb);
2606
2607         /*
2608          * Failed to alloc the obj, check to see if we should share
2609          * an fb with another CRTC instead
2610          */
2611         for_each_crtc(dev, c) {
2612                 i = to_intel_crtc(c);
2613
2614                 if (c == &intel_crtc->base)
2615                         continue;
2616
2617                 if (!i->active)
2618                         continue;
2619
2620                 fb = c->primary->fb;
2621                 if (!fb)
2622                         continue;
2623
2624                 obj = intel_fb_obj(fb);
2625                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2626                         drm_framebuffer_reference(fb);
2627                         goto valid_fb;
2628                 }
2629         }
2630
2631         return;
2632
2633 valid_fb:
2634         obj = intel_fb_obj(fb);
2635         if (obj->tiling_mode != I915_TILING_NONE)
2636                 dev_priv->preserve_bios_swizzle = true;
2637
2638         primary->fb = fb;
2639         primary->state->crtc = &intel_crtc->base;
2640         primary->crtc = &intel_crtc->base;
2641         update_state_fb(primary);
2642         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2643 }
2644
2645 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2646                                       struct drm_framebuffer *fb,
2647                                       int x, int y)
2648 {
2649         struct drm_device *dev = crtc->dev;
2650         struct drm_i915_private *dev_priv = dev->dev_private;
2651         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2652         struct drm_plane *primary = crtc->primary;
2653         bool visible = to_intel_plane_state(primary->state)->visible;
2654         struct drm_i915_gem_object *obj;
2655         int plane = intel_crtc->plane;
2656         unsigned long linear_offset;
2657         u32 dspcntr;
2658         u32 reg = DSPCNTR(plane);
2659         int pixel_size;
2660
2661         if (!visible || !fb) {
2662                 I915_WRITE(reg, 0);
2663                 if (INTEL_INFO(dev)->gen >= 4)
2664                         I915_WRITE(DSPSURF(plane), 0);
2665                 else
2666                         I915_WRITE(DSPADDR(plane), 0);
2667                 POSTING_READ(reg);
2668                 return;
2669         }
2670
2671         obj = intel_fb_obj(fb);
2672         if (WARN_ON(obj == NULL))
2673                 return;
2674
2675         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2676
2677         dspcntr = DISPPLANE_GAMMA_ENABLE;
2678
2679         dspcntr |= DISPLAY_PLANE_ENABLE;
2680
2681         if (INTEL_INFO(dev)->gen < 4) {
2682                 if (intel_crtc->pipe == PIPE_B)
2683                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2684
2685                 /* pipesrc and dspsize control the size that is scaled from,
2686                  * which should always be the user's requested size.
2687                  */
2688                 I915_WRITE(DSPSIZE(plane),
2689                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2690                            (intel_crtc->config->pipe_src_w - 1));
2691                 I915_WRITE(DSPPOS(plane), 0);
2692         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2693                 I915_WRITE(PRIMSIZE(plane),
2694                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2695                            (intel_crtc->config->pipe_src_w - 1));
2696                 I915_WRITE(PRIMPOS(plane), 0);
2697                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2698         }
2699
2700         switch (fb->pixel_format) {
2701         case DRM_FORMAT_C8:
2702                 dspcntr |= DISPPLANE_8BPP;
2703                 break;
2704         case DRM_FORMAT_XRGB1555:
2705         case DRM_FORMAT_ARGB1555:
2706                 dspcntr |= DISPPLANE_BGRX555;
2707                 break;
2708         case DRM_FORMAT_RGB565:
2709                 dspcntr |= DISPPLANE_BGRX565;
2710                 break;
2711         case DRM_FORMAT_XRGB8888:
2712         case DRM_FORMAT_ARGB8888:
2713                 dspcntr |= DISPPLANE_BGRX888;
2714                 break;
2715         case DRM_FORMAT_XBGR8888:
2716         case DRM_FORMAT_ABGR8888:
2717                 dspcntr |= DISPPLANE_RGBX888;
2718                 break;
2719         case DRM_FORMAT_XRGB2101010:
2720         case DRM_FORMAT_ARGB2101010:
2721                 dspcntr |= DISPPLANE_BGRX101010;
2722                 break;
2723         case DRM_FORMAT_XBGR2101010:
2724         case DRM_FORMAT_ABGR2101010:
2725                 dspcntr |= DISPPLANE_RGBX101010;
2726                 break;
2727         default:
2728                 BUG();
2729         }
2730
2731         if (INTEL_INFO(dev)->gen >= 4 &&
2732             obj->tiling_mode != I915_TILING_NONE)
2733                 dspcntr |= DISPPLANE_TILED;
2734
2735         if (IS_G4X(dev))
2736                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2737
2738         linear_offset = y * fb->pitches[0] + x * pixel_size;
2739
2740         if (INTEL_INFO(dev)->gen >= 4) {
2741                 intel_crtc->dspaddr_offset =
2742                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2743                                                        pixel_size,
2744                                                        fb->pitches[0]);
2745                 linear_offset -= intel_crtc->dspaddr_offset;
2746         } else {
2747                 intel_crtc->dspaddr_offset = linear_offset;
2748         }
2749
2750         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2751                 dspcntr |= DISPPLANE_ROTATE_180;
2752
2753                 x += (intel_crtc->config->pipe_src_w - 1);
2754                 y += (intel_crtc->config->pipe_src_h - 1);
2755
2756                 /* Finding the last pixel of the last line of the display
2757                 data and adding to linear_offset*/
2758                 linear_offset +=
2759                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2760                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2761         }
2762
2763         I915_WRITE(reg, dspcntr);
2764
2765         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2766         if (INTEL_INFO(dev)->gen >= 4) {
2767                 I915_WRITE(DSPSURF(plane),
2768                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2769                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2770                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2771         } else
2772                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2773         POSTING_READ(reg);
2774 }
2775
2776 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2777                                           struct drm_framebuffer *fb,
2778                                           int x, int y)
2779 {
2780         struct drm_device *dev = crtc->dev;
2781         struct drm_i915_private *dev_priv = dev->dev_private;
2782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2783         struct drm_plane *primary = crtc->primary;
2784         bool visible = to_intel_plane_state(primary->state)->visible;
2785         struct drm_i915_gem_object *obj;
2786         int plane = intel_crtc->plane;
2787         unsigned long linear_offset;
2788         u32 dspcntr;
2789         u32 reg = DSPCNTR(plane);
2790         int pixel_size;
2791
2792         if (!visible || !fb) {
2793                 I915_WRITE(reg, 0);
2794                 I915_WRITE(DSPSURF(plane), 0);
2795                 POSTING_READ(reg);
2796                 return;
2797         }
2798
2799         obj = intel_fb_obj(fb);
2800         if (WARN_ON(obj == NULL))
2801                 return;
2802
2803         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2804
2805         dspcntr = DISPPLANE_GAMMA_ENABLE;
2806
2807         dspcntr |= DISPLAY_PLANE_ENABLE;
2808
2809         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2810                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2811
2812         switch (fb->pixel_format) {
2813         case DRM_FORMAT_C8:
2814                 dspcntr |= DISPPLANE_8BPP;
2815                 break;
2816         case DRM_FORMAT_RGB565:
2817                 dspcntr |= DISPPLANE_BGRX565;
2818                 break;
2819         case DRM_FORMAT_XRGB8888:
2820         case DRM_FORMAT_ARGB8888:
2821                 dspcntr |= DISPPLANE_BGRX888;
2822                 break;
2823         case DRM_FORMAT_XBGR8888:
2824         case DRM_FORMAT_ABGR8888:
2825                 dspcntr |= DISPPLANE_RGBX888;
2826                 break;
2827         case DRM_FORMAT_XRGB2101010:
2828         case DRM_FORMAT_ARGB2101010:
2829                 dspcntr |= DISPPLANE_BGRX101010;
2830                 break;
2831         case DRM_FORMAT_XBGR2101010:
2832         case DRM_FORMAT_ABGR2101010:
2833                 dspcntr |= DISPPLANE_RGBX101010;
2834                 break;
2835         default:
2836                 BUG();
2837         }
2838
2839         if (obj->tiling_mode != I915_TILING_NONE)
2840                 dspcntr |= DISPPLANE_TILED;
2841
2842         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2843                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2844
2845         linear_offset = y * fb->pitches[0] + x * pixel_size;
2846         intel_crtc->dspaddr_offset =
2847                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2848                                                pixel_size,
2849                                                fb->pitches[0]);
2850         linear_offset -= intel_crtc->dspaddr_offset;
2851         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2852                 dspcntr |= DISPPLANE_ROTATE_180;
2853
2854                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2855                         x += (intel_crtc->config->pipe_src_w - 1);
2856                         y += (intel_crtc->config->pipe_src_h - 1);
2857
2858                         /* Finding the last pixel of the last line of the display
2859                         data and adding to linear_offset*/
2860                         linear_offset +=
2861                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2862                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2863                 }
2864         }
2865
2866         I915_WRITE(reg, dspcntr);
2867
2868         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2869         I915_WRITE(DSPSURF(plane),
2870                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2871         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2872                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2873         } else {
2874                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2875                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2876         }
2877         POSTING_READ(reg);
2878 }
2879
2880 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2881                               uint32_t pixel_format)
2882 {
2883         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2884
2885         /*
2886          * The stride is either expressed as a multiple of 64 bytes
2887          * chunks for linear buffers or in number of tiles for tiled
2888          * buffers.
2889          */
2890         switch (fb_modifier) {
2891         case DRM_FORMAT_MOD_NONE:
2892                 return 64;
2893         case I915_FORMAT_MOD_X_TILED:
2894                 if (INTEL_INFO(dev)->gen == 2)
2895                         return 128;
2896                 return 512;
2897         case I915_FORMAT_MOD_Y_TILED:
2898                 /* No need to check for old gens and Y tiling since this is
2899                  * about the display engine and those will be blocked before
2900                  * we get here.
2901                  */
2902                 return 128;
2903         case I915_FORMAT_MOD_Yf_TILED:
2904                 if (bits_per_pixel == 8)
2905                         return 64;
2906                 else
2907                         return 128;
2908         default:
2909                 MISSING_CASE(fb_modifier);
2910                 return 64;
2911         }
2912 }
2913
2914 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2915                                      struct drm_i915_gem_object *obj)
2916 {
2917         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2918
2919         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2920                 view = &i915_ggtt_view_rotated;
2921
2922         return i915_gem_obj_ggtt_offset_view(obj, view);
2923 }
2924
2925 /*
2926  * This function detaches (aka. unbinds) unused scalers in hardware
2927  */
2928 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2929 {
2930         struct drm_device *dev;
2931         struct drm_i915_private *dev_priv;
2932         struct intel_crtc_scaler_state *scaler_state;
2933         int i;
2934
2935         if (!intel_crtc || !intel_crtc->config)
2936                 return;
2937
2938         dev = intel_crtc->base.dev;
2939         dev_priv = dev->dev_private;
2940         scaler_state = &intel_crtc->config->scaler_state;
2941
2942         /* loop through and disable scalers that aren't in use */
2943         for (i = 0; i < intel_crtc->num_scalers; i++) {
2944                 if (!scaler_state->scalers[i].in_use) {
2945                         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2946                         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2947                         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2948                         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2949                                 intel_crtc->base.base.id, intel_crtc->pipe, i);
2950                 }
2951         }
2952 }
2953
2954 u32 skl_plane_ctl_format(uint32_t pixel_format)
2955 {
2956         u32 plane_ctl_format = 0;
2957         switch (pixel_format) {
2958         case DRM_FORMAT_RGB565:
2959                 plane_ctl_format = PLANE_CTL_FORMAT_RGB_565;
2960                 break;
2961         case DRM_FORMAT_XBGR8888:
2962                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2963                 break;
2964         case DRM_FORMAT_XRGB8888:
2965                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888;
2966                 break;
2967         /*
2968          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2969          * to be already pre-multiplied. We need to add a knob (or a different
2970          * DRM_FORMAT) for user-space to configure that.
2971          */
2972         case DRM_FORMAT_ABGR8888:
2973                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2974                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2975                 break;
2976         case DRM_FORMAT_ARGB8888:
2977                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 |
2978                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2979                 break;
2980         case DRM_FORMAT_XRGB2101010:
2981                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_2101010;
2982                 break;
2983         case DRM_FORMAT_XBGR2101010:
2984                 plane_ctl_format = PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2985                 break;
2986         case DRM_FORMAT_YUYV:
2987                 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2988                 break;
2989         case DRM_FORMAT_YVYU:
2990                 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2991                 break;
2992         case DRM_FORMAT_UYVY:
2993                 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2994                 break;
2995         case DRM_FORMAT_VYUY:
2996                 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2997                 break;
2998         default:
2999                 BUG();
3000         }
3001         return plane_ctl_format;
3002 }
3003
3004 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3005 {
3006         u32 plane_ctl_tiling = 0;
3007         switch (fb_modifier) {
3008         case DRM_FORMAT_MOD_NONE:
3009                 break;
3010         case I915_FORMAT_MOD_X_TILED:
3011                 plane_ctl_tiling = PLANE_CTL_TILED_X;
3012                 break;
3013         case I915_FORMAT_MOD_Y_TILED:
3014                 plane_ctl_tiling = PLANE_CTL_TILED_Y;
3015                 break;
3016         case I915_FORMAT_MOD_Yf_TILED:
3017                 plane_ctl_tiling = PLANE_CTL_TILED_YF;
3018                 break;
3019         default:
3020                 MISSING_CASE(fb_modifier);
3021         }
3022         return plane_ctl_tiling;
3023 }
3024
3025 u32 skl_plane_ctl_rotation(unsigned int rotation)
3026 {
3027         u32 plane_ctl_rotation = 0;
3028         switch (rotation) {
3029         case BIT(DRM_ROTATE_0):
3030                 break;
3031         case BIT(DRM_ROTATE_90):
3032                 plane_ctl_rotation = PLANE_CTL_ROTATE_90;
3033                 break;
3034         case BIT(DRM_ROTATE_180):
3035                 plane_ctl_rotation = PLANE_CTL_ROTATE_180;
3036                 break;
3037         case BIT(DRM_ROTATE_270):
3038                 plane_ctl_rotation = PLANE_CTL_ROTATE_270;
3039                 break;
3040         default:
3041                 MISSING_CASE(rotation);
3042         }
3043
3044         return plane_ctl_rotation;
3045 }
3046
3047 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3048                                          struct drm_framebuffer *fb,
3049                                          int x, int y)
3050 {
3051         struct drm_device *dev = crtc->dev;
3052         struct drm_i915_private *dev_priv = dev->dev_private;
3053         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3054         struct drm_plane *plane = crtc->primary;
3055         bool visible = to_intel_plane_state(plane->state)->visible;
3056         struct drm_i915_gem_object *obj;
3057         int pipe = intel_crtc->pipe;
3058         u32 plane_ctl, stride_div, stride;
3059         u32 tile_height, plane_offset, plane_size;
3060         unsigned int rotation;
3061         int x_offset, y_offset;
3062         unsigned long surf_addr;
3063         struct intel_crtc_state *crtc_state = intel_crtc->config;
3064         struct intel_plane_state *plane_state;
3065         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3066         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3067         int scaler_id = -1;
3068
3069         plane_state = to_intel_plane_state(plane->state);
3070
3071         if (!visible || !fb) {
3072                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3073                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3074                 POSTING_READ(PLANE_CTL(pipe, 0));
3075                 return;
3076         }
3077
3078         plane_ctl = PLANE_CTL_ENABLE |
3079                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3080                     PLANE_CTL_PIPE_CSC_ENABLE;
3081
3082         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3083         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3084         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3085
3086         rotation = plane->state->rotation;
3087         plane_ctl |= skl_plane_ctl_rotation(rotation);
3088
3089         obj = intel_fb_obj(fb);
3090         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3091                                                fb->pixel_format);
3092         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3093
3094         /*
3095          * FIXME: intel_plane_state->src, dst aren't set when transitional
3096          * update_plane helpers are called from legacy paths.
3097          * Once full atomic crtc is available, below check can be avoided.
3098          */
3099         if (drm_rect_width(&plane_state->src)) {
3100                 scaler_id = plane_state->scaler_id;
3101                 src_x = plane_state->src.x1 >> 16;
3102                 src_y = plane_state->src.y1 >> 16;
3103                 src_w = drm_rect_width(&plane_state->src) >> 16;
3104                 src_h = drm_rect_height(&plane_state->src) >> 16;
3105                 dst_x = plane_state->dst.x1;
3106                 dst_y = plane_state->dst.y1;
3107                 dst_w = drm_rect_width(&plane_state->dst);
3108                 dst_h = drm_rect_height(&plane_state->dst);
3109
3110                 WARN_ON(x != src_x || y != src_y);
3111         } else {
3112                 src_w = intel_crtc->config->pipe_src_w;
3113                 src_h = intel_crtc->config->pipe_src_h;
3114         }
3115
3116         if (intel_rotation_90_or_270(rotation)) {
3117                 /* stride = Surface height in tiles */
3118                 tile_height = intel_tile_height(dev, fb->pixel_format,
3119                                                 fb->modifier[0]);
3120                 stride = DIV_ROUND_UP(fb->height, tile_height);
3121                 x_offset = stride * tile_height - y - src_h;
3122                 y_offset = x;
3123                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3124         } else {
3125                 stride = fb->pitches[0] / stride_div;
3126                 x_offset = x;
3127                 y_offset = y;
3128                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3129         }
3130         plane_offset = y_offset << 16 | x_offset;
3131
3132         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3133         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3134         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3135         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3136
3137         if (scaler_id >= 0) {
3138                 uint32_t ps_ctrl = 0;
3139
3140                 WARN_ON(!dst_w || !dst_h);
3141                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3142                         crtc_state->scaler_state.scalers[scaler_id].mode;
3143                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3144                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3145                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3146                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3147                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3148         } else {
3149                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3150         }
3151
3152         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3153
3154         POSTING_READ(PLANE_SURF(pipe, 0));
3155 }
3156
3157 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3158 static int
3159 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3160                            int x, int y, enum mode_set_atomic state)
3161 {
3162         struct drm_device *dev = crtc->dev;
3163         struct drm_i915_private *dev_priv = dev->dev_private;
3164
3165         if (dev_priv->display.disable_fbc)
3166                 dev_priv->display.disable_fbc(dev);
3167
3168         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3169
3170         return 0;
3171 }
3172
3173 static void intel_complete_page_flips(struct drm_device *dev)
3174 {
3175         struct drm_crtc *crtc;
3176
3177         for_each_crtc(dev, crtc) {
3178                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3179                 enum plane plane = intel_crtc->plane;
3180
3181                 intel_prepare_page_flip(dev, plane);
3182                 intel_finish_page_flip_plane(dev, plane);
3183         }
3184 }
3185
3186 static void intel_update_primary_planes(struct drm_device *dev)
3187 {
3188         struct drm_i915_private *dev_priv = dev->dev_private;
3189         struct drm_crtc *crtc;
3190
3191         for_each_crtc(dev, crtc) {
3192                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3193
3194                 drm_modeset_lock(&crtc->mutex, NULL);
3195                 /*
3196                  * FIXME: Once we have proper support for primary planes (and
3197                  * disabling them without disabling the entire crtc) allow again
3198                  * a NULL crtc->primary->fb.
3199                  */
3200                 if (intel_crtc->active && crtc->primary->fb)
3201                         dev_priv->display.update_primary_plane(crtc,
3202                                                                crtc->primary->fb,
3203                                                                crtc->x,
3204                                                                crtc->y);
3205                 drm_modeset_unlock(&crtc->mutex);
3206         }
3207 }
3208
3209 void intel_crtc_reset(struct intel_crtc *crtc)
3210 {
3211         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3212
3213         if (!crtc->active)
3214                 return;
3215
3216         intel_crtc_disable_planes(&crtc->base);
3217         dev_priv->display.crtc_disable(&crtc->base);
3218         dev_priv->display.crtc_enable(&crtc->base);
3219         intel_crtc_enable_planes(&crtc->base);
3220 }
3221
3222 void intel_prepare_reset(struct drm_device *dev)
3223 {
3224         struct drm_i915_private *dev_priv = to_i915(dev);
3225         struct intel_crtc *crtc;
3226
3227         /* no reset support for gen2 */
3228         if (IS_GEN2(dev))
3229                 return;
3230
3231         /* reset doesn't touch the display */
3232         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3233                 return;
3234
3235         drm_modeset_lock_all(dev);
3236
3237         /*
3238          * Disabling the crtcs gracefully seems nicer. Also the
3239          * g33 docs say we should at least disable all the planes.
3240          */
3241         for_each_intel_crtc(dev, crtc) {
3242                 if (!crtc->active)
3243                         continue;
3244
3245                 intel_crtc_disable_planes(&crtc->base);
3246                 dev_priv->display.crtc_disable(&crtc->base);
3247         }
3248 }
3249
3250 void intel_finish_reset(struct drm_device *dev)
3251 {
3252         struct drm_i915_private *dev_priv = to_i915(dev);
3253
3254         /*
3255          * Flips in the rings will be nuked by the reset,
3256          * so complete all pending flips so that user space
3257          * will get its events and not get stuck.
3258          */
3259         intel_complete_page_flips(dev);
3260
3261         /* no reset support for gen2 */
3262         if (IS_GEN2(dev))
3263                 return;
3264
3265         /* reset doesn't touch the display */
3266         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3267                 /*
3268                  * Flips in the rings have been nuked by the reset,
3269                  * so update the base address of all primary
3270                  * planes to the the last fb to make sure we're
3271                  * showing the correct fb after a reset.
3272                  */
3273                 intel_update_primary_planes(dev);
3274                 return;
3275         }
3276
3277         /*
3278          * The display has been reset as well,
3279          * so need a full re-initialization.
3280          */
3281         intel_runtime_pm_disable_interrupts(dev_priv);
3282         intel_runtime_pm_enable_interrupts(dev_priv);
3283
3284         intel_modeset_init_hw(dev);
3285
3286         spin_lock_irq(&dev_priv->irq_lock);
3287         if (dev_priv->display.hpd_irq_setup)
3288                 dev_priv->display.hpd_irq_setup(dev);
3289         spin_unlock_irq(&dev_priv->irq_lock);
3290
3291         intel_modeset_setup_hw_state(dev, true);
3292
3293         intel_hpd_init(dev_priv);
3294
3295         drm_modeset_unlock_all(dev);
3296 }
3297
3298 static void
3299 intel_finish_fb(struct drm_framebuffer *old_fb)
3300 {
3301         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3302         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3303         bool was_interruptible = dev_priv->mm.interruptible;
3304         int ret;
3305
3306         /* Big Hammer, we also need to ensure that any pending
3307          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3308          * current scanout is retired before unpinning the old
3309          * framebuffer. Note that we rely on userspace rendering
3310          * into the buffer attached to the pipe they are waiting
3311          * on. If not, userspace generates a GPU hang with IPEHR
3312          * point to the MI_WAIT_FOR_EVENT.
3313          *
3314          * This should only fail upon a hung GPU, in which case we
3315          * can safely continue.
3316          */
3317         dev_priv->mm.interruptible = false;
3318         ret = i915_gem_object_wait_rendering(obj, true);
3319         dev_priv->mm.interruptible = was_interruptible;
3320
3321         WARN_ON(ret);
3322 }
3323
3324 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3325 {
3326         struct drm_device *dev = crtc->dev;
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3329         bool pending;
3330
3331         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3332             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3333                 return false;
3334
3335         spin_lock_irq(&dev->event_lock);
3336         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3337         spin_unlock_irq(&dev->event_lock);
3338
3339         return pending;
3340 }
3341
3342 static void intel_update_pipe_size(struct intel_crtc *crtc)
3343 {
3344         struct drm_device *dev = crtc->base.dev;
3345         struct drm_i915_private *dev_priv = dev->dev_private;
3346         const struct drm_display_mode *adjusted_mode;
3347
3348         if (!i915.fastboot)
3349                 return;
3350
3351         /*
3352          * Update pipe size and adjust fitter if needed: the reason for this is
3353          * that in compute_mode_changes we check the native mode (not the pfit
3354          * mode) to see if we can flip rather than do a full mode set. In the
3355          * fastboot case, we'll flip, but if we don't update the pipesrc and
3356          * pfit state, we'll end up with a big fb scanned out into the wrong
3357          * sized surface.
3358          *
3359          * To fix this properly, we need to hoist the checks up into
3360          * compute_mode_changes (or above), check the actual pfit state and
3361          * whether the platform allows pfit disable with pipe active, and only
3362          * then update the pipesrc and pfit state, even on the flip path.
3363          */
3364
3365         adjusted_mode = &crtc->config->base.adjusted_mode;
3366
3367         I915_WRITE(PIPESRC(crtc->pipe),
3368                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3369                    (adjusted_mode->crtc_vdisplay - 1));
3370         if (!crtc->config->pch_pfit.enabled &&
3371             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3372              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3373                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3374                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3375                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3376         }
3377         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3378         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3379 }
3380
3381 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3382 {
3383         struct drm_device *dev = crtc->dev;
3384         struct drm_i915_private *dev_priv = dev->dev_private;
3385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386         int pipe = intel_crtc->pipe;
3387         u32 reg, temp;
3388
3389         /* enable normal train */
3390         reg = FDI_TX_CTL(pipe);
3391         temp = I915_READ(reg);
3392         if (IS_IVYBRIDGE(dev)) {
3393                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3394                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3395         } else {
3396                 temp &= ~FDI_LINK_TRAIN_NONE;
3397                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3398         }
3399         I915_WRITE(reg, temp);
3400
3401         reg = FDI_RX_CTL(pipe);
3402         temp = I915_READ(reg);
3403         if (HAS_PCH_CPT(dev)) {
3404                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3405                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3406         } else {
3407                 temp &= ~FDI_LINK_TRAIN_NONE;
3408                 temp |= FDI_LINK_TRAIN_NONE;
3409         }
3410         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3411
3412         /* wait one idle pattern time */
3413         POSTING_READ(reg);
3414         udelay(1000);
3415
3416         /* IVB wants error correction enabled */
3417         if (IS_IVYBRIDGE(dev))
3418                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3419                            FDI_FE_ERRC_ENABLE);
3420 }
3421
3422 /* The FDI link training functions for ILK/Ibexpeak. */
3423 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3424 {
3425         struct drm_device *dev = crtc->dev;
3426         struct drm_i915_private *dev_priv = dev->dev_private;
3427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3428         int pipe = intel_crtc->pipe;
3429         u32 reg, temp, tries;
3430
3431         /* FDI needs bits from pipe first */
3432         assert_pipe_enabled(dev_priv, pipe);
3433
3434         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3435            for train result */
3436         reg = FDI_RX_IMR(pipe);
3437         temp = I915_READ(reg);
3438         temp &= ~FDI_RX_SYMBOL_LOCK;
3439         temp &= ~FDI_RX_BIT_LOCK;
3440         I915_WRITE(reg, temp);
3441         I915_READ(reg);
3442         udelay(150);
3443
3444         /* enable CPU FDI TX and PCH FDI RX */
3445         reg = FDI_TX_CTL(pipe);
3446         temp = I915_READ(reg);
3447         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3448         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3449         temp &= ~FDI_LINK_TRAIN_NONE;
3450         temp |= FDI_LINK_TRAIN_PATTERN_1;
3451         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3452
3453         reg = FDI_RX_CTL(pipe);
3454         temp = I915_READ(reg);
3455         temp &= ~FDI_LINK_TRAIN_NONE;
3456         temp |= FDI_LINK_TRAIN_PATTERN_1;
3457         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3458
3459         POSTING_READ(reg);
3460         udelay(150);
3461
3462         /* Ironlake workaround, enable clock pointer after FDI enable*/
3463         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3464         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3465                    FDI_RX_PHASE_SYNC_POINTER_EN);
3466
3467         reg = FDI_RX_IIR(pipe);
3468         for (tries = 0; tries < 5; tries++) {
3469                 temp = I915_READ(reg);
3470                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3471
3472                 if ((temp & FDI_RX_BIT_LOCK)) {
3473                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3474                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3475                         break;
3476                 }
3477         }
3478         if (tries == 5)
3479                 DRM_ERROR("FDI train 1 fail!\n");
3480
3481         /* Train 2 */
3482         reg = FDI_TX_CTL(pipe);
3483         temp = I915_READ(reg);
3484         temp &= ~FDI_LINK_TRAIN_NONE;
3485         temp |= FDI_LINK_TRAIN_PATTERN_2;
3486         I915_WRITE(reg, temp);
3487
3488         reg = FDI_RX_CTL(pipe);
3489         temp = I915_READ(reg);
3490         temp &= ~FDI_LINK_TRAIN_NONE;
3491         temp |= FDI_LINK_TRAIN_PATTERN_2;
3492         I915_WRITE(reg, temp);
3493
3494         POSTING_READ(reg);
3495         udelay(150);
3496
3497         reg = FDI_RX_IIR(pipe);
3498         for (tries = 0; tries < 5; tries++) {
3499                 temp = I915_READ(reg);
3500                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3501
3502                 if (temp & FDI_RX_SYMBOL_LOCK) {
3503                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3504                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3505                         break;
3506                 }
3507         }
3508         if (tries == 5)
3509                 DRM_ERROR("FDI train 2 fail!\n");
3510
3511         DRM_DEBUG_KMS("FDI train done\n");
3512
3513 }
3514
3515 static const int snb_b_fdi_train_param[] = {
3516         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3517         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3518         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3519         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3520 };
3521
3522 /* The FDI link training functions for SNB/Cougarpoint. */
3523 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3524 {
3525         struct drm_device *dev = crtc->dev;
3526         struct drm_i915_private *dev_priv = dev->dev_private;
3527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3528         int pipe = intel_crtc->pipe;
3529         u32 reg, temp, i, retry;
3530
3531         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3532            for train result */
3533         reg = FDI_RX_IMR(pipe);
3534         temp = I915_READ(reg);
3535         temp &= ~FDI_RX_SYMBOL_LOCK;
3536         temp &= ~FDI_RX_BIT_LOCK;
3537         I915_WRITE(reg, temp);
3538
3539         POSTING_READ(reg);
3540         udelay(150);
3541
3542         /* enable CPU FDI TX and PCH FDI RX */
3543         reg = FDI_TX_CTL(pipe);
3544         temp = I915_READ(reg);
3545         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3546         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3547         temp &= ~FDI_LINK_TRAIN_NONE;
3548         temp |= FDI_LINK_TRAIN_PATTERN_1;
3549         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3550         /* SNB-B */
3551         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3552         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3553
3554         I915_WRITE(FDI_RX_MISC(pipe),
3555                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3556
3557         reg = FDI_RX_CTL(pipe);
3558         temp = I915_READ(reg);
3559         if (HAS_PCH_CPT(dev)) {
3560                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3561                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3562         } else {
3563                 temp &= ~FDI_LINK_TRAIN_NONE;
3564                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3565         }
3566         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3567
3568         POSTING_READ(reg);
3569         udelay(150);
3570
3571         for (i = 0; i < 4; i++) {
3572                 reg = FDI_TX_CTL(pipe);
3573                 temp = I915_READ(reg);
3574                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575                 temp |= snb_b_fdi_train_param[i];
3576                 I915_WRITE(reg, temp);
3577
3578                 POSTING_READ(reg);
3579                 udelay(500);
3580
3581                 for (retry = 0; retry < 5; retry++) {
3582                         reg = FDI_RX_IIR(pipe);
3583                         temp = I915_READ(reg);
3584                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3585                         if (temp & FDI_RX_BIT_LOCK) {
3586                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3587                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3588                                 break;
3589                         }
3590                         udelay(50);
3591                 }
3592                 if (retry < 5)
3593                         break;
3594         }
3595         if (i == 4)
3596                 DRM_ERROR("FDI train 1 fail!\n");
3597
3598         /* Train 2 */
3599         reg = FDI_TX_CTL(pipe);
3600         temp = I915_READ(reg);
3601         temp &= ~FDI_LINK_TRAIN_NONE;
3602         temp |= FDI_LINK_TRAIN_PATTERN_2;
3603         if (IS_GEN6(dev)) {
3604                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3605                 /* SNB-B */
3606                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3607         }
3608         I915_WRITE(reg, temp);
3609
3610         reg = FDI_RX_CTL(pipe);
3611         temp = I915_READ(reg);
3612         if (HAS_PCH_CPT(dev)) {
3613                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3614                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3615         } else {
3616                 temp &= ~FDI_LINK_TRAIN_NONE;
3617                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3618         }
3619         I915_WRITE(reg, temp);
3620
3621         POSTING_READ(reg);
3622         udelay(150);
3623
3624         for (i = 0; i < 4; i++) {
3625                 reg = FDI_TX_CTL(pipe);
3626                 temp = I915_READ(reg);
3627                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3628                 temp |= snb_b_fdi_train_param[i];
3629                 I915_WRITE(reg, temp);
3630
3631                 POSTING_READ(reg);
3632                 udelay(500);
3633
3634                 for (retry = 0; retry < 5; retry++) {
3635                         reg = FDI_RX_IIR(pipe);
3636                         temp = I915_READ(reg);
3637                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3638                         if (temp & FDI_RX_SYMBOL_LOCK) {
3639                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3640                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3641                                 break;
3642                         }
3643                         udelay(50);
3644                 }
3645                 if (retry < 5)
3646                         break;
3647         }
3648         if (i == 4)
3649                 DRM_ERROR("FDI train 2 fail!\n");
3650
3651         DRM_DEBUG_KMS("FDI train done.\n");
3652 }
3653
3654 /* Manual link training for Ivy Bridge A0 parts */
3655 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3656 {
3657         struct drm_device *dev = crtc->dev;
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3660         int pipe = intel_crtc->pipe;
3661         u32 reg, temp, i, j;
3662
3663         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3664            for train result */
3665         reg = FDI_RX_IMR(pipe);
3666         temp = I915_READ(reg);
3667         temp &= ~FDI_RX_SYMBOL_LOCK;
3668         temp &= ~FDI_RX_BIT_LOCK;
3669         I915_WRITE(reg, temp);
3670
3671         POSTING_READ(reg);
3672         udelay(150);
3673
3674         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3675                       I915_READ(FDI_RX_IIR(pipe)));
3676
3677         /* Try each vswing and preemphasis setting twice before moving on */
3678         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3679                 /* disable first in case we need to retry */
3680                 reg = FDI_TX_CTL(pipe);
3681                 temp = I915_READ(reg);
3682                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3683                 temp &= ~FDI_TX_ENABLE;
3684                 I915_WRITE(reg, temp);
3685
3686                 reg = FDI_RX_CTL(pipe);
3687                 temp = I915_READ(reg);
3688                 temp &= ~FDI_LINK_TRAIN_AUTO;
3689                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3690                 temp &= ~FDI_RX_ENABLE;
3691                 I915_WRITE(reg, temp);
3692
3693                 /* enable CPU FDI TX and PCH FDI RX */
3694                 reg = FDI_TX_CTL(pipe);
3695                 temp = I915_READ(reg);
3696                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3697                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3698                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3699                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3700                 temp |= snb_b_fdi_train_param[j/2];
3701                 temp |= FDI_COMPOSITE_SYNC;
3702                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3703
3704                 I915_WRITE(FDI_RX_MISC(pipe),
3705                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3706
3707                 reg = FDI_RX_CTL(pipe);
3708                 temp = I915_READ(reg);
3709                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3710                 temp |= FDI_COMPOSITE_SYNC;
3711                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3712
3713                 POSTING_READ(reg);
3714                 udelay(1); /* should be 0.5us */
3715
3716                 for (i = 0; i < 4; i++) {
3717                         reg = FDI_RX_IIR(pipe);
3718                         temp = I915_READ(reg);
3719                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3720
3721                         if (temp & FDI_RX_BIT_LOCK ||
3722                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3723                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3724                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3725                                               i);
3726                                 break;
3727                         }
3728                         udelay(1); /* should be 0.5us */
3729                 }
3730                 if (i == 4) {
3731                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3732                         continue;
3733                 }
3734
3735                 /* Train 2 */
3736                 reg = FDI_TX_CTL(pipe);
3737                 temp = I915_READ(reg);
3738                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3739                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3740                 I915_WRITE(reg, temp);
3741
3742                 reg = FDI_RX_CTL(pipe);
3743                 temp = I915_READ(reg);
3744                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3745                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3746                 I915_WRITE(reg, temp);
3747
3748                 POSTING_READ(reg);
3749                 udelay(2); /* should be 1.5us */
3750
3751                 for (i = 0; i < 4; i++) {
3752                         reg = FDI_RX_IIR(pipe);
3753                         temp = I915_READ(reg);
3754                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3755
3756                         if (temp & FDI_RX_SYMBOL_LOCK ||
3757                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3758                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3759                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3760                                               i);
3761                                 goto train_done;
3762                         }
3763                         udelay(2); /* should be 1.5us */
3764                 }
3765                 if (i == 4)
3766                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3767         }
3768
3769 train_done:
3770         DRM_DEBUG_KMS("FDI train done.\n");
3771 }
3772
3773 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3774 {
3775         struct drm_device *dev = intel_crtc->base.dev;
3776         struct drm_i915_private *dev_priv = dev->dev_private;
3777         int pipe = intel_crtc->pipe;
3778         u32 reg, temp;
3779
3780
3781         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3782         reg = FDI_RX_CTL(pipe);
3783         temp = I915_READ(reg);
3784         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3785         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3786         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3787         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3788
3789         POSTING_READ(reg);
3790         udelay(200);
3791
3792         /* Switch from Rawclk to PCDclk */
3793         temp = I915_READ(reg);
3794         I915_WRITE(reg, temp | FDI_PCDCLK);
3795
3796         POSTING_READ(reg);
3797         udelay(200);
3798
3799         /* Enable CPU FDI TX PLL, always on for Ironlake */
3800         reg = FDI_TX_CTL(pipe);
3801         temp = I915_READ(reg);
3802         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3803                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3804
3805                 POSTING_READ(reg);
3806                 udelay(100);
3807         }
3808 }
3809
3810 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3811 {
3812         struct drm_device *dev = intel_crtc->base.dev;
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814         int pipe = intel_crtc->pipe;
3815         u32 reg, temp;
3816
3817         /* Switch from PCDclk to Rawclk */
3818         reg = FDI_RX_CTL(pipe);
3819         temp = I915_READ(reg);
3820         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3821
3822         /* Disable CPU FDI TX PLL */
3823         reg = FDI_TX_CTL(pipe);
3824         temp = I915_READ(reg);
3825         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3826
3827         POSTING_READ(reg);
3828         udelay(100);
3829
3830         reg = FDI_RX_CTL(pipe);
3831         temp = I915_READ(reg);
3832         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3833
3834         /* Wait for the clocks to turn off. */
3835         POSTING_READ(reg);
3836         udelay(100);
3837 }
3838
3839 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3840 {
3841         struct drm_device *dev = crtc->dev;
3842         struct drm_i915_private *dev_priv = dev->dev_private;
3843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3844         int pipe = intel_crtc->pipe;
3845         u32 reg, temp;
3846
3847         /* disable CPU FDI tx and PCH FDI rx */
3848         reg = FDI_TX_CTL(pipe);
3849         temp = I915_READ(reg);
3850         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3851         POSTING_READ(reg);
3852
3853         reg = FDI_RX_CTL(pipe);
3854         temp = I915_READ(reg);
3855         temp &= ~(0x7 << 16);
3856         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3857         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3858
3859         POSTING_READ(reg);
3860         udelay(100);
3861
3862         /* Ironlake workaround, disable clock pointer after downing FDI */
3863         if (HAS_PCH_IBX(dev))
3864                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3865
3866         /* still set train pattern 1 */
3867         reg = FDI_TX_CTL(pipe);
3868         temp = I915_READ(reg);
3869         temp &= ~FDI_LINK_TRAIN_NONE;
3870         temp |= FDI_LINK_TRAIN_PATTERN_1;
3871         I915_WRITE(reg, temp);
3872
3873         reg = FDI_RX_CTL(pipe);
3874         temp = I915_READ(reg);
3875         if (HAS_PCH_CPT(dev)) {
3876                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3877                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3878         } else {
3879                 temp &= ~FDI_LINK_TRAIN_NONE;
3880                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3881         }
3882         /* BPC in FDI rx is consistent with that in PIPECONF */
3883         temp &= ~(0x07 << 16);
3884         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3885         I915_WRITE(reg, temp);
3886
3887         POSTING_READ(reg);
3888         udelay(100);
3889 }
3890
3891 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3892 {
3893         struct intel_crtc *crtc;
3894
3895         /* Note that we don't need to be called with mode_config.lock here
3896          * as our list of CRTC objects is static for the lifetime of the
3897          * device and so cannot disappear as we iterate. Similarly, we can
3898          * happily treat the predicates as racy, atomic checks as userspace
3899          * cannot claim and pin a new fb without at least acquring the
3900          * struct_mutex and so serialising with us.
3901          */
3902         for_each_intel_crtc(dev, crtc) {
3903                 if (atomic_read(&crtc->unpin_work_count) == 0)
3904                         continue;
3905
3906                 if (crtc->unpin_work)
3907                         intel_wait_for_vblank(dev, crtc->pipe);
3908
3909                 return true;
3910         }
3911
3912         return false;
3913 }
3914
3915 static void page_flip_completed(struct intel_crtc *intel_crtc)
3916 {
3917         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3918         struct intel_unpin_work *work = intel_crtc->unpin_work;
3919
3920         /* ensure that the unpin work is consistent wrt ->pending. */
3921         smp_rmb();
3922         intel_crtc->unpin_work = NULL;
3923
3924         if (work->event)
3925                 drm_send_vblank_event(intel_crtc->base.dev,
3926                                       intel_crtc->pipe,
3927                                       work->event);
3928
3929         drm_crtc_vblank_put(&intel_crtc->base);
3930
3931         wake_up_all(&dev_priv->pending_flip_queue);
3932         queue_work(dev_priv->wq, &work->work);
3933
3934         trace_i915_flip_complete(intel_crtc->plane,
3935                                  work->pending_flip_obj);
3936 }
3937
3938 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3939 {
3940         struct drm_device *dev = crtc->dev;
3941         struct drm_i915_private *dev_priv = dev->dev_private;
3942
3943         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3944         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3945                                        !intel_crtc_has_pending_flip(crtc),
3946                                        60*HZ) == 0)) {
3947                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3948
3949                 spin_lock_irq(&dev->event_lock);
3950                 if (intel_crtc->unpin_work) {
3951                         WARN_ONCE(1, "Removing stuck page flip\n");
3952                         page_flip_completed(intel_crtc);
3953                 }
3954                 spin_unlock_irq(&dev->event_lock);
3955         }
3956
3957         if (crtc->primary->fb) {
3958                 mutex_lock(&dev->struct_mutex);
3959                 intel_finish_fb(crtc->primary->fb);
3960                 mutex_unlock(&dev->struct_mutex);
3961         }
3962 }
3963
3964 /* Program iCLKIP clock to the desired frequency */
3965 static void lpt_program_iclkip(struct drm_crtc *crtc)
3966 {
3967         struct drm_device *dev = crtc->dev;
3968         struct drm_i915_private *dev_priv = dev->dev_private;
3969         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3970         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3971         u32 temp;
3972
3973         mutex_lock(&dev_priv->dpio_lock);
3974
3975         /* It is necessary to ungate the pixclk gate prior to programming
3976          * the divisors, and gate it back when it is done.
3977          */
3978         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3979
3980         /* Disable SSCCTL */
3981         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3982                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3983                                 SBI_SSCCTL_DISABLE,
3984                         SBI_ICLK);
3985
3986         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3987         if (clock == 20000) {
3988                 auxdiv = 1;
3989                 divsel = 0x41;
3990                 phaseinc = 0x20;
3991         } else {
3992                 /* The iCLK virtual clock root frequency is in MHz,
3993                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3994                  * divisors, it is necessary to divide one by another, so we
3995                  * convert the virtual clock precision to KHz here for higher
3996                  * precision.
3997                  */
3998                 u32 iclk_virtual_root_freq = 172800 * 1000;
3999                 u32 iclk_pi_range = 64;
4000                 u32 desired_divisor, msb_divisor_value, pi_value;
4001
4002                 desired_divisor = (iclk_virtual_root_freq / clock);
4003                 msb_divisor_value = desired_divisor / iclk_pi_range;
4004                 pi_value = desired_divisor % iclk_pi_range;
4005
4006                 auxdiv = 0;
4007                 divsel = msb_divisor_value - 2;
4008                 phaseinc = pi_value;
4009         }
4010
4011         /* This should not happen with any sane values */
4012         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4013                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4014         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4015                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4016
4017         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4018                         clock,
4019                         auxdiv,
4020                         divsel,
4021                         phasedir,
4022                         phaseinc);
4023
4024         /* Program SSCDIVINTPHASE6 */
4025         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4026         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4027         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4028         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4029         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4030         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4031         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4032         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4033
4034         /* Program SSCAUXDIV */
4035         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4036         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4037         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4038         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4039
4040         /* Enable modulator and associated divider */
4041         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4042         temp &= ~SBI_SSCCTL_DISABLE;
4043         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4044
4045         /* Wait for initialization time */
4046         udelay(24);
4047
4048         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4049
4050         mutex_unlock(&dev_priv->dpio_lock);
4051 }
4052
4053 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4054                                                 enum pipe pch_transcoder)
4055 {
4056         struct drm_device *dev = crtc->base.dev;
4057         struct drm_i915_private *dev_priv = dev->dev_private;
4058         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4059
4060         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4061                    I915_READ(HTOTAL(cpu_transcoder)));
4062         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4063                    I915_READ(HBLANK(cpu_transcoder)));
4064         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4065                    I915_READ(HSYNC(cpu_transcoder)));
4066
4067         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4068                    I915_READ(VTOTAL(cpu_transcoder)));
4069         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4070                    I915_READ(VBLANK(cpu_transcoder)));
4071         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4072                    I915_READ(VSYNC(cpu_transcoder)));
4073         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4074                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4075 }
4076
4077 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4078 {
4079         struct drm_i915_private *dev_priv = dev->dev_private;
4080         uint32_t temp;
4081
4082         temp = I915_READ(SOUTH_CHICKEN1);
4083         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4084                 return;
4085
4086         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4087         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4088
4089         temp &= ~FDI_BC_BIFURCATION_SELECT;
4090         if (enable)
4091                 temp |= FDI_BC_BIFURCATION_SELECT;
4092
4093         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4094         I915_WRITE(SOUTH_CHICKEN1, temp);
4095         POSTING_READ(SOUTH_CHICKEN1);
4096 }
4097
4098 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4099 {
4100         struct drm_device *dev = intel_crtc->base.dev;
4101
4102         switch (intel_crtc->pipe) {
4103         case PIPE_A:
4104                 break;
4105         case PIPE_B:
4106                 if (intel_crtc->config->fdi_lanes > 2)
4107                         cpt_set_fdi_bc_bifurcation(dev, false);
4108                 else
4109                         cpt_set_fdi_bc_bifurcation(dev, true);
4110
4111                 break;
4112         case PIPE_C:
4113                 cpt_set_fdi_bc_bifurcation(dev, true);
4114
4115                 break;
4116         default:
4117                 BUG();
4118         }
4119 }
4120
4121 /*
4122  * Enable PCH resources required for PCH ports:
4123  *   - PCH PLLs
4124  *   - FDI training & RX/TX
4125  *   - update transcoder timings
4126  *   - DP transcoding bits
4127  *   - transcoder
4128  */
4129 static void ironlake_pch_enable(struct drm_crtc *crtc)
4130 {
4131         struct drm_device *dev = crtc->dev;
4132         struct drm_i915_private *dev_priv = dev->dev_private;
4133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4134         int pipe = intel_crtc->pipe;
4135         u32 reg, temp;
4136
4137         assert_pch_transcoder_disabled(dev_priv, pipe);
4138
4139         if (IS_IVYBRIDGE(dev))
4140                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4141
4142         /* Write the TU size bits before fdi link training, so that error
4143          * detection works. */
4144         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4145                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4146
4147         /* For PCH output, training FDI link */
4148         dev_priv->display.fdi_link_train(crtc);
4149
4150         /* We need to program the right clock selection before writing the pixel
4151          * mutliplier into the DPLL. */
4152         if (HAS_PCH_CPT(dev)) {
4153                 u32 sel;
4154
4155                 temp = I915_READ(PCH_DPLL_SEL);
4156                 temp |= TRANS_DPLL_ENABLE(pipe);
4157                 sel = TRANS_DPLLB_SEL(pipe);
4158                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4159                         temp |= sel;
4160                 else
4161                         temp &= ~sel;
4162                 I915_WRITE(PCH_DPLL_SEL, temp);
4163         }
4164
4165         /* XXX: pch pll's can be enabled any time before we enable the PCH
4166          * transcoder, and we actually should do this to not upset any PCH
4167          * transcoder that already use the clock when we share it.
4168          *
4169          * Note that enable_shared_dpll tries to do the right thing, but
4170          * get_shared_dpll unconditionally resets the pll - we need that to have
4171          * the right LVDS enable sequence. */
4172         intel_enable_shared_dpll(intel_crtc);
4173
4174         /* set transcoder timing, panel must allow it */
4175         assert_panel_unlocked(dev_priv, pipe);
4176         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4177
4178         intel_fdi_normal_train(crtc);
4179
4180         /* For PCH DP, enable TRANS_DP_CTL */
4181         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4182                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4183                 reg = TRANS_DP_CTL(pipe);
4184                 temp = I915_READ(reg);
4185                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4186                           TRANS_DP_SYNC_MASK |
4187                           TRANS_DP_BPC_MASK);
4188                 temp |= (TRANS_DP_OUTPUT_ENABLE |
4189                          TRANS_DP_ENH_FRAMING);
4190                 temp |= bpc << 9; /* same format but at 11:9 */
4191
4192                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4193                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4194                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4195                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4196
4197                 switch (intel_trans_dp_port_sel(crtc)) {
4198                 case PCH_DP_B:
4199                         temp |= TRANS_DP_PORT_SEL_B;
4200                         break;
4201                 case PCH_DP_C:
4202                         temp |= TRANS_DP_PORT_SEL_C;
4203                         break;
4204                 case PCH_DP_D:
4205                         temp |= TRANS_DP_PORT_SEL_D;
4206                         break;
4207                 default:
4208                         BUG();
4209                 }
4210
4211                 I915_WRITE(reg, temp);
4212         }
4213
4214         ironlake_enable_pch_transcoder(dev_priv, pipe);
4215 }
4216
4217 static void lpt_pch_enable(struct drm_crtc *crtc)
4218 {
4219         struct drm_device *dev = crtc->dev;
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4222         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4223
4224         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4225
4226         lpt_program_iclkip(crtc);
4227
4228         /* Set transcoder timing. */
4229         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4230
4231         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4232 }
4233
4234 void intel_put_shared_dpll(struct intel_crtc *crtc)
4235 {
4236         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4237
4238         if (pll == NULL)
4239                 return;
4240
4241         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4242                 WARN(1, "bad %s crtc mask\n", pll->name);
4243                 return;
4244         }
4245
4246         pll->config.crtc_mask &= ~(1 << crtc->pipe);
4247         if (pll->config.crtc_mask == 0) {
4248                 WARN_ON(pll->on);
4249                 WARN_ON(pll->active);
4250         }
4251
4252         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4253 }
4254
4255 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4256                                                 struct intel_crtc_state *crtc_state)
4257 {
4258         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4259         struct intel_shared_dpll *pll;
4260         enum intel_dpll_id i;
4261
4262         if (HAS_PCH_IBX(dev_priv->dev)) {
4263                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4264                 i = (enum intel_dpll_id) crtc->pipe;
4265                 pll = &dev_priv->shared_dplls[i];
4266
4267                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4268                               crtc->base.base.id, pll->name);
4269
4270                 WARN_ON(pll->new_config->crtc_mask);
4271
4272                 goto found;
4273         }
4274
4275         if (IS_BROXTON(dev_priv->dev)) {
4276                 /* PLL is attached to port in bxt */
4277                 struct intel_encoder *encoder;
4278                 struct intel_digital_port *intel_dig_port;
4279
4280                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4281                 if (WARN_ON(!encoder))
4282                         return NULL;
4283
4284                 intel_dig_port = enc_to_dig_port(&encoder->base);
4285                 /* 1:1 mapping between ports and PLLs */
4286                 i = (enum intel_dpll_id)intel_dig_port->port;
4287                 pll = &dev_priv->shared_dplls[i];
4288                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4289                         crtc->base.base.id, pll->name);
4290                 WARN_ON(pll->new_config->crtc_mask);
4291
4292                 goto found;
4293         }
4294
4295         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4296                 pll = &dev_priv->shared_dplls[i];
4297
4298                 /* Only want to check enabled timings first */
4299                 if (pll->new_config->crtc_mask == 0)
4300                         continue;
4301
4302                 if (memcmp(&crtc_state->dpll_hw_state,
4303                            &pll->new_config->hw_state,
4304                            sizeof(pll->new_config->hw_state)) == 0) {
4305                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4306                                       crtc->base.base.id, pll->name,
4307                                       pll->new_config->crtc_mask,
4308                                       pll->active);
4309                         goto found;
4310                 }
4311         }
4312
4313         /* Ok no matching timings, maybe there's a free one? */
4314         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4315                 pll = &dev_priv->shared_dplls[i];
4316                 if (pll->new_config->crtc_mask == 0) {
4317                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4318                                       crtc->base.base.id, pll->name);
4319                         goto found;
4320                 }
4321         }
4322
4323         return NULL;
4324
4325 found:
4326         if (pll->new_config->crtc_mask == 0)
4327                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4328
4329         crtc_state->shared_dpll = i;
4330         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4331                          pipe_name(crtc->pipe));
4332
4333         pll->new_config->crtc_mask |= 1 << crtc->pipe;
4334
4335         return pll;
4336 }
4337
4338 /**
4339  * intel_shared_dpll_start_config - start a new PLL staged config
4340  * @dev_priv: DRM device
4341  * @clear_pipes: mask of pipes that will have their PLLs freed
4342  *
4343  * Starts a new PLL staged config, copying the current config but
4344  * releasing the references of pipes specified in clear_pipes.
4345  */
4346 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4347                                           unsigned clear_pipes)
4348 {
4349         struct intel_shared_dpll *pll;
4350         enum intel_dpll_id i;
4351
4352         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4353                 pll = &dev_priv->shared_dplls[i];
4354
4355                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4356                                           GFP_KERNEL);
4357                 if (!pll->new_config)
4358                         goto cleanup;
4359
4360                 pll->new_config->crtc_mask &= ~clear_pipes;
4361         }
4362
4363         return 0;
4364
4365 cleanup:
4366         while (--i >= 0) {
4367                 pll = &dev_priv->shared_dplls[i];
4368                 kfree(pll->new_config);
4369                 pll->new_config = NULL;
4370         }
4371
4372         return -ENOMEM;
4373 }
4374
4375 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4376 {
4377         struct intel_shared_dpll *pll;
4378         enum intel_dpll_id i;
4379
4380         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4381                 pll = &dev_priv->shared_dplls[i];
4382
4383                 WARN_ON(pll->new_config == &pll->config);
4384
4385                 pll->config = *pll->new_config;
4386                 kfree(pll->new_config);
4387                 pll->new_config = NULL;
4388         }
4389 }
4390
4391 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4392 {
4393         struct intel_shared_dpll *pll;
4394         enum intel_dpll_id i;
4395
4396         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4397                 pll = &dev_priv->shared_dplls[i];
4398
4399                 WARN_ON(pll->new_config == &pll->config);
4400
4401                 kfree(pll->new_config);
4402                 pll->new_config = NULL;
4403         }
4404 }
4405
4406 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4407 {
4408         struct drm_i915_private *dev_priv = dev->dev_private;
4409         int dslreg = PIPEDSL(pipe);
4410         u32 temp;
4411
4412         temp = I915_READ(dslreg);
4413         udelay(500);
4414         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4415                 if (wait_for(I915_READ(dslreg) != temp, 5))
4416                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4417         }
4418 }
4419
4420 /**
4421  * skl_update_scaler_users - Stages update to crtc's scaler state
4422  * @intel_crtc: crtc
4423  * @crtc_state: crtc_state
4424  * @plane: plane (NULL indicates crtc is requesting update)
4425  * @plane_state: plane's state
4426  * @force_detach: request unconditional detachment of scaler
4427  *
4428  * This function updates scaler state for requested plane or crtc.
4429  * To request scaler usage update for a plane, caller shall pass plane pointer.
4430  * To request scaler usage update for crtc, caller shall pass plane pointer
4431  * as NULL.
4432  *
4433  * Return
4434  *     0 - scaler_usage updated successfully
4435  *    error - requested scaling cannot be supported or other error condition
4436  */
4437 int
4438 skl_update_scaler_users(
4439         struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4440         struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4441         int force_detach)
4442 {
4443         int need_scaling;
4444         int idx;
4445         int src_w, src_h, dst_w, dst_h;
4446         int *scaler_id;
4447         struct drm_framebuffer *fb;
4448         struct intel_crtc_scaler_state *scaler_state;
4449         unsigned int rotation;
4450
4451         if (!intel_crtc || !crtc_state)
4452                 return 0;
4453
4454         scaler_state = &crtc_state->scaler_state;
4455
4456         idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4457         fb = intel_plane ? plane_state->base.fb : NULL;
4458
4459         if (intel_plane) {
4460                 src_w = drm_rect_width(&plane_state->src) >> 16;
4461                 src_h = drm_rect_height(&plane_state->src) >> 16;
4462                 dst_w = drm_rect_width(&plane_state->dst);
4463                 dst_h = drm_rect_height(&plane_state->dst);
4464                 scaler_id = &plane_state->scaler_id;
4465                 rotation = plane_state->base.rotation;
4466         } else {
4467                 struct drm_display_mode *adjusted_mode =
4468                         &crtc_state->base.adjusted_mode;
4469                 src_w = crtc_state->pipe_src_w;
4470                 src_h = crtc_state->pipe_src_h;
4471                 dst_w = adjusted_mode->hdisplay;
4472                 dst_h = adjusted_mode->vdisplay;
4473                 scaler_id = &scaler_state->scaler_id;
4474                 rotation = DRM_ROTATE_0;
4475         }
4476
4477         need_scaling = intel_rotation_90_or_270(rotation) ?
4478                 (src_h != dst_w || src_w != dst_h):
4479                 (src_w != dst_w || src_h != dst_h);
4480
4481         /*
4482          * if plane is being disabled or scaler is no more required or force detach
4483          *  - free scaler binded to this plane/crtc
4484          *  - in order to do this, update crtc->scaler_usage
4485          *
4486          * Here scaler state in crtc_state is set free so that
4487          * scaler can be assigned to other user. Actual register
4488          * update to free the scaler is done in plane/panel-fit programming.
4489          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4490          */
4491         if (force_detach || !need_scaling || (intel_plane &&
4492                 (!fb || !plane_state->visible))) {
4493                 if (*scaler_id >= 0) {
4494                         scaler_state->scaler_users &= ~(1 << idx);
4495                         scaler_state->scalers[*scaler_id].in_use = 0;
4496
4497                         DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4498                                 "crtc_state = %p scaler_users = 0x%x\n",
4499                                 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4500                                 intel_plane ? intel_plane->base.base.id :
4501                                 intel_crtc->base.base.id, crtc_state,
4502                                 scaler_state->scaler_users);
4503                         *scaler_id = -1;
4504                 }
4505                 return 0;
4506         }
4507
4508         /* range checks */
4509         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4510                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4511
4512                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4513                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4514                 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4515                         "size is out of scaler range\n",
4516                         intel_plane ? "PLANE" : "CRTC",
4517                         intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4518                         intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4519                 return -EINVAL;
4520         }
4521
4522         /* check colorkey */
4523         if (intel_plane && intel_plane->ckey.flags != I915_SET_COLORKEY_NONE) {
4524                 DRM_DEBUG_KMS("PLANE:%d scaling with color key not allowed",
4525                         intel_plane->base.base.id);
4526                 return -EINVAL;
4527         }
4528
4529         /* Check src format */
4530         if (intel_plane) {
4531                 switch (fb->pixel_format) {
4532                 case DRM_FORMAT_RGB565:
4533                 case DRM_FORMAT_XBGR8888:
4534                 case DRM_FORMAT_XRGB8888:
4535                 case DRM_FORMAT_ABGR8888:
4536                 case DRM_FORMAT_ARGB8888:
4537                 case DRM_FORMAT_XRGB2101010:
4538                 case DRM_FORMAT_ARGB2101010:
4539                 case DRM_FORMAT_XBGR2101010:
4540                 case DRM_FORMAT_ABGR2101010:
4541                 case DRM_FORMAT_YUYV:
4542                 case DRM_FORMAT_YVYU:
4543                 case DRM_FORMAT_UYVY:
4544                 case DRM_FORMAT_VYUY:
4545                         break;
4546                 default:
4547                         DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4548                                 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4549                         return -EINVAL;
4550                 }
4551         }
4552
4553         /* mark this plane as a scaler user in crtc_state */
4554         scaler_state->scaler_users |= (1 << idx);
4555         DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4556                 "crtc_state = %p scaler_users = 0x%x\n",
4557                 intel_plane ? "PLANE" : "CRTC",
4558                 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4559                 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4560         return 0;
4561 }
4562
4563 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4564 {
4565         struct drm_device *dev = crtc->base.dev;
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567         int pipe = crtc->pipe;
4568         struct intel_crtc_scaler_state *scaler_state =
4569                 &crtc->config->scaler_state;
4570
4571         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4572
4573         /* To update pfit, first update scaler state */
4574         skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4575         intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4576         skl_detach_scalers(crtc);
4577         if (!enable)
4578                 return;
4579
4580         if (crtc->config->pch_pfit.enabled) {
4581                 int id;
4582
4583                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4584                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4585                         return;
4586                 }
4587
4588                 id = scaler_state->scaler_id;
4589                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4590                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4591                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4592                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4593
4594                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4595         }
4596 }
4597
4598 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4599 {
4600         struct drm_device *dev = crtc->base.dev;
4601         struct drm_i915_private *dev_priv = dev->dev_private;
4602         int pipe = crtc->pipe;
4603
4604         if (crtc->config->pch_pfit.enabled) {
4605                 /* Force use of hard-coded filter coefficients
4606                  * as some pre-programmed values are broken,
4607                  * e.g. x201.
4608                  */
4609                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4610                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4611                                                  PF_PIPE_SEL_IVB(pipe));
4612                 else
4613                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4614                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4615                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4616         }
4617 }
4618
4619 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4620 {
4621         struct drm_device *dev = crtc->dev;
4622         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4623         struct drm_plane *plane;
4624         struct intel_plane *intel_plane;
4625
4626         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4627                 intel_plane = to_intel_plane(plane);
4628                 if (intel_plane->pipe == pipe)
4629                         intel_plane_restore(&intel_plane->base);
4630         }
4631 }
4632
4633 void hsw_enable_ips(struct intel_crtc *crtc)
4634 {
4635         struct drm_device *dev = crtc->base.dev;
4636         struct drm_i915_private *dev_priv = dev->dev_private;
4637
4638         if (!crtc->config->ips_enabled)
4639                 return;
4640
4641         /* We can only enable IPS after we enable a plane and wait for a vblank */
4642         intel_wait_for_vblank(dev, crtc->pipe);
4643
4644         assert_plane_enabled(dev_priv, crtc->plane);
4645         if (IS_BROADWELL(dev)) {
4646                 mutex_lock(&dev_priv->rps.hw_lock);
4647                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4648                 mutex_unlock(&dev_priv->rps.hw_lock);
4649                 /* Quoting Art Runyan: "its not safe to expect any particular
4650                  * value in IPS_CTL bit 31 after enabling IPS through the
4651                  * mailbox." Moreover, the mailbox may return a bogus state,
4652                  * so we need to just enable it and continue on.
4653                  */
4654         } else {
4655                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4656                 /* The bit only becomes 1 in the next vblank, so this wait here
4657                  * is essentially intel_wait_for_vblank. If we don't have this
4658                  * and don't wait for vblanks until the end of crtc_enable, then
4659                  * the HW state readout code will complain that the expected
4660                  * IPS_CTL value is not the one we read. */
4661                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4662                         DRM_ERROR("Timed out waiting for IPS enable\n");
4663         }
4664 }
4665
4666 void hsw_disable_ips(struct intel_crtc *crtc)
4667 {
4668         struct drm_device *dev = crtc->base.dev;
4669         struct drm_i915_private *dev_priv = dev->dev_private;
4670
4671         if (!crtc->config->ips_enabled)
4672                 return;
4673
4674         assert_plane_enabled(dev_priv, crtc->plane);
4675         if (IS_BROADWELL(dev)) {
4676                 mutex_lock(&dev_priv->rps.hw_lock);
4677                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4678                 mutex_unlock(&dev_priv->rps.hw_lock);
4679                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4680                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4681                         DRM_ERROR("Timed out waiting for IPS disable\n");
4682         } else {
4683                 I915_WRITE(IPS_CTL, 0);
4684                 POSTING_READ(IPS_CTL);
4685         }
4686
4687         /* We need to wait for a vblank before we can disable the plane. */
4688         intel_wait_for_vblank(dev, crtc->pipe);
4689 }
4690
4691 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4692 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4693 {
4694         struct drm_device *dev = crtc->dev;
4695         struct drm_i915_private *dev_priv = dev->dev_private;
4696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4697         enum pipe pipe = intel_crtc->pipe;
4698         int palreg = PALETTE(pipe);
4699         int i;
4700         bool reenable_ips = false;
4701
4702         /* The clocks have to be on to load the palette. */
4703         if (!crtc->state->enable || !intel_crtc->active)
4704                 return;
4705
4706         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4707                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4708                         assert_dsi_pll_enabled(dev_priv);
4709                 else
4710                         assert_pll_enabled(dev_priv, pipe);
4711         }
4712
4713         /* use legacy palette for Ironlake */
4714         if (!HAS_GMCH_DISPLAY(dev))
4715                 palreg = LGC_PALETTE(pipe);
4716
4717         /* Workaround : Do not read or write the pipe palette/gamma data while
4718          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4719          */
4720         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4721             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4722              GAMMA_MODE_MODE_SPLIT)) {
4723                 hsw_disable_ips(intel_crtc);
4724                 reenable_ips = true;
4725         }
4726
4727         for (i = 0; i < 256; i++) {
4728                 I915_WRITE(palreg + 4 * i,
4729                            (intel_crtc->lut_r[i] << 16) |
4730                            (intel_crtc->lut_g[i] << 8) |
4731                            intel_crtc->lut_b[i]);
4732         }
4733
4734         if (reenable_ips)
4735                 hsw_enable_ips(intel_crtc);
4736 }
4737
4738 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4739 {
4740         if (intel_crtc->overlay) {
4741                 struct drm_device *dev = intel_crtc->base.dev;
4742                 struct drm_i915_private *dev_priv = dev->dev_private;
4743
4744                 mutex_lock(&dev->struct_mutex);
4745                 dev_priv->mm.interruptible = false;
4746                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4747                 dev_priv->mm.interruptible = true;
4748                 mutex_unlock(&dev->struct_mutex);
4749         }
4750
4751         /* Let userspace switch the overlay on again. In most cases userspace
4752          * has to recompute where to put it anyway.
4753          */
4754 }
4755
4756 /**
4757  * intel_post_enable_primary - Perform operations after enabling primary plane
4758  * @crtc: the CRTC whose primary plane was just enabled
4759  *
4760  * Performs potentially sleeping operations that must be done after the primary
4761  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4762  * called due to an explicit primary plane update, or due to an implicit
4763  * re-enable that is caused when a sprite plane is updated to no longer
4764  * completely hide the primary plane.
4765  */
4766 static void
4767 intel_post_enable_primary(struct drm_crtc *crtc)
4768 {
4769         struct drm_device *dev = crtc->dev;
4770         struct drm_i915_private *dev_priv = dev->dev_private;
4771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4772         int pipe = intel_crtc->pipe;
4773
4774         /*
4775          * BDW signals flip done immediately if the plane
4776          * is disabled, even if the plane enable is already
4777          * armed to occur at the next vblank :(
4778          */
4779         if (IS_BROADWELL(dev))
4780                 intel_wait_for_vblank(dev, pipe);
4781
4782         /*
4783          * FIXME IPS should be fine as long as one plane is
4784          * enabled, but in practice it seems to have problems
4785          * when going from primary only to sprite only and vice
4786          * versa.
4787          */
4788         hsw_enable_ips(intel_crtc);
4789
4790         mutex_lock(&dev->struct_mutex);
4791         intel_fbc_update(dev);
4792         mutex_unlock(&dev->struct_mutex);
4793
4794         /*
4795          * Gen2 reports pipe underruns whenever all planes are disabled.
4796          * So don't enable underrun reporting before at least some planes
4797          * are enabled.
4798          * FIXME: Need to fix the logic to work when we turn off all planes
4799          * but leave the pipe running.
4800          */
4801         if (IS_GEN2(dev))
4802                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4803
4804         /* Underruns don't raise interrupts, so check manually. */
4805         if (HAS_GMCH_DISPLAY(dev))
4806                 i9xx_check_fifo_underruns(dev_priv);
4807 }
4808
4809 /**
4810  * intel_pre_disable_primary - Perform operations before disabling primary plane
4811  * @crtc: the CRTC whose primary plane is to be disabled
4812  *
4813  * Performs potentially sleeping operations that must be done before the
4814  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4815  * be called due to an explicit primary plane update, or due to an implicit
4816  * disable that is caused when a sprite plane completely hides the primary
4817  * plane.
4818  */
4819 static void
4820 intel_pre_disable_primary(struct drm_crtc *crtc)
4821 {
4822         struct drm_device *dev = crtc->dev;
4823         struct drm_i915_private *dev_priv = dev->dev_private;
4824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4825         int pipe = intel_crtc->pipe;
4826
4827         /*
4828          * Gen2 reports pipe underruns whenever all planes are disabled.
4829          * So diasble underrun reporting before all the planes get disabled.
4830          * FIXME: Need to fix the logic to work when we turn off all planes
4831          * but leave the pipe running.
4832          */
4833         if (IS_GEN2(dev))
4834                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4835
4836         /*
4837          * Vblank time updates from the shadow to live plane control register
4838          * are blocked if the memory self-refresh mode is active at that
4839          * moment. So to make sure the plane gets truly disabled, disable
4840          * first the self-refresh mode. The self-refresh enable bit in turn
4841          * will be checked/applied by the HW only at the next frame start
4842          * event which is after the vblank start event, so we need to have a
4843          * wait-for-vblank between disabling the plane and the pipe.
4844          */
4845         if (HAS_GMCH_DISPLAY(dev))
4846                 intel_set_memory_cxsr(dev_priv, false);
4847
4848         mutex_lock(&dev->struct_mutex);
4849         if (dev_priv->fbc.crtc == intel_crtc)
4850                 intel_fbc_disable(dev);
4851         mutex_unlock(&dev->struct_mutex);
4852
4853         /*
4854          * FIXME IPS should be fine as long as one plane is
4855          * enabled, but in practice it seems to have problems
4856          * when going from primary only to sprite only and vice
4857          * versa.
4858          */
4859         hsw_disable_ips(intel_crtc);
4860 }
4861
4862 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4863 {
4864         intel_enable_primary_hw_plane(crtc->primary, crtc);
4865         intel_enable_sprite_planes(crtc);
4866         intel_crtc_update_cursor(crtc, true);
4867
4868         intel_post_enable_primary(crtc);
4869 }
4870
4871 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4872 {
4873         struct drm_device *dev = crtc->dev;
4874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875         struct intel_plane *intel_plane;
4876         int pipe = intel_crtc->pipe;
4877
4878         intel_crtc_wait_for_pending_flips(crtc);
4879
4880         intel_pre_disable_primary(crtc);
4881
4882         intel_crtc_dpms_overlay_disable(intel_crtc);
4883         for_each_intel_plane(dev, intel_plane) {
4884                 if (intel_plane->pipe == pipe) {
4885                         struct drm_crtc *from = intel_plane->base.crtc;
4886
4887                         intel_plane->disable_plane(&intel_plane->base,
4888                                                    from ?: crtc, true);
4889                 }
4890         }
4891
4892         /*
4893          * FIXME: Once we grow proper nuclear flip support out of this we need
4894          * to compute the mask of flip planes precisely. For the time being
4895          * consider this a flip to a NULL plane.
4896          */
4897         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4898 }
4899
4900 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4901 {
4902         struct drm_device *dev = crtc->dev;
4903         struct drm_i915_private *dev_priv = dev->dev_private;
4904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4905         struct intel_encoder *encoder;
4906         int pipe = intel_crtc->pipe;
4907
4908         WARN_ON(!crtc->state->enable);
4909
4910         if (intel_crtc->active)
4911                 return;
4912
4913         if (intel_crtc->config->has_pch_encoder)
4914                 intel_prepare_shared_dpll(intel_crtc);
4915
4916         if (intel_crtc->config->has_dp_encoder)
4917                 intel_dp_set_m_n(intel_crtc, M1_N1);
4918
4919         intel_set_pipe_timings(intel_crtc);
4920
4921         if (intel_crtc->config->has_pch_encoder) {
4922                 intel_cpu_transcoder_set_m_n(intel_crtc,
4923                                      &intel_crtc->config->fdi_m_n, NULL);
4924         }
4925
4926         ironlake_set_pipeconf(crtc);
4927
4928         intel_crtc->active = true;
4929
4930         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4931         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4932
4933         for_each_encoder_on_crtc(dev, crtc, encoder)
4934                 if (encoder->pre_enable)
4935                         encoder->pre_enable(encoder);
4936
4937         if (intel_crtc->config->has_pch_encoder) {
4938                 /* Note: FDI PLL enabling _must_ be done before we enable the
4939                  * cpu pipes, hence this is separate from all the other fdi/pch
4940                  * enabling. */
4941                 ironlake_fdi_pll_enable(intel_crtc);
4942         } else {
4943                 assert_fdi_tx_disabled(dev_priv, pipe);
4944                 assert_fdi_rx_disabled(dev_priv, pipe);
4945         }
4946
4947         ironlake_pfit_enable(intel_crtc);
4948
4949         /*
4950          * On ILK+ LUT must be loaded before the pipe is running but with
4951          * clocks enabled
4952          */
4953         intel_crtc_load_lut(crtc);
4954
4955         intel_update_watermarks(crtc);
4956         intel_enable_pipe(intel_crtc);
4957
4958         if (intel_crtc->config->has_pch_encoder)
4959                 ironlake_pch_enable(crtc);
4960
4961         assert_vblank_disabled(crtc);
4962         drm_crtc_vblank_on(crtc);
4963
4964         for_each_encoder_on_crtc(dev, crtc, encoder)
4965                 encoder->enable(encoder);
4966
4967         if (HAS_PCH_CPT(dev))
4968                 cpt_verify_modeset(dev, intel_crtc->pipe);
4969 }
4970
4971 /* IPS only exists on ULT machines and is tied to pipe A. */
4972 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4973 {
4974         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4975 }
4976
4977 /*
4978  * This implements the workaround described in the "notes" section of the mode
4979  * set sequence documentation. When going from no pipes or single pipe to
4980  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4981  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4982  */
4983 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4984 {
4985         struct drm_device *dev = crtc->base.dev;
4986         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4987
4988         /* We want to get the other_active_crtc only if there's only 1 other
4989          * active crtc. */
4990         for_each_intel_crtc(dev, crtc_it) {
4991                 if (!crtc_it->active || crtc_it == crtc)
4992                         continue;
4993
4994                 if (other_active_crtc)
4995                         return;
4996
4997                 other_active_crtc = crtc_it;
4998         }
4999         if (!other_active_crtc)
5000                 return;
5001
5002         intel_wait_for_vblank(dev, other_active_crtc->pipe);
5003         intel_wait_for_vblank(dev, other_active_crtc->pipe);
5004 }
5005
5006 static void haswell_crtc_enable(struct drm_crtc *crtc)
5007 {
5008         struct drm_device *dev = crtc->dev;
5009         struct drm_i915_private *dev_priv = dev->dev_private;
5010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5011         struct intel_encoder *encoder;
5012         int pipe = intel_crtc->pipe;
5013
5014         WARN_ON(!crtc->state->enable);
5015
5016         if (intel_crtc->active)
5017                 return;
5018
5019         if (intel_crtc_to_shared_dpll(intel_crtc))
5020                 intel_enable_shared_dpll(intel_crtc);
5021
5022         if (intel_crtc->config->has_dp_encoder)
5023                 intel_dp_set_m_n(intel_crtc, M1_N1);
5024
5025         intel_set_pipe_timings(intel_crtc);
5026
5027         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5028                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5029                            intel_crtc->config->pixel_multiplier - 1);
5030         }
5031
5032         if (intel_crtc->config->has_pch_encoder) {
5033                 intel_cpu_transcoder_set_m_n(intel_crtc,
5034                                      &intel_crtc->config->fdi_m_n, NULL);
5035         }
5036
5037         haswell_set_pipeconf(crtc);
5038
5039         intel_set_pipe_csc(crtc);
5040
5041         intel_crtc->active = true;
5042
5043         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5044         for_each_encoder_on_crtc(dev, crtc, encoder)
5045                 if (encoder->pre_enable)
5046                         encoder->pre_enable(encoder);
5047
5048         if (intel_crtc->config->has_pch_encoder) {
5049                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5050                                                       true);
5051                 dev_priv->display.fdi_link_train(crtc);
5052         }
5053
5054         intel_ddi_enable_pipe_clock(intel_crtc);
5055
5056         if (INTEL_INFO(dev)->gen == 9)
5057                 skylake_pfit_update(intel_crtc, 1);
5058         else if (INTEL_INFO(dev)->gen < 9)
5059                 ironlake_pfit_enable(intel_crtc);
5060         else
5061                 MISSING_CASE(INTEL_INFO(dev)->gen);
5062
5063         /*
5064          * On ILK+ LUT must be loaded before the pipe is running but with
5065          * clocks enabled
5066          */
5067         intel_crtc_load_lut(crtc);
5068
5069         intel_ddi_set_pipe_settings(crtc);
5070         intel_ddi_enable_transcoder_func(crtc);
5071
5072         intel_update_watermarks(crtc);
5073         intel_enable_pipe(intel_crtc);
5074
5075         if (intel_crtc->config->has_pch_encoder)
5076                 lpt_pch_enable(crtc);
5077
5078         if (intel_crtc->config->dp_encoder_is_mst)
5079                 intel_ddi_set_vc_payload_alloc(crtc, true);
5080
5081         assert_vblank_disabled(crtc);
5082         drm_crtc_vblank_on(crtc);
5083
5084         for_each_encoder_on_crtc(dev, crtc, encoder) {
5085                 encoder->enable(encoder);
5086                 intel_opregion_notify_encoder(encoder, true);
5087         }
5088
5089         /* If we change the relative order between pipe/planes enabling, we need
5090          * to change the workaround. */
5091         haswell_mode_set_planes_workaround(intel_crtc);
5092 }
5093
5094 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5095 {
5096         struct drm_device *dev = crtc->base.dev;
5097         struct drm_i915_private *dev_priv = dev->dev_private;
5098         int pipe = crtc->pipe;
5099
5100         /* To avoid upsetting the power well on haswell only disable the pfit if
5101          * it's in use. The hw state code will make sure we get this right. */
5102         if (crtc->config->pch_pfit.enabled) {
5103                 I915_WRITE(PF_CTL(pipe), 0);
5104                 I915_WRITE(PF_WIN_POS(pipe), 0);
5105                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5106         }
5107 }
5108
5109 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5110 {
5111         struct drm_device *dev = crtc->dev;
5112         struct drm_i915_private *dev_priv = dev->dev_private;
5113         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5114         struct intel_encoder *encoder;
5115         int pipe = intel_crtc->pipe;
5116         u32 reg, temp;
5117
5118         if (!intel_crtc->active)
5119                 return;
5120
5121         for_each_encoder_on_crtc(dev, crtc, encoder)
5122                 encoder->disable(encoder);
5123
5124         drm_crtc_vblank_off(crtc);
5125         assert_vblank_disabled(crtc);
5126
5127         if (intel_crtc->config->has_pch_encoder)
5128                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5129
5130         intel_disable_pipe(intel_crtc);
5131
5132         ironlake_pfit_disable(intel_crtc);
5133
5134         for_each_encoder_on_crtc(dev, crtc, encoder)
5135                 if (encoder->post_disable)
5136                         encoder->post_disable(encoder);
5137
5138         if (intel_crtc->config->has_pch_encoder) {
5139                 ironlake_fdi_disable(crtc);
5140
5141                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5142
5143                 if (HAS_PCH_CPT(dev)) {
5144                         /* disable TRANS_DP_CTL */
5145                         reg = TRANS_DP_CTL(pipe);
5146                         temp = I915_READ(reg);
5147                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5148                                   TRANS_DP_PORT_SEL_MASK);
5149                         temp |= TRANS_DP_PORT_SEL_NONE;
5150                         I915_WRITE(reg, temp);
5151
5152                         /* disable DPLL_SEL */
5153                         temp = I915_READ(PCH_DPLL_SEL);
5154                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5155                         I915_WRITE(PCH_DPLL_SEL, temp);
5156                 }
5157
5158                 /* disable PCH DPLL */
5159                 intel_disable_shared_dpll(intel_crtc);
5160
5161                 ironlake_fdi_pll_disable(intel_crtc);
5162         }
5163
5164         intel_crtc->active = false;
5165         intel_update_watermarks(crtc);
5166
5167         mutex_lock(&dev->struct_mutex);
5168         intel_fbc_update(dev);
5169         mutex_unlock(&dev->struct_mutex);
5170 }
5171
5172 static void haswell_crtc_disable(struct drm_crtc *crtc)
5173 {
5174         struct drm_device *dev = crtc->dev;
5175         struct drm_i915_private *dev_priv = dev->dev_private;
5176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5177         struct intel_encoder *encoder;
5178         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5179
5180         if (!intel_crtc->active)
5181                 return;
5182
5183         for_each_encoder_on_crtc(dev, crtc, encoder) {
5184                 intel_opregion_notify_encoder(encoder, false);
5185                 encoder->disable(encoder);
5186         }
5187
5188         drm_crtc_vblank_off(crtc);
5189         assert_vblank_disabled(crtc);
5190
5191         if (intel_crtc->config->has_pch_encoder)
5192                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5193                                                       false);
5194         intel_disable_pipe(intel_crtc);
5195
5196         if (intel_crtc->config->dp_encoder_is_mst)
5197                 intel_ddi_set_vc_payload_alloc(crtc, false);
5198
5199         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5200
5201         if (INTEL_INFO(dev)->gen == 9)
5202                 skylake_pfit_update(intel_crtc, 0);
5203         else if (INTEL_INFO(dev)->gen < 9)
5204                 ironlake_pfit_disable(intel_crtc);
5205         else
5206                 MISSING_CASE(INTEL_INFO(dev)->gen);
5207
5208         intel_ddi_disable_pipe_clock(intel_crtc);
5209
5210         if (intel_crtc->config->has_pch_encoder) {
5211                 lpt_disable_pch_transcoder(dev_priv);
5212                 intel_ddi_fdi_disable(crtc);
5213         }
5214
5215         for_each_encoder_on_crtc(dev, crtc, encoder)
5216                 if (encoder->post_disable)
5217                         encoder->post_disable(encoder);
5218
5219         intel_crtc->active = false;
5220         intel_update_watermarks(crtc);
5221
5222         mutex_lock(&dev->struct_mutex);
5223         intel_fbc_update(dev);
5224         mutex_unlock(&dev->struct_mutex);
5225
5226         if (intel_crtc_to_shared_dpll(intel_crtc))
5227                 intel_disable_shared_dpll(intel_crtc);
5228 }
5229
5230 static void ironlake_crtc_off(struct drm_crtc *crtc)
5231 {
5232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5233         intel_put_shared_dpll(intel_crtc);
5234 }
5235
5236
5237 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5238 {
5239         struct drm_device *dev = crtc->base.dev;
5240         struct drm_i915_private *dev_priv = dev->dev_private;
5241         struct intel_crtc_state *pipe_config = crtc->config;
5242
5243         if (!pipe_config->gmch_pfit.control)
5244                 return;
5245
5246         /*
5247          * The panel fitter should only be adjusted whilst the pipe is disabled,
5248          * according to register description and PRM.
5249          */
5250         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5251         assert_pipe_disabled(dev_priv, crtc->pipe);
5252
5253         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5254         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5255
5256         /* Border color in case we don't scale up to the full screen. Black by
5257          * default, change to something else for debugging. */
5258         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5259 }
5260
5261 static enum intel_display_power_domain port_to_power_domain(enum port port)
5262 {
5263         switch (port) {
5264         case PORT_A:
5265                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5266         case PORT_B:
5267                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5268         case PORT_C:
5269                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5270         case PORT_D:
5271                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5272         default:
5273                 WARN_ON_ONCE(1);
5274                 return POWER_DOMAIN_PORT_OTHER;
5275         }
5276 }
5277
5278 #define for_each_power_domain(domain, mask)                             \
5279         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5280                 if ((1 << (domain)) & (mask))
5281
5282 enum intel_display_power_domain
5283 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5284 {
5285         struct drm_device *dev = intel_encoder->base.dev;
5286         struct intel_digital_port *intel_dig_port;
5287
5288         switch (intel_encoder->type) {
5289         case INTEL_OUTPUT_UNKNOWN:
5290                 /* Only DDI platforms should ever use this output type */
5291                 WARN_ON_ONCE(!HAS_DDI(dev));
5292         case INTEL_OUTPUT_DISPLAYPORT:
5293         case INTEL_OUTPUT_HDMI:
5294         case INTEL_OUTPUT_EDP:
5295                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5296                 return port_to_power_domain(intel_dig_port->port);
5297         case INTEL_OUTPUT_DP_MST:
5298                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5299                 return port_to_power_domain(intel_dig_port->port);
5300         case INTEL_OUTPUT_ANALOG:
5301                 return POWER_DOMAIN_PORT_CRT;
5302         case INTEL_OUTPUT_DSI:
5303                 return POWER_DOMAIN_PORT_DSI;
5304         default:
5305                 return POWER_DOMAIN_PORT_OTHER;
5306         }
5307 }
5308
5309 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5310 {
5311         struct drm_device *dev = crtc->dev;
5312         struct intel_encoder *intel_encoder;
5313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5314         enum pipe pipe = intel_crtc->pipe;
5315         unsigned long mask;
5316         enum transcoder transcoder;
5317
5318         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5319
5320         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5321         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5322         if (intel_crtc->config->pch_pfit.enabled ||
5323             intel_crtc->config->pch_pfit.force_thru)
5324                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5325
5326         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5327                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5328
5329         return mask;
5330 }
5331
5332 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5333 {
5334         struct drm_device *dev = state->dev;
5335         struct drm_i915_private *dev_priv = dev->dev_private;
5336         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5337         struct intel_crtc *crtc;
5338
5339         /*
5340          * First get all needed power domains, then put all unneeded, to avoid
5341          * any unnecessary toggling of the power wells.
5342          */
5343         for_each_intel_crtc(dev, crtc) {
5344                 enum intel_display_power_domain domain;
5345
5346                 if (!crtc->base.state->enable)
5347                         continue;
5348
5349                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5350
5351                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5352                         intel_display_power_get(dev_priv, domain);
5353         }
5354
5355         if (dev_priv->display.modeset_global_resources)
5356                 dev_priv->display.modeset_global_resources(state);
5357
5358         for_each_intel_crtc(dev, crtc) {
5359                 enum intel_display_power_domain domain;
5360
5361                 for_each_power_domain(domain, crtc->enabled_power_domains)
5362                         intel_display_power_put(dev_priv, domain);
5363
5364                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5365         }
5366
5367         intel_display_set_init_power(dev_priv, false);
5368 }
5369
5370 void broxton_set_cdclk(struct drm_device *dev, int frequency)
5371 {
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         uint32_t divider;
5374         uint32_t ratio;
5375         uint32_t current_freq;
5376         int ret;
5377
5378         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5379         switch (frequency) {
5380         case 144000:
5381                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5382                 ratio = BXT_DE_PLL_RATIO(60);
5383                 break;
5384         case 288000:
5385                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5386                 ratio = BXT_DE_PLL_RATIO(60);
5387                 break;
5388         case 384000:
5389                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5390                 ratio = BXT_DE_PLL_RATIO(60);
5391                 break;
5392         case 576000:
5393                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5394                 ratio = BXT_DE_PLL_RATIO(60);
5395                 break;
5396         case 624000:
5397                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5398                 ratio = BXT_DE_PLL_RATIO(65);
5399                 break;
5400         case 19200:
5401                 /*
5402                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5403                  * to suppress GCC warning.
5404                  */
5405                 ratio = 0;
5406                 divider = 0;
5407                 break;
5408         default:
5409                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5410
5411                 return;
5412         }
5413
5414         mutex_lock(&dev_priv->rps.hw_lock);
5415         /* Inform power controller of upcoming frequency change */
5416         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5417                                       0x80000000);
5418         mutex_unlock(&dev_priv->rps.hw_lock);
5419
5420         if (ret) {
5421                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5422                           ret, frequency);
5423                 return;
5424         }
5425
5426         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5427         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5428         current_freq = current_freq * 500 + 1000;
5429
5430         /*
5431          * DE PLL has to be disabled when
5432          * - setting to 19.2MHz (bypass, PLL isn't used)
5433          * - before setting to 624MHz (PLL needs toggling)
5434          * - before setting to any frequency from 624MHz (PLL needs toggling)
5435          */
5436         if (frequency == 19200 || frequency == 624000 ||
5437             current_freq == 624000) {
5438                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5439                 /* Timeout 200us */
5440                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5441                              1))
5442                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5443         }
5444
5445         if (frequency != 19200) {
5446                 uint32_t val;
5447
5448                 val = I915_READ(BXT_DE_PLL_CTL);
5449                 val &= ~BXT_DE_PLL_RATIO_MASK;
5450                 val |= ratio;
5451                 I915_WRITE(BXT_DE_PLL_CTL, val);
5452
5453                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5454                 /* Timeout 200us */
5455                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5456                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5457
5458                 val = I915_READ(CDCLK_CTL);
5459                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5460                 val |= divider;
5461                 /*
5462                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5463                  * enable otherwise.
5464                  */
5465                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5466                 if (frequency >= 500000)
5467                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5468
5469                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5470                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5471                 val |= (frequency - 1000) / 500;
5472                 I915_WRITE(CDCLK_CTL, val);
5473         }
5474
5475         mutex_lock(&dev_priv->rps.hw_lock);
5476         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5477                                       DIV_ROUND_UP(frequency, 25000));
5478         mutex_unlock(&dev_priv->rps.hw_lock);
5479
5480         if (ret) {
5481                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5482                           ret, frequency);
5483                 return;
5484         }
5485
5486         dev_priv->cdclk_freq = frequency;
5487 }
5488
5489 void broxton_init_cdclk(struct drm_device *dev)
5490 {
5491         struct drm_i915_private *dev_priv = dev->dev_private;
5492         uint32_t val;
5493
5494         /*
5495          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5496          * or else the reset will hang because there is no PCH to respond.
5497          * Move the handshake programming to initialization sequence.
5498          * Previously was left up to BIOS.
5499          */
5500         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5501         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5502         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5503
5504         /* Enable PG1 for cdclk */
5505         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5506
5507         /* check if cd clock is enabled */
5508         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5509                 DRM_DEBUG_KMS("Display already initialized\n");
5510                 return;
5511         }
5512
5513         /*
5514          * FIXME:
5515          * - The initial CDCLK needs to be read from VBT.
5516          *   Need to make this change after VBT has changes for BXT.
5517          * - check if setting the max (or any) cdclk freq is really necessary
5518          *   here, it belongs to modeset time
5519          */
5520         broxton_set_cdclk(dev, 624000);
5521
5522         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5523         POSTING_READ(DBUF_CTL);
5524
5525         udelay(10);
5526
5527         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5528                 DRM_ERROR("DBuf power enable timeout!\n");
5529 }
5530
5531 void broxton_uninit_cdclk(struct drm_device *dev)
5532 {
5533         struct drm_i915_private *dev_priv = dev->dev_private;
5534
5535         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5536         POSTING_READ(DBUF_CTL);
5537
5538         udelay(10);
5539
5540         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5541                 DRM_ERROR("DBuf power disable timeout!\n");
5542
5543         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5544         broxton_set_cdclk(dev, 19200);
5545
5546         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5547 }
5548
5549 /* returns HPLL frequency in kHz */
5550 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5551 {
5552         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5553
5554         /* Obtain SKU information */
5555         mutex_lock(&dev_priv->dpio_lock);
5556         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5557                 CCK_FUSE_HPLL_FREQ_MASK;
5558         mutex_unlock(&dev_priv->dpio_lock);
5559
5560         return vco_freq[hpll_freq] * 1000;
5561 }
5562
5563 static void vlv_update_cdclk(struct drm_device *dev)
5564 {
5565         struct drm_i915_private *dev_priv = dev->dev_private;
5566
5567         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5568         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5569                          dev_priv->cdclk_freq);
5570
5571         /*
5572          * Program the gmbus_freq based on the cdclk frequency.
5573          * BSpec erroneously claims we should aim for 4MHz, but
5574          * in fact 1MHz is the correct frequency.
5575          */
5576         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5577 }
5578
5579 /* Adjust CDclk dividers to allow high res or save power if possible */
5580 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5581 {
5582         struct drm_i915_private *dev_priv = dev->dev_private;
5583         u32 val, cmd;
5584
5585         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5586                                         != dev_priv->cdclk_freq);
5587
5588         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5589                 cmd = 2;
5590         else if (cdclk == 266667)
5591                 cmd = 1;
5592         else
5593                 cmd = 0;
5594
5595         mutex_lock(&dev_priv->rps.hw_lock);
5596         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5597         val &= ~DSPFREQGUAR_MASK;
5598         val |= (cmd << DSPFREQGUAR_SHIFT);
5599         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5600         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5601                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5602                      50)) {
5603                 DRM_ERROR("timed out waiting for CDclk change\n");
5604         }
5605         mutex_unlock(&dev_priv->rps.hw_lock);
5606
5607         if (cdclk == 400000) {
5608                 u32 divider;
5609
5610                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5611
5612                 mutex_lock(&dev_priv->dpio_lock);
5613                 /* adjust cdclk divider */
5614                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5615                 val &= ~DISPLAY_FREQUENCY_VALUES;
5616                 val |= divider;
5617                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5618
5619                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5620                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5621                              50))
5622                         DRM_ERROR("timed out waiting for CDclk change\n");
5623                 mutex_unlock(&dev_priv->dpio_lock);
5624         }
5625
5626         mutex_lock(&dev_priv->dpio_lock);
5627         /* adjust self-refresh exit latency value */
5628         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5629         val &= ~0x7f;
5630
5631         /*
5632          * For high bandwidth configs, we set a higher latency in the bunit
5633          * so that the core display fetch happens in time to avoid underruns.
5634          */
5635         if (cdclk == 400000)
5636                 val |= 4500 / 250; /* 4.5 usec */
5637         else
5638                 val |= 3000 / 250; /* 3.0 usec */
5639         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5640         mutex_unlock(&dev_priv->dpio_lock);
5641
5642         vlv_update_cdclk(dev);
5643 }
5644
5645 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5646 {
5647         struct drm_i915_private *dev_priv = dev->dev_private;
5648         u32 val, cmd;
5649
5650         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5651                                                 != dev_priv->cdclk_freq);
5652
5653         switch (cdclk) {
5654         case 333333:
5655         case 320000:
5656         case 266667:
5657         case 200000:
5658                 break;
5659         default:
5660                 MISSING_CASE(cdclk);
5661                 return;
5662         }
5663
5664         /*
5665          * Specs are full of misinformation, but testing on actual
5666          * hardware has shown that we just need to write the desired
5667          * CCK divider into the Punit register.
5668          */
5669         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5670
5671         mutex_lock(&dev_priv->rps.hw_lock);
5672         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5673         val &= ~DSPFREQGUAR_MASK_CHV;
5674         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5675         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5676         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5677                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5678                      50)) {
5679                 DRM_ERROR("timed out waiting for CDclk change\n");
5680         }
5681         mutex_unlock(&dev_priv->rps.hw_lock);
5682
5683         vlv_update_cdclk(dev);
5684 }
5685
5686 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5687                                  int max_pixclk)
5688 {
5689         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5690         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5691
5692         /*
5693          * Really only a few cases to deal with, as only 4 CDclks are supported:
5694          *   200MHz
5695          *   267MHz
5696          *   320/333MHz (depends on HPLL freq)
5697          *   400MHz (VLV only)
5698          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5699          * of the lower bin and adjust if needed.
5700          *
5701          * We seem to get an unstable or solid color picture at 200MHz.
5702          * Not sure what's wrong. For now use 200MHz only when all pipes
5703          * are off.
5704          */
5705         if (!IS_CHERRYVIEW(dev_priv) &&
5706             max_pixclk > freq_320*limit/100)
5707                 return 400000;
5708         else if (max_pixclk > 266667*limit/100)
5709                 return freq_320;
5710         else if (max_pixclk > 0)
5711                 return 266667;
5712         else
5713                 return 200000;
5714 }
5715
5716 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5717                               int max_pixclk)
5718 {
5719         /*
5720          * FIXME:
5721          * - remove the guardband, it's not needed on BXT
5722          * - set 19.2MHz bypass frequency if there are no active pipes
5723          */
5724         if (max_pixclk > 576000*9/10)
5725                 return 624000;
5726         else if (max_pixclk > 384000*9/10)
5727                 return 576000;
5728         else if (max_pixclk > 288000*9/10)
5729                 return 384000;
5730         else if (max_pixclk > 144000*9/10)
5731                 return 288000;
5732         else
5733                 return 144000;
5734 }
5735
5736 /* Compute the max pixel clock for new configuration. Uses atomic state if
5737  * that's non-NULL, look at current state otherwise. */
5738 static int intel_mode_max_pixclk(struct drm_device *dev,
5739                                  struct drm_atomic_state *state)
5740 {
5741         struct intel_crtc *intel_crtc;
5742         struct intel_crtc_state *crtc_state;
5743         int max_pixclk = 0;
5744
5745         for_each_intel_crtc(dev, intel_crtc) {
5746                 if (state)
5747                         crtc_state =
5748                                 intel_atomic_get_crtc_state(state, intel_crtc);
5749                 else
5750                         crtc_state = intel_crtc->config;
5751                 if (IS_ERR(crtc_state))
5752                         return PTR_ERR(crtc_state);
5753
5754                 if (!crtc_state->base.enable)
5755                         continue;
5756
5757                 max_pixclk = max(max_pixclk,
5758                                  crtc_state->base.adjusted_mode.crtc_clock);
5759         }
5760
5761         return max_pixclk;
5762 }
5763
5764 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5765 {
5766         struct drm_i915_private *dev_priv = to_i915(state->dev);
5767         struct drm_crtc *crtc;
5768         struct drm_crtc_state *crtc_state;
5769         int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5770         int cdclk, i;
5771
5772         if (max_pixclk < 0)
5773                 return max_pixclk;
5774
5775         if (IS_VALLEYVIEW(dev_priv))
5776                 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5777         else
5778                 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5779
5780         if (cdclk == dev_priv->cdclk_freq)
5781                 return 0;
5782
5783         /* add all active pipes to the state */
5784         for_each_crtc(state->dev, crtc) {
5785                 if (!crtc->state->enable)
5786                         continue;
5787
5788                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5789                 if (IS_ERR(crtc_state))
5790                         return PTR_ERR(crtc_state);
5791         }
5792
5793         /* disable/enable all currently active pipes while we change cdclk */
5794         for_each_crtc_in_state(state, crtc, crtc_state, i)
5795                 if (crtc_state->enable)
5796                         crtc_state->mode_changed = true;
5797
5798         return 0;
5799 }
5800
5801 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5802 {
5803         unsigned int credits, default_credits;
5804
5805         if (IS_CHERRYVIEW(dev_priv))
5806                 default_credits = PFI_CREDIT(12);
5807         else
5808                 default_credits = PFI_CREDIT(8);
5809
5810         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5811                 /* CHV suggested value is 31 or 63 */
5812                 if (IS_CHERRYVIEW(dev_priv))
5813                         credits = PFI_CREDIT_31;
5814                 else
5815                         credits = PFI_CREDIT(15);
5816         } else {
5817                 credits = default_credits;
5818         }
5819
5820         /*
5821          * WA - write default credits before re-programming
5822          * FIXME: should we also set the resend bit here?
5823          */
5824         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5825                    default_credits);
5826
5827         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5828                    credits | PFI_CREDIT_RESEND);
5829
5830         /*
5831          * FIXME is this guaranteed to clear
5832          * immediately or should we poll for it?
5833          */
5834         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5835 }
5836
5837 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
5838 {
5839         struct drm_device *dev = old_state->dev;
5840         struct drm_i915_private *dev_priv = dev->dev_private;
5841         int max_pixclk = intel_mode_max_pixclk(dev, NULL);
5842         int req_cdclk;
5843
5844         /* The path in intel_mode_max_pixclk() with a NULL atomic state should
5845          * never fail. */
5846         if (WARN_ON(max_pixclk < 0))
5847                 return;
5848
5849         req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5850
5851         if (req_cdclk != dev_priv->cdclk_freq) {
5852                 /*
5853                  * FIXME: We can end up here with all power domains off, yet
5854                  * with a CDCLK frequency other than the minimum. To account
5855                  * for this take the PIPE-A power domain, which covers the HW
5856                  * blocks needed for the following programming. This can be
5857                  * removed once it's guaranteed that we get here either with
5858                  * the minimum CDCLK set, or the required power domains
5859                  * enabled.
5860                  */
5861                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5862
5863                 if (IS_CHERRYVIEW(dev))
5864                         cherryview_set_cdclk(dev, req_cdclk);
5865                 else
5866                         valleyview_set_cdclk(dev, req_cdclk);
5867
5868                 vlv_program_pfi_credits(dev_priv);
5869
5870                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5871         }
5872 }
5873
5874 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5875 {
5876         struct drm_device *dev = crtc->dev;
5877         struct drm_i915_private *dev_priv = to_i915(dev);
5878         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5879         struct intel_encoder *encoder;
5880         int pipe = intel_crtc->pipe;
5881         bool is_dsi;
5882
5883         WARN_ON(!crtc->state->enable);
5884
5885         if (intel_crtc->active)
5886                 return;
5887
5888         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5889
5890         if (!is_dsi) {
5891                 if (IS_CHERRYVIEW(dev))
5892                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5893                 else
5894                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5895         }
5896
5897         if (intel_crtc->config->has_dp_encoder)
5898                 intel_dp_set_m_n(intel_crtc, M1_N1);
5899
5900         intel_set_pipe_timings(intel_crtc);
5901
5902         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5903                 struct drm_i915_private *dev_priv = dev->dev_private;
5904
5905                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5906                 I915_WRITE(CHV_CANVAS(pipe), 0);
5907         }
5908
5909         i9xx_set_pipeconf(intel_crtc);
5910
5911         intel_crtc->active = true;
5912
5913         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5914
5915         for_each_encoder_on_crtc(dev, crtc, encoder)
5916                 if (encoder->pre_pll_enable)
5917                         encoder->pre_pll_enable(encoder);
5918
5919         if (!is_dsi) {
5920                 if (IS_CHERRYVIEW(dev))
5921                         chv_enable_pll(intel_crtc, intel_crtc->config);
5922                 else
5923                         vlv_enable_pll(intel_crtc, intel_crtc->config);
5924         }
5925
5926         for_each_encoder_on_crtc(dev, crtc, encoder)
5927                 if (encoder->pre_enable)
5928                         encoder->pre_enable(encoder);
5929
5930         i9xx_pfit_enable(intel_crtc);
5931
5932         intel_crtc_load_lut(crtc);
5933
5934         intel_update_watermarks(crtc);
5935         intel_enable_pipe(intel_crtc);
5936
5937         assert_vblank_disabled(crtc);
5938         drm_crtc_vblank_on(crtc);
5939
5940         for_each_encoder_on_crtc(dev, crtc, encoder)
5941                 encoder->enable(encoder);
5942 }
5943
5944 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5945 {
5946         struct drm_device *dev = crtc->base.dev;
5947         struct drm_i915_private *dev_priv = dev->dev_private;
5948
5949         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5950         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5951 }
5952
5953 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5954 {
5955         struct drm_device *dev = crtc->dev;
5956         struct drm_i915_private *dev_priv = to_i915(dev);
5957         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5958         struct intel_encoder *encoder;
5959         int pipe = intel_crtc->pipe;
5960
5961         WARN_ON(!crtc->state->enable);
5962
5963         if (intel_crtc->active)
5964                 return;
5965
5966         i9xx_set_pll_dividers(intel_crtc);
5967
5968         if (intel_crtc->config->has_dp_encoder)
5969                 intel_dp_set_m_n(intel_crtc, M1_N1);
5970
5971         intel_set_pipe_timings(intel_crtc);
5972
5973         i9xx_set_pipeconf(intel_crtc);
5974
5975         intel_crtc->active = true;
5976
5977         if (!IS_GEN2(dev))
5978                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5979
5980         for_each_encoder_on_crtc(dev, crtc, encoder)
5981                 if (encoder->pre_enable)
5982                         encoder->pre_enable(encoder);
5983
5984         i9xx_enable_pll(intel_crtc);
5985
5986         i9xx_pfit_enable(intel_crtc);
5987
5988         intel_crtc_load_lut(crtc);
5989
5990         intel_update_watermarks(crtc);
5991         intel_enable_pipe(intel_crtc);
5992
5993         assert_vblank_disabled(crtc);
5994         drm_crtc_vblank_on(crtc);
5995
5996         for_each_encoder_on_crtc(dev, crtc, encoder)
5997                 encoder->enable(encoder);
5998 }
5999
6000 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6001 {
6002         struct drm_device *dev = crtc->base.dev;
6003         struct drm_i915_private *dev_priv = dev->dev_private;
6004
6005         if (!crtc->config->gmch_pfit.control)
6006                 return;
6007
6008         assert_pipe_disabled(dev_priv, crtc->pipe);
6009
6010         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6011                          I915_READ(PFIT_CONTROL));
6012         I915_WRITE(PFIT_CONTROL, 0);
6013 }
6014
6015 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6016 {
6017         struct drm_device *dev = crtc->dev;
6018         struct drm_i915_private *dev_priv = dev->dev_private;
6019         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6020         struct intel_encoder *encoder;
6021         int pipe = intel_crtc->pipe;
6022
6023         if (!intel_crtc->active)
6024                 return;
6025
6026         /*
6027          * On gen2 planes are double buffered but the pipe isn't, so we must
6028          * wait for planes to fully turn off before disabling the pipe.
6029          * We also need to wait on all gmch platforms because of the
6030          * self-refresh mode constraint explained above.
6031          */
6032         intel_wait_for_vblank(dev, pipe);
6033
6034         for_each_encoder_on_crtc(dev, crtc, encoder)
6035                 encoder->disable(encoder);
6036
6037         drm_crtc_vblank_off(crtc);
6038         assert_vblank_disabled(crtc);
6039
6040         intel_disable_pipe(intel_crtc);
6041
6042         i9xx_pfit_disable(intel_crtc);
6043
6044         for_each_encoder_on_crtc(dev, crtc, encoder)
6045                 if (encoder->post_disable)
6046                         encoder->post_disable(encoder);
6047
6048         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6049                 if (IS_CHERRYVIEW(dev))
6050                         chv_disable_pll(dev_priv, pipe);
6051                 else if (IS_VALLEYVIEW(dev))
6052                         vlv_disable_pll(dev_priv, pipe);
6053                 else
6054                         i9xx_disable_pll(intel_crtc);
6055         }
6056
6057         if (!IS_GEN2(dev))
6058                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6059
6060         intel_crtc->active = false;
6061         intel_update_watermarks(crtc);
6062
6063         mutex_lock(&dev->struct_mutex);
6064         intel_fbc_update(dev);
6065         mutex_unlock(&dev->struct_mutex);
6066 }
6067
6068 static void i9xx_crtc_off(struct drm_crtc *crtc)
6069 {
6070 }
6071
6072 /* Master function to enable/disable CRTC and corresponding power wells */
6073 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6074 {
6075         struct drm_device *dev = crtc->dev;
6076         struct drm_i915_private *dev_priv = dev->dev_private;
6077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6078         enum intel_display_power_domain domain;
6079         unsigned long domains;
6080
6081         if (enable) {
6082                 if (!intel_crtc->active) {
6083                         domains = get_crtc_power_domains(crtc);
6084                         for_each_power_domain(domain, domains)
6085                                 intel_display_power_get(dev_priv, domain);
6086                         intel_crtc->enabled_power_domains = domains;
6087
6088                         dev_priv->display.crtc_enable(crtc);
6089                         intel_crtc_enable_planes(crtc);
6090                 }
6091         } else {
6092                 if (intel_crtc->active) {
6093                         intel_crtc_disable_planes(crtc);
6094                         dev_priv->display.crtc_disable(crtc);
6095
6096                         domains = intel_crtc->enabled_power_domains;
6097                         for_each_power_domain(domain, domains)
6098                                 intel_display_power_put(dev_priv, domain);
6099                         intel_crtc->enabled_power_domains = 0;
6100                 }
6101         }
6102 }
6103
6104 /**
6105  * Sets the power management mode of the pipe and plane.
6106  */
6107 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6108 {
6109         struct drm_device *dev = crtc->dev;
6110         struct intel_encoder *intel_encoder;
6111         bool enable = false;
6112
6113         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6114                 enable |= intel_encoder->connectors_active;
6115
6116         intel_crtc_control(crtc, enable);
6117
6118         crtc->state->active = enable;
6119 }
6120
6121 static void intel_crtc_disable(struct drm_crtc *crtc)
6122 {
6123         struct drm_device *dev = crtc->dev;
6124         struct drm_connector *connector;
6125         struct drm_i915_private *dev_priv = dev->dev_private;
6126
6127         /* crtc should still be enabled when we disable it. */
6128         WARN_ON(!crtc->state->enable);
6129
6130         intel_crtc_disable_planes(crtc);
6131         dev_priv->display.crtc_disable(crtc);
6132         dev_priv->display.off(crtc);
6133
6134         drm_plane_helper_disable(crtc->primary);
6135
6136         /* Update computed state. */
6137         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6138                 if (!connector->encoder || !connector->encoder->crtc)
6139                         continue;
6140
6141                 if (connector->encoder->crtc != crtc)
6142                         continue;
6143
6144                 connector->dpms = DRM_MODE_DPMS_OFF;
6145                 to_intel_encoder(connector->encoder)->connectors_active = false;
6146         }
6147 }
6148
6149 void intel_encoder_destroy(struct drm_encoder *encoder)
6150 {
6151         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6152
6153         drm_encoder_cleanup(encoder);
6154         kfree(intel_encoder);
6155 }
6156
6157 /* Simple dpms helper for encoders with just one connector, no cloning and only
6158  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6159  * state of the entire output pipe. */
6160 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6161 {
6162         if (mode == DRM_MODE_DPMS_ON) {
6163                 encoder->connectors_active = true;
6164
6165                 intel_crtc_update_dpms(encoder->base.crtc);
6166         } else {
6167                 encoder->connectors_active = false;
6168
6169                 intel_crtc_update_dpms(encoder->base.crtc);
6170         }
6171 }
6172
6173 /* Cross check the actual hw state with our own modeset state tracking (and it's
6174  * internal consistency). */
6175 static void intel_connector_check_state(struct intel_connector *connector)
6176 {
6177         if (connector->get_hw_state(connector)) {
6178                 struct intel_encoder *encoder = connector->encoder;
6179                 struct drm_crtc *crtc;
6180                 bool encoder_enabled;
6181                 enum pipe pipe;
6182
6183                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6184                               connector->base.base.id,
6185                               connector->base.name);
6186
6187                 /* there is no real hw state for MST connectors */
6188                 if (connector->mst_port)
6189                         return;
6190
6191                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6192                      "wrong connector dpms state\n");
6193                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6194                      "active connector not linked to encoder\n");
6195
6196                 if (encoder) {
6197                         I915_STATE_WARN(!encoder->connectors_active,
6198                              "encoder->connectors_active not set\n");
6199
6200                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6201                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6202                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6203                                 return;
6204
6205                         crtc = encoder->base.crtc;
6206
6207                         I915_STATE_WARN(!crtc->state->enable,
6208                                         "crtc not enabled\n");
6209                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6210                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6211                              "encoder active on the wrong pipe\n");
6212                 }
6213         }
6214 }
6215
6216 int intel_connector_init(struct intel_connector *connector)
6217 {
6218         struct drm_connector_state *connector_state;
6219
6220         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6221         if (!connector_state)
6222                 return -ENOMEM;
6223
6224         connector->base.state = connector_state;
6225         return 0;
6226 }
6227
6228 struct intel_connector *intel_connector_alloc(void)
6229 {
6230         struct intel_connector *connector;
6231
6232         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6233         if (!connector)
6234                 return NULL;
6235
6236         if (intel_connector_init(connector) < 0) {
6237                 kfree(connector);
6238                 return NULL;
6239         }
6240
6241         return connector;
6242 }
6243
6244 /* Even simpler default implementation, if there's really no special case to
6245  * consider. */
6246 void intel_connector_dpms(struct drm_connector *connector, int mode)
6247 {
6248         /* All the simple cases only support two dpms states. */
6249         if (mode != DRM_MODE_DPMS_ON)
6250                 mode = DRM_MODE_DPMS_OFF;
6251
6252         if (mode == connector->dpms)
6253                 return;
6254
6255         connector->dpms = mode;
6256
6257         /* Only need to change hw state when actually enabled */
6258         if (connector->encoder)
6259                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6260
6261         intel_modeset_check_state(connector->dev);
6262 }
6263
6264 /* Simple connector->get_hw_state implementation for encoders that support only
6265  * one connector and no cloning and hence the encoder state determines the state
6266  * of the connector. */
6267 bool intel_connector_get_hw_state(struct intel_connector *connector)
6268 {
6269         enum pipe pipe = 0;
6270         struct intel_encoder *encoder = connector->encoder;
6271
6272         return encoder->get_hw_state(encoder, &pipe);
6273 }
6274
6275 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6276 {
6277         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6278                 return crtc_state->fdi_lanes;
6279
6280         return 0;
6281 }
6282
6283 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6284                                      struct intel_crtc_state *pipe_config)
6285 {
6286         struct drm_atomic_state *state = pipe_config->base.state;
6287         struct intel_crtc *other_crtc;
6288         struct intel_crtc_state *other_crtc_state;
6289
6290         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6291                       pipe_name(pipe), pipe_config->fdi_lanes);
6292         if (pipe_config->fdi_lanes > 4) {
6293                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6294                               pipe_name(pipe), pipe_config->fdi_lanes);
6295                 return -EINVAL;
6296         }
6297
6298         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6299                 if (pipe_config->fdi_lanes > 2) {
6300                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6301                                       pipe_config->fdi_lanes);
6302                         return -EINVAL;
6303                 } else {
6304                         return 0;
6305                 }
6306         }
6307
6308         if (INTEL_INFO(dev)->num_pipes == 2)
6309                 return 0;
6310
6311         /* Ivybridge 3 pipe is really complicated */
6312         switch (pipe) {
6313         case PIPE_A:
6314                 return 0;
6315         case PIPE_B:
6316                 if (pipe_config->fdi_lanes <= 2)
6317                         return 0;
6318
6319                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6320                 other_crtc_state =
6321                         intel_atomic_get_crtc_state(state, other_crtc);
6322                 if (IS_ERR(other_crtc_state))
6323                         return PTR_ERR(other_crtc_state);
6324
6325                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6326                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6327                                       pipe_name(pipe), pipe_config->fdi_lanes);
6328                         return -EINVAL;
6329                 }
6330                 return 0;
6331         case PIPE_C:
6332                 if (pipe_config->fdi_lanes > 2) {
6333                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6334                                       pipe_name(pipe), pipe_config->fdi_lanes);
6335                         return -EINVAL;
6336                 }
6337
6338                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6339                 other_crtc_state =
6340                         intel_atomic_get_crtc_state(state, other_crtc);
6341                 if (IS_ERR(other_crtc_state))
6342                         return PTR_ERR(other_crtc_state);
6343
6344                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6345                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6346                         return -EINVAL;
6347                 }
6348                 return 0;
6349         default:
6350                 BUG();
6351         }
6352 }
6353
6354 #define RETRY 1
6355 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6356                                        struct intel_crtc_state *pipe_config)
6357 {
6358         struct drm_device *dev = intel_crtc->base.dev;
6359         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6360         int lane, link_bw, fdi_dotclock, ret;
6361         bool needs_recompute = false;
6362
6363 retry:
6364         /* FDI is a binary signal running at ~2.7GHz, encoding
6365          * each output octet as 10 bits. The actual frequency
6366          * is stored as a divider into a 100MHz clock, and the
6367          * mode pixel clock is stored in units of 1KHz.
6368          * Hence the bw of each lane in terms of the mode signal
6369          * is:
6370          */
6371         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6372
6373         fdi_dotclock = adjusted_mode->crtc_clock;
6374
6375         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6376                                            pipe_config->pipe_bpp);
6377
6378         pipe_config->fdi_lanes = lane;
6379
6380         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6381                                link_bw, &pipe_config->fdi_m_n);
6382
6383         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6384                                        intel_crtc->pipe, pipe_config);
6385         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6386                 pipe_config->pipe_bpp -= 2*3;
6387                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6388                               pipe_config->pipe_bpp);
6389                 needs_recompute = true;
6390                 pipe_config->bw_constrained = true;
6391
6392                 goto retry;
6393         }
6394
6395         if (needs_recompute)
6396                 return RETRY;
6397
6398         return ret;
6399 }
6400
6401 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6402                                    struct intel_crtc_state *pipe_config)
6403 {
6404         pipe_config->ips_enabled = i915.enable_ips &&
6405                                    hsw_crtc_supports_ips(crtc) &&
6406                                    pipe_config->pipe_bpp <= 24;
6407 }
6408
6409 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6410                                      struct intel_crtc_state *pipe_config)
6411 {
6412         struct drm_device *dev = crtc->base.dev;
6413         struct drm_i915_private *dev_priv = dev->dev_private;
6414         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6415         int ret;
6416
6417         /* FIXME should check pixel clock limits on all platforms */
6418         if (INTEL_INFO(dev)->gen < 4) {
6419                 int clock_limit =
6420                         dev_priv->display.get_display_clock_speed(dev);
6421
6422                 /*
6423                  * Enable pixel doubling when the dot clock
6424                  * is > 90% of the (display) core speed.
6425                  *
6426                  * GDG double wide on either pipe,
6427                  * otherwise pipe A only.
6428                  */
6429                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6430                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6431                         clock_limit *= 2;
6432                         pipe_config->double_wide = true;
6433                 }
6434
6435                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6436                         return -EINVAL;
6437         }
6438
6439         /*
6440          * Pipe horizontal size must be even in:
6441          * - DVO ganged mode
6442          * - LVDS dual channel mode
6443          * - Double wide pipe
6444          */
6445         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6446              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6447                 pipe_config->pipe_src_w &= ~1;
6448
6449         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6450          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6451          */
6452         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6453                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6454                 return -EINVAL;
6455
6456         if (HAS_IPS(dev))
6457                 hsw_compute_ips_config(crtc, pipe_config);
6458
6459         if (pipe_config->has_pch_encoder)
6460                 return ironlake_fdi_compute_config(crtc, pipe_config);
6461
6462         /* FIXME: remove below call once atomic mode set is place and all crtc
6463          * related checks called from atomic_crtc_check function */
6464         ret = 0;
6465         DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6466                 crtc, pipe_config->base.state);
6467         ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6468
6469         return ret;
6470 }
6471
6472 static int skylake_get_display_clock_speed(struct drm_device *dev)
6473 {
6474         struct drm_i915_private *dev_priv = to_i915(dev);
6475         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6476         uint32_t cdctl = I915_READ(CDCLK_CTL);
6477         uint32_t linkrate;
6478
6479         if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6480                 WARN(1, "LCPLL1 not enabled\n");
6481                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6482         }
6483
6484         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6485                 return 540000;
6486
6487         linkrate = (I915_READ(DPLL_CTRL1) &
6488                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6489
6490         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6491             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6492                 /* vco 8640 */
6493                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6494                 case CDCLK_FREQ_450_432:
6495                         return 432000;
6496                 case CDCLK_FREQ_337_308:
6497                         return 308570;
6498                 case CDCLK_FREQ_675_617:
6499                         return 617140;
6500                 default:
6501                         WARN(1, "Unknown cd freq selection\n");
6502                 }
6503         } else {
6504                 /* vco 8100 */
6505                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6506                 case CDCLK_FREQ_450_432:
6507                         return 450000;
6508                 case CDCLK_FREQ_337_308:
6509                         return 337500;
6510                 case CDCLK_FREQ_675_617:
6511                         return 675000;
6512                 default:
6513                         WARN(1, "Unknown cd freq selection\n");
6514                 }
6515         }
6516
6517         /* error case, do as if DPLL0 isn't enabled */
6518         return 24000;
6519 }
6520
6521 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6522 {
6523         struct drm_i915_private *dev_priv = dev->dev_private;
6524         uint32_t lcpll = I915_READ(LCPLL_CTL);
6525         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6526
6527         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6528                 return 800000;
6529         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6530                 return 450000;
6531         else if (freq == LCPLL_CLK_FREQ_450)
6532                 return 450000;
6533         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6534                 return 540000;
6535         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6536                 return 337500;
6537         else
6538                 return 675000;
6539 }
6540
6541 static int haswell_get_display_clock_speed(struct drm_device *dev)
6542 {
6543         struct drm_i915_private *dev_priv = dev->dev_private;
6544         uint32_t lcpll = I915_READ(LCPLL_CTL);
6545         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6546
6547         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6548                 return 800000;
6549         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6550                 return 450000;
6551         else if (freq == LCPLL_CLK_FREQ_450)
6552                 return 450000;
6553         else if (IS_HSW_ULT(dev))
6554                 return 337500;
6555         else
6556                 return 540000;
6557 }
6558
6559 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6560 {
6561         struct drm_i915_private *dev_priv = dev->dev_private;
6562         u32 val;
6563         int divider;
6564
6565         if (dev_priv->hpll_freq == 0)
6566                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6567
6568         mutex_lock(&dev_priv->dpio_lock);
6569         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6570         mutex_unlock(&dev_priv->dpio_lock);
6571
6572         divider = val & DISPLAY_FREQUENCY_VALUES;
6573
6574         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6575              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6576              "cdclk change in progress\n");
6577
6578         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6579 }
6580
6581 static int ilk_get_display_clock_speed(struct drm_device *dev)
6582 {
6583         return 450000;
6584 }
6585
6586 static int i945_get_display_clock_speed(struct drm_device *dev)
6587 {
6588         return 400000;
6589 }
6590
6591 static int i915_get_display_clock_speed(struct drm_device *dev)
6592 {
6593         return 333333;
6594 }
6595
6596 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6597 {
6598         return 200000;
6599 }
6600
6601 static int pnv_get_display_clock_speed(struct drm_device *dev)
6602 {
6603         u16 gcfgc = 0;
6604
6605         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6606
6607         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6608         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6609                 return 266667;
6610         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6611                 return 333333;
6612         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6613                 return 444444;
6614         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6615                 return 200000;
6616         default:
6617                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6618         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6619                 return 133333;
6620         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6621                 return 166667;
6622         }
6623 }
6624
6625 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6626 {
6627         u16 gcfgc = 0;
6628
6629         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6630
6631         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6632                 return 133333;
6633         else {
6634                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6635                 case GC_DISPLAY_CLOCK_333_MHZ:
6636                         return 333333;
6637                 default:
6638                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6639                         return 190000;
6640                 }
6641         }
6642 }
6643
6644 static int i865_get_display_clock_speed(struct drm_device *dev)
6645 {
6646         return 266667;
6647 }
6648
6649 static int i855_get_display_clock_speed(struct drm_device *dev)
6650 {
6651         u16 hpllcc = 0;
6652         /* Assume that the hardware is in the high speed state.  This
6653          * should be the default.
6654          */
6655         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6656         case GC_CLOCK_133_200:
6657         case GC_CLOCK_100_200:
6658                 return 200000;
6659         case GC_CLOCK_166_250:
6660                 return 250000;
6661         case GC_CLOCK_100_133:
6662                 return 133333;
6663         }
6664
6665         /* Shouldn't happen */
6666         return 0;
6667 }
6668
6669 static int i830_get_display_clock_speed(struct drm_device *dev)
6670 {
6671         return 133333;
6672 }
6673
6674 static void
6675 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6676 {
6677         while (*num > DATA_LINK_M_N_MASK ||
6678                *den > DATA_LINK_M_N_MASK) {
6679                 *num >>= 1;
6680                 *den >>= 1;
6681         }
6682 }
6683
6684 static void compute_m_n(unsigned int m, unsigned int n,
6685                         uint32_t *ret_m, uint32_t *ret_n)
6686 {
6687         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6688         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6689         intel_reduce_m_n_ratio(ret_m, ret_n);
6690 }
6691
6692 void
6693 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6694                        int pixel_clock, int link_clock,
6695                        struct intel_link_m_n *m_n)
6696 {
6697         m_n->tu = 64;
6698
6699         compute_m_n(bits_per_pixel * pixel_clock,
6700                     link_clock * nlanes * 8,
6701                     &m_n->gmch_m, &m_n->gmch_n);
6702
6703         compute_m_n(pixel_clock, link_clock,
6704                     &m_n->link_m, &m_n->link_n);
6705 }
6706
6707 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6708 {
6709         if (i915.panel_use_ssc >= 0)
6710                 return i915.panel_use_ssc != 0;
6711         return dev_priv->vbt.lvds_use_ssc
6712                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6713 }
6714
6715 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6716                            int num_connectors)
6717 {
6718         struct drm_device *dev = crtc_state->base.crtc->dev;
6719         struct drm_i915_private *dev_priv = dev->dev_private;
6720         int refclk;
6721
6722         WARN_ON(!crtc_state->base.state);
6723
6724         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6725                 refclk = 100000;
6726         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6727             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6728                 refclk = dev_priv->vbt.lvds_ssc_freq;
6729                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6730         } else if (!IS_GEN2(dev)) {
6731                 refclk = 96000;
6732         } else {
6733                 refclk = 48000;
6734         }
6735
6736         return refclk;
6737 }
6738
6739 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6740 {
6741         return (1 << dpll->n) << 16 | dpll->m2;
6742 }
6743
6744 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6745 {
6746         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6747 }
6748
6749 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6750                                      struct intel_crtc_state *crtc_state,
6751                                      intel_clock_t *reduced_clock)
6752 {
6753         struct drm_device *dev = crtc->base.dev;
6754         u32 fp, fp2 = 0;
6755
6756         if (IS_PINEVIEW(dev)) {
6757                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6758                 if (reduced_clock)
6759                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6760         } else {
6761                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6762                 if (reduced_clock)
6763                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6764         }
6765
6766         crtc_state->dpll_hw_state.fp0 = fp;
6767
6768         crtc->lowfreq_avail = false;
6769         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6770             reduced_clock) {
6771                 crtc_state->dpll_hw_state.fp1 = fp2;
6772                 crtc->lowfreq_avail = true;
6773         } else {
6774                 crtc_state->dpll_hw_state.fp1 = fp;
6775         }
6776 }
6777
6778 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6779                 pipe)
6780 {
6781         u32 reg_val;
6782
6783         /*
6784          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6785          * and set it to a reasonable value instead.
6786          */
6787         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6788         reg_val &= 0xffffff00;
6789         reg_val |= 0x00000030;
6790         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6791
6792         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6793         reg_val &= 0x8cffffff;
6794         reg_val = 0x8c000000;
6795         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6796
6797         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6798         reg_val &= 0xffffff00;
6799         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6800
6801         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6802         reg_val &= 0x00ffffff;
6803         reg_val |= 0xb0000000;
6804         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6805 }
6806
6807 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6808                                          struct intel_link_m_n *m_n)
6809 {
6810         struct drm_device *dev = crtc->base.dev;
6811         struct drm_i915_private *dev_priv = dev->dev_private;
6812         int pipe = crtc->pipe;
6813
6814         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6815         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6816         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6817         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6818 }
6819
6820 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6821                                          struct intel_link_m_n *m_n,
6822                                          struct intel_link_m_n *m2_n2)
6823 {
6824         struct drm_device *dev = crtc->base.dev;
6825         struct drm_i915_private *dev_priv = dev->dev_private;
6826         int pipe = crtc->pipe;
6827         enum transcoder transcoder = crtc->config->cpu_transcoder;
6828
6829         if (INTEL_INFO(dev)->gen >= 5) {
6830                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6831                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6832                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6833                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6834                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6835                  * for gen < 8) and if DRRS is supported (to make sure the
6836                  * registers are not unnecessarily accessed).
6837                  */
6838                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6839                         crtc->config->has_drrs) {
6840                         I915_WRITE(PIPE_DATA_M2(transcoder),
6841                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6842                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6843                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6844                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6845                 }
6846         } else {
6847                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6848                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6849                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6850                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6851         }
6852 }
6853
6854 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6855 {
6856         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6857
6858         if (m_n == M1_N1) {
6859                 dp_m_n = &crtc->config->dp_m_n;
6860                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6861         } else if (m_n == M2_N2) {
6862
6863                 /*
6864                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6865                  * needs to be programmed into M1_N1.
6866                  */
6867                 dp_m_n = &crtc->config->dp_m2_n2;
6868         } else {
6869                 DRM_ERROR("Unsupported divider value\n");
6870                 return;
6871         }
6872
6873         if (crtc->config->has_pch_encoder)
6874                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6875         else
6876                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6877 }
6878
6879 static void vlv_update_pll(struct intel_crtc *crtc,
6880                            struct intel_crtc_state *pipe_config)
6881 {
6882         u32 dpll, dpll_md;
6883
6884         /*
6885          * Enable DPIO clock input. We should never disable the reference
6886          * clock for pipe B, since VGA hotplug / manual detection depends
6887          * on it.
6888          */
6889         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6890                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6891         /* We should never disable this, set it here for state tracking */
6892         if (crtc->pipe == PIPE_B)
6893                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6894         dpll |= DPLL_VCO_ENABLE;
6895         pipe_config->dpll_hw_state.dpll = dpll;
6896
6897         dpll_md = (pipe_config->pixel_multiplier - 1)
6898                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6899         pipe_config->dpll_hw_state.dpll_md = dpll_md;
6900 }
6901
6902 static void vlv_prepare_pll(struct intel_crtc *crtc,
6903                             const struct intel_crtc_state *pipe_config)
6904 {
6905         struct drm_device *dev = crtc->base.dev;
6906         struct drm_i915_private *dev_priv = dev->dev_private;
6907         int pipe = crtc->pipe;
6908         u32 mdiv;
6909         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6910         u32 coreclk, reg_val;
6911
6912         mutex_lock(&dev_priv->dpio_lock);
6913
6914         bestn = pipe_config->dpll.n;
6915         bestm1 = pipe_config->dpll.m1;
6916         bestm2 = pipe_config->dpll.m2;
6917         bestp1 = pipe_config->dpll.p1;
6918         bestp2 = pipe_config->dpll.p2;
6919
6920         /* See eDP HDMI DPIO driver vbios notes doc */
6921
6922         /* PLL B needs special handling */
6923         if (pipe == PIPE_B)
6924                 vlv_pllb_recal_opamp(dev_priv, pipe);
6925
6926         /* Set up Tx target for periodic Rcomp update */
6927         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6928
6929         /* Disable target IRef on PLL */
6930         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6931         reg_val &= 0x00ffffff;
6932         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6933
6934         /* Disable fast lock */
6935         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6936
6937         /* Set idtafcrecal before PLL is enabled */
6938         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6939         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6940         mdiv |= ((bestn << DPIO_N_SHIFT));
6941         mdiv |= (1 << DPIO_K_SHIFT);
6942
6943         /*
6944          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6945          * but we don't support that).
6946          * Note: don't use the DAC post divider as it seems unstable.
6947          */
6948         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6949         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6950
6951         mdiv |= DPIO_ENABLE_CALIBRATION;
6952         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6953
6954         /* Set HBR and RBR LPF coefficients */
6955         if (pipe_config->port_clock == 162000 ||
6956             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6957             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6958                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6959                                  0x009f0003);
6960         else
6961                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6962                                  0x00d0000f);
6963
6964         if (pipe_config->has_dp_encoder) {
6965                 /* Use SSC source */
6966                 if (pipe == PIPE_A)
6967                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6968                                          0x0df40000);
6969                 else
6970                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6971                                          0x0df70000);
6972         } else { /* HDMI or VGA */
6973                 /* Use bend source */
6974                 if (pipe == PIPE_A)
6975                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6976                                          0x0df70000);
6977                 else
6978                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6979                                          0x0df40000);
6980         }
6981
6982         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6983         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6984         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6985             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6986                 coreclk |= 0x01000000;
6987         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6988
6989         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6990         mutex_unlock(&dev_priv->dpio_lock);
6991 }
6992
6993 static void chv_update_pll(struct intel_crtc *crtc,
6994                            struct intel_crtc_state *pipe_config)
6995 {
6996         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6997                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6998                 DPLL_VCO_ENABLE;
6999         if (crtc->pipe != PIPE_A)
7000                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7001
7002         pipe_config->dpll_hw_state.dpll_md =
7003                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7004 }
7005
7006 static void chv_prepare_pll(struct intel_crtc *crtc,
7007                             const struct intel_crtc_state *pipe_config)
7008 {
7009         struct drm_device *dev = crtc->base.dev;
7010         struct drm_i915_private *dev_priv = dev->dev_private;
7011         int pipe = crtc->pipe;
7012         int dpll_reg = DPLL(crtc->pipe);
7013         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7014         u32 loopfilter, tribuf_calcntr;
7015         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7016         u32 dpio_val;
7017         int vco;
7018
7019         bestn = pipe_config->dpll.n;
7020         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7021         bestm1 = pipe_config->dpll.m1;
7022         bestm2 = pipe_config->dpll.m2 >> 22;
7023         bestp1 = pipe_config->dpll.p1;
7024         bestp2 = pipe_config->dpll.p2;
7025         vco = pipe_config->dpll.vco;
7026         dpio_val = 0;
7027         loopfilter = 0;
7028
7029         /*
7030          * Enable Refclk and SSC
7031          */
7032         I915_WRITE(dpll_reg,
7033                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7034
7035         mutex_lock(&dev_priv->dpio_lock);
7036
7037         /* p1 and p2 divider */
7038         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7039                         5 << DPIO_CHV_S1_DIV_SHIFT |
7040                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7041                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7042                         1 << DPIO_CHV_K_DIV_SHIFT);
7043
7044         /* Feedback post-divider - m2 */
7045         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7046
7047         /* Feedback refclk divider - n and m1 */
7048         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7049                         DPIO_CHV_M1_DIV_BY_2 |
7050                         1 << DPIO_CHV_N_DIV_SHIFT);
7051
7052         /* M2 fraction division */
7053         if (bestm2_frac)
7054                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7055
7056         /* M2 fraction division enable */
7057         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7058         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7059         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7060         if (bestm2_frac)
7061                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7062         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7063
7064         /* Program digital lock detect threshold */
7065         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7066         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7067                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7068         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7069         if (!bestm2_frac)
7070                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7071         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7072
7073         /* Loop filter */
7074         if (vco == 5400000) {
7075                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7076                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7077                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7078                 tribuf_calcntr = 0x9;
7079         } else if (vco <= 6200000) {
7080                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7081                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7082                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7083                 tribuf_calcntr = 0x9;
7084         } else if (vco <= 6480000) {
7085                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7086                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7087                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7088                 tribuf_calcntr = 0x8;
7089         } else {
7090                 /* Not supported. Apply the same limits as in the max case */
7091                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7092                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7093                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7094                 tribuf_calcntr = 0;
7095         }
7096         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7097
7098         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7099         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7100         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7101         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7102
7103         /* AFC Recal */
7104         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7105                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7106                         DPIO_AFC_RECAL);
7107
7108         mutex_unlock(&dev_priv->dpio_lock);
7109 }
7110
7111 /**
7112  * vlv_force_pll_on - forcibly enable just the PLL
7113  * @dev_priv: i915 private structure
7114  * @pipe: pipe PLL to enable
7115  * @dpll: PLL configuration
7116  *
7117  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7118  * in cases where we need the PLL enabled even when @pipe is not going to
7119  * be enabled.
7120  */
7121 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7122                       const struct dpll *dpll)
7123 {
7124         struct intel_crtc *crtc =
7125                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7126         struct intel_crtc_state pipe_config = {
7127                 .base.crtc = &crtc->base,
7128                 .pixel_multiplier = 1,
7129                 .dpll = *dpll,
7130         };
7131
7132         if (IS_CHERRYVIEW(dev)) {
7133                 chv_update_pll(crtc, &pipe_config);
7134                 chv_prepare_pll(crtc, &pipe_config);
7135                 chv_enable_pll(crtc, &pipe_config);
7136         } else {
7137                 vlv_update_pll(crtc, &pipe_config);
7138                 vlv_prepare_pll(crtc, &pipe_config);
7139                 vlv_enable_pll(crtc, &pipe_config);
7140         }
7141 }
7142
7143 /**
7144  * vlv_force_pll_off - forcibly disable just the PLL
7145  * @dev_priv: i915 private structure
7146  * @pipe: pipe PLL to disable
7147  *
7148  * Disable the PLL for @pipe. To be used in cases where we need
7149  * the PLL enabled even when @pipe is not going to be enabled.
7150  */
7151 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7152 {
7153         if (IS_CHERRYVIEW(dev))
7154                 chv_disable_pll(to_i915(dev), pipe);
7155         else
7156                 vlv_disable_pll(to_i915(dev), pipe);
7157 }
7158
7159 static void i9xx_update_pll(struct intel_crtc *crtc,
7160                             struct intel_crtc_state *crtc_state,
7161                             intel_clock_t *reduced_clock,
7162                             int num_connectors)
7163 {
7164         struct drm_device *dev = crtc->base.dev;
7165         struct drm_i915_private *dev_priv = dev->dev_private;
7166         u32 dpll;
7167         bool is_sdvo;
7168         struct dpll *clock = &crtc_state->dpll;
7169
7170         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7171
7172         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7173                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7174
7175         dpll = DPLL_VGA_MODE_DIS;
7176
7177         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7178                 dpll |= DPLLB_MODE_LVDS;
7179         else
7180                 dpll |= DPLLB_MODE_DAC_SERIAL;
7181
7182         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7183                 dpll |= (crtc_state->pixel_multiplier - 1)
7184                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7185         }
7186
7187         if (is_sdvo)
7188                 dpll |= DPLL_SDVO_HIGH_SPEED;
7189
7190         if (crtc_state->has_dp_encoder)
7191                 dpll |= DPLL_SDVO_HIGH_SPEED;
7192
7193         /* compute bitmask from p1 value */
7194         if (IS_PINEVIEW(dev))
7195                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7196         else {
7197                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7198                 if (IS_G4X(dev) && reduced_clock)
7199                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7200         }
7201         switch (clock->p2) {
7202         case 5:
7203                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7204                 break;
7205         case 7:
7206                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7207                 break;
7208         case 10:
7209                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7210                 break;
7211         case 14:
7212                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7213                 break;
7214         }
7215         if (INTEL_INFO(dev)->gen >= 4)
7216                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7217
7218         if (crtc_state->sdvo_tv_clock)
7219                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7220         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7221                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7222                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7223         else
7224                 dpll |= PLL_REF_INPUT_DREFCLK;
7225
7226         dpll |= DPLL_VCO_ENABLE;
7227         crtc_state->dpll_hw_state.dpll = dpll;
7228
7229         if (INTEL_INFO(dev)->gen >= 4) {
7230                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7231                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7232                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7233         }
7234 }
7235
7236 static void i8xx_update_pll(struct intel_crtc *crtc,
7237                             struct intel_crtc_state *crtc_state,
7238                             intel_clock_t *reduced_clock,
7239                             int num_connectors)
7240 {
7241         struct drm_device *dev = crtc->base.dev;
7242         struct drm_i915_private *dev_priv = dev->dev_private;
7243         u32 dpll;
7244         struct dpll *clock = &crtc_state->dpll;
7245
7246         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7247
7248         dpll = DPLL_VGA_MODE_DIS;
7249
7250         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7251                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7252         } else {
7253                 if (clock->p1 == 2)
7254                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7255                 else
7256                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7257                 if (clock->p2 == 4)
7258                         dpll |= PLL_P2_DIVIDE_BY_4;
7259         }
7260
7261         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7262                 dpll |= DPLL_DVO_2X_MODE;
7263
7264         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7265                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7266                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7267         else
7268                 dpll |= PLL_REF_INPUT_DREFCLK;
7269
7270         dpll |= DPLL_VCO_ENABLE;
7271         crtc_state->dpll_hw_state.dpll = dpll;
7272 }
7273
7274 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7275 {
7276         struct drm_device *dev = intel_crtc->base.dev;
7277         struct drm_i915_private *dev_priv = dev->dev_private;
7278         enum pipe pipe = intel_crtc->pipe;
7279         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7280         struct drm_display_mode *adjusted_mode =
7281                 &intel_crtc->config->base.adjusted_mode;
7282         uint32_t crtc_vtotal, crtc_vblank_end;
7283         int vsyncshift = 0;
7284
7285         /* We need to be careful not to changed the adjusted mode, for otherwise
7286          * the hw state checker will get angry at the mismatch. */
7287         crtc_vtotal = adjusted_mode->crtc_vtotal;
7288         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7289
7290         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7291                 /* the chip adds 2 halflines automatically */
7292                 crtc_vtotal -= 1;
7293                 crtc_vblank_end -= 1;
7294
7295                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7296                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7297                 else
7298                         vsyncshift = adjusted_mode->crtc_hsync_start -
7299                                 adjusted_mode->crtc_htotal / 2;
7300                 if (vsyncshift < 0)
7301                         vsyncshift += adjusted_mode->crtc_htotal;
7302         }
7303
7304         if (INTEL_INFO(dev)->gen > 3)
7305                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7306
7307         I915_WRITE(HTOTAL(cpu_transcoder),
7308                    (adjusted_mode->crtc_hdisplay - 1) |
7309                    ((adjusted_mode->crtc_htotal - 1) << 16));
7310         I915_WRITE(HBLANK(cpu_transcoder),
7311                    (adjusted_mode->crtc_hblank_start - 1) |
7312                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7313         I915_WRITE(HSYNC(cpu_transcoder),
7314                    (adjusted_mode->crtc_hsync_start - 1) |
7315                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7316
7317         I915_WRITE(VTOTAL(cpu_transcoder),
7318                    (adjusted_mode->crtc_vdisplay - 1) |
7319                    ((crtc_vtotal - 1) << 16));
7320         I915_WRITE(VBLANK(cpu_transcoder),
7321                    (adjusted_mode->crtc_vblank_start - 1) |
7322                    ((crtc_vblank_end - 1) << 16));
7323         I915_WRITE(VSYNC(cpu_transcoder),
7324                    (adjusted_mode->crtc_vsync_start - 1) |
7325                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7326
7327         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7328          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7329          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7330          * bits. */
7331         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7332             (pipe == PIPE_B || pipe == PIPE_C))
7333                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7334
7335         /* pipesrc controls the size that is scaled from, which should
7336          * always be the user's requested size.
7337          */
7338         I915_WRITE(PIPESRC(pipe),
7339                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7340                    (intel_crtc->config->pipe_src_h - 1));
7341 }
7342
7343 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7344                                    struct intel_crtc_state *pipe_config)
7345 {
7346         struct drm_device *dev = crtc->base.dev;
7347         struct drm_i915_private *dev_priv = dev->dev_private;
7348         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7349         uint32_t tmp;
7350
7351         tmp = I915_READ(HTOTAL(cpu_transcoder));
7352         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7353         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7354         tmp = I915_READ(HBLANK(cpu_transcoder));
7355         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7356         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7357         tmp = I915_READ(HSYNC(cpu_transcoder));
7358         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7359         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7360
7361         tmp = I915_READ(VTOTAL(cpu_transcoder));
7362         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7363         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7364         tmp = I915_READ(VBLANK(cpu_transcoder));
7365         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7366         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7367         tmp = I915_READ(VSYNC(cpu_transcoder));
7368         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7369         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7370
7371         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7372                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7373                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7374                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7375         }
7376
7377         tmp = I915_READ(PIPESRC(crtc->pipe));
7378         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7379         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7380
7381         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7382         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7383 }
7384
7385 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7386                                  struct intel_crtc_state *pipe_config)
7387 {
7388         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7389         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7390         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7391         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7392
7393         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7394         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7395         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7396         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7397
7398         mode->flags = pipe_config->base.adjusted_mode.flags;
7399
7400         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7401         mode->flags |= pipe_config->base.adjusted_mode.flags;
7402 }
7403
7404 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7405 {
7406         struct drm_device *dev = intel_crtc->base.dev;
7407         struct drm_i915_private *dev_priv = dev->dev_private;
7408         uint32_t pipeconf;
7409
7410         pipeconf = 0;
7411
7412         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7413             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7414                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7415
7416         if (intel_crtc->config->double_wide)
7417                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7418
7419         /* only g4x and later have fancy bpc/dither controls */
7420         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7421                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7422                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7423                         pipeconf |= PIPECONF_DITHER_EN |
7424                                     PIPECONF_DITHER_TYPE_SP;
7425
7426                 switch (intel_crtc->config->pipe_bpp) {
7427                 case 18:
7428                         pipeconf |= PIPECONF_6BPC;
7429                         break;
7430                 case 24:
7431                         pipeconf |= PIPECONF_8BPC;
7432                         break;
7433                 case 30:
7434                         pipeconf |= PIPECONF_10BPC;
7435                         break;
7436                 default:
7437                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7438                         BUG();
7439                 }
7440         }
7441
7442         if (HAS_PIPE_CXSR(dev)) {
7443                 if (intel_crtc->lowfreq_avail) {
7444                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7445                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7446                 } else {
7447                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7448                 }
7449         }
7450
7451         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7452                 if (INTEL_INFO(dev)->gen < 4 ||
7453                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7454                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7455                 else
7456                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7457         } else
7458                 pipeconf |= PIPECONF_PROGRESSIVE;
7459
7460         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7461                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7462
7463         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7464         POSTING_READ(PIPECONF(intel_crtc->pipe));
7465 }
7466
7467 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7468                                    struct intel_crtc_state *crtc_state)
7469 {
7470         struct drm_device *dev = crtc->base.dev;
7471         struct drm_i915_private *dev_priv = dev->dev_private;
7472         int refclk, num_connectors = 0;
7473         intel_clock_t clock, reduced_clock;
7474         bool ok, has_reduced_clock = false;
7475         bool is_lvds = false, is_dsi = false;
7476         struct intel_encoder *encoder;
7477         const intel_limit_t *limit;
7478         struct drm_atomic_state *state = crtc_state->base.state;
7479         struct drm_connector *connector;
7480         struct drm_connector_state *connector_state;
7481         int i;
7482
7483         for_each_connector_in_state(state, connector, connector_state, i) {
7484                 if (connector_state->crtc != &crtc->base)
7485                         continue;
7486
7487                 encoder = to_intel_encoder(connector_state->best_encoder);
7488
7489                 switch (encoder->type) {
7490                 case INTEL_OUTPUT_LVDS:
7491                         is_lvds = true;
7492                         break;
7493                 case INTEL_OUTPUT_DSI:
7494                         is_dsi = true;
7495                         break;
7496                 default:
7497                         break;
7498                 }
7499
7500                 num_connectors++;
7501         }
7502
7503         if (is_dsi)
7504                 return 0;
7505
7506         if (!crtc_state->clock_set) {
7507                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7508
7509                 /*
7510                  * Returns a set of divisors for the desired target clock with
7511                  * the given refclk, or FALSE.  The returned values represent
7512                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7513                  * 2) / p1 / p2.
7514                  */
7515                 limit = intel_limit(crtc_state, refclk);
7516                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7517                                                  crtc_state->port_clock,
7518                                                  refclk, NULL, &clock);
7519                 if (!ok) {
7520                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7521                         return -EINVAL;
7522                 }
7523
7524                 if (is_lvds && dev_priv->lvds_downclock_avail) {
7525                         /*
7526                          * Ensure we match the reduced clock's P to the target
7527                          * clock.  If the clocks don't match, we can't switch
7528                          * the display clock by using the FP0/FP1. In such case
7529                          * we will disable the LVDS downclock feature.
7530                          */
7531                         has_reduced_clock =
7532                                 dev_priv->display.find_dpll(limit, crtc_state,
7533                                                             dev_priv->lvds_downclock,
7534                                                             refclk, &clock,
7535                                                             &reduced_clock);
7536                 }
7537                 /* Compat-code for transition, will disappear. */
7538                 crtc_state->dpll.n = clock.n;
7539                 crtc_state->dpll.m1 = clock.m1;
7540                 crtc_state->dpll.m2 = clock.m2;
7541                 crtc_state->dpll.p1 = clock.p1;
7542                 crtc_state->dpll.p2 = clock.p2;
7543         }
7544
7545         if (IS_GEN2(dev)) {
7546                 i8xx_update_pll(crtc, crtc_state,
7547                                 has_reduced_clock ? &reduced_clock : NULL,
7548                                 num_connectors);
7549         } else if (IS_CHERRYVIEW(dev)) {
7550                 chv_update_pll(crtc, crtc_state);
7551         } else if (IS_VALLEYVIEW(dev)) {
7552                 vlv_update_pll(crtc, crtc_state);
7553         } else {
7554                 i9xx_update_pll(crtc, crtc_state,
7555                                 has_reduced_clock ? &reduced_clock : NULL,
7556                                 num_connectors);
7557         }
7558
7559         return 0;
7560 }
7561
7562 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7563                                  struct intel_crtc_state *pipe_config)
7564 {
7565         struct drm_device *dev = crtc->base.dev;
7566         struct drm_i915_private *dev_priv = dev->dev_private;
7567         uint32_t tmp;
7568
7569         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7570                 return;
7571
7572         tmp = I915_READ(PFIT_CONTROL);
7573         if (!(tmp & PFIT_ENABLE))
7574                 return;
7575
7576         /* Check whether the pfit is attached to our pipe. */
7577         if (INTEL_INFO(dev)->gen < 4) {
7578                 if (crtc->pipe != PIPE_B)
7579                         return;
7580         } else {
7581                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7582                         return;
7583         }
7584
7585         pipe_config->gmch_pfit.control = tmp;
7586         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7587         if (INTEL_INFO(dev)->gen < 5)
7588                 pipe_config->gmch_pfit.lvds_border_bits =
7589                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7590 }
7591
7592 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7593                                struct intel_crtc_state *pipe_config)
7594 {
7595         struct drm_device *dev = crtc->base.dev;
7596         struct drm_i915_private *dev_priv = dev->dev_private;
7597         int pipe = pipe_config->cpu_transcoder;
7598         intel_clock_t clock;
7599         u32 mdiv;
7600         int refclk = 100000;
7601
7602         /* In case of MIPI DPLL will not even be used */
7603         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7604                 return;
7605
7606         mutex_lock(&dev_priv->dpio_lock);
7607         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7608         mutex_unlock(&dev_priv->dpio_lock);
7609
7610         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7611         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7612         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7613         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7614         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7615
7616         vlv_clock(refclk, &clock);
7617
7618         /* clock.dot is the fast clock */
7619         pipe_config->port_clock = clock.dot / 5;
7620 }
7621
7622 static void
7623 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7624                               struct intel_initial_plane_config *plane_config)
7625 {
7626         struct drm_device *dev = crtc->base.dev;
7627         struct drm_i915_private *dev_priv = dev->dev_private;
7628         u32 val, base, offset;
7629         int pipe = crtc->pipe, plane = crtc->plane;
7630         int fourcc, pixel_format;
7631         unsigned int aligned_height;
7632         struct drm_framebuffer *fb;
7633         struct intel_framebuffer *intel_fb;
7634
7635         val = I915_READ(DSPCNTR(plane));
7636         if (!(val & DISPLAY_PLANE_ENABLE))
7637                 return;
7638
7639         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7640         if (!intel_fb) {
7641                 DRM_DEBUG_KMS("failed to alloc fb\n");
7642                 return;
7643         }
7644
7645         fb = &intel_fb->base;
7646
7647         if (INTEL_INFO(dev)->gen >= 4) {
7648                 if (val & DISPPLANE_TILED) {
7649                         plane_config->tiling = I915_TILING_X;
7650                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7651                 }
7652         }
7653
7654         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7655         fourcc = i9xx_format_to_fourcc(pixel_format);
7656         fb->pixel_format = fourcc;
7657         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7658
7659         if (INTEL_INFO(dev)->gen >= 4) {
7660                 if (plane_config->tiling)
7661                         offset = I915_READ(DSPTILEOFF(plane));
7662                 else
7663                         offset = I915_READ(DSPLINOFF(plane));
7664                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7665         } else {
7666                 base = I915_READ(DSPADDR(plane));
7667         }
7668         plane_config->base = base;
7669
7670         val = I915_READ(PIPESRC(pipe));
7671         fb->width = ((val >> 16) & 0xfff) + 1;
7672         fb->height = ((val >> 0) & 0xfff) + 1;
7673
7674         val = I915_READ(DSPSTRIDE(pipe));
7675         fb->pitches[0] = val & 0xffffffc0;
7676
7677         aligned_height = intel_fb_align_height(dev, fb->height,
7678                                                fb->pixel_format,
7679                                                fb->modifier[0]);
7680
7681         plane_config->size = fb->pitches[0] * aligned_height;
7682
7683         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7684                       pipe_name(pipe), plane, fb->width, fb->height,
7685                       fb->bits_per_pixel, base, fb->pitches[0],
7686                       plane_config->size);
7687
7688         plane_config->fb = intel_fb;
7689 }
7690
7691 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7692                                struct intel_crtc_state *pipe_config)
7693 {
7694         struct drm_device *dev = crtc->base.dev;
7695         struct drm_i915_private *dev_priv = dev->dev_private;
7696         int pipe = pipe_config->cpu_transcoder;
7697         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7698         intel_clock_t clock;
7699         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7700         int refclk = 100000;
7701
7702         mutex_lock(&dev_priv->dpio_lock);
7703         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7704         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7705         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7706         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7707         mutex_unlock(&dev_priv->dpio_lock);
7708
7709         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7710         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7711         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7712         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7713         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7714
7715         chv_clock(refclk, &clock);
7716
7717         /* clock.dot is the fast clock */
7718         pipe_config->port_clock = clock.dot / 5;
7719 }
7720
7721 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7722                                  struct intel_crtc_state *pipe_config)
7723 {
7724         struct drm_device *dev = crtc->base.dev;
7725         struct drm_i915_private *dev_priv = dev->dev_private;
7726         uint32_t tmp;
7727
7728         if (!intel_display_power_is_enabled(dev_priv,
7729                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7730                 return false;
7731
7732         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7733         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7734
7735         tmp = I915_READ(PIPECONF(crtc->pipe));
7736         if (!(tmp & PIPECONF_ENABLE))
7737                 return false;
7738
7739         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7740                 switch (tmp & PIPECONF_BPC_MASK) {
7741                 case PIPECONF_6BPC:
7742                         pipe_config->pipe_bpp = 18;
7743                         break;
7744                 case PIPECONF_8BPC:
7745                         pipe_config->pipe_bpp = 24;
7746                         break;
7747                 case PIPECONF_10BPC:
7748                         pipe_config->pipe_bpp = 30;
7749                         break;
7750                 default:
7751                         break;
7752                 }
7753         }
7754
7755         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7756                 pipe_config->limited_color_range = true;
7757
7758         if (INTEL_INFO(dev)->gen < 4)
7759                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7760
7761         intel_get_pipe_timings(crtc, pipe_config);
7762
7763         i9xx_get_pfit_config(crtc, pipe_config);
7764
7765         if (INTEL_INFO(dev)->gen >= 4) {
7766                 tmp = I915_READ(DPLL_MD(crtc->pipe));
7767                 pipe_config->pixel_multiplier =
7768                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7769                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7770                 pipe_config->dpll_hw_state.dpll_md = tmp;
7771         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7772                 tmp = I915_READ(DPLL(crtc->pipe));
7773                 pipe_config->pixel_multiplier =
7774                         ((tmp & SDVO_MULTIPLIER_MASK)
7775                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7776         } else {
7777                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7778                  * port and will be fixed up in the encoder->get_config
7779                  * function. */
7780                 pipe_config->pixel_multiplier = 1;
7781         }
7782         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7783         if (!IS_VALLEYVIEW(dev)) {
7784                 /*
7785                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7786                  * on 830. Filter it out here so that we don't
7787                  * report errors due to that.
7788                  */
7789                 if (IS_I830(dev))
7790                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7791
7792                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7793                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7794         } else {
7795                 /* Mask out read-only status bits. */
7796                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7797                                                      DPLL_PORTC_READY_MASK |
7798                                                      DPLL_PORTB_READY_MASK);
7799         }
7800
7801         if (IS_CHERRYVIEW(dev))
7802                 chv_crtc_clock_get(crtc, pipe_config);
7803         else if (IS_VALLEYVIEW(dev))
7804                 vlv_crtc_clock_get(crtc, pipe_config);
7805         else
7806                 i9xx_crtc_clock_get(crtc, pipe_config);
7807
7808         return true;
7809 }
7810
7811 static void ironlake_init_pch_refclk(struct drm_device *dev)
7812 {
7813         struct drm_i915_private *dev_priv = dev->dev_private;
7814         struct intel_encoder *encoder;
7815         u32 val, final;
7816         bool has_lvds = false;
7817         bool has_cpu_edp = false;
7818         bool has_panel = false;
7819         bool has_ck505 = false;
7820         bool can_ssc = false;
7821
7822         /* We need to take the global config into account */
7823         for_each_intel_encoder(dev, encoder) {
7824                 switch (encoder->type) {
7825                 case INTEL_OUTPUT_LVDS:
7826                         has_panel = true;
7827                         has_lvds = true;
7828                         break;
7829                 case INTEL_OUTPUT_EDP:
7830                         has_panel = true;
7831                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7832                                 has_cpu_edp = true;
7833                         break;
7834                 default:
7835                         break;
7836                 }
7837         }
7838
7839         if (HAS_PCH_IBX(dev)) {
7840                 has_ck505 = dev_priv->vbt.display_clock_mode;
7841                 can_ssc = has_ck505;
7842         } else {
7843                 has_ck505 = false;
7844                 can_ssc = true;
7845         }
7846
7847         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7848                       has_panel, has_lvds, has_ck505);
7849
7850         /* Ironlake: try to setup display ref clock before DPLL
7851          * enabling. This is only under driver's control after
7852          * PCH B stepping, previous chipset stepping should be
7853          * ignoring this setting.
7854          */
7855         val = I915_READ(PCH_DREF_CONTROL);
7856
7857         /* As we must carefully and slowly disable/enable each source in turn,
7858          * compute the final state we want first and check if we need to
7859          * make any changes at all.
7860          */
7861         final = val;
7862         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7863         if (has_ck505)
7864                 final |= DREF_NONSPREAD_CK505_ENABLE;
7865         else
7866                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7867
7868         final &= ~DREF_SSC_SOURCE_MASK;
7869         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7870         final &= ~DREF_SSC1_ENABLE;
7871
7872         if (has_panel) {
7873                 final |= DREF_SSC_SOURCE_ENABLE;
7874
7875                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7876                         final |= DREF_SSC1_ENABLE;
7877
7878                 if (has_cpu_edp) {
7879                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7880                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7881                         else
7882                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7883                 } else
7884                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7885         } else {
7886                 final |= DREF_SSC_SOURCE_DISABLE;
7887                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7888         }
7889
7890         if (final == val)
7891                 return;
7892
7893         /* Always enable nonspread source */
7894         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7895
7896         if (has_ck505)
7897                 val |= DREF_NONSPREAD_CK505_ENABLE;
7898         else
7899                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7900
7901         if (has_panel) {
7902                 val &= ~DREF_SSC_SOURCE_MASK;
7903                 val |= DREF_SSC_SOURCE_ENABLE;
7904
7905                 /* SSC must be turned on before enabling the CPU output  */
7906                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7907                         DRM_DEBUG_KMS("Using SSC on panel\n");
7908                         val |= DREF_SSC1_ENABLE;
7909                 } else
7910                         val &= ~DREF_SSC1_ENABLE;
7911
7912                 /* Get SSC going before enabling the outputs */
7913                 I915_WRITE(PCH_DREF_CONTROL, val);
7914                 POSTING_READ(PCH_DREF_CONTROL);
7915                 udelay(200);
7916
7917                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7918
7919                 /* Enable CPU source on CPU attached eDP */
7920                 if (has_cpu_edp) {
7921                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7922                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7923                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7924                         } else
7925                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7926                 } else
7927                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7928
7929                 I915_WRITE(PCH_DREF_CONTROL, val);
7930                 POSTING_READ(PCH_DREF_CONTROL);
7931                 udelay(200);
7932         } else {
7933                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7934
7935                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7936
7937                 /* Turn off CPU output */
7938                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7939
7940                 I915_WRITE(PCH_DREF_CONTROL, val);
7941                 POSTING_READ(PCH_DREF_CONTROL);
7942                 udelay(200);
7943
7944                 /* Turn off the SSC source */
7945                 val &= ~DREF_SSC_SOURCE_MASK;
7946                 val |= DREF_SSC_SOURCE_DISABLE;
7947
7948                 /* Turn off SSC1 */
7949                 val &= ~DREF_SSC1_ENABLE;
7950
7951                 I915_WRITE(PCH_DREF_CONTROL, val);
7952                 POSTING_READ(PCH_DREF_CONTROL);
7953                 udelay(200);
7954         }
7955
7956         BUG_ON(val != final);
7957 }
7958
7959 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7960 {
7961         uint32_t tmp;
7962
7963         tmp = I915_READ(SOUTH_CHICKEN2);
7964         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7965         I915_WRITE(SOUTH_CHICKEN2, tmp);
7966
7967         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7968                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7969                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7970
7971         tmp = I915_READ(SOUTH_CHICKEN2);
7972         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7973         I915_WRITE(SOUTH_CHICKEN2, tmp);
7974
7975         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7976                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7977                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7978 }
7979
7980 /* WaMPhyProgramming:hsw */
7981 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7982 {
7983         uint32_t tmp;
7984
7985         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7986         tmp &= ~(0xFF << 24);
7987         tmp |= (0x12 << 24);
7988         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7989
7990         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7991         tmp |= (1 << 11);
7992         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7993
7994         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7995         tmp |= (1 << 11);
7996         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7997
7998         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7999         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8000         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8001
8002         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8003         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8004         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8005
8006         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8007         tmp &= ~(7 << 13);
8008         tmp |= (5 << 13);
8009         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8010
8011         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8012         tmp &= ~(7 << 13);
8013         tmp |= (5 << 13);
8014         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8015
8016         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8017         tmp &= ~0xFF;
8018         tmp |= 0x1C;
8019         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8020
8021         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8022         tmp &= ~0xFF;
8023         tmp |= 0x1C;
8024         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8025
8026         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8027         tmp &= ~(0xFF << 16);
8028         tmp |= (0x1C << 16);
8029         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8030
8031         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8032         tmp &= ~(0xFF << 16);
8033         tmp |= (0x1C << 16);
8034         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8035
8036         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8037         tmp |= (1 << 27);
8038         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8039
8040         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8041         tmp |= (1 << 27);
8042         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8043
8044         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8045         tmp &= ~(0xF << 28);
8046         tmp |= (4 << 28);
8047         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8048
8049         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8050         tmp &= ~(0xF << 28);
8051         tmp |= (4 << 28);
8052         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8053 }
8054
8055 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8056  * Programming" based on the parameters passed:
8057  * - Sequence to enable CLKOUT_DP
8058  * - Sequence to enable CLKOUT_DP without spread
8059  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8060  */
8061 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8062                                  bool with_fdi)
8063 {
8064         struct drm_i915_private *dev_priv = dev->dev_private;
8065         uint32_t reg, tmp;
8066
8067         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8068                 with_spread = true;
8069         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8070                  with_fdi, "LP PCH doesn't have FDI\n"))
8071                 with_fdi = false;
8072
8073         mutex_lock(&dev_priv->dpio_lock);
8074
8075         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8076         tmp &= ~SBI_SSCCTL_DISABLE;
8077         tmp |= SBI_SSCCTL_PATHALT;
8078         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8079
8080         udelay(24);
8081
8082         if (with_spread) {
8083                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8084                 tmp &= ~SBI_SSCCTL_PATHALT;
8085                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8086
8087                 if (with_fdi) {
8088                         lpt_reset_fdi_mphy(dev_priv);
8089                         lpt_program_fdi_mphy(dev_priv);
8090                 }
8091         }
8092
8093         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8094                SBI_GEN0 : SBI_DBUFF0;
8095         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8096         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8097         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8098
8099         mutex_unlock(&dev_priv->dpio_lock);
8100 }
8101
8102 /* Sequence to disable CLKOUT_DP */
8103 static void lpt_disable_clkout_dp(struct drm_device *dev)
8104 {
8105         struct drm_i915_private *dev_priv = dev->dev_private;
8106         uint32_t reg, tmp;
8107
8108         mutex_lock(&dev_priv->dpio_lock);
8109
8110         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8111                SBI_GEN0 : SBI_DBUFF0;
8112         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8113         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8114         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8115
8116         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8117         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8118                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8119                         tmp |= SBI_SSCCTL_PATHALT;
8120                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8121                         udelay(32);
8122                 }
8123                 tmp |= SBI_SSCCTL_DISABLE;
8124                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8125         }
8126
8127         mutex_unlock(&dev_priv->dpio_lock);
8128 }
8129
8130 static void lpt_init_pch_refclk(struct drm_device *dev)
8131 {
8132         struct intel_encoder *encoder;
8133         bool has_vga = false;
8134
8135         for_each_intel_encoder(dev, encoder) {
8136                 switch (encoder->type) {
8137                 case INTEL_OUTPUT_ANALOG:
8138                         has_vga = true;
8139                         break;
8140                 default:
8141                         break;
8142                 }
8143         }
8144
8145         if (has_vga)
8146                 lpt_enable_clkout_dp(dev, true, true);
8147         else
8148                 lpt_disable_clkout_dp(dev);
8149 }
8150
8151 /*
8152  * Initialize reference clocks when the driver loads
8153  */
8154 void intel_init_pch_refclk(struct drm_device *dev)
8155 {
8156         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8157                 ironlake_init_pch_refclk(dev);
8158         else if (HAS_PCH_LPT(dev))
8159                 lpt_init_pch_refclk(dev);
8160 }
8161
8162 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8163 {
8164         struct drm_device *dev = crtc_state->base.crtc->dev;
8165         struct drm_i915_private *dev_priv = dev->dev_private;
8166         struct drm_atomic_state *state = crtc_state->base.state;
8167         struct drm_connector *connector;
8168         struct drm_connector_state *connector_state;
8169         struct intel_encoder *encoder;
8170         int num_connectors = 0, i;
8171         bool is_lvds = false;
8172
8173         for_each_connector_in_state(state, connector, connector_state, i) {
8174                 if (connector_state->crtc != crtc_state->base.crtc)
8175                         continue;
8176
8177                 encoder = to_intel_encoder(connector_state->best_encoder);
8178
8179                 switch (encoder->type) {
8180                 case INTEL_OUTPUT_LVDS:
8181                         is_lvds = true;
8182                         break;
8183                 default:
8184                         break;
8185                 }
8186                 num_connectors++;
8187         }
8188
8189         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8190                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8191                               dev_priv->vbt.lvds_ssc_freq);
8192                 return dev_priv->vbt.lvds_ssc_freq;
8193         }
8194
8195         return 120000;
8196 }
8197
8198 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8199 {
8200         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8202         int pipe = intel_crtc->pipe;
8203         uint32_t val;
8204
8205         val = 0;
8206
8207         switch (intel_crtc->config->pipe_bpp) {
8208         case 18:
8209                 val |= PIPECONF_6BPC;
8210                 break;
8211         case 24:
8212                 val |= PIPECONF_8BPC;
8213                 break;
8214         case 30:
8215                 val |= PIPECONF_10BPC;
8216                 break;
8217         case 36:
8218                 val |= PIPECONF_12BPC;
8219                 break;
8220         default:
8221                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8222                 BUG();
8223         }
8224
8225         if (intel_crtc->config->dither)
8226                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8227
8228         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8229                 val |= PIPECONF_INTERLACED_ILK;
8230         else
8231                 val |= PIPECONF_PROGRESSIVE;
8232
8233         if (intel_crtc->config->limited_color_range)
8234                 val |= PIPECONF_COLOR_RANGE_SELECT;
8235
8236         I915_WRITE(PIPECONF(pipe), val);
8237         POSTING_READ(PIPECONF(pipe));
8238 }
8239
8240 /*
8241  * Set up the pipe CSC unit.
8242  *
8243  * Currently only full range RGB to limited range RGB conversion
8244  * is supported, but eventually this should handle various
8245  * RGB<->YCbCr scenarios as well.
8246  */
8247 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8248 {
8249         struct drm_device *dev = crtc->dev;
8250         struct drm_i915_private *dev_priv = dev->dev_private;
8251         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8252         int pipe = intel_crtc->pipe;
8253         uint16_t coeff = 0x7800; /* 1.0 */
8254
8255         /*
8256          * TODO: Check what kind of values actually come out of the pipe
8257          * with these coeff/postoff values and adjust to get the best
8258          * accuracy. Perhaps we even need to take the bpc value into
8259          * consideration.
8260          */
8261
8262         if (intel_crtc->config->limited_color_range)
8263                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8264
8265         /*
8266          * GY/GU and RY/RU should be the other way around according
8267          * to BSpec, but reality doesn't agree. Just set them up in
8268          * a way that results in the correct picture.
8269          */
8270         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8271         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8272
8273         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8274         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8275
8276         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8277         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8278
8279         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8280         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8281         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8282
8283         if (INTEL_INFO(dev)->gen > 6) {
8284                 uint16_t postoff = 0;
8285
8286                 if (intel_crtc->config->limited_color_range)
8287                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8288
8289                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8290                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8291                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8292
8293                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8294         } else {
8295                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8296
8297                 if (intel_crtc->config->limited_color_range)
8298                         mode |= CSC_BLACK_SCREEN_OFFSET;
8299
8300                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8301         }
8302 }
8303
8304 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8305 {
8306         struct drm_device *dev = crtc->dev;
8307         struct drm_i915_private *dev_priv = dev->dev_private;
8308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8309         enum pipe pipe = intel_crtc->pipe;
8310         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8311         uint32_t val;
8312
8313         val = 0;
8314
8315         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8316                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8317
8318         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8319                 val |= PIPECONF_INTERLACED_ILK;
8320         else
8321                 val |= PIPECONF_PROGRESSIVE;
8322
8323         I915_WRITE(PIPECONF(cpu_transcoder), val);
8324         POSTING_READ(PIPECONF(cpu_transcoder));
8325
8326         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8327         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8328
8329         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8330                 val = 0;
8331
8332                 switch (intel_crtc->config->pipe_bpp) {
8333                 case 18:
8334                         val |= PIPEMISC_DITHER_6_BPC;
8335                         break;
8336                 case 24:
8337                         val |= PIPEMISC_DITHER_8_BPC;
8338                         break;
8339                 case 30:
8340                         val |= PIPEMISC_DITHER_10_BPC;
8341                         break;
8342                 case 36:
8343                         val |= PIPEMISC_DITHER_12_BPC;
8344                         break;
8345                 default:
8346                         /* Case prevented by pipe_config_set_bpp. */
8347                         BUG();
8348                 }
8349
8350                 if (intel_crtc->config->dither)
8351                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8352
8353                 I915_WRITE(PIPEMISC(pipe), val);
8354         }
8355 }
8356
8357 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8358                                     struct intel_crtc_state *crtc_state,
8359                                     intel_clock_t *clock,
8360                                     bool *has_reduced_clock,
8361                                     intel_clock_t *reduced_clock)
8362 {
8363         struct drm_device *dev = crtc->dev;
8364         struct drm_i915_private *dev_priv = dev->dev_private;
8365         int refclk;
8366         const intel_limit_t *limit;
8367         bool ret, is_lvds = false;
8368
8369         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8370
8371         refclk = ironlake_get_refclk(crtc_state);
8372
8373         /*
8374          * Returns a set of divisors for the desired target clock with the given
8375          * refclk, or FALSE.  The returned values represent the clock equation:
8376          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8377          */
8378         limit = intel_limit(crtc_state, refclk);
8379         ret = dev_priv->display.find_dpll(limit, crtc_state,
8380                                           crtc_state->port_clock,
8381                                           refclk, NULL, clock);
8382         if (!ret)
8383                 return false;
8384
8385         if (is_lvds && dev_priv->lvds_downclock_avail) {
8386                 /*
8387                  * Ensure we match the reduced clock's P to the target clock.
8388                  * If the clocks don't match, we can't switch the display clock
8389                  * by using the FP0/FP1. In such case we will disable the LVDS
8390                  * downclock feature.
8391                 */
8392                 *has_reduced_clock =
8393                         dev_priv->display.find_dpll(limit, crtc_state,
8394                                                     dev_priv->lvds_downclock,
8395                                                     refclk, clock,
8396                                                     reduced_clock);
8397         }
8398
8399         return true;
8400 }
8401
8402 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8403 {
8404         /*
8405          * Account for spread spectrum to avoid
8406          * oversubscribing the link. Max center spread
8407          * is 2.5%; use 5% for safety's sake.
8408          */
8409         u32 bps = target_clock * bpp * 21 / 20;
8410         return DIV_ROUND_UP(bps, link_bw * 8);
8411 }
8412
8413 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8414 {
8415         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8416 }
8417
8418 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8419                                       struct intel_crtc_state *crtc_state,
8420                                       u32 *fp,
8421                                       intel_clock_t *reduced_clock, u32 *fp2)
8422 {
8423         struct drm_crtc *crtc = &intel_crtc->base;
8424         struct drm_device *dev = crtc->dev;
8425         struct drm_i915_private *dev_priv = dev->dev_private;
8426         struct drm_atomic_state *state = crtc_state->base.state;
8427         struct drm_connector *connector;
8428         struct drm_connector_state *connector_state;
8429         struct intel_encoder *encoder;
8430         uint32_t dpll;
8431         int factor, num_connectors = 0, i;
8432         bool is_lvds = false, is_sdvo = false;
8433
8434         for_each_connector_in_state(state, connector, connector_state, i) {
8435                 if (connector_state->crtc != crtc_state->base.crtc)
8436                         continue;
8437
8438                 encoder = to_intel_encoder(connector_state->best_encoder);
8439
8440                 switch (encoder->type) {
8441                 case INTEL_OUTPUT_LVDS:
8442                         is_lvds = true;
8443                         break;
8444                 case INTEL_OUTPUT_SDVO:
8445                 case INTEL_OUTPUT_HDMI:
8446                         is_sdvo = true;
8447                         break;
8448                 default:
8449                         break;
8450                 }
8451
8452                 num_connectors++;
8453         }
8454
8455         /* Enable autotuning of the PLL clock (if permissible) */
8456         factor = 21;
8457         if (is_lvds) {
8458                 if ((intel_panel_use_ssc(dev_priv) &&
8459                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8460                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8461                         factor = 25;
8462         } else if (crtc_state->sdvo_tv_clock)
8463                 factor = 20;
8464
8465         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8466                 *fp |= FP_CB_TUNE;
8467
8468         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8469                 *fp2 |= FP_CB_TUNE;
8470
8471         dpll = 0;
8472
8473         if (is_lvds)
8474                 dpll |= DPLLB_MODE_LVDS;
8475         else
8476                 dpll |= DPLLB_MODE_DAC_SERIAL;
8477
8478         dpll |= (crtc_state->pixel_multiplier - 1)
8479                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8480
8481         if (is_sdvo)
8482                 dpll |= DPLL_SDVO_HIGH_SPEED;
8483         if (crtc_state->has_dp_encoder)
8484                 dpll |= DPLL_SDVO_HIGH_SPEED;
8485
8486         /* compute bitmask from p1 value */
8487         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8488         /* also FPA1 */
8489         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8490
8491         switch (crtc_state->dpll.p2) {
8492         case 5:
8493                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8494                 break;
8495         case 7:
8496                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8497                 break;
8498         case 10:
8499                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8500                 break;
8501         case 14:
8502                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8503                 break;
8504         }
8505
8506         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8507                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8508         else
8509                 dpll |= PLL_REF_INPUT_DREFCLK;
8510
8511         return dpll | DPLL_VCO_ENABLE;
8512 }
8513
8514 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8515                                        struct intel_crtc_state *crtc_state)
8516 {
8517         struct drm_device *dev = crtc->base.dev;
8518         intel_clock_t clock, reduced_clock;
8519         u32 dpll = 0, fp = 0, fp2 = 0;
8520         bool ok, has_reduced_clock = false;
8521         bool is_lvds = false;
8522         struct intel_shared_dpll *pll;
8523
8524         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8525
8526         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8527              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8528
8529         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8530                                      &has_reduced_clock, &reduced_clock);
8531         if (!ok && !crtc_state->clock_set) {
8532                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8533                 return -EINVAL;
8534         }
8535         /* Compat-code for transition, will disappear. */
8536         if (!crtc_state->clock_set) {
8537                 crtc_state->dpll.n = clock.n;
8538                 crtc_state->dpll.m1 = clock.m1;
8539                 crtc_state->dpll.m2 = clock.m2;
8540                 crtc_state->dpll.p1 = clock.p1;
8541                 crtc_state->dpll.p2 = clock.p2;
8542         }
8543
8544         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8545         if (crtc_state->has_pch_encoder) {
8546                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8547                 if (has_reduced_clock)
8548                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8549
8550                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8551                                              &fp, &reduced_clock,
8552                                              has_reduced_clock ? &fp2 : NULL);
8553
8554                 crtc_state->dpll_hw_state.dpll = dpll;
8555                 crtc_state->dpll_hw_state.fp0 = fp;
8556                 if (has_reduced_clock)
8557                         crtc_state->dpll_hw_state.fp1 = fp2;
8558                 else
8559                         crtc_state->dpll_hw_state.fp1 = fp;
8560
8561                 pll = intel_get_shared_dpll(crtc, crtc_state);
8562                 if (pll == NULL) {
8563                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8564                                          pipe_name(crtc->pipe));
8565                         return -EINVAL;
8566                 }
8567         }
8568
8569         if (is_lvds && has_reduced_clock)
8570                 crtc->lowfreq_avail = true;
8571         else
8572                 crtc->lowfreq_avail = false;
8573
8574         return 0;
8575 }
8576
8577 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8578                                          struct intel_link_m_n *m_n)
8579 {
8580         struct drm_device *dev = crtc->base.dev;
8581         struct drm_i915_private *dev_priv = dev->dev_private;
8582         enum pipe pipe = crtc->pipe;
8583
8584         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8585         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8586         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8587                 & ~TU_SIZE_MASK;
8588         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8589         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8590                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8591 }
8592
8593 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8594                                          enum transcoder transcoder,
8595                                          struct intel_link_m_n *m_n,
8596                                          struct intel_link_m_n *m2_n2)
8597 {
8598         struct drm_device *dev = crtc->base.dev;
8599         struct drm_i915_private *dev_priv = dev->dev_private;
8600         enum pipe pipe = crtc->pipe;
8601
8602         if (INTEL_INFO(dev)->gen >= 5) {
8603                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8604                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8605                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8606                         & ~TU_SIZE_MASK;
8607                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8608                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8609                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8610                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8611                  * gen < 8) and if DRRS is supported (to make sure the
8612                  * registers are not unnecessarily read).
8613                  */
8614                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8615                         crtc->config->has_drrs) {
8616                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8617                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8618                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8619                                         & ~TU_SIZE_MASK;
8620                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8621                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8622                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8623                 }
8624         } else {
8625                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8626                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8627                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8628                         & ~TU_SIZE_MASK;
8629                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8630                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8631                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8632         }
8633 }
8634
8635 void intel_dp_get_m_n(struct intel_crtc *crtc,
8636                       struct intel_crtc_state *pipe_config)
8637 {
8638         if (pipe_config->has_pch_encoder)
8639                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8640         else
8641                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8642                                              &pipe_config->dp_m_n,
8643                                              &pipe_config->dp_m2_n2);
8644 }
8645
8646 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8647                                         struct intel_crtc_state *pipe_config)
8648 {
8649         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8650                                      &pipe_config->fdi_m_n, NULL);
8651 }
8652
8653 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8654                                     struct intel_crtc_state *pipe_config)
8655 {
8656         struct drm_device *dev = crtc->base.dev;
8657         struct drm_i915_private *dev_priv = dev->dev_private;
8658         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8659         uint32_t ps_ctrl = 0;
8660         int id = -1;
8661         int i;
8662
8663         /* find scaler attached to this pipe */
8664         for (i = 0; i < crtc->num_scalers; i++) {
8665                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8666                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8667                         id = i;
8668                         pipe_config->pch_pfit.enabled = true;
8669                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8670                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8671                         break;
8672                 }
8673         }
8674
8675         scaler_state->scaler_id = id;
8676         if (id >= 0) {
8677                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8678         } else {
8679                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8680         }
8681 }
8682
8683 static void
8684 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8685                                  struct intel_initial_plane_config *plane_config)
8686 {
8687         struct drm_device *dev = crtc->base.dev;
8688         struct drm_i915_private *dev_priv = dev->dev_private;
8689         u32 val, base, offset, stride_mult, tiling;
8690         int pipe = crtc->pipe;
8691         int fourcc, pixel_format;
8692         unsigned int aligned_height;
8693         struct drm_framebuffer *fb;
8694         struct intel_framebuffer *intel_fb;
8695
8696         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8697         if (!intel_fb) {
8698                 DRM_DEBUG_KMS("failed to alloc fb\n");
8699                 return;
8700         }
8701
8702         fb = &intel_fb->base;
8703
8704         val = I915_READ(PLANE_CTL(pipe, 0));
8705         if (!(val & PLANE_CTL_ENABLE))
8706                 goto error;
8707
8708         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8709         fourcc = skl_format_to_fourcc(pixel_format,
8710                                       val & PLANE_CTL_ORDER_RGBX,
8711                                       val & PLANE_CTL_ALPHA_MASK);
8712         fb->pixel_format = fourcc;
8713         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8714
8715         tiling = val & PLANE_CTL_TILED_MASK;
8716         switch (tiling) {
8717         case PLANE_CTL_TILED_LINEAR:
8718                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8719                 break;
8720         case PLANE_CTL_TILED_X:
8721                 plane_config->tiling = I915_TILING_X;
8722                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8723                 break;
8724         case PLANE_CTL_TILED_Y:
8725                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8726                 break;
8727         case PLANE_CTL_TILED_YF:
8728                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8729                 break;
8730         default:
8731                 MISSING_CASE(tiling);
8732                 goto error;
8733         }
8734
8735         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8736         plane_config->base = base;
8737
8738         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8739
8740         val = I915_READ(PLANE_SIZE(pipe, 0));
8741         fb->height = ((val >> 16) & 0xfff) + 1;
8742         fb->width = ((val >> 0) & 0x1fff) + 1;
8743
8744         val = I915_READ(PLANE_STRIDE(pipe, 0));
8745         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8746                                                 fb->pixel_format);
8747         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8748
8749         aligned_height = intel_fb_align_height(dev, fb->height,
8750                                                fb->pixel_format,
8751                                                fb->modifier[0]);
8752
8753         plane_config->size = fb->pitches[0] * aligned_height;
8754
8755         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8756                       pipe_name(pipe), fb->width, fb->height,
8757                       fb->bits_per_pixel, base, fb->pitches[0],
8758                       plane_config->size);
8759
8760         plane_config->fb = intel_fb;
8761         return;
8762
8763 error:
8764         kfree(fb);
8765 }
8766
8767 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8768                                      struct intel_crtc_state *pipe_config)
8769 {
8770         struct drm_device *dev = crtc->base.dev;
8771         struct drm_i915_private *dev_priv = dev->dev_private;
8772         uint32_t tmp;
8773
8774         tmp = I915_READ(PF_CTL(crtc->pipe));
8775
8776         if (tmp & PF_ENABLE) {
8777                 pipe_config->pch_pfit.enabled = true;
8778                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8779                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8780
8781                 /* We currently do not free assignements of panel fitters on
8782                  * ivb/hsw (since we don't use the higher upscaling modes which
8783                  * differentiates them) so just WARN about this case for now. */
8784                 if (IS_GEN7(dev)) {
8785                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8786                                 PF_PIPE_SEL_IVB(crtc->pipe));
8787                 }
8788         }
8789 }
8790
8791 static void
8792 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8793                                   struct intel_initial_plane_config *plane_config)
8794 {
8795         struct drm_device *dev = crtc->base.dev;
8796         struct drm_i915_private *dev_priv = dev->dev_private;
8797         u32 val, base, offset;
8798         int pipe = crtc->pipe;
8799         int fourcc, pixel_format;
8800         unsigned int aligned_height;
8801         struct drm_framebuffer *fb;
8802         struct intel_framebuffer *intel_fb;
8803
8804         val = I915_READ(DSPCNTR(pipe));
8805         if (!(val & DISPLAY_PLANE_ENABLE))
8806                 return;
8807
8808         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8809         if (!intel_fb) {
8810                 DRM_DEBUG_KMS("failed to alloc fb\n");
8811                 return;
8812         }
8813
8814         fb = &intel_fb->base;
8815
8816         if (INTEL_INFO(dev)->gen >= 4) {
8817                 if (val & DISPPLANE_TILED) {
8818                         plane_config->tiling = I915_TILING_X;
8819                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8820                 }
8821         }
8822
8823         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8824         fourcc = i9xx_format_to_fourcc(pixel_format);
8825         fb->pixel_format = fourcc;
8826         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8827
8828         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8829         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8830                 offset = I915_READ(DSPOFFSET(pipe));
8831         } else {
8832                 if (plane_config->tiling)
8833                         offset = I915_READ(DSPTILEOFF(pipe));
8834                 else
8835                         offset = I915_READ(DSPLINOFF(pipe));
8836         }
8837         plane_config->base = base;
8838
8839         val = I915_READ(PIPESRC(pipe));
8840         fb->width = ((val >> 16) & 0xfff) + 1;
8841         fb->height = ((val >> 0) & 0xfff) + 1;
8842
8843         val = I915_READ(DSPSTRIDE(pipe));
8844         fb->pitches[0] = val & 0xffffffc0;
8845
8846         aligned_height = intel_fb_align_height(dev, fb->height,
8847                                                fb->pixel_format,
8848                                                fb->modifier[0]);
8849
8850         plane_config->size = fb->pitches[0] * aligned_height;
8851
8852         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8853                       pipe_name(pipe), fb->width, fb->height,
8854                       fb->bits_per_pixel, base, fb->pitches[0],
8855                       plane_config->size);
8856
8857         plane_config->fb = intel_fb;
8858 }
8859
8860 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8861                                      struct intel_crtc_state *pipe_config)
8862 {
8863         struct drm_device *dev = crtc->base.dev;
8864         struct drm_i915_private *dev_priv = dev->dev_private;
8865         uint32_t tmp;
8866
8867         if (!intel_display_power_is_enabled(dev_priv,
8868                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8869                 return false;
8870
8871         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8872         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8873
8874         tmp = I915_READ(PIPECONF(crtc->pipe));
8875         if (!(tmp & PIPECONF_ENABLE))
8876                 return false;
8877
8878         switch (tmp & PIPECONF_BPC_MASK) {
8879         case PIPECONF_6BPC:
8880                 pipe_config->pipe_bpp = 18;
8881                 break;
8882         case PIPECONF_8BPC:
8883                 pipe_config->pipe_bpp = 24;
8884                 break;
8885         case PIPECONF_10BPC:
8886                 pipe_config->pipe_bpp = 30;
8887                 break;
8888         case PIPECONF_12BPC:
8889                 pipe_config->pipe_bpp = 36;
8890                 break;
8891         default:
8892                 break;
8893         }
8894
8895         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8896                 pipe_config->limited_color_range = true;
8897
8898         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8899                 struct intel_shared_dpll *pll;
8900
8901                 pipe_config->has_pch_encoder = true;
8902
8903                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8904                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8905                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8906
8907                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8908
8909                 if (HAS_PCH_IBX(dev_priv->dev)) {
8910                         pipe_config->shared_dpll =
8911                                 (enum intel_dpll_id) crtc->pipe;
8912                 } else {
8913                         tmp = I915_READ(PCH_DPLL_SEL);
8914                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8915                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8916                         else
8917                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8918                 }
8919
8920                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8921
8922                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8923                                            &pipe_config->dpll_hw_state));
8924
8925                 tmp = pipe_config->dpll_hw_state.dpll;
8926                 pipe_config->pixel_multiplier =
8927                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8928                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8929
8930                 ironlake_pch_clock_get(crtc, pipe_config);
8931         } else {
8932                 pipe_config->pixel_multiplier = 1;
8933         }
8934
8935         intel_get_pipe_timings(crtc, pipe_config);
8936
8937         ironlake_get_pfit_config(crtc, pipe_config);
8938
8939         return true;
8940 }
8941
8942 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8943 {
8944         struct drm_device *dev = dev_priv->dev;
8945         struct intel_crtc *crtc;
8946
8947         for_each_intel_crtc(dev, crtc)
8948                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8949                      pipe_name(crtc->pipe));
8950
8951         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8952         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8953         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8954         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8955         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8956         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8957              "CPU PWM1 enabled\n");
8958         if (IS_HASWELL(dev))
8959                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8960                      "CPU PWM2 enabled\n");
8961         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8962              "PCH PWM1 enabled\n");
8963         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8964              "Utility pin enabled\n");
8965         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8966
8967         /*
8968          * In theory we can still leave IRQs enabled, as long as only the HPD
8969          * interrupts remain enabled. We used to check for that, but since it's
8970          * gen-specific and since we only disable LCPLL after we fully disable
8971          * the interrupts, the check below should be enough.
8972          */
8973         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8974 }
8975
8976 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8977 {
8978         struct drm_device *dev = dev_priv->dev;
8979
8980         if (IS_HASWELL(dev))
8981                 return I915_READ(D_COMP_HSW);
8982         else
8983                 return I915_READ(D_COMP_BDW);
8984 }
8985
8986 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8987 {
8988         struct drm_device *dev = dev_priv->dev;
8989
8990         if (IS_HASWELL(dev)) {
8991                 mutex_lock(&dev_priv->rps.hw_lock);
8992                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8993                                             val))
8994                         DRM_ERROR("Failed to write to D_COMP\n");
8995                 mutex_unlock(&dev_priv->rps.hw_lock);
8996         } else {
8997                 I915_WRITE(D_COMP_BDW, val);
8998                 POSTING_READ(D_COMP_BDW);
8999         }
9000 }
9001
9002 /*
9003  * This function implements pieces of two sequences from BSpec:
9004  * - Sequence for display software to disable LCPLL
9005  * - Sequence for display software to allow package C8+
9006  * The steps implemented here are just the steps that actually touch the LCPLL
9007  * register. Callers should take care of disabling all the display engine
9008  * functions, doing the mode unset, fixing interrupts, etc.
9009  */
9010 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9011                               bool switch_to_fclk, bool allow_power_down)
9012 {
9013         uint32_t val;
9014
9015         assert_can_disable_lcpll(dev_priv);
9016
9017         val = I915_READ(LCPLL_CTL);
9018
9019         if (switch_to_fclk) {
9020                 val |= LCPLL_CD_SOURCE_FCLK;
9021                 I915_WRITE(LCPLL_CTL, val);
9022
9023                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9024                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9025                         DRM_ERROR("Switching to FCLK failed\n");
9026
9027                 val = I915_READ(LCPLL_CTL);
9028         }
9029
9030         val |= LCPLL_PLL_DISABLE;
9031         I915_WRITE(LCPLL_CTL, val);
9032         POSTING_READ(LCPLL_CTL);
9033
9034         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9035                 DRM_ERROR("LCPLL still locked\n");
9036
9037         val = hsw_read_dcomp(dev_priv);
9038         val |= D_COMP_COMP_DISABLE;
9039         hsw_write_dcomp(dev_priv, val);
9040         ndelay(100);
9041
9042         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9043                      1))
9044                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9045
9046         if (allow_power_down) {
9047                 val = I915_READ(LCPLL_CTL);
9048                 val |= LCPLL_POWER_DOWN_ALLOW;
9049                 I915_WRITE(LCPLL_CTL, val);
9050                 POSTING_READ(LCPLL_CTL);
9051         }
9052 }
9053
9054 /*
9055  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9056  * source.
9057  */
9058 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9059 {
9060         uint32_t val;
9061
9062         val = I915_READ(LCPLL_CTL);
9063
9064         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9065                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9066                 return;
9067
9068         /*
9069          * Make sure we're not on PC8 state before disabling PC8, otherwise
9070          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9071          */
9072         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9073
9074         if (val & LCPLL_POWER_DOWN_ALLOW) {
9075                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9076                 I915_WRITE(LCPLL_CTL, val);
9077                 POSTING_READ(LCPLL_CTL);
9078         }
9079
9080         val = hsw_read_dcomp(dev_priv);
9081         val |= D_COMP_COMP_FORCE;
9082         val &= ~D_COMP_COMP_DISABLE;
9083         hsw_write_dcomp(dev_priv, val);
9084
9085         val = I915_READ(LCPLL_CTL);
9086         val &= ~LCPLL_PLL_DISABLE;
9087         I915_WRITE(LCPLL_CTL, val);
9088
9089         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9090                 DRM_ERROR("LCPLL not locked yet\n");
9091
9092         if (val & LCPLL_CD_SOURCE_FCLK) {
9093                 val = I915_READ(LCPLL_CTL);
9094                 val &= ~LCPLL_CD_SOURCE_FCLK;
9095                 I915_WRITE(LCPLL_CTL, val);
9096
9097                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9098                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9099                         DRM_ERROR("Switching back to LCPLL failed\n");
9100         }
9101
9102         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9103 }
9104
9105 /*
9106  * Package states C8 and deeper are really deep PC states that can only be
9107  * reached when all the devices on the system allow it, so even if the graphics
9108  * device allows PC8+, it doesn't mean the system will actually get to these
9109  * states. Our driver only allows PC8+ when going into runtime PM.
9110  *
9111  * The requirements for PC8+ are that all the outputs are disabled, the power
9112  * well is disabled and most interrupts are disabled, and these are also
9113  * requirements for runtime PM. When these conditions are met, we manually do
9114  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9115  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9116  * hang the machine.
9117  *
9118  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9119  * the state of some registers, so when we come back from PC8+ we need to
9120  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9121  * need to take care of the registers kept by RC6. Notice that this happens even
9122  * if we don't put the device in PCI D3 state (which is what currently happens
9123  * because of the runtime PM support).
9124  *
9125  * For more, read "Display Sequences for Package C8" on the hardware
9126  * documentation.
9127  */
9128 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9129 {
9130         struct drm_device *dev = dev_priv->dev;
9131         uint32_t val;
9132
9133         DRM_DEBUG_KMS("Enabling package C8+\n");
9134
9135         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9136                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9137                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9138                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9139         }
9140
9141         lpt_disable_clkout_dp(dev);
9142         hsw_disable_lcpll(dev_priv, true, true);
9143 }
9144
9145 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9146 {
9147         struct drm_device *dev = dev_priv->dev;
9148         uint32_t val;
9149
9150         DRM_DEBUG_KMS("Disabling package C8+\n");
9151
9152         hsw_restore_lcpll(dev_priv);
9153         lpt_init_pch_refclk(dev);
9154
9155         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9156                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9157                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9158                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9159         }
9160
9161         intel_prepare_ddi(dev);
9162 }
9163
9164 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9165 {
9166         struct drm_device *dev = old_state->dev;
9167         struct drm_i915_private *dev_priv = dev->dev_private;
9168         int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9169         int req_cdclk;
9170
9171         /* see the comment in valleyview_modeset_global_resources */
9172         if (WARN_ON(max_pixclk < 0))
9173                 return;
9174
9175         req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9176
9177         if (req_cdclk != dev_priv->cdclk_freq)
9178                 broxton_set_cdclk(dev, req_cdclk);
9179 }
9180
9181 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9182                                       struct intel_crtc_state *crtc_state)
9183 {
9184         if (!intel_ddi_pll_select(crtc, crtc_state))
9185                 return -EINVAL;
9186
9187         crtc->lowfreq_avail = false;
9188
9189         return 0;
9190 }
9191
9192 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9193                                 enum port port,
9194                                 struct intel_crtc_state *pipe_config)
9195 {
9196         switch (port) {
9197         case PORT_A:
9198                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9199                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9200                 break;
9201         case PORT_B:
9202                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9203                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9204                 break;
9205         case PORT_C:
9206                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9207                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9208                 break;
9209         default:
9210                 DRM_ERROR("Incorrect port type\n");
9211         }
9212 }
9213
9214 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9215                                 enum port port,
9216                                 struct intel_crtc_state *pipe_config)
9217 {
9218         u32 temp, dpll_ctl1;
9219
9220         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9221         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9222
9223         switch (pipe_config->ddi_pll_sel) {
9224         case SKL_DPLL0:
9225                 /*
9226                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9227                  * of the shared DPLL framework and thus needs to be read out
9228                  * separately
9229                  */
9230                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9231                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9232                 break;
9233         case SKL_DPLL1:
9234                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9235                 break;
9236         case SKL_DPLL2:
9237                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9238                 break;
9239         case SKL_DPLL3:
9240                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9241                 break;
9242         }
9243 }
9244
9245 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9246                                 enum port port,
9247                                 struct intel_crtc_state *pipe_config)
9248 {
9249         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9250
9251         switch (pipe_config->ddi_pll_sel) {
9252         case PORT_CLK_SEL_WRPLL1:
9253                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9254                 break;
9255         case PORT_CLK_SEL_WRPLL2:
9256                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9257                 break;
9258         }
9259 }
9260
9261 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9262                                        struct intel_crtc_state *pipe_config)
9263 {
9264         struct drm_device *dev = crtc->base.dev;
9265         struct drm_i915_private *dev_priv = dev->dev_private;
9266         struct intel_shared_dpll *pll;
9267         enum port port;
9268         uint32_t tmp;
9269
9270         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9271
9272         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9273
9274         if (IS_SKYLAKE(dev))
9275                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9276         else if (IS_BROXTON(dev))
9277                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9278         else
9279                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9280
9281         if (pipe_config->shared_dpll >= 0) {
9282                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9283
9284                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9285                                            &pipe_config->dpll_hw_state));
9286         }
9287
9288         /*
9289          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9290          * DDI E. So just check whether this pipe is wired to DDI E and whether
9291          * the PCH transcoder is on.
9292          */
9293         if (INTEL_INFO(dev)->gen < 9 &&
9294             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9295                 pipe_config->has_pch_encoder = true;
9296
9297                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9298                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9299                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9300
9301                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9302         }
9303 }
9304
9305 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9306                                     struct intel_crtc_state *pipe_config)
9307 {
9308         struct drm_device *dev = crtc->base.dev;
9309         struct drm_i915_private *dev_priv = dev->dev_private;
9310         enum intel_display_power_domain pfit_domain;
9311         uint32_t tmp;
9312
9313         if (!intel_display_power_is_enabled(dev_priv,
9314                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9315                 return false;
9316
9317         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9318         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9319
9320         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9321         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9322                 enum pipe trans_edp_pipe;
9323                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9324                 default:
9325                         WARN(1, "unknown pipe linked to edp transcoder\n");
9326                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9327                 case TRANS_DDI_EDP_INPUT_A_ON:
9328                         trans_edp_pipe = PIPE_A;
9329                         break;
9330                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9331                         trans_edp_pipe = PIPE_B;
9332                         break;
9333                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9334                         trans_edp_pipe = PIPE_C;
9335                         break;
9336                 }
9337
9338                 if (trans_edp_pipe == crtc->pipe)
9339                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9340         }
9341
9342         if (!intel_display_power_is_enabled(dev_priv,
9343                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9344                 return false;
9345
9346         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9347         if (!(tmp & PIPECONF_ENABLE))
9348                 return false;
9349
9350         haswell_get_ddi_port_state(crtc, pipe_config);
9351
9352         intel_get_pipe_timings(crtc, pipe_config);
9353
9354         if (INTEL_INFO(dev)->gen >= 9) {
9355                 skl_init_scalers(dev, crtc, pipe_config);
9356         }
9357
9358         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9359         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9360                 if (INTEL_INFO(dev)->gen == 9)
9361                         skylake_get_pfit_config(crtc, pipe_config);
9362                 else if (INTEL_INFO(dev)->gen < 9)
9363                         ironlake_get_pfit_config(crtc, pipe_config);
9364                 else
9365                         MISSING_CASE(INTEL_INFO(dev)->gen);
9366
9367         } else {
9368                 pipe_config->scaler_state.scaler_id = -1;
9369                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9370         }
9371
9372         if (IS_HASWELL(dev))
9373                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9374                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9375
9376         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9377                 pipe_config->pixel_multiplier =
9378                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9379         } else {
9380                 pipe_config->pixel_multiplier = 1;
9381         }
9382
9383         return true;
9384 }
9385
9386 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9387 {
9388         struct drm_device *dev = crtc->dev;
9389         struct drm_i915_private *dev_priv = dev->dev_private;
9390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9391         uint32_t cntl = 0, size = 0;
9392
9393         if (base) {
9394                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9395                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9396                 unsigned int stride = roundup_pow_of_two(width) * 4;
9397
9398                 switch (stride) {
9399                 default:
9400                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9401                                   width, stride);
9402                         stride = 256;
9403                         /* fallthrough */
9404                 case 256:
9405                 case 512:
9406                 case 1024:
9407                 case 2048:
9408                         break;
9409                 }
9410
9411                 cntl |= CURSOR_ENABLE |
9412                         CURSOR_GAMMA_ENABLE |
9413                         CURSOR_FORMAT_ARGB |
9414                         CURSOR_STRIDE(stride);
9415
9416                 size = (height << 12) | width;
9417         }
9418
9419         if (intel_crtc->cursor_cntl != 0 &&
9420             (intel_crtc->cursor_base != base ||
9421              intel_crtc->cursor_size != size ||
9422              intel_crtc->cursor_cntl != cntl)) {
9423                 /* On these chipsets we can only modify the base/size/stride
9424                  * whilst the cursor is disabled.
9425                  */
9426                 I915_WRITE(_CURACNTR, 0);
9427                 POSTING_READ(_CURACNTR);
9428                 intel_crtc->cursor_cntl = 0;
9429         }
9430
9431         if (intel_crtc->cursor_base != base) {
9432                 I915_WRITE(_CURABASE, base);
9433                 intel_crtc->cursor_base = base;
9434         }
9435
9436         if (intel_crtc->cursor_size != size) {
9437                 I915_WRITE(CURSIZE, size);
9438                 intel_crtc->cursor_size = size;
9439         }
9440
9441         if (intel_crtc->cursor_cntl != cntl) {
9442                 I915_WRITE(_CURACNTR, cntl);
9443                 POSTING_READ(_CURACNTR);
9444                 intel_crtc->cursor_cntl = cntl;
9445         }
9446 }
9447
9448 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9449 {
9450         struct drm_device *dev = crtc->dev;
9451         struct drm_i915_private *dev_priv = dev->dev_private;
9452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9453         int pipe = intel_crtc->pipe;
9454         uint32_t cntl;
9455
9456         cntl = 0;
9457         if (base) {
9458                 cntl = MCURSOR_GAMMA_ENABLE;
9459                 switch (intel_crtc->base.cursor->state->crtc_w) {
9460                         case 64:
9461                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9462                                 break;
9463                         case 128:
9464                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9465                                 break;
9466                         case 256:
9467                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9468                                 break;
9469                         default:
9470                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9471                                 return;
9472                 }
9473                 cntl |= pipe << 28; /* Connect to correct pipe */
9474
9475                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9476                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9477         }
9478
9479         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9480                 cntl |= CURSOR_ROTATE_180;
9481
9482         if (intel_crtc->cursor_cntl != cntl) {
9483                 I915_WRITE(CURCNTR(pipe), cntl);
9484                 POSTING_READ(CURCNTR(pipe));
9485                 intel_crtc->cursor_cntl = cntl;
9486         }
9487
9488         /* and commit changes on next vblank */
9489         I915_WRITE(CURBASE(pipe), base);
9490         POSTING_READ(CURBASE(pipe));
9491
9492         intel_crtc->cursor_base = base;
9493 }
9494
9495 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9496 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9497                                      bool on)
9498 {
9499         struct drm_device *dev = crtc->dev;
9500         struct drm_i915_private *dev_priv = dev->dev_private;
9501         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9502         int pipe = intel_crtc->pipe;
9503         int x = crtc->cursor_x;
9504         int y = crtc->cursor_y;
9505         u32 base = 0, pos = 0;
9506
9507         if (on)
9508                 base = intel_crtc->cursor_addr;
9509
9510         if (x >= intel_crtc->config->pipe_src_w)
9511                 base = 0;
9512
9513         if (y >= intel_crtc->config->pipe_src_h)
9514                 base = 0;
9515
9516         if (x < 0) {
9517                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9518                         base = 0;
9519
9520                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9521                 x = -x;
9522         }
9523         pos |= x << CURSOR_X_SHIFT;
9524
9525         if (y < 0) {
9526                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9527                         base = 0;
9528
9529                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9530                 y = -y;
9531         }
9532         pos |= y << CURSOR_Y_SHIFT;
9533
9534         if (base == 0 && intel_crtc->cursor_base == 0)
9535                 return;
9536
9537         I915_WRITE(CURPOS(pipe), pos);
9538
9539         /* ILK+ do this automagically */
9540         if (HAS_GMCH_DISPLAY(dev) &&
9541             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9542                 base += (intel_crtc->base.cursor->state->crtc_h *
9543                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9544         }
9545
9546         if (IS_845G(dev) || IS_I865G(dev))
9547                 i845_update_cursor(crtc, base);
9548         else
9549                 i9xx_update_cursor(crtc, base);
9550 }
9551
9552 static bool cursor_size_ok(struct drm_device *dev,
9553                            uint32_t width, uint32_t height)
9554 {
9555         if (width == 0 || height == 0)
9556                 return false;
9557
9558         /*
9559          * 845g/865g are special in that they are only limited by
9560          * the width of their cursors, the height is arbitrary up to
9561          * the precision of the register. Everything else requires
9562          * square cursors, limited to a few power-of-two sizes.
9563          */
9564         if (IS_845G(dev) || IS_I865G(dev)) {
9565                 if ((width & 63) != 0)
9566                         return false;
9567
9568                 if (width > (IS_845G(dev) ? 64 : 512))
9569                         return false;
9570
9571                 if (height > 1023)
9572                         return false;
9573         } else {
9574                 switch (width | height) {
9575                 case 256:
9576                 case 128:
9577                         if (IS_GEN2(dev))
9578                                 return false;
9579                 case 64:
9580                         break;
9581                 default:
9582                         return false;
9583                 }
9584         }
9585
9586         return true;
9587 }
9588
9589 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9590                                  u16 *blue, uint32_t start, uint32_t size)
9591 {
9592         int end = (start + size > 256) ? 256 : start + size, i;
9593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9594
9595         for (i = start; i < end; i++) {
9596                 intel_crtc->lut_r[i] = red[i] >> 8;
9597                 intel_crtc->lut_g[i] = green[i] >> 8;
9598                 intel_crtc->lut_b[i] = blue[i] >> 8;
9599         }
9600
9601         intel_crtc_load_lut(crtc);
9602 }
9603
9604 /* VESA 640x480x72Hz mode to set on the pipe */
9605 static struct drm_display_mode load_detect_mode = {
9606         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9607                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9608 };
9609
9610 struct drm_framebuffer *
9611 __intel_framebuffer_create(struct drm_device *dev,
9612                            struct drm_mode_fb_cmd2 *mode_cmd,
9613                            struct drm_i915_gem_object *obj)
9614 {
9615         struct intel_framebuffer *intel_fb;
9616         int ret;
9617
9618         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9619         if (!intel_fb) {
9620                 drm_gem_object_unreference(&obj->base);
9621                 return ERR_PTR(-ENOMEM);
9622         }
9623
9624         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9625         if (ret)
9626                 goto err;
9627
9628         return &intel_fb->base;
9629 err:
9630         drm_gem_object_unreference(&obj->base);
9631         kfree(intel_fb);
9632
9633         return ERR_PTR(ret);
9634 }
9635
9636 static struct drm_framebuffer *
9637 intel_framebuffer_create(struct drm_device *dev,
9638                          struct drm_mode_fb_cmd2 *mode_cmd,
9639                          struct drm_i915_gem_object *obj)
9640 {
9641         struct drm_framebuffer *fb;
9642         int ret;
9643
9644         ret = i915_mutex_lock_interruptible(dev);
9645         if (ret)
9646                 return ERR_PTR(ret);
9647         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9648         mutex_unlock(&dev->struct_mutex);
9649
9650         return fb;
9651 }
9652
9653 static u32
9654 intel_framebuffer_pitch_for_width(int width, int bpp)
9655 {
9656         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9657         return ALIGN(pitch, 64);
9658 }
9659
9660 static u32
9661 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9662 {
9663         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9664         return PAGE_ALIGN(pitch * mode->vdisplay);
9665 }
9666
9667 static struct drm_framebuffer *
9668 intel_framebuffer_create_for_mode(struct drm_device *dev,
9669                                   struct drm_display_mode *mode,
9670                                   int depth, int bpp)
9671 {
9672         struct drm_i915_gem_object *obj;
9673         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9674
9675         obj = i915_gem_alloc_object(dev,
9676                                     intel_framebuffer_size_for_mode(mode, bpp));
9677         if (obj == NULL)
9678                 return ERR_PTR(-ENOMEM);
9679
9680         mode_cmd.width = mode->hdisplay;
9681         mode_cmd.height = mode->vdisplay;
9682         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9683                                                                 bpp);
9684         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9685
9686         return intel_framebuffer_create(dev, &mode_cmd, obj);
9687 }
9688
9689 static struct drm_framebuffer *
9690 mode_fits_in_fbdev(struct drm_device *dev,
9691                    struct drm_display_mode *mode)
9692 {
9693 #ifdef CONFIG_DRM_I915_FBDEV
9694         struct drm_i915_private *dev_priv = dev->dev_private;
9695         struct drm_i915_gem_object *obj;
9696         struct drm_framebuffer *fb;
9697
9698         if (!dev_priv->fbdev)
9699                 return NULL;
9700
9701         if (!dev_priv->fbdev->fb)
9702                 return NULL;
9703
9704         obj = dev_priv->fbdev->fb->obj;
9705         BUG_ON(!obj);
9706
9707         fb = &dev_priv->fbdev->fb->base;
9708         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9709                                                                fb->bits_per_pixel))
9710                 return NULL;
9711
9712         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9713                 return NULL;
9714
9715         return fb;
9716 #else
9717         return NULL;
9718 #endif
9719 }
9720
9721 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9722                                            struct drm_crtc *crtc,
9723                                            struct drm_display_mode *mode,
9724                                            struct drm_framebuffer *fb,
9725                                            int x, int y)
9726 {
9727         struct drm_plane_state *plane_state;
9728         int hdisplay, vdisplay;
9729         int ret;
9730
9731         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9732         if (IS_ERR(plane_state))
9733                 return PTR_ERR(plane_state);
9734
9735         if (mode)
9736                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
9737         else
9738                 hdisplay = vdisplay = 0;
9739
9740         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9741         if (ret)
9742                 return ret;
9743         drm_atomic_set_fb_for_plane(plane_state, fb);
9744         plane_state->crtc_x = 0;
9745         plane_state->crtc_y = 0;
9746         plane_state->crtc_w = hdisplay;
9747         plane_state->crtc_h = vdisplay;
9748         plane_state->src_x = x << 16;
9749         plane_state->src_y = y << 16;
9750         plane_state->src_w = hdisplay << 16;
9751         plane_state->src_h = vdisplay << 16;
9752
9753         return 0;
9754 }
9755
9756 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9757                                 struct drm_display_mode *mode,
9758                                 struct intel_load_detect_pipe *old,
9759                                 struct drm_modeset_acquire_ctx *ctx)
9760 {
9761         struct intel_crtc *intel_crtc;
9762         struct intel_encoder *intel_encoder =
9763                 intel_attached_encoder(connector);
9764         struct drm_crtc *possible_crtc;
9765         struct drm_encoder *encoder = &intel_encoder->base;
9766         struct drm_crtc *crtc = NULL;
9767         struct drm_device *dev = encoder->dev;
9768         struct drm_framebuffer *fb;
9769         struct drm_mode_config *config = &dev->mode_config;
9770         struct drm_atomic_state *state = NULL;
9771         struct drm_connector_state *connector_state;
9772         struct intel_crtc_state *crtc_state;
9773         int ret, i = -1;
9774
9775         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9776                       connector->base.id, connector->name,
9777                       encoder->base.id, encoder->name);
9778
9779 retry:
9780         ret = drm_modeset_lock(&config->connection_mutex, ctx);
9781         if (ret)
9782                 goto fail_unlock;
9783
9784         /*
9785          * Algorithm gets a little messy:
9786          *
9787          *   - if the connector already has an assigned crtc, use it (but make
9788          *     sure it's on first)
9789          *
9790          *   - try to find the first unused crtc that can drive this connector,
9791          *     and use that if we find one
9792          */
9793
9794         /* See if we already have a CRTC for this connector */
9795         if (encoder->crtc) {
9796                 crtc = encoder->crtc;
9797
9798                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9799                 if (ret)
9800                         goto fail_unlock;
9801                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9802                 if (ret)
9803                         goto fail_unlock;
9804
9805                 old->dpms_mode = connector->dpms;
9806                 old->load_detect_temp = false;
9807
9808                 /* Make sure the crtc and connector are running */
9809                 if (connector->dpms != DRM_MODE_DPMS_ON)
9810                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9811
9812                 return true;
9813         }
9814
9815         /* Find an unused one (if possible) */
9816         for_each_crtc(dev, possible_crtc) {
9817                 i++;
9818                 if (!(encoder->possible_crtcs & (1 << i)))
9819                         continue;
9820                 if (possible_crtc->state->enable)
9821                         continue;
9822                 /* This can occur when applying the pipe A quirk on resume. */
9823                 if (to_intel_crtc(possible_crtc)->new_enabled)
9824                         continue;
9825
9826                 crtc = possible_crtc;
9827                 break;
9828         }
9829
9830         /*
9831          * If we didn't find an unused CRTC, don't use any.
9832          */
9833         if (!crtc) {
9834                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9835                 goto fail_unlock;
9836         }
9837
9838         ret = drm_modeset_lock(&crtc->mutex, ctx);
9839         if (ret)
9840                 goto fail_unlock;
9841         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9842         if (ret)
9843                 goto fail_unlock;
9844         intel_encoder->new_crtc = to_intel_crtc(crtc);
9845         to_intel_connector(connector)->new_encoder = intel_encoder;
9846
9847         intel_crtc = to_intel_crtc(crtc);
9848         intel_crtc->new_enabled = true;
9849         old->dpms_mode = connector->dpms;
9850         old->load_detect_temp = true;
9851         old->release_fb = NULL;
9852
9853         state = drm_atomic_state_alloc(dev);
9854         if (!state)
9855                 return false;
9856
9857         state->acquire_ctx = ctx;
9858
9859         connector_state = drm_atomic_get_connector_state(state, connector);
9860         if (IS_ERR(connector_state)) {
9861                 ret = PTR_ERR(connector_state);
9862                 goto fail;
9863         }
9864
9865         connector_state->crtc = crtc;
9866         connector_state->best_encoder = &intel_encoder->base;
9867
9868         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9869         if (IS_ERR(crtc_state)) {
9870                 ret = PTR_ERR(crtc_state);
9871                 goto fail;
9872         }
9873
9874         crtc_state->base.active = crtc_state->base.enable = true;
9875
9876         if (!mode)
9877                 mode = &load_detect_mode;
9878
9879         /* We need a framebuffer large enough to accommodate all accesses
9880          * that the plane may generate whilst we perform load detection.
9881          * We can not rely on the fbcon either being present (we get called
9882          * during its initialisation to detect all boot displays, or it may
9883          * not even exist) or that it is large enough to satisfy the
9884          * requested mode.
9885          */
9886         fb = mode_fits_in_fbdev(dev, mode);
9887         if (fb == NULL) {
9888                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9889                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9890                 old->release_fb = fb;
9891         } else
9892                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9893         if (IS_ERR(fb)) {
9894                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9895                 goto fail;
9896         }
9897
9898         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9899         if (ret)
9900                 goto fail;
9901
9902         drm_mode_copy(&crtc_state->base.mode, mode);
9903
9904         if (intel_set_mode(crtc, state)) {
9905                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9906                 if (old->release_fb)
9907                         old->release_fb->funcs->destroy(old->release_fb);
9908                 goto fail;
9909         }
9910         crtc->primary->crtc = crtc;
9911
9912         /* let the connector get through one full cycle before testing */
9913         intel_wait_for_vblank(dev, intel_crtc->pipe);
9914         return true;
9915
9916  fail:
9917         intel_crtc->new_enabled = crtc->state->enable;
9918 fail_unlock:
9919         drm_atomic_state_free(state);
9920         state = NULL;
9921
9922         if (ret == -EDEADLK) {
9923                 drm_modeset_backoff(ctx);
9924                 goto retry;
9925         }
9926
9927         return false;
9928 }
9929
9930 void intel_release_load_detect_pipe(struct drm_connector *connector,
9931                                     struct intel_load_detect_pipe *old,
9932                                     struct drm_modeset_acquire_ctx *ctx)
9933 {
9934         struct drm_device *dev = connector->dev;
9935         struct intel_encoder *intel_encoder =
9936                 intel_attached_encoder(connector);
9937         struct drm_encoder *encoder = &intel_encoder->base;
9938         struct drm_crtc *crtc = encoder->crtc;
9939         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9940         struct drm_atomic_state *state;
9941         struct drm_connector_state *connector_state;
9942         struct intel_crtc_state *crtc_state;
9943         int ret;
9944
9945         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9946                       connector->base.id, connector->name,
9947                       encoder->base.id, encoder->name);
9948
9949         if (old->load_detect_temp) {
9950                 state = drm_atomic_state_alloc(dev);
9951                 if (!state)
9952                         goto fail;
9953
9954                 state->acquire_ctx = ctx;
9955
9956                 connector_state = drm_atomic_get_connector_state(state, connector);
9957                 if (IS_ERR(connector_state))
9958                         goto fail;
9959
9960                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9961                 if (IS_ERR(crtc_state))
9962                         goto fail;
9963
9964                 to_intel_connector(connector)->new_encoder = NULL;
9965                 intel_encoder->new_crtc = NULL;
9966                 intel_crtc->new_enabled = false;
9967
9968                 connector_state->best_encoder = NULL;
9969                 connector_state->crtc = NULL;
9970
9971                 crtc_state->base.enable = crtc_state->base.active = false;
9972
9973                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
9974                                                       0, 0);
9975                 if (ret)
9976                         goto fail;
9977
9978                 ret = intel_set_mode(crtc, state);
9979                 if (ret)
9980                         goto fail;
9981
9982                 if (old->release_fb) {
9983                         drm_framebuffer_unregister_private(old->release_fb);
9984                         drm_framebuffer_unreference(old->release_fb);
9985                 }
9986
9987                 return;
9988         }
9989
9990         /* Switch crtc and encoder back off if necessary */
9991         if (old->dpms_mode != DRM_MODE_DPMS_ON)
9992                 connector->funcs->dpms(connector, old->dpms_mode);
9993
9994         return;
9995 fail:
9996         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9997         drm_atomic_state_free(state);
9998 }
9999
10000 static int i9xx_pll_refclk(struct drm_device *dev,
10001                            const struct intel_crtc_state *pipe_config)
10002 {
10003         struct drm_i915_private *dev_priv = dev->dev_private;
10004         u32 dpll = pipe_config->dpll_hw_state.dpll;
10005
10006         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10007                 return dev_priv->vbt.lvds_ssc_freq;
10008         else if (HAS_PCH_SPLIT(dev))
10009                 return 120000;
10010         else if (!IS_GEN2(dev))
10011                 return 96000;
10012         else
10013                 return 48000;
10014 }
10015
10016 /* Returns the clock of the currently programmed mode of the given pipe. */
10017 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10018                                 struct intel_crtc_state *pipe_config)
10019 {
10020         struct drm_device *dev = crtc->base.dev;
10021         struct drm_i915_private *dev_priv = dev->dev_private;
10022         int pipe = pipe_config->cpu_transcoder;
10023         u32 dpll = pipe_config->dpll_hw_state.dpll;
10024         u32 fp;
10025         intel_clock_t clock;
10026         int refclk = i9xx_pll_refclk(dev, pipe_config);
10027
10028         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10029                 fp = pipe_config->dpll_hw_state.fp0;
10030         else
10031                 fp = pipe_config->dpll_hw_state.fp1;
10032
10033         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10034         if (IS_PINEVIEW(dev)) {
10035                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10036                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10037         } else {
10038                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10039                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10040         }
10041
10042         if (!IS_GEN2(dev)) {
10043                 if (IS_PINEVIEW(dev))
10044                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10045                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10046                 else
10047                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10048                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10049
10050                 switch (dpll & DPLL_MODE_MASK) {
10051                 case DPLLB_MODE_DAC_SERIAL:
10052                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10053                                 5 : 10;
10054                         break;
10055                 case DPLLB_MODE_LVDS:
10056                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10057                                 7 : 14;
10058                         break;
10059                 default:
10060                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10061                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10062                         return;
10063                 }
10064
10065                 if (IS_PINEVIEW(dev))
10066                         pineview_clock(refclk, &clock);
10067                 else
10068                         i9xx_clock(refclk, &clock);
10069         } else {
10070                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10071                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10072
10073                 if (is_lvds) {
10074                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10075                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10076
10077                         if (lvds & LVDS_CLKB_POWER_UP)
10078                                 clock.p2 = 7;
10079                         else
10080                                 clock.p2 = 14;
10081                 } else {
10082                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10083                                 clock.p1 = 2;
10084                         else {
10085                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10086                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10087                         }
10088                         if (dpll & PLL_P2_DIVIDE_BY_4)
10089                                 clock.p2 = 4;
10090                         else
10091                                 clock.p2 = 2;
10092                 }
10093
10094                 i9xx_clock(refclk, &clock);
10095         }
10096
10097         /*
10098          * This value includes pixel_multiplier. We will use
10099          * port_clock to compute adjusted_mode.crtc_clock in the
10100          * encoder's get_config() function.
10101          */
10102         pipe_config->port_clock = clock.dot;
10103 }
10104
10105 int intel_dotclock_calculate(int link_freq,
10106                              const struct intel_link_m_n *m_n)
10107 {
10108         /*
10109          * The calculation for the data clock is:
10110          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10111          * But we want to avoid losing precison if possible, so:
10112          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10113          *
10114          * and the link clock is simpler:
10115          * link_clock = (m * link_clock) / n
10116          */
10117
10118         if (!m_n->link_n)
10119                 return 0;
10120
10121         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10122 }
10123
10124 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10125                                    struct intel_crtc_state *pipe_config)
10126 {
10127         struct drm_device *dev = crtc->base.dev;
10128
10129         /* read out port_clock from the DPLL */
10130         i9xx_crtc_clock_get(crtc, pipe_config);
10131
10132         /*
10133          * This value does not include pixel_multiplier.
10134          * We will check that port_clock and adjusted_mode.crtc_clock
10135          * agree once we know their relationship in the encoder's
10136          * get_config() function.
10137          */
10138         pipe_config->base.adjusted_mode.crtc_clock =
10139                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10140                                          &pipe_config->fdi_m_n);
10141 }
10142
10143 /** Returns the currently programmed mode of the given pipe. */
10144 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10145                                              struct drm_crtc *crtc)
10146 {
10147         struct drm_i915_private *dev_priv = dev->dev_private;
10148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10149         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10150         struct drm_display_mode *mode;
10151         struct intel_crtc_state pipe_config;
10152         int htot = I915_READ(HTOTAL(cpu_transcoder));
10153         int hsync = I915_READ(HSYNC(cpu_transcoder));
10154         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10155         int vsync = I915_READ(VSYNC(cpu_transcoder));
10156         enum pipe pipe = intel_crtc->pipe;
10157
10158         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10159         if (!mode)
10160                 return NULL;
10161
10162         /*
10163          * Construct a pipe_config sufficient for getting the clock info
10164          * back out of crtc_clock_get.
10165          *
10166          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10167          * to use a real value here instead.
10168          */
10169         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10170         pipe_config.pixel_multiplier = 1;
10171         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10172         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10173         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10174         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10175
10176         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10177         mode->hdisplay = (htot & 0xffff) + 1;
10178         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10179         mode->hsync_start = (hsync & 0xffff) + 1;
10180         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10181         mode->vdisplay = (vtot & 0xffff) + 1;
10182         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10183         mode->vsync_start = (vsync & 0xffff) + 1;
10184         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10185
10186         drm_mode_set_name(mode);
10187
10188         return mode;
10189 }
10190
10191 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10192 {
10193         struct drm_device *dev = crtc->dev;
10194         struct drm_i915_private *dev_priv = dev->dev_private;
10195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10196
10197         if (!HAS_GMCH_DISPLAY(dev))
10198                 return;
10199
10200         if (!dev_priv->lvds_downclock_avail)
10201                 return;
10202
10203         /*
10204          * Since this is called by a timer, we should never get here in
10205          * the manual case.
10206          */
10207         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10208                 int pipe = intel_crtc->pipe;
10209                 int dpll_reg = DPLL(pipe);
10210                 int dpll;
10211
10212                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10213
10214                 assert_panel_unlocked(dev_priv, pipe);
10215
10216                 dpll = I915_READ(dpll_reg);
10217                 dpll |= DISPLAY_RATE_SELECT_FPA1;
10218                 I915_WRITE(dpll_reg, dpll);
10219                 intel_wait_for_vblank(dev, pipe);
10220                 dpll = I915_READ(dpll_reg);
10221                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10222                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10223         }
10224
10225 }
10226
10227 void intel_mark_busy(struct drm_device *dev)
10228 {
10229         struct drm_i915_private *dev_priv = dev->dev_private;
10230
10231         if (dev_priv->mm.busy)
10232                 return;
10233
10234         intel_runtime_pm_get(dev_priv);
10235         i915_update_gfx_val(dev_priv);
10236         if (INTEL_INFO(dev)->gen >= 6)
10237                 gen6_rps_busy(dev_priv);
10238         dev_priv->mm.busy = true;
10239 }
10240
10241 void intel_mark_idle(struct drm_device *dev)
10242 {
10243         struct drm_i915_private *dev_priv = dev->dev_private;
10244         struct drm_crtc *crtc;
10245
10246         if (!dev_priv->mm.busy)
10247                 return;
10248
10249         dev_priv->mm.busy = false;
10250
10251         for_each_crtc(dev, crtc) {
10252                 if (!crtc->primary->fb)
10253                         continue;
10254
10255                 intel_decrease_pllclock(crtc);
10256         }
10257
10258         if (INTEL_INFO(dev)->gen >= 6)
10259                 gen6_rps_idle(dev->dev_private);
10260
10261         intel_runtime_pm_put(dev_priv);
10262 }
10263
10264 static void intel_crtc_destroy(struct drm_crtc *crtc)
10265 {
10266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10267         struct drm_device *dev = crtc->dev;
10268         struct intel_unpin_work *work;
10269
10270         spin_lock_irq(&dev->event_lock);
10271         work = intel_crtc->unpin_work;
10272         intel_crtc->unpin_work = NULL;
10273         spin_unlock_irq(&dev->event_lock);
10274
10275         if (work) {
10276                 cancel_work_sync(&work->work);
10277                 kfree(work);
10278         }
10279
10280         drm_crtc_cleanup(crtc);
10281
10282         kfree(intel_crtc);
10283 }
10284
10285 static void intel_unpin_work_fn(struct work_struct *__work)
10286 {
10287         struct intel_unpin_work *work =
10288                 container_of(__work, struct intel_unpin_work, work);
10289         struct drm_device *dev = work->crtc->dev;
10290         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10291
10292         mutex_lock(&dev->struct_mutex);
10293         intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10294         drm_gem_object_unreference(&work->pending_flip_obj->base);
10295
10296         intel_fbc_update(dev);
10297
10298         if (work->flip_queued_req)
10299                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10300         mutex_unlock(&dev->struct_mutex);
10301
10302         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10303         drm_framebuffer_unreference(work->old_fb);
10304
10305         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10306         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10307
10308         kfree(work);
10309 }
10310
10311 static void do_intel_finish_page_flip(struct drm_device *dev,
10312                                       struct drm_crtc *crtc)
10313 {
10314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10315         struct intel_unpin_work *work;
10316         unsigned long flags;
10317
10318         /* Ignore early vblank irqs */
10319         if (intel_crtc == NULL)
10320                 return;
10321
10322         /*
10323          * This is called both by irq handlers and the reset code (to complete
10324          * lost pageflips) so needs the full irqsave spinlocks.
10325          */
10326         spin_lock_irqsave(&dev->event_lock, flags);
10327         work = intel_crtc->unpin_work;
10328
10329         /* Ensure we don't miss a work->pending update ... */
10330         smp_rmb();
10331
10332         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10333                 spin_unlock_irqrestore(&dev->event_lock, flags);
10334                 return;
10335         }
10336
10337         page_flip_completed(intel_crtc);
10338
10339         spin_unlock_irqrestore(&dev->event_lock, flags);
10340 }
10341
10342 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10343 {
10344         struct drm_i915_private *dev_priv = dev->dev_private;
10345         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10346
10347         do_intel_finish_page_flip(dev, crtc);
10348 }
10349
10350 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10351 {
10352         struct drm_i915_private *dev_priv = dev->dev_private;
10353         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10354
10355         do_intel_finish_page_flip(dev, crtc);
10356 }
10357
10358 /* Is 'a' after or equal to 'b'? */
10359 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10360 {
10361         return !((a - b) & 0x80000000);
10362 }
10363
10364 static bool page_flip_finished(struct intel_crtc *crtc)
10365 {
10366         struct drm_device *dev = crtc->base.dev;
10367         struct drm_i915_private *dev_priv = dev->dev_private;
10368
10369         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10370             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10371                 return true;
10372
10373         /*
10374          * The relevant registers doen't exist on pre-ctg.
10375          * As the flip done interrupt doesn't trigger for mmio
10376          * flips on gmch platforms, a flip count check isn't
10377          * really needed there. But since ctg has the registers,
10378          * include it in the check anyway.
10379          */
10380         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10381                 return true;
10382
10383         /*
10384          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10385          * used the same base address. In that case the mmio flip might
10386          * have completed, but the CS hasn't even executed the flip yet.
10387          *
10388          * A flip count check isn't enough as the CS might have updated
10389          * the base address just after start of vblank, but before we
10390          * managed to process the interrupt. This means we'd complete the
10391          * CS flip too soon.
10392          *
10393          * Combining both checks should get us a good enough result. It may
10394          * still happen that the CS flip has been executed, but has not
10395          * yet actually completed. But in case the base address is the same
10396          * anyway, we don't really care.
10397          */
10398         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10399                 crtc->unpin_work->gtt_offset &&
10400                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10401                                     crtc->unpin_work->flip_count);
10402 }
10403
10404 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10405 {
10406         struct drm_i915_private *dev_priv = dev->dev_private;
10407         struct intel_crtc *intel_crtc =
10408                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10409         unsigned long flags;
10410
10411
10412         /*
10413          * This is called both by irq handlers and the reset code (to complete
10414          * lost pageflips) so needs the full irqsave spinlocks.
10415          *
10416          * NB: An MMIO update of the plane base pointer will also
10417          * generate a page-flip completion irq, i.e. every modeset
10418          * is also accompanied by a spurious intel_prepare_page_flip().
10419          */
10420         spin_lock_irqsave(&dev->event_lock, flags);
10421         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10422                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10423         spin_unlock_irqrestore(&dev->event_lock, flags);
10424 }
10425
10426 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10427 {
10428         /* Ensure that the work item is consistent when activating it ... */
10429         smp_wmb();
10430         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10431         /* and that it is marked active as soon as the irq could fire. */
10432         smp_wmb();
10433 }
10434
10435 static int intel_gen2_queue_flip(struct drm_device *dev,
10436                                  struct drm_crtc *crtc,
10437                                  struct drm_framebuffer *fb,
10438                                  struct drm_i915_gem_object *obj,
10439                                  struct intel_engine_cs *ring,
10440                                  uint32_t flags)
10441 {
10442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10443         u32 flip_mask;
10444         int ret;
10445
10446         ret = intel_ring_begin(ring, 6);
10447         if (ret)
10448                 return ret;
10449
10450         /* Can't queue multiple flips, so wait for the previous
10451          * one to finish before executing the next.
10452          */
10453         if (intel_crtc->plane)
10454                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10455         else
10456                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10457         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10458         intel_ring_emit(ring, MI_NOOP);
10459         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10460                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10461         intel_ring_emit(ring, fb->pitches[0]);
10462         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10463         intel_ring_emit(ring, 0); /* aux display base address, unused */
10464
10465         intel_mark_page_flip_active(intel_crtc);
10466         __intel_ring_advance(ring);
10467         return 0;
10468 }
10469
10470 static int intel_gen3_queue_flip(struct drm_device *dev,
10471                                  struct drm_crtc *crtc,
10472                                  struct drm_framebuffer *fb,
10473                                  struct drm_i915_gem_object *obj,
10474                                  struct intel_engine_cs *ring,
10475                                  uint32_t flags)
10476 {
10477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10478         u32 flip_mask;
10479         int ret;
10480
10481         ret = intel_ring_begin(ring, 6);
10482         if (ret)
10483                 return ret;
10484
10485         if (intel_crtc->plane)
10486                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10487         else
10488                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10489         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10490         intel_ring_emit(ring, MI_NOOP);
10491         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10492                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10493         intel_ring_emit(ring, fb->pitches[0]);
10494         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10495         intel_ring_emit(ring, MI_NOOP);
10496
10497         intel_mark_page_flip_active(intel_crtc);
10498         __intel_ring_advance(ring);
10499         return 0;
10500 }
10501
10502 static int intel_gen4_queue_flip(struct drm_device *dev,
10503                                  struct drm_crtc *crtc,
10504                                  struct drm_framebuffer *fb,
10505                                  struct drm_i915_gem_object *obj,
10506                                  struct intel_engine_cs *ring,
10507                                  uint32_t flags)
10508 {
10509         struct drm_i915_private *dev_priv = dev->dev_private;
10510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10511         uint32_t pf, pipesrc;
10512         int ret;
10513
10514         ret = intel_ring_begin(ring, 4);
10515         if (ret)
10516                 return ret;
10517
10518         /* i965+ uses the linear or tiled offsets from the
10519          * Display Registers (which do not change across a page-flip)
10520          * so we need only reprogram the base address.
10521          */
10522         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10523                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10524         intel_ring_emit(ring, fb->pitches[0]);
10525         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10526                         obj->tiling_mode);
10527
10528         /* XXX Enabling the panel-fitter across page-flip is so far
10529          * untested on non-native modes, so ignore it for now.
10530          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10531          */
10532         pf = 0;
10533         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10534         intel_ring_emit(ring, pf | pipesrc);
10535
10536         intel_mark_page_flip_active(intel_crtc);
10537         __intel_ring_advance(ring);
10538         return 0;
10539 }
10540
10541 static int intel_gen6_queue_flip(struct drm_device *dev,
10542                                  struct drm_crtc *crtc,
10543                                  struct drm_framebuffer *fb,
10544                                  struct drm_i915_gem_object *obj,
10545                                  struct intel_engine_cs *ring,
10546                                  uint32_t flags)
10547 {
10548         struct drm_i915_private *dev_priv = dev->dev_private;
10549         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10550         uint32_t pf, pipesrc;
10551         int ret;
10552
10553         ret = intel_ring_begin(ring, 4);
10554         if (ret)
10555                 return ret;
10556
10557         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10558                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10559         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10560         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10561
10562         /* Contrary to the suggestions in the documentation,
10563          * "Enable Panel Fitter" does not seem to be required when page
10564          * flipping with a non-native mode, and worse causes a normal
10565          * modeset to fail.
10566          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10567          */
10568         pf = 0;
10569         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10570         intel_ring_emit(ring, pf | pipesrc);
10571
10572         intel_mark_page_flip_active(intel_crtc);
10573         __intel_ring_advance(ring);
10574         return 0;
10575 }
10576
10577 static int intel_gen7_queue_flip(struct drm_device *dev,
10578                                  struct drm_crtc *crtc,
10579                                  struct drm_framebuffer *fb,
10580                                  struct drm_i915_gem_object *obj,
10581                                  struct intel_engine_cs *ring,
10582                                  uint32_t flags)
10583 {
10584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10585         uint32_t plane_bit = 0;
10586         int len, ret;
10587
10588         switch (intel_crtc->plane) {
10589         case PLANE_A:
10590                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10591                 break;
10592         case PLANE_B:
10593                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10594                 break;
10595         case PLANE_C:
10596                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10597                 break;
10598         default:
10599                 WARN_ONCE(1, "unknown plane in flip command\n");
10600                 return -ENODEV;
10601         }
10602
10603         len = 4;
10604         if (ring->id == RCS) {
10605                 len += 6;
10606                 /*
10607                  * On Gen 8, SRM is now taking an extra dword to accommodate
10608                  * 48bits addresses, and we need a NOOP for the batch size to
10609                  * stay even.
10610                  */
10611                 if (IS_GEN8(dev))
10612                         len += 2;
10613         }
10614
10615         /*
10616          * BSpec MI_DISPLAY_FLIP for IVB:
10617          * "The full packet must be contained within the same cache line."
10618          *
10619          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10620          * cacheline, if we ever start emitting more commands before
10621          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10622          * then do the cacheline alignment, and finally emit the
10623          * MI_DISPLAY_FLIP.
10624          */
10625         ret = intel_ring_cacheline_align(ring);
10626         if (ret)
10627                 return ret;
10628
10629         ret = intel_ring_begin(ring, len);
10630         if (ret)
10631                 return ret;
10632
10633         /* Unmask the flip-done completion message. Note that the bspec says that
10634          * we should do this for both the BCS and RCS, and that we must not unmask
10635          * more than one flip event at any time (or ensure that one flip message
10636          * can be sent by waiting for flip-done prior to queueing new flips).
10637          * Experimentation says that BCS works despite DERRMR masking all
10638          * flip-done completion events and that unmasking all planes at once
10639          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10640          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10641          */
10642         if (ring->id == RCS) {
10643                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10644                 intel_ring_emit(ring, DERRMR);
10645                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10646                                         DERRMR_PIPEB_PRI_FLIP_DONE |
10647                                         DERRMR_PIPEC_PRI_FLIP_DONE));
10648                 if (IS_GEN8(dev))
10649                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10650                                               MI_SRM_LRM_GLOBAL_GTT);
10651                 else
10652                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10653                                               MI_SRM_LRM_GLOBAL_GTT);
10654                 intel_ring_emit(ring, DERRMR);
10655                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10656                 if (IS_GEN8(dev)) {
10657                         intel_ring_emit(ring, 0);
10658                         intel_ring_emit(ring, MI_NOOP);
10659                 }
10660         }
10661
10662         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10663         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10664         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10665         intel_ring_emit(ring, (MI_NOOP));
10666
10667         intel_mark_page_flip_active(intel_crtc);
10668         __intel_ring_advance(ring);
10669         return 0;
10670 }
10671
10672 static bool use_mmio_flip(struct intel_engine_cs *ring,
10673                           struct drm_i915_gem_object *obj)
10674 {
10675         /*
10676          * This is not being used for older platforms, because
10677          * non-availability of flip done interrupt forces us to use
10678          * CS flips. Older platforms derive flip done using some clever
10679          * tricks involving the flip_pending status bits and vblank irqs.
10680          * So using MMIO flips there would disrupt this mechanism.
10681          */
10682
10683         if (ring == NULL)
10684                 return true;
10685
10686         if (INTEL_INFO(ring->dev)->gen < 5)
10687                 return false;
10688
10689         if (i915.use_mmio_flip < 0)
10690                 return false;
10691         else if (i915.use_mmio_flip > 0)
10692                 return true;
10693         else if (i915.enable_execlists)
10694                 return true;
10695         else
10696                 return ring != i915_gem_request_get_ring(obj->last_read_req);
10697 }
10698
10699 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10700 {
10701         struct drm_device *dev = intel_crtc->base.dev;
10702         struct drm_i915_private *dev_priv = dev->dev_private;
10703         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10704         const enum pipe pipe = intel_crtc->pipe;
10705         u32 ctl, stride;
10706
10707         ctl = I915_READ(PLANE_CTL(pipe, 0));
10708         ctl &= ~PLANE_CTL_TILED_MASK;
10709         switch (fb->modifier[0]) {
10710         case DRM_FORMAT_MOD_NONE:
10711                 break;
10712         case I915_FORMAT_MOD_X_TILED:
10713                 ctl |= PLANE_CTL_TILED_X;
10714                 break;
10715         case I915_FORMAT_MOD_Y_TILED:
10716                 ctl |= PLANE_CTL_TILED_Y;
10717                 break;
10718         case I915_FORMAT_MOD_Yf_TILED:
10719                 ctl |= PLANE_CTL_TILED_YF;
10720                 break;
10721         default:
10722                 MISSING_CASE(fb->modifier[0]);
10723         }
10724
10725         /*
10726          * The stride is either expressed as a multiple of 64 bytes chunks for
10727          * linear buffers or in number of tiles for tiled buffers.
10728          */
10729         stride = fb->pitches[0] /
10730                  intel_fb_stride_alignment(dev, fb->modifier[0],
10731                                            fb->pixel_format);
10732
10733         /*
10734          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10735          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10736          */
10737         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10738         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10739
10740         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10741         POSTING_READ(PLANE_SURF(pipe, 0));
10742 }
10743
10744 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10745 {
10746         struct drm_device *dev = intel_crtc->base.dev;
10747         struct drm_i915_private *dev_priv = dev->dev_private;
10748         struct intel_framebuffer *intel_fb =
10749                 to_intel_framebuffer(intel_crtc->base.primary->fb);
10750         struct drm_i915_gem_object *obj = intel_fb->obj;
10751         u32 dspcntr;
10752         u32 reg;
10753
10754         reg = DSPCNTR(intel_crtc->plane);
10755         dspcntr = I915_READ(reg);
10756
10757         if (obj->tiling_mode != I915_TILING_NONE)
10758                 dspcntr |= DISPPLANE_TILED;
10759         else
10760                 dspcntr &= ~DISPPLANE_TILED;
10761
10762         I915_WRITE(reg, dspcntr);
10763
10764         I915_WRITE(DSPSURF(intel_crtc->plane),
10765                    intel_crtc->unpin_work->gtt_offset);
10766         POSTING_READ(DSPSURF(intel_crtc->plane));
10767
10768 }
10769
10770 /*
10771  * XXX: This is the temporary way to update the plane registers until we get
10772  * around to using the usual plane update functions for MMIO flips
10773  */
10774 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10775 {
10776         struct drm_device *dev = intel_crtc->base.dev;
10777         bool atomic_update;
10778         u32 start_vbl_count;
10779
10780         intel_mark_page_flip_active(intel_crtc);
10781
10782         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10783
10784         if (INTEL_INFO(dev)->gen >= 9)
10785                 skl_do_mmio_flip(intel_crtc);
10786         else
10787                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10788                 ilk_do_mmio_flip(intel_crtc);
10789
10790         if (atomic_update)
10791                 intel_pipe_update_end(intel_crtc, start_vbl_count);
10792 }
10793
10794 static void intel_mmio_flip_work_func(struct work_struct *work)
10795 {
10796         struct intel_crtc *crtc =
10797                 container_of(work, struct intel_crtc, mmio_flip.work);
10798         struct intel_mmio_flip *mmio_flip;
10799
10800         mmio_flip = &crtc->mmio_flip;
10801         if (mmio_flip->req)
10802                 WARN_ON(__i915_wait_request(mmio_flip->req,
10803                                             crtc->reset_counter,
10804                                             false, NULL, NULL) != 0);
10805
10806         intel_do_mmio_flip(crtc);
10807         if (mmio_flip->req) {
10808                 mutex_lock(&crtc->base.dev->struct_mutex);
10809                 i915_gem_request_assign(&mmio_flip->req, NULL);
10810                 mutex_unlock(&crtc->base.dev->struct_mutex);
10811         }
10812 }
10813
10814 static int intel_queue_mmio_flip(struct drm_device *dev,
10815                                  struct drm_crtc *crtc,
10816                                  struct drm_framebuffer *fb,
10817                                  struct drm_i915_gem_object *obj,
10818                                  struct intel_engine_cs *ring,
10819                                  uint32_t flags)
10820 {
10821         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10822
10823         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10824                                 obj->last_write_req);
10825
10826         schedule_work(&intel_crtc->mmio_flip.work);
10827
10828         return 0;
10829 }
10830
10831 static int intel_default_queue_flip(struct drm_device *dev,
10832                                     struct drm_crtc *crtc,
10833                                     struct drm_framebuffer *fb,
10834                                     struct drm_i915_gem_object *obj,
10835                                     struct intel_engine_cs *ring,
10836                                     uint32_t flags)
10837 {
10838         return -ENODEV;
10839 }
10840
10841 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10842                                          struct drm_crtc *crtc)
10843 {
10844         struct drm_i915_private *dev_priv = dev->dev_private;
10845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10846         struct intel_unpin_work *work = intel_crtc->unpin_work;
10847         u32 addr;
10848
10849         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10850                 return true;
10851
10852         if (!work->enable_stall_check)
10853                 return false;
10854
10855         if (work->flip_ready_vblank == 0) {
10856                 if (work->flip_queued_req &&
10857                     !i915_gem_request_completed(work->flip_queued_req, true))
10858                         return false;
10859
10860                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10861         }
10862
10863         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10864                 return false;
10865
10866         /* Potential stall - if we see that the flip has happened,
10867          * assume a missed interrupt. */
10868         if (INTEL_INFO(dev)->gen >= 4)
10869                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10870         else
10871                 addr = I915_READ(DSPADDR(intel_crtc->plane));
10872
10873         /* There is a potential issue here with a false positive after a flip
10874          * to the same address. We could address this by checking for a
10875          * non-incrementing frame counter.
10876          */
10877         return addr == work->gtt_offset;
10878 }
10879
10880 void intel_check_page_flip(struct drm_device *dev, int pipe)
10881 {
10882         struct drm_i915_private *dev_priv = dev->dev_private;
10883         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10885         struct intel_unpin_work *work;
10886
10887         WARN_ON(!in_interrupt());
10888
10889         if (crtc == NULL)
10890                 return;
10891
10892         spin_lock(&dev->event_lock);
10893         work = intel_crtc->unpin_work;
10894         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
10895                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10896                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
10897                 page_flip_completed(intel_crtc);
10898                 work = NULL;
10899         }
10900         if (work != NULL &&
10901             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
10902                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
10903         spin_unlock(&dev->event_lock);
10904 }
10905
10906 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10907                                 struct drm_framebuffer *fb,
10908                                 struct drm_pending_vblank_event *event,
10909                                 uint32_t page_flip_flags)
10910 {
10911         struct drm_device *dev = crtc->dev;
10912         struct drm_i915_private *dev_priv = dev->dev_private;
10913         struct drm_framebuffer *old_fb = crtc->primary->fb;
10914         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10915         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10916         struct drm_plane *primary = crtc->primary;
10917         enum pipe pipe = intel_crtc->pipe;
10918         struct intel_unpin_work *work;
10919         struct intel_engine_cs *ring;
10920         bool mmio_flip;
10921         int ret;
10922
10923         /*
10924          * drm_mode_page_flip_ioctl() should already catch this, but double
10925          * check to be safe.  In the future we may enable pageflipping from
10926          * a disabled primary plane.
10927          */
10928         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10929                 return -EBUSY;
10930
10931         /* Can't change pixel format via MI display flips. */
10932         if (fb->pixel_format != crtc->primary->fb->pixel_format)
10933                 return -EINVAL;
10934
10935         /*
10936          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10937          * Note that pitch changes could also affect these register.
10938          */
10939         if (INTEL_INFO(dev)->gen > 3 &&
10940             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10941              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10942                 return -EINVAL;
10943
10944         if (i915_terminally_wedged(&dev_priv->gpu_error))
10945                 goto out_hang;
10946
10947         work = kzalloc(sizeof(*work), GFP_KERNEL);
10948         if (work == NULL)
10949                 return -ENOMEM;
10950
10951         work->event = event;
10952         work->crtc = crtc;
10953         work->old_fb = old_fb;
10954         INIT_WORK(&work->work, intel_unpin_work_fn);
10955
10956         ret = drm_crtc_vblank_get(crtc);
10957         if (ret)
10958                 goto free_work;
10959
10960         /* We borrow the event spin lock for protecting unpin_work */
10961         spin_lock_irq(&dev->event_lock);
10962         if (intel_crtc->unpin_work) {
10963                 /* Before declaring the flip queue wedged, check if
10964                  * the hardware completed the operation behind our backs.
10965                  */
10966                 if (__intel_pageflip_stall_check(dev, crtc)) {
10967                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10968                         page_flip_completed(intel_crtc);
10969                 } else {
10970                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10971                         spin_unlock_irq(&dev->event_lock);
10972
10973                         drm_crtc_vblank_put(crtc);
10974                         kfree(work);
10975                         return -EBUSY;
10976                 }
10977         }
10978         intel_crtc->unpin_work = work;
10979         spin_unlock_irq(&dev->event_lock);
10980
10981         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10982                 flush_workqueue(dev_priv->wq);
10983
10984         /* Reference the objects for the scheduled work. */
10985         drm_framebuffer_reference(work->old_fb);
10986         drm_gem_object_reference(&obj->base);
10987
10988         crtc->primary->fb = fb;
10989         update_state_fb(crtc->primary);
10990
10991         work->pending_flip_obj = obj;
10992
10993         ret = i915_mutex_lock_interruptible(dev);
10994         if (ret)
10995                 goto cleanup;
10996
10997         atomic_inc(&intel_crtc->unpin_work_count);
10998         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10999
11000         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11001                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11002
11003         if (IS_VALLEYVIEW(dev)) {
11004                 ring = &dev_priv->ring[BCS];
11005                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11006                         /* vlv: DISPLAY_FLIP fails to change tiling */
11007                         ring = NULL;
11008         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11009                 ring = &dev_priv->ring[BCS];
11010         } else if (INTEL_INFO(dev)->gen >= 7) {
11011                 ring = i915_gem_request_get_ring(obj->last_read_req);
11012                 if (ring == NULL || ring->id != RCS)
11013                         ring = &dev_priv->ring[BCS];
11014         } else {
11015                 ring = &dev_priv->ring[RCS];
11016         }
11017
11018         mmio_flip = use_mmio_flip(ring, obj);
11019
11020         /* When using CS flips, we want to emit semaphores between rings.
11021          * However, when using mmio flips we will create a task to do the
11022          * synchronisation, so all we want here is to pin the framebuffer
11023          * into the display plane and skip any waits.
11024          */
11025         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11026                                          crtc->primary->state,
11027                                          mmio_flip ? i915_gem_request_get_ring(obj->last_read_req) : ring);
11028         if (ret)
11029                 goto cleanup_pending;
11030
11031         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11032                                                   + intel_crtc->dspaddr_offset;
11033
11034         if (mmio_flip) {
11035                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11036                                             page_flip_flags);
11037                 if (ret)
11038                         goto cleanup_unpin;
11039
11040                 i915_gem_request_assign(&work->flip_queued_req,
11041                                         obj->last_write_req);
11042         } else {
11043                 if (obj->last_write_req) {
11044                         ret = i915_gem_check_olr(obj->last_write_req);
11045                         if (ret)
11046                                 goto cleanup_unpin;
11047                 }
11048
11049                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11050                                                    page_flip_flags);
11051                 if (ret)
11052                         goto cleanup_unpin;
11053
11054                 i915_gem_request_assign(&work->flip_queued_req,
11055                                         intel_ring_get_request(ring));
11056         }
11057
11058         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11059         work->enable_stall_check = true;
11060
11061         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11062                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11063
11064         intel_fbc_disable(dev);
11065         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11066         mutex_unlock(&dev->struct_mutex);
11067
11068         trace_i915_flip_request(intel_crtc->plane, obj);
11069
11070         return 0;
11071
11072 cleanup_unpin:
11073         intel_unpin_fb_obj(fb, crtc->primary->state);
11074 cleanup_pending:
11075         atomic_dec(&intel_crtc->unpin_work_count);
11076         mutex_unlock(&dev->struct_mutex);
11077 cleanup:
11078         crtc->primary->fb = old_fb;
11079         update_state_fb(crtc->primary);
11080
11081         drm_gem_object_unreference_unlocked(&obj->base);
11082         drm_framebuffer_unreference(work->old_fb);
11083
11084         spin_lock_irq(&dev->event_lock);
11085         intel_crtc->unpin_work = NULL;
11086         spin_unlock_irq(&dev->event_lock);
11087
11088         drm_crtc_vblank_put(crtc);
11089 free_work:
11090         kfree(work);
11091
11092         if (ret == -EIO) {
11093 out_hang:
11094                 ret = intel_plane_restore(primary);
11095                 if (ret == 0 && event) {
11096                         spin_lock_irq(&dev->event_lock);
11097                         drm_send_vblank_event(dev, pipe, event);
11098                         spin_unlock_irq(&dev->event_lock);
11099                 }
11100         }
11101         return ret;
11102 }
11103
11104 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11105         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11106         .load_lut = intel_crtc_load_lut,
11107         .atomic_begin = intel_begin_crtc_commit,
11108         .atomic_flush = intel_finish_crtc_commit,
11109 };
11110
11111 /**
11112  * intel_modeset_update_staged_output_state
11113  *
11114  * Updates the staged output configuration state, e.g. after we've read out the
11115  * current hw state.
11116  */
11117 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11118 {
11119         struct intel_crtc *crtc;
11120         struct intel_encoder *encoder;
11121         struct intel_connector *connector;
11122
11123         for_each_intel_connector(dev, connector) {
11124                 connector->new_encoder =
11125                         to_intel_encoder(connector->base.encoder);
11126         }
11127
11128         for_each_intel_encoder(dev, encoder) {
11129                 encoder->new_crtc =
11130                         to_intel_crtc(encoder->base.crtc);
11131         }
11132
11133         for_each_intel_crtc(dev, crtc) {
11134                 crtc->new_enabled = crtc->base.state->enable;
11135         }
11136 }
11137
11138 /* Transitional helper to copy current connector/encoder state to
11139  * connector->state. This is needed so that code that is partially
11140  * converted to atomic does the right thing.
11141  */
11142 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11143 {
11144         struct intel_connector *connector;
11145
11146         for_each_intel_connector(dev, connector) {
11147                 if (connector->base.encoder) {
11148                         connector->base.state->best_encoder =
11149                                 connector->base.encoder;
11150                         connector->base.state->crtc =
11151                                 connector->base.encoder->crtc;
11152                 } else {
11153                         connector->base.state->best_encoder = NULL;
11154                         connector->base.state->crtc = NULL;
11155                 }
11156         }
11157 }
11158
11159 /* Fixup legacy state after an atomic state swap.
11160  */
11161 static void intel_modeset_fixup_state(struct drm_atomic_state *state)
11162 {
11163         struct intel_crtc *crtc;
11164         struct intel_encoder *encoder;
11165         struct intel_connector *connector;
11166
11167         for_each_intel_connector(state->dev, connector) {
11168                 connector->base.encoder = connector->base.state->best_encoder;
11169                 if (connector->base.encoder)
11170                         connector->base.encoder->crtc =
11171                                 connector->base.state->crtc;
11172         }
11173
11174         /* Update crtc of disabled encoders */
11175         for_each_intel_encoder(state->dev, encoder) {
11176                 int num_connectors = 0;
11177
11178                 for_each_intel_connector(state->dev, connector)
11179                         if (connector->base.encoder == &encoder->base)
11180                                 num_connectors++;
11181
11182                 if (num_connectors == 0)
11183                         encoder->base.crtc = NULL;
11184         }
11185
11186         for_each_intel_crtc(state->dev, crtc) {
11187                 crtc->base.enabled = crtc->base.state->enable;
11188                 crtc->config = to_intel_crtc_state(crtc->base.state);
11189         }
11190
11191         /* Copy the new configuration to the staged state, to keep the few
11192          * pieces of code that haven't been converted yet happy */
11193         intel_modeset_update_staged_output_state(state->dev);
11194 }
11195
11196 static void
11197 connected_sink_compute_bpp(struct intel_connector *connector,
11198                            struct intel_crtc_state *pipe_config)
11199 {
11200         int bpp = pipe_config->pipe_bpp;
11201
11202         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11203                 connector->base.base.id,
11204                 connector->base.name);
11205
11206         /* Don't use an invalid EDID bpc value */
11207         if (connector->base.display_info.bpc &&
11208             connector->base.display_info.bpc * 3 < bpp) {
11209                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11210                               bpp, connector->base.display_info.bpc*3);
11211                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11212         }
11213
11214         /* Clamp bpp to 8 on screens without EDID 1.4 */
11215         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11216                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11217                               bpp);
11218                 pipe_config->pipe_bpp = 24;
11219         }
11220 }
11221
11222 static int
11223 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11224                           struct intel_crtc_state *pipe_config)
11225 {
11226         struct drm_device *dev = crtc->base.dev;
11227         struct drm_atomic_state *state;
11228         struct drm_connector *connector;
11229         struct drm_connector_state *connector_state;
11230         int bpp, i;
11231
11232         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11233                 bpp = 10*3;
11234         else if (INTEL_INFO(dev)->gen >= 5)
11235                 bpp = 12*3;
11236         else
11237                 bpp = 8*3;
11238
11239
11240         pipe_config->pipe_bpp = bpp;
11241
11242         state = pipe_config->base.state;
11243
11244         /* Clamp display bpp to EDID value */
11245         for_each_connector_in_state(state, connector, connector_state, i) {
11246                 if (connector_state->crtc != &crtc->base)
11247                         continue;
11248
11249                 connected_sink_compute_bpp(to_intel_connector(connector),
11250                                            pipe_config);
11251         }
11252
11253         return bpp;
11254 }
11255
11256 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11257 {
11258         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11259                         "type: 0x%x flags: 0x%x\n",
11260                 mode->crtc_clock,
11261                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11262                 mode->crtc_hsync_end, mode->crtc_htotal,
11263                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11264                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11265 }
11266
11267 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11268                                    struct intel_crtc_state *pipe_config,
11269                                    const char *context)
11270 {
11271         struct drm_device *dev = crtc->base.dev;
11272         struct drm_plane *plane;
11273         struct intel_plane *intel_plane;
11274         struct intel_plane_state *state;
11275         struct drm_framebuffer *fb;
11276
11277         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11278                       context, pipe_config, pipe_name(crtc->pipe));
11279
11280         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11281         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11282                       pipe_config->pipe_bpp, pipe_config->dither);
11283         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11284                       pipe_config->has_pch_encoder,
11285                       pipe_config->fdi_lanes,
11286                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11287                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11288                       pipe_config->fdi_m_n.tu);
11289         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11290                       pipe_config->has_dp_encoder,
11291                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11292                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11293                       pipe_config->dp_m_n.tu);
11294
11295         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11296                       pipe_config->has_dp_encoder,
11297                       pipe_config->dp_m2_n2.gmch_m,
11298                       pipe_config->dp_m2_n2.gmch_n,
11299                       pipe_config->dp_m2_n2.link_m,
11300                       pipe_config->dp_m2_n2.link_n,
11301                       pipe_config->dp_m2_n2.tu);
11302
11303         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11304                       pipe_config->has_audio,
11305                       pipe_config->has_infoframe);
11306
11307         DRM_DEBUG_KMS("requested mode:\n");
11308         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11309         DRM_DEBUG_KMS("adjusted mode:\n");
11310         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11311         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11312         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11313         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11314                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11315         DRM_DEBUG_KMS("num_scalers: %d\n", crtc->num_scalers);
11316         DRM_DEBUG_KMS("scaler_users: 0x%x\n", pipe_config->scaler_state.scaler_users);
11317         DRM_DEBUG_KMS("scaler id: %d\n", pipe_config->scaler_state.scaler_id);
11318         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11319                       pipe_config->gmch_pfit.control,
11320                       pipe_config->gmch_pfit.pgm_ratios,
11321                       pipe_config->gmch_pfit.lvds_border_bits);
11322         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11323                       pipe_config->pch_pfit.pos,
11324                       pipe_config->pch_pfit.size,
11325                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11326         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11327         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11328
11329         DRM_DEBUG_KMS("planes on this crtc\n");
11330         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11331                 intel_plane = to_intel_plane(plane);
11332                 if (intel_plane->pipe != crtc->pipe)
11333                         continue;
11334
11335                 state = to_intel_plane_state(plane->state);
11336                 fb = state->base.fb;
11337                 if (!fb) {
11338                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11339                                 "disabled, scaler_id = %d\n",
11340                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11341                                 plane->base.id, intel_plane->pipe,
11342                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11343                                 drm_plane_index(plane), state->scaler_id);
11344                         continue;
11345                 }
11346
11347                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11348                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11349                         plane->base.id, intel_plane->pipe,
11350                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11351                         drm_plane_index(plane));
11352                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11353                         fb->base.id, fb->width, fb->height, fb->pixel_format);
11354                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11355                         state->scaler_id,
11356                         state->src.x1 >> 16, state->src.y1 >> 16,
11357                         drm_rect_width(&state->src) >> 16,
11358                         drm_rect_height(&state->src) >> 16,
11359                         state->dst.x1, state->dst.y1,
11360                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11361         }
11362 }
11363
11364 static bool encoders_cloneable(const struct intel_encoder *a,
11365                                const struct intel_encoder *b)
11366 {
11367         /* masks could be asymmetric, so check both ways */
11368         return a == b || (a->cloneable & (1 << b->type) &&
11369                           b->cloneable & (1 << a->type));
11370 }
11371
11372 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11373                                          struct intel_crtc *crtc,
11374                                          struct intel_encoder *encoder)
11375 {
11376         struct intel_encoder *source_encoder;
11377         struct drm_connector *connector;
11378         struct drm_connector_state *connector_state;
11379         int i;
11380
11381         for_each_connector_in_state(state, connector, connector_state, i) {
11382                 if (connector_state->crtc != &crtc->base)
11383                         continue;
11384
11385                 source_encoder =
11386                         to_intel_encoder(connector_state->best_encoder);
11387                 if (!encoders_cloneable(encoder, source_encoder))
11388                         return false;
11389         }
11390
11391         return true;
11392 }
11393
11394 static bool check_encoder_cloning(struct drm_atomic_state *state,
11395                                   struct intel_crtc *crtc)
11396 {
11397         struct intel_encoder *encoder;
11398         struct drm_connector *connector;
11399         struct drm_connector_state *connector_state;
11400         int i;
11401
11402         for_each_connector_in_state(state, connector, connector_state, i) {
11403                 if (connector_state->crtc != &crtc->base)
11404                         continue;
11405
11406                 encoder = to_intel_encoder(connector_state->best_encoder);
11407                 if (!check_single_encoder_cloning(state, crtc, encoder))
11408                         return false;
11409         }
11410
11411         return true;
11412 }
11413
11414 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11415 {
11416         struct drm_device *dev = state->dev;
11417         struct intel_encoder *encoder;
11418         struct drm_connector *connector;
11419         struct drm_connector_state *connector_state;
11420         unsigned int used_ports = 0;
11421         int i;
11422
11423         /*
11424          * Walk the connector list instead of the encoder
11425          * list to detect the problem on ddi platforms
11426          * where there's just one encoder per digital port.
11427          */
11428         for_each_connector_in_state(state, connector, connector_state, i) {
11429                 if (!connector_state->best_encoder)
11430                         continue;
11431
11432                 encoder = to_intel_encoder(connector_state->best_encoder);
11433
11434                 WARN_ON(!connector_state->crtc);
11435
11436                 switch (encoder->type) {
11437                         unsigned int port_mask;
11438                 case INTEL_OUTPUT_UNKNOWN:
11439                         if (WARN_ON(!HAS_DDI(dev)))
11440                                 break;
11441                 case INTEL_OUTPUT_DISPLAYPORT:
11442                 case INTEL_OUTPUT_HDMI:
11443                 case INTEL_OUTPUT_EDP:
11444                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11445
11446                         /* the same port mustn't appear more than once */
11447                         if (used_ports & port_mask)
11448                                 return false;
11449
11450                         used_ports |= port_mask;
11451                 default:
11452                         break;
11453                 }
11454         }
11455
11456         return true;
11457 }
11458
11459 static void
11460 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11461 {
11462         struct drm_crtc_state tmp_state;
11463         struct intel_crtc_scaler_state scaler_state;
11464         struct intel_dpll_hw_state dpll_hw_state;
11465         enum intel_dpll_id shared_dpll;
11466
11467         /* Clear only the intel specific part of the crtc state excluding scalers */
11468         tmp_state = crtc_state->base;
11469         scaler_state = crtc_state->scaler_state;
11470         shared_dpll = crtc_state->shared_dpll;
11471         dpll_hw_state = crtc_state->dpll_hw_state;
11472
11473         memset(crtc_state, 0, sizeof *crtc_state);
11474
11475         crtc_state->base = tmp_state;
11476         crtc_state->scaler_state = scaler_state;
11477         crtc_state->shared_dpll = shared_dpll;
11478         crtc_state->dpll_hw_state = dpll_hw_state;
11479 }
11480
11481 static int
11482 intel_modeset_pipe_config(struct drm_crtc *crtc,
11483                           struct drm_atomic_state *state,
11484                           struct intel_crtc_state *pipe_config)
11485 {
11486         struct intel_encoder *encoder;
11487         struct drm_connector *connector;
11488         struct drm_connector_state *connector_state;
11489         int base_bpp, ret = -EINVAL;
11490         int i;
11491         bool retry = true;
11492
11493         if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11494                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11495                 return -EINVAL;
11496         }
11497
11498         if (!check_digital_port_conflicts(state)) {
11499                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11500                 return -EINVAL;
11501         }
11502
11503         clear_intel_crtc_state(pipe_config);
11504
11505         pipe_config->cpu_transcoder =
11506                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11507
11508         /*
11509          * Sanitize sync polarity flags based on requested ones. If neither
11510          * positive or negative polarity is requested, treat this as meaning
11511          * negative polarity.
11512          */
11513         if (!(pipe_config->base.adjusted_mode.flags &
11514               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11515                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11516
11517         if (!(pipe_config->base.adjusted_mode.flags &
11518               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11519                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11520
11521         /* Compute a starting value for pipe_config->pipe_bpp taking the source
11522          * plane pixel format and any sink constraints into account. Returns the
11523          * source plane bpp so that dithering can be selected on mismatches
11524          * after encoders and crtc also have had their say. */
11525         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11526                                              pipe_config);
11527         if (base_bpp < 0)
11528                 goto fail;
11529
11530         /*
11531          * Determine the real pipe dimensions. Note that stereo modes can
11532          * increase the actual pipe size due to the frame doubling and
11533          * insertion of additional space for blanks between the frame. This
11534          * is stored in the crtc timings. We use the requested mode to do this
11535          * computation to clearly distinguish it from the adjusted mode, which
11536          * can be changed by the connectors in the below retry loop.
11537          */
11538         drm_crtc_get_hv_timing(&pipe_config->base.mode,
11539                                &pipe_config->pipe_src_w,
11540                                &pipe_config->pipe_src_h);
11541
11542 encoder_retry:
11543         /* Ensure the port clock defaults are reset when retrying. */
11544         pipe_config->port_clock = 0;
11545         pipe_config->pixel_multiplier = 1;
11546
11547         /* Fill in default crtc timings, allow encoders to overwrite them. */
11548         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11549                               CRTC_STEREO_DOUBLE);
11550
11551         /* Pass our mode to the connectors and the CRTC to give them a chance to
11552          * adjust it according to limitations or connector properties, and also
11553          * a chance to reject the mode entirely.
11554          */
11555         for_each_connector_in_state(state, connector, connector_state, i) {
11556                 if (connector_state->crtc != crtc)
11557                         continue;
11558
11559                 encoder = to_intel_encoder(connector_state->best_encoder);
11560
11561                 if (!(encoder->compute_config(encoder, pipe_config))) {
11562                         DRM_DEBUG_KMS("Encoder config failure\n");
11563                         goto fail;
11564                 }
11565         }
11566
11567         /* Set default port clock if not overwritten by the encoder. Needs to be
11568          * done afterwards in case the encoder adjusts the mode. */
11569         if (!pipe_config->port_clock)
11570                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11571                         * pipe_config->pixel_multiplier;
11572
11573         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11574         if (ret < 0) {
11575                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11576                 goto fail;
11577         }
11578
11579         if (ret == RETRY) {
11580                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11581                         ret = -EINVAL;
11582                         goto fail;
11583                 }
11584
11585                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11586                 retry = false;
11587                 goto encoder_retry;
11588         }
11589
11590         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
11591         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11592                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11593
11594         return 0;
11595 fail:
11596         return ret;
11597 }
11598
11599 static bool intel_crtc_in_use(struct drm_crtc *crtc)
11600 {
11601         struct drm_encoder *encoder;
11602         struct drm_device *dev = crtc->dev;
11603
11604         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11605                 if (encoder->crtc == crtc)
11606                         return true;
11607
11608         return false;
11609 }
11610
11611 static bool
11612 needs_modeset(struct drm_crtc_state *state)
11613 {
11614         return state->mode_changed || state->active_changed;
11615 }
11616
11617 static void
11618 intel_modeset_update_state(struct drm_atomic_state *state)
11619 {
11620         struct drm_device *dev = state->dev;
11621         struct drm_i915_private *dev_priv = dev->dev_private;
11622         struct intel_encoder *intel_encoder;
11623         struct drm_crtc *crtc;
11624         struct drm_crtc_state *crtc_state;
11625         struct drm_connector *connector;
11626         int i;
11627
11628         intel_shared_dpll_commit(dev_priv);
11629
11630         for_each_intel_encoder(dev, intel_encoder) {
11631                 if (!intel_encoder->base.crtc)
11632                         continue;
11633
11634                 for_each_crtc_in_state(state, crtc, crtc_state, i)
11635                         if (crtc == intel_encoder->base.crtc)
11636                                 break;
11637
11638                 if (crtc != intel_encoder->base.crtc)
11639                         continue;
11640
11641                 if (crtc_state->enable && needs_modeset(crtc_state))
11642                         intel_encoder->connectors_active = false;
11643         }
11644
11645         drm_atomic_helper_swap_state(state->dev, state);
11646         intel_modeset_fixup_state(state);
11647
11648         /* Double check state. */
11649         for_each_crtc(dev, crtc) {
11650                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
11651         }
11652
11653         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11654                 if (!connector->encoder || !connector->encoder->crtc)
11655                         continue;
11656
11657                 for_each_crtc_in_state(state, crtc, crtc_state, i)
11658                         if (crtc == connector->encoder->crtc)
11659                                 break;
11660
11661                 if (crtc != connector->encoder->crtc)
11662                         continue;
11663
11664                 if (crtc->state->enable && needs_modeset(crtc->state)) {
11665                         struct drm_property *dpms_property =
11666                                 dev->mode_config.dpms_property;
11667
11668                         connector->dpms = DRM_MODE_DPMS_ON;
11669                         drm_object_property_set_value(&connector->base,
11670                                                          dpms_property,
11671                                                          DRM_MODE_DPMS_ON);
11672
11673                         intel_encoder = to_intel_encoder(connector->encoder);
11674                         intel_encoder->connectors_active = true;
11675                 }
11676         }
11677
11678 }
11679
11680 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11681 {
11682         int diff;
11683
11684         if (clock1 == clock2)
11685                 return true;
11686
11687         if (!clock1 || !clock2)
11688                 return false;
11689
11690         diff = abs(clock1 - clock2);
11691
11692         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11693                 return true;
11694
11695         return false;
11696 }
11697
11698 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11699         list_for_each_entry((intel_crtc), \
11700                             &(dev)->mode_config.crtc_list, \
11701                             base.head) \
11702                 if (mask & (1 <<(intel_crtc)->pipe))
11703
11704 static bool
11705 intel_pipe_config_compare(struct drm_device *dev,
11706                           struct intel_crtc_state *current_config,
11707                           struct intel_crtc_state *pipe_config)
11708 {
11709 #define PIPE_CONF_CHECK_X(name) \
11710         if (current_config->name != pipe_config->name) { \
11711                 DRM_ERROR("mismatch in " #name " " \
11712                           "(expected 0x%08x, found 0x%08x)\n", \
11713                           current_config->name, \
11714                           pipe_config->name); \
11715                 return false; \
11716         }
11717
11718 #define PIPE_CONF_CHECK_I(name) \
11719         if (current_config->name != pipe_config->name) { \
11720                 DRM_ERROR("mismatch in " #name " " \
11721                           "(expected %i, found %i)\n", \
11722                           current_config->name, \
11723                           pipe_config->name); \
11724                 return false; \
11725         }
11726
11727 /* This is required for BDW+ where there is only one set of registers for
11728  * switching between high and low RR.
11729  * This macro can be used whenever a comparison has to be made between one
11730  * hw state and multiple sw state variables.
11731  */
11732 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11733         if ((current_config->name != pipe_config->name) && \
11734                 (current_config->alt_name != pipe_config->name)) { \
11735                         DRM_ERROR("mismatch in " #name " " \
11736                                   "(expected %i or %i, found %i)\n", \
11737                                   current_config->name, \
11738                                   current_config->alt_name, \
11739                                   pipe_config->name); \
11740                         return false; \
11741         }
11742
11743 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11744         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11745                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
11746                           "(expected %i, found %i)\n", \
11747                           current_config->name & (mask), \
11748                           pipe_config->name & (mask)); \
11749                 return false; \
11750         }
11751
11752 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11753         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11754                 DRM_ERROR("mismatch in " #name " " \
11755                           "(expected %i, found %i)\n", \
11756                           current_config->name, \
11757                           pipe_config->name); \
11758                 return false; \
11759         }
11760
11761 #define PIPE_CONF_QUIRK(quirk)  \
11762         ((current_config->quirks | pipe_config->quirks) & (quirk))
11763
11764         PIPE_CONF_CHECK_I(cpu_transcoder);
11765
11766         PIPE_CONF_CHECK_I(has_pch_encoder);
11767         PIPE_CONF_CHECK_I(fdi_lanes);
11768         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11769         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11770         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11771         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11772         PIPE_CONF_CHECK_I(fdi_m_n.tu);
11773
11774         PIPE_CONF_CHECK_I(has_dp_encoder);
11775
11776         if (INTEL_INFO(dev)->gen < 8) {
11777                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11778                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11779                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11780                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11781                 PIPE_CONF_CHECK_I(dp_m_n.tu);
11782
11783                 if (current_config->has_drrs) {
11784                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11785                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11786                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11787                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11788                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11789                 }
11790         } else {
11791                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11792                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11793                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11794                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11795                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11796         }
11797
11798         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11799         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11800         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11801         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11802         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11803         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11804
11805         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11806         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11807         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11808         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11809         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11810         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11811
11812         PIPE_CONF_CHECK_I(pixel_multiplier);
11813         PIPE_CONF_CHECK_I(has_hdmi_sink);
11814         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11815             IS_VALLEYVIEW(dev))
11816                 PIPE_CONF_CHECK_I(limited_color_range);
11817         PIPE_CONF_CHECK_I(has_infoframe);
11818
11819         PIPE_CONF_CHECK_I(has_audio);
11820
11821         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11822                               DRM_MODE_FLAG_INTERLACE);
11823
11824         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11825                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11826                                       DRM_MODE_FLAG_PHSYNC);
11827                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11828                                       DRM_MODE_FLAG_NHSYNC);
11829                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11830                                       DRM_MODE_FLAG_PVSYNC);
11831                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11832                                       DRM_MODE_FLAG_NVSYNC);
11833         }
11834
11835         PIPE_CONF_CHECK_I(pipe_src_w);
11836         PIPE_CONF_CHECK_I(pipe_src_h);
11837
11838         /*
11839          * FIXME: BIOS likes to set up a cloned config with lvds+external
11840          * screen. Since we don't yet re-compute the pipe config when moving
11841          * just the lvds port away to another pipe the sw tracking won't match.
11842          *
11843          * Proper atomic modesets with recomputed global state will fix this.
11844          * Until then just don't check gmch state for inherited modes.
11845          */
11846         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11847                 PIPE_CONF_CHECK_I(gmch_pfit.control);
11848                 /* pfit ratios are autocomputed by the hw on gen4+ */
11849                 if (INTEL_INFO(dev)->gen < 4)
11850                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11851                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11852         }
11853
11854         PIPE_CONF_CHECK_I(pch_pfit.enabled);
11855         if (current_config->pch_pfit.enabled) {
11856                 PIPE_CONF_CHECK_I(pch_pfit.pos);
11857                 PIPE_CONF_CHECK_I(pch_pfit.size);
11858         }
11859
11860         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11861
11862         /* BDW+ don't expose a synchronous way to read the state */
11863         if (IS_HASWELL(dev))
11864                 PIPE_CONF_CHECK_I(ips_enabled);
11865
11866         PIPE_CONF_CHECK_I(double_wide);
11867
11868         PIPE_CONF_CHECK_X(ddi_pll_sel);
11869
11870         PIPE_CONF_CHECK_I(shared_dpll);
11871         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11872         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11873         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11874         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11875         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11876         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11877         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11878         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11879
11880         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11881                 PIPE_CONF_CHECK_I(pipe_bpp);
11882
11883         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11884         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11885
11886 #undef PIPE_CONF_CHECK_X
11887 #undef PIPE_CONF_CHECK_I
11888 #undef PIPE_CONF_CHECK_I_ALT
11889 #undef PIPE_CONF_CHECK_FLAGS
11890 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11891 #undef PIPE_CONF_QUIRK
11892
11893         return true;
11894 }
11895
11896 static void check_wm_state(struct drm_device *dev)
11897 {
11898         struct drm_i915_private *dev_priv = dev->dev_private;
11899         struct skl_ddb_allocation hw_ddb, *sw_ddb;
11900         struct intel_crtc *intel_crtc;
11901         int plane;
11902
11903         if (INTEL_INFO(dev)->gen < 9)
11904                 return;
11905
11906         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11907         sw_ddb = &dev_priv->wm.skl_hw.ddb;
11908
11909         for_each_intel_crtc(dev, intel_crtc) {
11910                 struct skl_ddb_entry *hw_entry, *sw_entry;
11911                 const enum pipe pipe = intel_crtc->pipe;
11912
11913                 if (!intel_crtc->active)
11914                         continue;
11915
11916                 /* planes */
11917                 for_each_plane(dev_priv, pipe, plane) {
11918                         hw_entry = &hw_ddb.plane[pipe][plane];
11919                         sw_entry = &sw_ddb->plane[pipe][plane];
11920
11921                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
11922                                 continue;
11923
11924                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11925                                   "(expected (%u,%u), found (%u,%u))\n",
11926                                   pipe_name(pipe), plane + 1,
11927                                   sw_entry->start, sw_entry->end,
11928                                   hw_entry->start, hw_entry->end);
11929                 }
11930
11931                 /* cursor */
11932                 hw_entry = &hw_ddb.cursor[pipe];
11933                 sw_entry = &sw_ddb->cursor[pipe];
11934
11935                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11936                         continue;
11937
11938                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11939                           "(expected (%u,%u), found (%u,%u))\n",
11940                           pipe_name(pipe),
11941                           sw_entry->start, sw_entry->end,
11942                           hw_entry->start, hw_entry->end);
11943         }
11944 }
11945
11946 static void
11947 check_connector_state(struct drm_device *dev)
11948 {
11949         struct intel_connector *connector;
11950
11951         for_each_intel_connector(dev, connector) {
11952                 /* This also checks the encoder/connector hw state with the
11953                  * ->get_hw_state callbacks. */
11954                 intel_connector_check_state(connector);
11955
11956                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11957                      "connector's staged encoder doesn't match current encoder\n");
11958         }
11959 }
11960
11961 static void
11962 check_encoder_state(struct drm_device *dev)
11963 {
11964         struct intel_encoder *encoder;
11965         struct intel_connector *connector;
11966
11967         for_each_intel_encoder(dev, encoder) {
11968                 bool enabled = false;
11969                 bool active = false;
11970                 enum pipe pipe, tracked_pipe;
11971
11972                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11973                               encoder->base.base.id,
11974                               encoder->base.name);
11975
11976                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11977                      "encoder's stage crtc doesn't match current crtc\n");
11978                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11979                      "encoder's active_connectors set, but no crtc\n");
11980
11981                 for_each_intel_connector(dev, connector) {
11982                         if (connector->base.encoder != &encoder->base)
11983                                 continue;
11984                         enabled = true;
11985                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11986                                 active = true;
11987                 }
11988                 /*
11989                  * for MST connectors if we unplug the connector is gone
11990                  * away but the encoder is still connected to a crtc
11991                  * until a modeset happens in response to the hotplug.
11992                  */
11993                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11994                         continue;
11995
11996                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11997                      "encoder's enabled state mismatch "
11998                      "(expected %i, found %i)\n",
11999                      !!encoder->base.crtc, enabled);
12000                 I915_STATE_WARN(active && !encoder->base.crtc,
12001                      "active encoder with no crtc\n");
12002
12003                 I915_STATE_WARN(encoder->connectors_active != active,
12004                      "encoder's computed active state doesn't match tracked active state "
12005                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12006
12007                 active = encoder->get_hw_state(encoder, &pipe);
12008                 I915_STATE_WARN(active != encoder->connectors_active,
12009                      "encoder's hw state doesn't match sw tracking "
12010                      "(expected %i, found %i)\n",
12011                      encoder->connectors_active, active);
12012
12013                 if (!encoder->base.crtc)
12014                         continue;
12015
12016                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12017                 I915_STATE_WARN(active && pipe != tracked_pipe,
12018                      "active encoder's pipe doesn't match"
12019                      "(expected %i, found %i)\n",
12020                      tracked_pipe, pipe);
12021
12022         }
12023 }
12024
12025 static void
12026 check_crtc_state(struct drm_device *dev)
12027 {
12028         struct drm_i915_private *dev_priv = dev->dev_private;
12029         struct intel_crtc *crtc;
12030         struct intel_encoder *encoder;
12031         struct intel_crtc_state pipe_config;
12032
12033         for_each_intel_crtc(dev, crtc) {
12034                 bool enabled = false;
12035                 bool active = false;
12036
12037                 memset(&pipe_config, 0, sizeof(pipe_config));
12038
12039                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12040                               crtc->base.base.id);
12041
12042                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12043                      "active crtc, but not enabled in sw tracking\n");
12044
12045                 for_each_intel_encoder(dev, encoder) {
12046                         if (encoder->base.crtc != &crtc->base)
12047                                 continue;
12048                         enabled = true;
12049                         if (encoder->connectors_active)
12050                                 active = true;
12051                 }
12052
12053                 I915_STATE_WARN(active != crtc->active,
12054                      "crtc's computed active state doesn't match tracked active state "
12055                      "(expected %i, found %i)\n", active, crtc->active);
12056                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12057                      "crtc's computed enabled state doesn't match tracked enabled state "
12058                      "(expected %i, found %i)\n", enabled,
12059                                 crtc->base.state->enable);
12060
12061                 active = dev_priv->display.get_pipe_config(crtc,
12062                                                            &pipe_config);
12063
12064                 /* hw state is inconsistent with the pipe quirk */
12065                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12066                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12067                         active = crtc->active;
12068
12069                 for_each_intel_encoder(dev, encoder) {
12070                         enum pipe pipe;
12071                         if (encoder->base.crtc != &crtc->base)
12072                                 continue;
12073                         if (encoder->get_hw_state(encoder, &pipe))
12074                                 encoder->get_config(encoder, &pipe_config);
12075                 }
12076
12077                 I915_STATE_WARN(crtc->active != active,
12078                      "crtc active state doesn't match with hw state "
12079                      "(expected %i, found %i)\n", crtc->active, active);
12080
12081                 if (active &&
12082                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12083                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12084                         intel_dump_pipe_config(crtc, &pipe_config,
12085                                                "[hw state]");
12086                         intel_dump_pipe_config(crtc, crtc->config,
12087                                                "[sw state]");
12088                 }
12089         }
12090 }
12091
12092 static void
12093 check_shared_dpll_state(struct drm_device *dev)
12094 {
12095         struct drm_i915_private *dev_priv = dev->dev_private;
12096         struct intel_crtc *crtc;
12097         struct intel_dpll_hw_state dpll_hw_state;
12098         int i;
12099
12100         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12101                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12102                 int enabled_crtcs = 0, active_crtcs = 0;
12103                 bool active;
12104
12105                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12106
12107                 DRM_DEBUG_KMS("%s\n", pll->name);
12108
12109                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12110
12111                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12112                      "more active pll users than references: %i vs %i\n",
12113                      pll->active, hweight32(pll->config.crtc_mask));
12114                 I915_STATE_WARN(pll->active && !pll->on,
12115                      "pll in active use but not on in sw tracking\n");
12116                 I915_STATE_WARN(pll->on && !pll->active,
12117                      "pll in on but not on in use in sw tracking\n");
12118                 I915_STATE_WARN(pll->on != active,
12119                      "pll on state mismatch (expected %i, found %i)\n",
12120                      pll->on, active);
12121
12122                 for_each_intel_crtc(dev, crtc) {
12123                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12124                                 enabled_crtcs++;
12125                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12126                                 active_crtcs++;
12127                 }
12128                 I915_STATE_WARN(pll->active != active_crtcs,
12129                      "pll active crtcs mismatch (expected %i, found %i)\n",
12130                      pll->active, active_crtcs);
12131                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12132                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12133                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12134
12135                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12136                                        sizeof(dpll_hw_state)),
12137                      "pll hw state mismatch\n");
12138         }
12139 }
12140
12141 void
12142 intel_modeset_check_state(struct drm_device *dev)
12143 {
12144         check_wm_state(dev);
12145         check_connector_state(dev);
12146         check_encoder_state(dev);
12147         check_crtc_state(dev);
12148         check_shared_dpll_state(dev);
12149 }
12150
12151 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12152                                      int dotclock)
12153 {
12154         /*
12155          * FDI already provided one idea for the dotclock.
12156          * Yell if the encoder disagrees.
12157          */
12158         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12159              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12160              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12161 }
12162
12163 static void update_scanline_offset(struct intel_crtc *crtc)
12164 {
12165         struct drm_device *dev = crtc->base.dev;
12166
12167         /*
12168          * The scanline counter increments at the leading edge of hsync.
12169          *
12170          * On most platforms it starts counting from vtotal-1 on the
12171          * first active line. That means the scanline counter value is
12172          * always one less than what we would expect. Ie. just after
12173          * start of vblank, which also occurs at start of hsync (on the
12174          * last active line), the scanline counter will read vblank_start-1.
12175          *
12176          * On gen2 the scanline counter starts counting from 1 instead
12177          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12178          * to keep the value positive), instead of adding one.
12179          *
12180          * On HSW+ the behaviour of the scanline counter depends on the output
12181          * type. For DP ports it behaves like most other platforms, but on HDMI
12182          * there's an extra 1 line difference. So we need to add two instead of
12183          * one to the value.
12184          */
12185         if (IS_GEN2(dev)) {
12186                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12187                 int vtotal;
12188
12189                 vtotal = mode->crtc_vtotal;
12190                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12191                         vtotal /= 2;
12192
12193                 crtc->scanline_offset = vtotal - 1;
12194         } else if (HAS_DDI(dev) &&
12195                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12196                 crtc->scanline_offset = 2;
12197         } else
12198                 crtc->scanline_offset = 1;
12199 }
12200
12201 static struct intel_crtc_state *
12202 intel_modeset_compute_config(struct drm_crtc *crtc,
12203                              struct drm_atomic_state *state)
12204 {
12205         struct intel_crtc_state *pipe_config;
12206         int ret = 0;
12207
12208         ret = drm_atomic_add_affected_connectors(state, crtc);
12209         if (ret)
12210                 return ERR_PTR(ret);
12211
12212         ret = drm_atomic_helper_check_modeset(state->dev, state);
12213         if (ret)
12214                 return ERR_PTR(ret);
12215
12216         /*
12217          * Note this needs changes when we start tracking multiple modes
12218          * and crtcs.  At that point we'll need to compute the whole config
12219          * (i.e. one pipe_config for each crtc) rather than just the one
12220          * for this crtc.
12221          */
12222         pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12223         if (IS_ERR(pipe_config))
12224                 return pipe_config;
12225
12226         if (!pipe_config->base.enable)
12227                 return pipe_config;
12228
12229         ret = intel_modeset_pipe_config(crtc, state, pipe_config);
12230         if (ret)
12231                 return ERR_PTR(ret);
12232
12233         /* Check things that can only be changed through modeset */
12234         if (pipe_config->has_audio !=
12235             to_intel_crtc(crtc)->config->has_audio)
12236                 pipe_config->base.mode_changed = true;
12237
12238         /*
12239          * Note we have an issue here with infoframes: current code
12240          * only updates them on the full mode set path per hw
12241          * requirements.  So here we should be checking for any
12242          * required changes and forcing a mode set.
12243          */
12244
12245         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
12246
12247         ret = drm_atomic_helper_check_planes(state->dev, state);
12248         if (ret)
12249                 return ERR_PTR(ret);
12250
12251         return pipe_config;
12252 }
12253
12254 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
12255 {
12256         struct drm_device *dev = state->dev;
12257         struct drm_i915_private *dev_priv = to_i915(dev);
12258         unsigned clear_pipes = 0;
12259         struct intel_crtc *intel_crtc;
12260         struct intel_crtc_state *intel_crtc_state;
12261         struct drm_crtc *crtc;
12262         struct drm_crtc_state *crtc_state;
12263         int ret = 0;
12264         int i;
12265
12266         if (!dev_priv->display.crtc_compute_clock)
12267                 return 0;
12268
12269         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12270                 intel_crtc = to_intel_crtc(crtc);
12271                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12272
12273                 if (needs_modeset(crtc_state)) {
12274                         clear_pipes |= 1 << intel_crtc->pipe;
12275                         intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12276                         memset(&intel_crtc_state->dpll_hw_state, 0,
12277                                sizeof(intel_crtc_state->dpll_hw_state));
12278                 }
12279         }
12280
12281         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12282         if (ret)
12283                 goto done;
12284
12285         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12286                 if (!needs_modeset(crtc_state) || !crtc_state->enable)
12287                         continue;
12288
12289                 intel_crtc = to_intel_crtc(crtc);
12290                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12291
12292                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12293                                                            intel_crtc_state);
12294                 if (ret) {
12295                         intel_shared_dpll_abort_config(dev_priv);
12296                         goto done;
12297                 }
12298         }
12299
12300 done:
12301         return ret;
12302 }
12303
12304 /* Code that should eventually be part of atomic_check() */
12305 static int __intel_set_mode_checks(struct drm_atomic_state *state)
12306 {
12307         struct drm_device *dev = state->dev;
12308         int ret;
12309
12310         /*
12311          * See if the config requires any additional preparation, e.g.
12312          * to adjust global state with pipes off.  We need to do this
12313          * here so we can get the modeset_pipe updated config for the new
12314          * mode set on this crtc.  For other crtcs we need to use the
12315          * adjusted_mode bits in the crtc directly.
12316          */
12317         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12318                 ret = valleyview_modeset_global_pipes(state);
12319                 if (ret)
12320                         return ret;
12321         }
12322
12323         ret = __intel_set_mode_setup_plls(state);
12324         if (ret)
12325                 return ret;
12326
12327         return 0;
12328 }
12329
12330 static int __intel_set_mode(struct drm_crtc *modeset_crtc,
12331                             struct intel_crtc_state *pipe_config)
12332 {
12333         struct drm_device *dev = modeset_crtc->dev;
12334         struct drm_i915_private *dev_priv = dev->dev_private;
12335         struct drm_atomic_state *state = pipe_config->base.state;
12336         struct drm_crtc *crtc;
12337         struct drm_crtc_state *crtc_state;
12338         int ret = 0;
12339         int i;
12340
12341         ret = __intel_set_mode_checks(state);
12342         if (ret < 0)
12343                 return ret;
12344
12345         ret = drm_atomic_helper_prepare_planes(dev, state);
12346         if (ret)
12347                 return ret;
12348
12349         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12350                 if (!needs_modeset(crtc_state))
12351                         continue;
12352
12353                 if (!crtc_state->enable) {
12354                         intel_crtc_disable(crtc);
12355                 } else if (crtc->state->enable) {
12356                         intel_crtc_disable_planes(crtc);
12357                         dev_priv->display.crtc_disable(crtc);
12358                 }
12359         }
12360
12361         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12362          * to set it here already despite that we pass it down the callchain.
12363          *
12364          * Note we'll need to fix this up when we start tracking multiple
12365          * pipes; here we assume a single modeset_pipe and only track the
12366          * single crtc and mode.
12367          */
12368         if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
12369                 modeset_crtc->mode = pipe_config->base.mode;
12370
12371                 /*
12372                  * Calculate and store various constants which
12373                  * are later needed by vblank and swap-completion
12374                  * timestamping. They are derived from true hwmode.
12375                  */
12376                 drm_calc_timestamping_constants(modeset_crtc,
12377                                                 &pipe_config->base.adjusted_mode);
12378         }
12379
12380         /* Only after disabling all output pipelines that will be changed can we
12381          * update the the output configuration. */
12382         intel_modeset_update_state(state);
12383
12384         /* The state has been swaped above, so state actually contains the
12385          * old state now. */
12386
12387         modeset_update_crtc_power_domains(state);
12388
12389         drm_atomic_helper_commit_planes(dev, state);
12390
12391         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12392         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12393                 if (!needs_modeset(crtc->state) || !crtc->state->enable)
12394                         continue;
12395
12396                 update_scanline_offset(to_intel_crtc(crtc));
12397
12398                 dev_priv->display.crtc_enable(crtc);
12399                 intel_crtc_enable_planes(crtc);
12400         }
12401
12402         /* FIXME: add subpixel order */
12403
12404         drm_atomic_helper_cleanup_planes(dev, state);
12405
12406         drm_atomic_state_free(state);
12407
12408         return 0;
12409 }
12410
12411 static int intel_set_mode_with_config(struct drm_crtc *crtc,
12412                                       struct intel_crtc_state *pipe_config)
12413 {
12414         int ret;
12415
12416         ret = __intel_set_mode(crtc, pipe_config);
12417
12418         if (ret == 0)
12419                 intel_modeset_check_state(crtc->dev);
12420
12421         return ret;
12422 }
12423
12424 static int intel_set_mode(struct drm_crtc *crtc,
12425                           struct drm_atomic_state *state)
12426 {
12427         struct intel_crtc_state *pipe_config;
12428         int ret = 0;
12429
12430         pipe_config = intel_modeset_compute_config(crtc, state);
12431         if (IS_ERR(pipe_config)) {
12432                 ret = PTR_ERR(pipe_config);
12433                 goto out;
12434         }
12435
12436         ret = intel_set_mode_with_config(crtc, pipe_config);
12437         if (ret)
12438                 goto out;
12439
12440 out:
12441         return ret;
12442 }
12443
12444 void intel_crtc_restore_mode(struct drm_crtc *crtc)
12445 {
12446         struct drm_device *dev = crtc->dev;
12447         struct drm_atomic_state *state;
12448         struct intel_crtc *intel_crtc;
12449         struct intel_encoder *encoder;
12450         struct intel_connector *connector;
12451         struct drm_connector_state *connector_state;
12452         struct intel_crtc_state *crtc_state;
12453         int ret;
12454
12455         state = drm_atomic_state_alloc(dev);
12456         if (!state) {
12457                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12458                               crtc->base.id);
12459                 return;
12460         }
12461
12462         state->acquire_ctx = dev->mode_config.acquire_ctx;
12463
12464         /* The force restore path in the HW readout code relies on the staged
12465          * config still keeping the user requested config while the actual
12466          * state has been overwritten by the configuration read from HW. We
12467          * need to copy the staged config to the atomic state, otherwise the
12468          * mode set will just reapply the state the HW is already in. */
12469         for_each_intel_encoder(dev, encoder) {
12470                 if (&encoder->new_crtc->base != crtc)
12471                         continue;
12472
12473                 for_each_intel_connector(dev, connector) {
12474                         if (connector->new_encoder != encoder)
12475                                 continue;
12476
12477                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
12478                         if (IS_ERR(connector_state)) {
12479                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12480                                               connector->base.base.id,
12481                                               connector->base.name,
12482                                               PTR_ERR(connector_state));
12483                                 continue;
12484                         }
12485
12486                         connector_state->crtc = crtc;
12487                         connector_state->best_encoder = &encoder->base;
12488                 }
12489         }
12490
12491         for_each_intel_crtc(dev, intel_crtc) {
12492                 if (intel_crtc->new_enabled == intel_crtc->base.enabled)
12493                         continue;
12494
12495                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12496                 if (IS_ERR(crtc_state)) {
12497                         DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
12498                                       intel_crtc->base.base.id,
12499                                       PTR_ERR(crtc_state));
12500                         continue;
12501                 }
12502
12503                 crtc_state->base.active = crtc_state->base.enable =
12504                         intel_crtc->new_enabled;
12505
12506                 if (&intel_crtc->base == crtc)
12507                         drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
12508         }
12509
12510         intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
12511                                         crtc->primary->fb, crtc->x, crtc->y);
12512
12513         ret = intel_set_mode(crtc, state);
12514         if (ret)
12515                 drm_atomic_state_free(state);
12516 }
12517
12518 #undef for_each_intel_crtc_masked
12519
12520 static bool intel_connector_in_mode_set(struct intel_connector *connector,
12521                                         struct drm_mode_set *set)
12522 {
12523         int ro;
12524
12525         for (ro = 0; ro < set->num_connectors; ro++)
12526                 if (set->connectors[ro] == &connector->base)
12527                         return true;
12528
12529         return false;
12530 }
12531
12532 static int
12533 intel_modeset_stage_output_state(struct drm_device *dev,
12534                                  struct drm_mode_set *set,
12535                                  struct drm_atomic_state *state)
12536 {
12537         struct intel_connector *connector;
12538         struct drm_connector *drm_connector;
12539         struct drm_connector_state *connector_state;
12540         struct drm_crtc *crtc;
12541         struct drm_crtc_state *crtc_state;
12542         int i, ret;
12543
12544         /* The upper layers ensure that we either disable a crtc or have a list
12545          * of connectors. For paranoia, double-check this. */
12546         WARN_ON(!set->fb && (set->num_connectors != 0));
12547         WARN_ON(set->fb && (set->num_connectors == 0));
12548
12549         for_each_intel_connector(dev, connector) {
12550                 bool in_mode_set = intel_connector_in_mode_set(connector, set);
12551
12552                 if (!in_mode_set && connector->base.state->crtc != set->crtc)
12553                         continue;
12554
12555                 connector_state =
12556                         drm_atomic_get_connector_state(state, &connector->base);
12557                 if (IS_ERR(connector_state))
12558                         return PTR_ERR(connector_state);
12559
12560                 if (in_mode_set) {
12561                         int pipe = to_intel_crtc(set->crtc)->pipe;
12562                         connector_state->best_encoder =
12563                                 &intel_find_encoder(connector, pipe)->base;
12564                 }
12565
12566                 if (connector->base.state->crtc != set->crtc)
12567                         continue;
12568
12569                 /* If we disable the crtc, disable all its connectors. Also, if
12570                  * the connector is on the changing crtc but not on the new
12571                  * connector list, disable it. */
12572                 if (!set->fb || !in_mode_set) {
12573                         connector_state->best_encoder = NULL;
12574
12575                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12576                                 connector->base.base.id,
12577                                 connector->base.name);
12578                 }
12579         }
12580         /* connector->new_encoder is now updated for all connectors. */
12581
12582         for_each_connector_in_state(state, drm_connector, connector_state, i) {
12583                 connector = to_intel_connector(drm_connector);
12584
12585                 if (!connector_state->best_encoder) {
12586                         ret = drm_atomic_set_crtc_for_connector(connector_state,
12587                                                                 NULL);
12588                         if (ret)
12589                                 return ret;
12590
12591                         continue;
12592                 }
12593
12594                 if (intel_connector_in_mode_set(connector, set)) {
12595                         struct drm_crtc *crtc = connector->base.state->crtc;
12596
12597                         /* If this connector was in a previous crtc, add it
12598                          * to the state. We might need to disable it. */
12599                         if (crtc) {
12600                                 crtc_state =
12601                                         drm_atomic_get_crtc_state(state, crtc);
12602                                 if (IS_ERR(crtc_state))
12603                                         return PTR_ERR(crtc_state);
12604                         }
12605
12606                         ret = drm_atomic_set_crtc_for_connector(connector_state,
12607                                                                 set->crtc);
12608                         if (ret)
12609                                 return ret;
12610                 }
12611
12612                 /* Make sure the new CRTC will work with the encoder */
12613                 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
12614                                          connector_state->crtc)) {
12615                         return -EINVAL;
12616                 }
12617
12618                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12619                         connector->base.base.id,
12620                         connector->base.name,
12621                         connector_state->crtc->base.id);
12622
12623                 if (connector_state->best_encoder != &connector->encoder->base)
12624                         connector->encoder =
12625                                 to_intel_encoder(connector_state->best_encoder);
12626         }
12627
12628         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12629                 bool has_connectors;
12630
12631                 ret = drm_atomic_add_affected_connectors(state, crtc);
12632                 if (ret)
12633                         return ret;
12634
12635                 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
12636                 if (has_connectors != crtc_state->enable)
12637                         crtc_state->enable =
12638                         crtc_state->active = has_connectors;
12639         }
12640
12641         ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
12642                                               set->fb, set->x, set->y);
12643         if (ret)
12644                 return ret;
12645
12646         crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
12647         if (IS_ERR(crtc_state))
12648                 return PTR_ERR(crtc_state);
12649
12650         if (set->mode)
12651                 drm_mode_copy(&crtc_state->mode, set->mode);
12652
12653         if (set->num_connectors)
12654                 crtc_state->active = true;
12655
12656         return 0;
12657 }
12658
12659 static bool primary_plane_visible(struct drm_crtc *crtc)
12660 {
12661         struct intel_plane_state *plane_state =
12662                 to_intel_plane_state(crtc->primary->state);
12663
12664         return plane_state->visible;
12665 }
12666
12667 static int intel_crtc_set_config(struct drm_mode_set *set)
12668 {
12669         struct drm_device *dev;
12670         struct drm_atomic_state *state = NULL;
12671         struct intel_crtc_state *pipe_config;
12672         bool primary_plane_was_visible;
12673         int ret;
12674
12675         BUG_ON(!set);
12676         BUG_ON(!set->crtc);
12677         BUG_ON(!set->crtc->helper_private);
12678
12679         /* Enforce sane interface api - has been abused by the fb helper. */
12680         BUG_ON(!set->mode && set->fb);
12681         BUG_ON(set->fb && set->num_connectors == 0);
12682
12683         if (set->fb) {
12684                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12685                                 set->crtc->base.id, set->fb->base.id,
12686                                 (int)set->num_connectors, set->x, set->y);
12687         } else {
12688                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12689         }
12690
12691         dev = set->crtc->dev;
12692
12693         state = drm_atomic_state_alloc(dev);
12694         if (!state)
12695                 return -ENOMEM;
12696
12697         state->acquire_ctx = dev->mode_config.acquire_ctx;
12698
12699         ret = intel_modeset_stage_output_state(dev, set, state);
12700         if (ret)
12701                 goto out;
12702
12703         pipe_config = intel_modeset_compute_config(set->crtc, state);
12704         if (IS_ERR(pipe_config)) {
12705                 ret = PTR_ERR(pipe_config);
12706                 goto out;
12707         }
12708
12709         intel_update_pipe_size(to_intel_crtc(set->crtc));
12710
12711         primary_plane_was_visible = primary_plane_visible(set->crtc);
12712
12713         ret = intel_set_mode_with_config(set->crtc, pipe_config);
12714
12715         if (ret == 0 &&
12716             pipe_config->base.enable &&
12717             pipe_config->base.planes_changed &&
12718             !needs_modeset(&pipe_config->base)) {
12719                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12720
12721                 /*
12722                  * We need to make sure the primary plane is re-enabled if it
12723                  * has previously been turned off.
12724                  */
12725                 if (ret == 0 && !primary_plane_was_visible &&
12726                     primary_plane_visible(set->crtc)) {
12727                         WARN_ON(!intel_crtc->active);
12728                         intel_post_enable_primary(set->crtc);
12729                 }
12730
12731                 /*
12732                  * In the fastboot case this may be our only check of the
12733                  * state after boot.  It would be better to only do it on
12734                  * the first update, but we don't have a nice way of doing that
12735                  * (and really, set_config isn't used much for high freq page
12736                  * flipping, so increasing its cost here shouldn't be a big
12737                  * deal).
12738                  */
12739                 if (i915.fastboot && ret == 0)
12740                         intel_modeset_check_state(set->crtc->dev);
12741         }
12742
12743         if (ret) {
12744                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12745                               set->crtc->base.id, ret);
12746         }
12747
12748 out:
12749         if (ret)
12750                 drm_atomic_state_free(state);
12751         return ret;
12752 }
12753
12754 static const struct drm_crtc_funcs intel_crtc_funcs = {
12755         .gamma_set = intel_crtc_gamma_set,
12756         .set_config = intel_crtc_set_config,
12757         .destroy = intel_crtc_destroy,
12758         .page_flip = intel_crtc_page_flip,
12759         .atomic_duplicate_state = intel_crtc_duplicate_state,
12760         .atomic_destroy_state = intel_crtc_destroy_state,
12761 };
12762
12763 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12764                                       struct intel_shared_dpll *pll,
12765                                       struct intel_dpll_hw_state *hw_state)
12766 {
12767         uint32_t val;
12768
12769         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12770                 return false;
12771
12772         val = I915_READ(PCH_DPLL(pll->id));
12773         hw_state->dpll = val;
12774         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12775         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12776
12777         return val & DPLL_VCO_ENABLE;
12778 }
12779
12780 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12781                                   struct intel_shared_dpll *pll)
12782 {
12783         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12784         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12785 }
12786
12787 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12788                                 struct intel_shared_dpll *pll)
12789 {
12790         /* PCH refclock must be enabled first */
12791         ibx_assert_pch_refclk_enabled(dev_priv);
12792
12793         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12794
12795         /* Wait for the clocks to stabilize. */
12796         POSTING_READ(PCH_DPLL(pll->id));
12797         udelay(150);
12798
12799         /* The pixel multiplier can only be updated once the
12800          * DPLL is enabled and the clocks are stable.
12801          *
12802          * So write it again.
12803          */
12804         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12805         POSTING_READ(PCH_DPLL(pll->id));
12806         udelay(200);
12807 }
12808
12809 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12810                                  struct intel_shared_dpll *pll)
12811 {
12812         struct drm_device *dev = dev_priv->dev;
12813         struct intel_crtc *crtc;
12814
12815         /* Make sure no transcoder isn't still depending on us. */
12816         for_each_intel_crtc(dev, crtc) {
12817                 if (intel_crtc_to_shared_dpll(crtc) == pll)
12818                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12819         }
12820
12821         I915_WRITE(PCH_DPLL(pll->id), 0);
12822         POSTING_READ(PCH_DPLL(pll->id));
12823         udelay(200);
12824 }
12825
12826 static char *ibx_pch_dpll_names[] = {
12827         "PCH DPLL A",
12828         "PCH DPLL B",
12829 };
12830
12831 static void ibx_pch_dpll_init(struct drm_device *dev)
12832 {
12833         struct drm_i915_private *dev_priv = dev->dev_private;
12834         int i;
12835
12836         dev_priv->num_shared_dpll = 2;
12837
12838         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12839                 dev_priv->shared_dplls[i].id = i;
12840                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12841                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12842                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12843                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12844                 dev_priv->shared_dplls[i].get_hw_state =
12845                         ibx_pch_dpll_get_hw_state;
12846         }
12847 }
12848
12849 static void intel_shared_dpll_init(struct drm_device *dev)
12850 {
12851         struct drm_i915_private *dev_priv = dev->dev_private;
12852
12853         if (HAS_DDI(dev))
12854                 intel_ddi_pll_init(dev);
12855         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12856                 ibx_pch_dpll_init(dev);
12857         else
12858                 dev_priv->num_shared_dpll = 0;
12859
12860         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12861 }
12862
12863 /**
12864  * intel_wm_need_update - Check whether watermarks need updating
12865  * @plane: drm plane
12866  * @state: new plane state
12867  *
12868  * Check current plane state versus the new one to determine whether
12869  * watermarks need to be recalculated.
12870  *
12871  * Returns true or false.
12872  */
12873 bool intel_wm_need_update(struct drm_plane *plane,
12874                           struct drm_plane_state *state)
12875 {
12876         /* Update watermarks on tiling changes. */
12877         if (!plane->state->fb || !state->fb ||
12878             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12879             plane->state->rotation != state->rotation)
12880                 return true;
12881
12882         return false;
12883 }
12884
12885 /**
12886  * intel_prepare_plane_fb - Prepare fb for usage on plane
12887  * @plane: drm plane to prepare for
12888  * @fb: framebuffer to prepare for presentation
12889  *
12890  * Prepares a framebuffer for usage on a display plane.  Generally this
12891  * involves pinning the underlying object and updating the frontbuffer tracking
12892  * bits.  Some older platforms need special physical address handling for
12893  * cursor planes.
12894  *
12895  * Returns 0 on success, negative error code on failure.
12896  */
12897 int
12898 intel_prepare_plane_fb(struct drm_plane *plane,
12899                        struct drm_framebuffer *fb,
12900                        const struct drm_plane_state *new_state)
12901 {
12902         struct drm_device *dev = plane->dev;
12903         struct intel_plane *intel_plane = to_intel_plane(plane);
12904         enum pipe pipe = intel_plane->pipe;
12905         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12906         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12907         unsigned frontbuffer_bits = 0;
12908         int ret = 0;
12909
12910         if (!obj)
12911                 return 0;
12912
12913         switch (plane->type) {
12914         case DRM_PLANE_TYPE_PRIMARY:
12915                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12916                 break;
12917         case DRM_PLANE_TYPE_CURSOR:
12918                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12919                 break;
12920         case DRM_PLANE_TYPE_OVERLAY:
12921                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12922                 break;
12923         }
12924
12925         mutex_lock(&dev->struct_mutex);
12926
12927         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12928             INTEL_INFO(dev)->cursor_needs_physical) {
12929                 int align = IS_I830(dev) ? 16 * 1024 : 256;
12930                 ret = i915_gem_object_attach_phys(obj, align);
12931                 if (ret)
12932                         DRM_DEBUG_KMS("failed to attach phys object\n");
12933         } else {
12934                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12935         }
12936
12937         if (ret == 0)
12938                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12939
12940         mutex_unlock(&dev->struct_mutex);
12941
12942         return ret;
12943 }
12944
12945 /**
12946  * intel_cleanup_plane_fb - Cleans up an fb after plane use
12947  * @plane: drm plane to clean up for
12948  * @fb: old framebuffer that was on plane
12949  *
12950  * Cleans up a framebuffer that has just been removed from a plane.
12951  */
12952 void
12953 intel_cleanup_plane_fb(struct drm_plane *plane,
12954                        struct drm_framebuffer *fb,
12955                        const struct drm_plane_state *old_state)
12956 {
12957         struct drm_device *dev = plane->dev;
12958         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12959
12960         if (WARN_ON(!obj))
12961                 return;
12962
12963         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12964             !INTEL_INFO(dev)->cursor_needs_physical) {
12965                 mutex_lock(&dev->struct_mutex);
12966                 intel_unpin_fb_obj(fb, old_state);
12967                 mutex_unlock(&dev->struct_mutex);
12968         }
12969 }
12970
12971 int
12972 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
12973 {
12974         int max_scale;
12975         struct drm_device *dev;
12976         struct drm_i915_private *dev_priv;
12977         int crtc_clock, cdclk;
12978
12979         if (!intel_crtc || !crtc_state)
12980                 return DRM_PLANE_HELPER_NO_SCALING;
12981
12982         dev = intel_crtc->base.dev;
12983         dev_priv = dev->dev_private;
12984         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
12985         cdclk = dev_priv->display.get_display_clock_speed(dev);
12986
12987         if (!crtc_clock || !cdclk)
12988                 return DRM_PLANE_HELPER_NO_SCALING;
12989
12990         /*
12991          * skl max scale is lower of:
12992          *    close to 3 but not 3, -1 is for that purpose
12993          *            or
12994          *    cdclk/crtc_clock
12995          */
12996         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
12997
12998         return max_scale;
12999 }
13000
13001 static int
13002 intel_check_primary_plane(struct drm_plane *plane,
13003                           struct intel_plane_state *state)
13004 {
13005         struct drm_device *dev = plane->dev;
13006         struct drm_i915_private *dev_priv = dev->dev_private;
13007         struct drm_crtc *crtc = state->base.crtc;
13008         struct intel_crtc *intel_crtc;
13009         struct intel_crtc_state *crtc_state;
13010         struct drm_framebuffer *fb = state->base.fb;
13011         struct drm_rect *dest = &state->dst;
13012         struct drm_rect *src = &state->src;
13013         const struct drm_rect *clip = &state->clip;
13014         bool can_position = false;
13015         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13016         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13017         int ret;
13018
13019         crtc = crtc ? crtc : plane->crtc;
13020         intel_crtc = to_intel_crtc(crtc);
13021         crtc_state = state->base.state ?
13022                 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13023
13024         if (INTEL_INFO(dev)->gen >= 9) {
13025                 min_scale = 1;
13026                 max_scale = skl_max_scale(intel_crtc, crtc_state);
13027                 can_position = true;
13028         }
13029
13030         ret = drm_plane_helper_check_update(plane, crtc, fb,
13031                                             src, dest, clip,
13032                                             min_scale,
13033                                             max_scale,
13034                                             can_position, true,
13035                                             &state->visible);
13036         if (ret)
13037                 return ret;
13038
13039         if (intel_crtc->active) {
13040                 struct intel_plane_state *old_state =
13041                         to_intel_plane_state(plane->state);
13042
13043                 intel_crtc->atomic.wait_for_flips = true;
13044
13045                 /*
13046                  * FBC does not work on some platforms for rotated
13047                  * planes, so disable it when rotation is not 0 and
13048                  * update it when rotation is set back to 0.
13049                  *
13050                  * FIXME: This is redundant with the fbc update done in
13051                  * the primary plane enable function except that that
13052                  * one is done too late. We eventually need to unify
13053                  * this.
13054                  */
13055                 if (state->visible &&
13056                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13057                     dev_priv->fbc.crtc == intel_crtc &&
13058                     state->base.rotation != BIT(DRM_ROTATE_0)) {
13059                         intel_crtc->atomic.disable_fbc = true;
13060                 }
13061
13062                 if (state->visible && !old_state->visible) {
13063                         /*
13064                          * BDW signals flip done immediately if the plane
13065                          * is disabled, even if the plane enable is already
13066                          * armed to occur at the next vblank :(
13067                          */
13068                         if (IS_BROADWELL(dev))
13069                                 intel_crtc->atomic.wait_vblank = true;
13070                 }
13071
13072                 intel_crtc->atomic.fb_bits |=
13073                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13074
13075                 intel_crtc->atomic.update_fbc = true;
13076
13077                 if (intel_wm_need_update(plane, &state->base))
13078                         intel_crtc->atomic.update_wm = true;
13079         }
13080
13081         if (INTEL_INFO(dev)->gen >= 9) {
13082                 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13083                         to_intel_plane(plane), state, 0);
13084                 if (ret)
13085                         return ret;
13086         }
13087
13088         return 0;
13089 }
13090
13091 static void
13092 intel_commit_primary_plane(struct drm_plane *plane,
13093                            struct intel_plane_state *state)
13094 {
13095         struct drm_crtc *crtc = state->base.crtc;
13096         struct drm_framebuffer *fb = state->base.fb;
13097         struct drm_device *dev = plane->dev;
13098         struct drm_i915_private *dev_priv = dev->dev_private;
13099         struct intel_crtc *intel_crtc;
13100         struct drm_rect *src = &state->src;
13101
13102         crtc = crtc ? crtc : plane->crtc;
13103         intel_crtc = to_intel_crtc(crtc);
13104
13105         plane->fb = fb;
13106         crtc->x = src->x1 >> 16;
13107         crtc->y = src->y1 >> 16;
13108
13109         if (intel_crtc->active) {
13110                 if (state->visible)
13111                         /* FIXME: kill this fastboot hack */
13112                         intel_update_pipe_size(intel_crtc);
13113
13114                 dev_priv->display.update_primary_plane(crtc, plane->fb,
13115                                                        crtc->x, crtc->y);
13116         }
13117 }
13118
13119 static void
13120 intel_disable_primary_plane(struct drm_plane *plane,
13121                             struct drm_crtc *crtc,
13122                             bool force)
13123 {
13124         struct drm_device *dev = plane->dev;
13125         struct drm_i915_private *dev_priv = dev->dev_private;
13126
13127         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13128 }
13129
13130 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13131 {
13132         struct drm_device *dev = crtc->dev;
13133         struct drm_i915_private *dev_priv = dev->dev_private;
13134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13135         struct intel_plane *intel_plane;
13136         struct drm_plane *p;
13137         unsigned fb_bits = 0;
13138
13139         /* Track fb's for any planes being disabled */
13140         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13141                 intel_plane = to_intel_plane(p);
13142
13143                 if (intel_crtc->atomic.disabled_planes &
13144                     (1 << drm_plane_index(p))) {
13145                         switch (p->type) {
13146                         case DRM_PLANE_TYPE_PRIMARY:
13147                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13148                                 break;
13149                         case DRM_PLANE_TYPE_CURSOR:
13150                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13151                                 break;
13152                         case DRM_PLANE_TYPE_OVERLAY:
13153                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13154                                 break;
13155                         }
13156
13157                         mutex_lock(&dev->struct_mutex);
13158                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13159                         mutex_unlock(&dev->struct_mutex);
13160                 }
13161         }
13162
13163         if (intel_crtc->atomic.wait_for_flips)
13164                 intel_crtc_wait_for_pending_flips(crtc);
13165
13166         if (intel_crtc->atomic.disable_fbc)
13167                 intel_fbc_disable(dev);
13168
13169         if (intel_crtc->atomic.pre_disable_primary)
13170                 intel_pre_disable_primary(crtc);
13171
13172         if (intel_crtc->atomic.update_wm)
13173                 intel_update_watermarks(crtc);
13174
13175         intel_runtime_pm_get(dev_priv);
13176
13177         /* Perform vblank evasion around commit operation */
13178         if (intel_crtc->active)
13179                 intel_crtc->atomic.evade =
13180                         intel_pipe_update_start(intel_crtc,
13181                                                 &intel_crtc->atomic.start_vbl_count);
13182 }
13183
13184 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13185 {
13186         struct drm_device *dev = crtc->dev;
13187         struct drm_i915_private *dev_priv = dev->dev_private;
13188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13189         struct drm_plane *p;
13190
13191         if (intel_crtc->atomic.evade)
13192                 intel_pipe_update_end(intel_crtc,
13193                                       intel_crtc->atomic.start_vbl_count);
13194
13195         intel_runtime_pm_put(dev_priv);
13196
13197         if (intel_crtc->atomic.wait_vblank)
13198                 intel_wait_for_vblank(dev, intel_crtc->pipe);
13199
13200         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13201
13202         if (intel_crtc->atomic.update_fbc) {
13203                 mutex_lock(&dev->struct_mutex);
13204                 intel_fbc_update(dev);
13205                 mutex_unlock(&dev->struct_mutex);
13206         }
13207
13208         if (intel_crtc->atomic.post_enable_primary)
13209                 intel_post_enable_primary(crtc);
13210
13211         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13212                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13213                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13214                                                        false, false);
13215
13216         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13217 }
13218
13219 /**
13220  * intel_plane_destroy - destroy a plane
13221  * @plane: plane to destroy
13222  *
13223  * Common destruction function for all types of planes (primary, cursor,
13224  * sprite).
13225  */
13226 void intel_plane_destroy(struct drm_plane *plane)
13227 {
13228         struct intel_plane *intel_plane = to_intel_plane(plane);
13229         drm_plane_cleanup(plane);
13230         kfree(intel_plane);
13231 }
13232
13233 const struct drm_plane_funcs intel_plane_funcs = {
13234         .update_plane = drm_atomic_helper_update_plane,
13235         .disable_plane = drm_atomic_helper_disable_plane,
13236         .destroy = intel_plane_destroy,
13237         .set_property = drm_atomic_helper_plane_set_property,
13238         .atomic_get_property = intel_plane_atomic_get_property,
13239         .atomic_set_property = intel_plane_atomic_set_property,
13240         .atomic_duplicate_state = intel_plane_duplicate_state,
13241         .atomic_destroy_state = intel_plane_destroy_state,
13242
13243 };
13244
13245 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13246                                                     int pipe)
13247 {
13248         struct intel_plane *primary;
13249         struct intel_plane_state *state;
13250         const uint32_t *intel_primary_formats;
13251         int num_formats;
13252
13253         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13254         if (primary == NULL)
13255                 return NULL;
13256
13257         state = intel_create_plane_state(&primary->base);
13258         if (!state) {
13259                 kfree(primary);
13260                 return NULL;
13261         }
13262         primary->base.state = &state->base;
13263
13264         primary->can_scale = false;
13265         primary->max_downscale = 1;
13266         if (INTEL_INFO(dev)->gen >= 9) {
13267                 primary->can_scale = true;
13268         }
13269         state->scaler_id = -1;
13270         primary->pipe = pipe;
13271         primary->plane = pipe;
13272         primary->check_plane = intel_check_primary_plane;
13273         primary->commit_plane = intel_commit_primary_plane;
13274         primary->disable_plane = intel_disable_primary_plane;
13275         primary->ckey.flags = I915_SET_COLORKEY_NONE;
13276         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13277                 primary->plane = !pipe;
13278
13279         if (INTEL_INFO(dev)->gen <= 3) {
13280                 intel_primary_formats = intel_primary_formats_gen2;
13281                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
13282         } else {
13283                 intel_primary_formats = intel_primary_formats_gen4;
13284                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
13285         }
13286
13287         drm_universal_plane_init(dev, &primary->base, 0,
13288                                  &intel_plane_funcs,
13289                                  intel_primary_formats, num_formats,
13290                                  DRM_PLANE_TYPE_PRIMARY);
13291
13292         if (INTEL_INFO(dev)->gen >= 4)
13293                 intel_create_rotation_property(dev, primary);
13294
13295         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13296
13297         return &primary->base;
13298 }
13299
13300 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13301 {
13302         if (!dev->mode_config.rotation_property) {
13303                 unsigned long flags = BIT(DRM_ROTATE_0) |
13304                         BIT(DRM_ROTATE_180);
13305
13306                 if (INTEL_INFO(dev)->gen >= 9)
13307                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13308
13309                 dev->mode_config.rotation_property =
13310                         drm_mode_create_rotation_property(dev, flags);
13311         }
13312         if (dev->mode_config.rotation_property)
13313                 drm_object_attach_property(&plane->base.base,
13314                                 dev->mode_config.rotation_property,
13315                                 plane->base.state->rotation);
13316 }
13317
13318 static int
13319 intel_check_cursor_plane(struct drm_plane *plane,
13320                          struct intel_plane_state *state)
13321 {
13322         struct drm_crtc *crtc = state->base.crtc;
13323         struct drm_device *dev = plane->dev;
13324         struct drm_framebuffer *fb = state->base.fb;
13325         struct drm_rect *dest = &state->dst;
13326         struct drm_rect *src = &state->src;
13327         const struct drm_rect *clip = &state->clip;
13328         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13329         struct intel_crtc *intel_crtc;
13330         unsigned stride;
13331         int ret;
13332
13333         crtc = crtc ? crtc : plane->crtc;
13334         intel_crtc = to_intel_crtc(crtc);
13335
13336         ret = drm_plane_helper_check_update(plane, crtc, fb,
13337                                             src, dest, clip,
13338                                             DRM_PLANE_HELPER_NO_SCALING,
13339                                             DRM_PLANE_HELPER_NO_SCALING,
13340                                             true, true, &state->visible);
13341         if (ret)
13342                 return ret;
13343
13344
13345         /* if we want to turn off the cursor ignore width and height */
13346         if (!obj)
13347                 goto finish;
13348
13349         /* Check for which cursor types we support */
13350         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13351                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13352                           state->base.crtc_w, state->base.crtc_h);
13353                 return -EINVAL;
13354         }
13355
13356         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13357         if (obj->base.size < stride * state->base.crtc_h) {
13358                 DRM_DEBUG_KMS("buffer is too small\n");
13359                 return -ENOMEM;
13360         }
13361
13362         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13363                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13364                 ret = -EINVAL;
13365         }
13366
13367 finish:
13368         if (intel_crtc->active) {
13369                 if (plane->state->crtc_w != state->base.crtc_w)
13370                         intel_crtc->atomic.update_wm = true;
13371
13372                 intel_crtc->atomic.fb_bits |=
13373                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13374         }
13375
13376         return ret;
13377 }
13378
13379 static void
13380 intel_disable_cursor_plane(struct drm_plane *plane,
13381                            struct drm_crtc *crtc,
13382                            bool force)
13383 {
13384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13385
13386         if (!force) {
13387                 plane->fb = NULL;
13388                 intel_crtc->cursor_bo = NULL;
13389                 intel_crtc->cursor_addr = 0;
13390         }
13391
13392         intel_crtc_update_cursor(crtc, false);
13393 }
13394
13395 static void
13396 intel_commit_cursor_plane(struct drm_plane *plane,
13397                           struct intel_plane_state *state)
13398 {
13399         struct drm_crtc *crtc = state->base.crtc;
13400         struct drm_device *dev = plane->dev;
13401         struct intel_crtc *intel_crtc;
13402         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13403         uint32_t addr;
13404
13405         crtc = crtc ? crtc : plane->crtc;
13406         intel_crtc = to_intel_crtc(crtc);
13407
13408         plane->fb = state->base.fb;
13409         crtc->cursor_x = state->base.crtc_x;
13410         crtc->cursor_y = state->base.crtc_y;
13411
13412         if (intel_crtc->cursor_bo == obj)
13413                 goto update;
13414
13415         if (!obj)
13416                 addr = 0;
13417         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13418                 addr = i915_gem_obj_ggtt_offset(obj);
13419         else
13420                 addr = obj->phys_handle->busaddr;
13421
13422         intel_crtc->cursor_addr = addr;
13423         intel_crtc->cursor_bo = obj;
13424 update:
13425
13426         if (intel_crtc->active)
13427                 intel_crtc_update_cursor(crtc, state->visible);
13428 }
13429
13430 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13431                                                    int pipe)
13432 {
13433         struct intel_plane *cursor;
13434         struct intel_plane_state *state;
13435
13436         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13437         if (cursor == NULL)
13438                 return NULL;
13439
13440         state = intel_create_plane_state(&cursor->base);
13441         if (!state) {
13442                 kfree(cursor);
13443                 return NULL;
13444         }
13445         cursor->base.state = &state->base;
13446
13447         cursor->can_scale = false;
13448         cursor->max_downscale = 1;
13449         cursor->pipe = pipe;
13450         cursor->plane = pipe;
13451         state->scaler_id = -1;
13452         cursor->check_plane = intel_check_cursor_plane;
13453         cursor->commit_plane = intel_commit_cursor_plane;
13454         cursor->disable_plane = intel_disable_cursor_plane;
13455
13456         drm_universal_plane_init(dev, &cursor->base, 0,
13457                                  &intel_plane_funcs,
13458                                  intel_cursor_formats,
13459                                  ARRAY_SIZE(intel_cursor_formats),
13460                                  DRM_PLANE_TYPE_CURSOR);
13461
13462         if (INTEL_INFO(dev)->gen >= 4) {
13463                 if (!dev->mode_config.rotation_property)
13464                         dev->mode_config.rotation_property =
13465                                 drm_mode_create_rotation_property(dev,
13466                                                         BIT(DRM_ROTATE_0) |
13467                                                         BIT(DRM_ROTATE_180));
13468                 if (dev->mode_config.rotation_property)
13469                         drm_object_attach_property(&cursor->base.base,
13470                                 dev->mode_config.rotation_property,
13471                                 state->base.rotation);
13472         }
13473
13474         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13475
13476         return &cursor->base;
13477 }
13478
13479 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13480         struct intel_crtc_state *crtc_state)
13481 {
13482         int i;
13483         struct intel_scaler *intel_scaler;
13484         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13485
13486         for (i = 0; i < intel_crtc->num_scalers; i++) {
13487                 intel_scaler = &scaler_state->scalers[i];
13488                 intel_scaler->in_use = 0;
13489                 intel_scaler->id = i;
13490
13491                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13492         }
13493
13494         scaler_state->scaler_id = -1;
13495 }
13496
13497 static void intel_crtc_init(struct drm_device *dev, int pipe)
13498 {
13499         struct drm_i915_private *dev_priv = dev->dev_private;
13500         struct intel_crtc *intel_crtc;
13501         struct intel_crtc_state *crtc_state = NULL;
13502         struct drm_plane *primary = NULL;
13503         struct drm_plane *cursor = NULL;
13504         int i, ret;
13505
13506         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13507         if (intel_crtc == NULL)
13508                 return;
13509
13510         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13511         if (!crtc_state)
13512                 goto fail;
13513         intel_crtc->config = crtc_state;
13514         intel_crtc->base.state = &crtc_state->base;
13515         crtc_state->base.crtc = &intel_crtc->base;
13516
13517         /* initialize shared scalers */
13518         if (INTEL_INFO(dev)->gen >= 9) {
13519                 if (pipe == PIPE_C)
13520                         intel_crtc->num_scalers = 1;
13521                 else
13522                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13523
13524                 skl_init_scalers(dev, intel_crtc, crtc_state);
13525         }
13526
13527         primary = intel_primary_plane_create(dev, pipe);
13528         if (!primary)
13529                 goto fail;
13530
13531         cursor = intel_cursor_plane_create(dev, pipe);
13532         if (!cursor)
13533                 goto fail;
13534
13535         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13536                                         cursor, &intel_crtc_funcs);
13537         if (ret)
13538                 goto fail;
13539
13540         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13541         for (i = 0; i < 256; i++) {
13542                 intel_crtc->lut_r[i] = i;
13543                 intel_crtc->lut_g[i] = i;
13544                 intel_crtc->lut_b[i] = i;
13545         }
13546
13547         /*
13548          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13549          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13550          */
13551         intel_crtc->pipe = pipe;
13552         intel_crtc->plane = pipe;
13553         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13554                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13555                 intel_crtc->plane = !pipe;
13556         }
13557
13558         intel_crtc->cursor_base = ~0;
13559         intel_crtc->cursor_cntl = ~0;
13560         intel_crtc->cursor_size = ~0;
13561
13562         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13563                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13564         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13565         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13566
13567         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
13568
13569         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13570
13571         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13572         return;
13573
13574 fail:
13575         if (primary)
13576                 drm_plane_cleanup(primary);
13577         if (cursor)
13578                 drm_plane_cleanup(cursor);
13579         kfree(crtc_state);
13580         kfree(intel_crtc);
13581 }
13582
13583 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13584 {
13585         struct drm_encoder *encoder = connector->base.encoder;
13586         struct drm_device *dev = connector->base.dev;
13587
13588         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13589
13590         if (!encoder || WARN_ON(!encoder->crtc))
13591                 return INVALID_PIPE;
13592
13593         return to_intel_crtc(encoder->crtc)->pipe;
13594 }
13595
13596 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13597                                 struct drm_file *file)
13598 {
13599         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13600         struct drm_crtc *drmmode_crtc;
13601         struct intel_crtc *crtc;
13602
13603         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13604
13605         if (!drmmode_crtc) {
13606                 DRM_ERROR("no such CRTC id\n");
13607                 return -ENOENT;
13608         }
13609
13610         crtc = to_intel_crtc(drmmode_crtc);
13611         pipe_from_crtc_id->pipe = crtc->pipe;
13612
13613         return 0;
13614 }
13615
13616 static int intel_encoder_clones(struct intel_encoder *encoder)
13617 {
13618         struct drm_device *dev = encoder->base.dev;
13619         struct intel_encoder *source_encoder;
13620         int index_mask = 0;
13621         int entry = 0;
13622
13623         for_each_intel_encoder(dev, source_encoder) {
13624                 if (encoders_cloneable(encoder, source_encoder))
13625                         index_mask |= (1 << entry);
13626
13627                 entry++;
13628         }
13629
13630         return index_mask;
13631 }
13632
13633 static bool has_edp_a(struct drm_device *dev)
13634 {
13635         struct drm_i915_private *dev_priv = dev->dev_private;
13636
13637         if (!IS_MOBILE(dev))
13638                 return false;
13639
13640         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13641                 return false;
13642
13643         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13644                 return false;
13645
13646         return true;
13647 }
13648
13649 static bool intel_crt_present(struct drm_device *dev)
13650 {
13651         struct drm_i915_private *dev_priv = dev->dev_private;
13652
13653         if (INTEL_INFO(dev)->gen >= 9)
13654                 return false;
13655
13656         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13657                 return false;
13658
13659         if (IS_CHERRYVIEW(dev))
13660                 return false;
13661
13662         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13663                 return false;
13664
13665         return true;
13666 }
13667
13668 static void intel_setup_outputs(struct drm_device *dev)
13669 {
13670         struct drm_i915_private *dev_priv = dev->dev_private;
13671         struct intel_encoder *encoder;
13672         bool dpd_is_edp = false;
13673
13674         intel_lvds_init(dev);
13675
13676         if (intel_crt_present(dev))
13677                 intel_crt_init(dev);
13678
13679         if (IS_BROXTON(dev)) {
13680                 /*
13681                  * FIXME: Broxton doesn't support port detection via the
13682                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13683                  * detect the ports.
13684                  */
13685                 intel_ddi_init(dev, PORT_A);
13686                 intel_ddi_init(dev, PORT_B);
13687                 intel_ddi_init(dev, PORT_C);
13688         } else if (HAS_DDI(dev)) {
13689                 int found;
13690
13691                 /*
13692                  * Haswell uses DDI functions to detect digital outputs.
13693                  * On SKL pre-D0 the strap isn't connected, so we assume
13694                  * it's there.
13695                  */
13696                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13697                 /* WaIgnoreDDIAStrap: skl */
13698                 if (found ||
13699                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13700                         intel_ddi_init(dev, PORT_A);
13701
13702                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13703                  * register */
13704                 found = I915_READ(SFUSE_STRAP);
13705
13706                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13707                         intel_ddi_init(dev, PORT_B);
13708                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13709                         intel_ddi_init(dev, PORT_C);
13710                 if (found & SFUSE_STRAP_DDID_DETECTED)
13711                         intel_ddi_init(dev, PORT_D);
13712         } else if (HAS_PCH_SPLIT(dev)) {
13713                 int found;
13714                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13715
13716                 if (has_edp_a(dev))
13717                         intel_dp_init(dev, DP_A, PORT_A);
13718
13719                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13720                         /* PCH SDVOB multiplex with HDMIB */
13721                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
13722                         if (!found)
13723                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13724                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13725                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
13726                 }
13727
13728                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13729                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13730
13731                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13732                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13733
13734                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13735                         intel_dp_init(dev, PCH_DP_C, PORT_C);
13736
13737                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13738                         intel_dp_init(dev, PCH_DP_D, PORT_D);
13739         } else if (IS_VALLEYVIEW(dev)) {
13740                 /*
13741                  * The DP_DETECTED bit is the latched state of the DDC
13742                  * SDA pin at boot. However since eDP doesn't require DDC
13743                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
13744                  * eDP ports may have been muxed to an alternate function.
13745                  * Thus we can't rely on the DP_DETECTED bit alone to detect
13746                  * eDP ports. Consult the VBT as well as DP_DETECTED to
13747                  * detect eDP ports.
13748                  */
13749                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13750                     !intel_dp_is_edp(dev, PORT_B))
13751                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13752                                         PORT_B);
13753                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13754                     intel_dp_is_edp(dev, PORT_B))
13755                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13756
13757                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13758                     !intel_dp_is_edp(dev, PORT_C))
13759                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13760                                         PORT_C);
13761                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13762                     intel_dp_is_edp(dev, PORT_C))
13763                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13764
13765                 if (IS_CHERRYVIEW(dev)) {
13766                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13767                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13768                                                 PORT_D);
13769                         /* eDP not supported on port D, so don't check VBT */
13770                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13771                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13772                 }
13773
13774                 intel_dsi_init(dev);
13775         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13776                 bool found = false;
13777
13778                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13779                         DRM_DEBUG_KMS("probing SDVOB\n");
13780                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13781                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13782                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13783                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13784                         }
13785
13786                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
13787                                 intel_dp_init(dev, DP_B, PORT_B);
13788                 }
13789
13790                 /* Before G4X SDVOC doesn't have its own detect register */
13791
13792                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13793                         DRM_DEBUG_KMS("probing SDVOC\n");
13794                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13795                 }
13796
13797                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13798
13799                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13800                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13801                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13802                         }
13803                         if (SUPPORTS_INTEGRATED_DP(dev))
13804                                 intel_dp_init(dev, DP_C, PORT_C);
13805                 }
13806
13807                 if (SUPPORTS_INTEGRATED_DP(dev) &&
13808                     (I915_READ(DP_D) & DP_DETECTED))
13809                         intel_dp_init(dev, DP_D, PORT_D);
13810         } else if (IS_GEN2(dev))
13811                 intel_dvo_init(dev);
13812
13813         if (SUPPORTS_TV(dev))
13814                 intel_tv_init(dev);
13815
13816         intel_psr_init(dev);
13817
13818         for_each_intel_encoder(dev, encoder) {
13819                 encoder->base.possible_crtcs = encoder->crtc_mask;
13820                 encoder->base.possible_clones =
13821                         intel_encoder_clones(encoder);
13822         }
13823
13824         intel_init_pch_refclk(dev);
13825
13826         drm_helper_move_panel_connectors_to_head(dev);
13827 }
13828
13829 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13830 {
13831         struct drm_device *dev = fb->dev;
13832         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13833
13834         drm_framebuffer_cleanup(fb);
13835         mutex_lock(&dev->struct_mutex);
13836         WARN_ON(!intel_fb->obj->framebuffer_references--);
13837         drm_gem_object_unreference(&intel_fb->obj->base);
13838         mutex_unlock(&dev->struct_mutex);
13839         kfree(intel_fb);
13840 }
13841
13842 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13843                                                 struct drm_file *file,
13844                                                 unsigned int *handle)
13845 {
13846         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13847         struct drm_i915_gem_object *obj = intel_fb->obj;
13848
13849         return drm_gem_handle_create(file, &obj->base, handle);
13850 }
13851
13852 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13853         .destroy = intel_user_framebuffer_destroy,
13854         .create_handle = intel_user_framebuffer_create_handle,
13855 };
13856
13857 static
13858 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13859                          uint32_t pixel_format)
13860 {
13861         u32 gen = INTEL_INFO(dev)->gen;
13862
13863         if (gen >= 9) {
13864                 /* "The stride in bytes must not exceed the of the size of 8K
13865                  *  pixels and 32K bytes."
13866                  */
13867                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13868         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13869                 return 32*1024;
13870         } else if (gen >= 4) {
13871                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13872                         return 16*1024;
13873                 else
13874                         return 32*1024;
13875         } else if (gen >= 3) {
13876                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13877                         return 8*1024;
13878                 else
13879                         return 16*1024;
13880         } else {
13881                 /* XXX DSPC is limited to 4k tiled */
13882                 return 8*1024;
13883         }
13884 }
13885
13886 static int intel_framebuffer_init(struct drm_device *dev,
13887                                   struct intel_framebuffer *intel_fb,
13888                                   struct drm_mode_fb_cmd2 *mode_cmd,
13889                                   struct drm_i915_gem_object *obj)
13890 {
13891         unsigned int aligned_height;
13892         int ret;
13893         u32 pitch_limit, stride_alignment;
13894
13895         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13896
13897         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13898                 /* Enforce that fb modifier and tiling mode match, but only for
13899                  * X-tiled. This is needed for FBC. */
13900                 if (!!(obj->tiling_mode == I915_TILING_X) !=
13901                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13902                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13903                         return -EINVAL;
13904                 }
13905         } else {
13906                 if (obj->tiling_mode == I915_TILING_X)
13907                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13908                 else if (obj->tiling_mode == I915_TILING_Y) {
13909                         DRM_DEBUG("No Y tiling for legacy addfb\n");
13910                         return -EINVAL;
13911                 }
13912         }
13913
13914         /* Passed in modifier sanity checking. */
13915         switch (mode_cmd->modifier[0]) {
13916         case I915_FORMAT_MOD_Y_TILED:
13917         case I915_FORMAT_MOD_Yf_TILED:
13918                 if (INTEL_INFO(dev)->gen < 9) {
13919                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13920                                   mode_cmd->modifier[0]);
13921                         return -EINVAL;
13922                 }
13923         case DRM_FORMAT_MOD_NONE:
13924         case I915_FORMAT_MOD_X_TILED:
13925                 break;
13926         default:
13927                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13928                           mode_cmd->modifier[0]);
13929                 return -EINVAL;
13930         }
13931
13932         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13933                                                      mode_cmd->pixel_format);
13934         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13935                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13936                           mode_cmd->pitches[0], stride_alignment);
13937                 return -EINVAL;
13938         }
13939
13940         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13941                                            mode_cmd->pixel_format);
13942         if (mode_cmd->pitches[0] > pitch_limit) {
13943                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13944                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13945                           "tiled" : "linear",
13946                           mode_cmd->pitches[0], pitch_limit);
13947                 return -EINVAL;
13948         }
13949
13950         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13951             mode_cmd->pitches[0] != obj->stride) {
13952                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13953                           mode_cmd->pitches[0], obj->stride);
13954                 return -EINVAL;
13955         }
13956
13957         /* Reject formats not supported by any plane early. */
13958         switch (mode_cmd->pixel_format) {
13959         case DRM_FORMAT_C8:
13960         case DRM_FORMAT_RGB565:
13961         case DRM_FORMAT_XRGB8888:
13962         case DRM_FORMAT_ARGB8888:
13963                 break;
13964         case DRM_FORMAT_XRGB1555:
13965         case DRM_FORMAT_ARGB1555:
13966                 if (INTEL_INFO(dev)->gen > 3) {
13967                         DRM_DEBUG("unsupported pixel format: %s\n",
13968                                   drm_get_format_name(mode_cmd->pixel_format));
13969                         return -EINVAL;
13970                 }
13971                 break;
13972         case DRM_FORMAT_XBGR8888:
13973         case DRM_FORMAT_ABGR8888:
13974         case DRM_FORMAT_XRGB2101010:
13975         case DRM_FORMAT_ARGB2101010:
13976         case DRM_FORMAT_XBGR2101010:
13977         case DRM_FORMAT_ABGR2101010:
13978                 if (INTEL_INFO(dev)->gen < 4) {
13979                         DRM_DEBUG("unsupported pixel format: %s\n",
13980                                   drm_get_format_name(mode_cmd->pixel_format));
13981                         return -EINVAL;
13982                 }
13983                 break;
13984         case DRM_FORMAT_YUYV:
13985         case DRM_FORMAT_UYVY:
13986         case DRM_FORMAT_YVYU:
13987         case DRM_FORMAT_VYUY:
13988                 if (INTEL_INFO(dev)->gen < 5) {
13989                         DRM_DEBUG("unsupported pixel format: %s\n",
13990                                   drm_get_format_name(mode_cmd->pixel_format));
13991                         return -EINVAL;
13992                 }
13993                 break;
13994         default:
13995                 DRM_DEBUG("unsupported pixel format: %s\n",
13996                           drm_get_format_name(mode_cmd->pixel_format));
13997                 return -EINVAL;
13998         }
13999
14000         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14001         if (mode_cmd->offsets[0] != 0)
14002                 return -EINVAL;
14003
14004         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14005                                                mode_cmd->pixel_format,
14006                                                mode_cmd->modifier[0]);
14007         /* FIXME drm helper for size checks (especially planar formats)? */
14008         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14009                 return -EINVAL;
14010
14011         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14012         intel_fb->obj = obj;
14013         intel_fb->obj->framebuffer_references++;
14014
14015         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14016         if (ret) {
14017                 DRM_ERROR("framebuffer init failed %d\n", ret);
14018                 return ret;
14019         }
14020
14021         return 0;
14022 }
14023
14024 static struct drm_framebuffer *
14025 intel_user_framebuffer_create(struct drm_device *dev,
14026                               struct drm_file *filp,
14027                               struct drm_mode_fb_cmd2 *mode_cmd)
14028 {
14029         struct drm_i915_gem_object *obj;
14030
14031         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14032                                                 mode_cmd->handles[0]));
14033         if (&obj->base == NULL)
14034                 return ERR_PTR(-ENOENT);
14035
14036         return intel_framebuffer_create(dev, mode_cmd, obj);
14037 }
14038
14039 #ifndef CONFIG_DRM_I915_FBDEV
14040 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14041 {
14042 }
14043 #endif
14044
14045 static const struct drm_mode_config_funcs intel_mode_funcs = {
14046         .fb_create = intel_user_framebuffer_create,
14047         .output_poll_changed = intel_fbdev_output_poll_changed,
14048         .atomic_check = intel_atomic_check,
14049         .atomic_commit = intel_atomic_commit,
14050 };
14051
14052 /* Set up chip specific display functions */
14053 static void intel_init_display(struct drm_device *dev)
14054 {
14055         struct drm_i915_private *dev_priv = dev->dev_private;
14056
14057         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14058                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14059         else if (IS_CHERRYVIEW(dev))
14060                 dev_priv->display.find_dpll = chv_find_best_dpll;
14061         else if (IS_VALLEYVIEW(dev))
14062                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14063         else if (IS_PINEVIEW(dev))
14064                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14065         else
14066                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14067
14068         if (INTEL_INFO(dev)->gen >= 9) {
14069                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14070                 dev_priv->display.get_initial_plane_config =
14071                         skylake_get_initial_plane_config;
14072                 dev_priv->display.crtc_compute_clock =
14073                         haswell_crtc_compute_clock;
14074                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14075                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14076                 dev_priv->display.off = ironlake_crtc_off;
14077                 dev_priv->display.update_primary_plane =
14078                         skylake_update_primary_plane;
14079         } else if (HAS_DDI(dev)) {
14080                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14081                 dev_priv->display.get_initial_plane_config =
14082                         ironlake_get_initial_plane_config;
14083                 dev_priv->display.crtc_compute_clock =
14084                         haswell_crtc_compute_clock;
14085                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14086                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14087                 dev_priv->display.off = ironlake_crtc_off;
14088                 dev_priv->display.update_primary_plane =
14089                         ironlake_update_primary_plane;
14090         } else if (HAS_PCH_SPLIT(dev)) {
14091                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14092                 dev_priv->display.get_initial_plane_config =
14093                         ironlake_get_initial_plane_config;
14094                 dev_priv->display.crtc_compute_clock =
14095                         ironlake_crtc_compute_clock;
14096                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14097                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14098                 dev_priv->display.off = ironlake_crtc_off;
14099                 dev_priv->display.update_primary_plane =
14100                         ironlake_update_primary_plane;
14101         } else if (IS_VALLEYVIEW(dev)) {
14102                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14103                 dev_priv->display.get_initial_plane_config =
14104                         i9xx_get_initial_plane_config;
14105                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14106                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14107                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14108                 dev_priv->display.off = i9xx_crtc_off;
14109                 dev_priv->display.update_primary_plane =
14110                         i9xx_update_primary_plane;
14111         } else {
14112                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14113                 dev_priv->display.get_initial_plane_config =
14114                         i9xx_get_initial_plane_config;
14115                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14116                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14117                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14118                 dev_priv->display.off = i9xx_crtc_off;
14119                 dev_priv->display.update_primary_plane =
14120                         i9xx_update_primary_plane;
14121         }
14122
14123         /* Returns the core display clock speed */
14124         if (IS_SKYLAKE(dev))
14125                 dev_priv->display.get_display_clock_speed =
14126                         skylake_get_display_clock_speed;
14127         else if (IS_BROADWELL(dev))
14128                 dev_priv->display.get_display_clock_speed =
14129                         broadwell_get_display_clock_speed;
14130         else if (IS_HASWELL(dev))
14131                 dev_priv->display.get_display_clock_speed =
14132                         haswell_get_display_clock_speed;
14133         else if (IS_VALLEYVIEW(dev))
14134                 dev_priv->display.get_display_clock_speed =
14135                         valleyview_get_display_clock_speed;
14136         else if (IS_GEN5(dev))
14137                 dev_priv->display.get_display_clock_speed =
14138                         ilk_get_display_clock_speed;
14139         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14140                  IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14141                 dev_priv->display.get_display_clock_speed =
14142                         i945_get_display_clock_speed;
14143         else if (IS_I915G(dev))
14144                 dev_priv->display.get_display_clock_speed =
14145                         i915_get_display_clock_speed;
14146         else if (IS_I945GM(dev) || IS_845G(dev))
14147                 dev_priv->display.get_display_clock_speed =
14148                         i9xx_misc_get_display_clock_speed;
14149         else if (IS_PINEVIEW(dev))
14150                 dev_priv->display.get_display_clock_speed =
14151                         pnv_get_display_clock_speed;
14152         else if (IS_I915GM(dev))
14153                 dev_priv->display.get_display_clock_speed =
14154                         i915gm_get_display_clock_speed;
14155         else if (IS_I865G(dev))
14156                 dev_priv->display.get_display_clock_speed =
14157                         i865_get_display_clock_speed;
14158         else if (IS_I85X(dev))
14159                 dev_priv->display.get_display_clock_speed =
14160                         i855_get_display_clock_speed;
14161         else /* 852, 830 */
14162                 dev_priv->display.get_display_clock_speed =
14163                         i830_get_display_clock_speed;
14164
14165         if (IS_GEN5(dev)) {
14166                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14167         } else if (IS_GEN6(dev)) {
14168                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14169         } else if (IS_IVYBRIDGE(dev)) {
14170                 /* FIXME: detect B0+ stepping and use auto training */
14171                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14172         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14173                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14174         } else if (IS_VALLEYVIEW(dev)) {
14175                 dev_priv->display.modeset_global_resources =
14176                         valleyview_modeset_global_resources;
14177         } else if (IS_BROXTON(dev)) {
14178                 dev_priv->display.modeset_global_resources =
14179                         broxton_modeset_global_resources;
14180         }
14181
14182         switch (INTEL_INFO(dev)->gen) {
14183         case 2:
14184                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14185                 break;
14186
14187         case 3:
14188                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14189                 break;
14190
14191         case 4:
14192         case 5:
14193                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14194                 break;
14195
14196         case 6:
14197                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14198                 break;
14199         case 7:
14200         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14201                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14202                 break;
14203         case 9:
14204                 /* Drop through - unsupported since execlist only. */
14205         default:
14206                 /* Default just returns -ENODEV to indicate unsupported */
14207                 dev_priv->display.queue_flip = intel_default_queue_flip;
14208         }
14209
14210         intel_panel_init_backlight_funcs(dev);
14211
14212         mutex_init(&dev_priv->pps_mutex);
14213 }
14214
14215 /*
14216  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14217  * resume, or other times.  This quirk makes sure that's the case for
14218  * affected systems.
14219  */
14220 static void quirk_pipea_force(struct drm_device *dev)
14221 {
14222         struct drm_i915_private *dev_priv = dev->dev_private;
14223
14224         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14225         DRM_INFO("applying pipe a force quirk\n");
14226 }
14227
14228 static void quirk_pipeb_force(struct drm_device *dev)
14229 {
14230         struct drm_i915_private *dev_priv = dev->dev_private;
14231
14232         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14233         DRM_INFO("applying pipe b force quirk\n");
14234 }
14235
14236 /*
14237  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14238  */
14239 static void quirk_ssc_force_disable(struct drm_device *dev)
14240 {
14241         struct drm_i915_private *dev_priv = dev->dev_private;
14242         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14243         DRM_INFO("applying lvds SSC disable quirk\n");
14244 }
14245
14246 /*
14247  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14248  * brightness value
14249  */
14250 static void quirk_invert_brightness(struct drm_device *dev)
14251 {
14252         struct drm_i915_private *dev_priv = dev->dev_private;
14253         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14254         DRM_INFO("applying inverted panel brightness quirk\n");
14255 }
14256
14257 /* Some VBT's incorrectly indicate no backlight is present */
14258 static void quirk_backlight_present(struct drm_device *dev)
14259 {
14260         struct drm_i915_private *dev_priv = dev->dev_private;
14261         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14262         DRM_INFO("applying backlight present quirk\n");
14263 }
14264
14265 struct intel_quirk {
14266         int device;
14267         int subsystem_vendor;
14268         int subsystem_device;
14269         void (*hook)(struct drm_device *dev);
14270 };
14271
14272 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14273 struct intel_dmi_quirk {
14274         void (*hook)(struct drm_device *dev);
14275         const struct dmi_system_id (*dmi_id_list)[];
14276 };
14277
14278 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14279 {
14280         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14281         return 1;
14282 }
14283
14284 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14285         {
14286                 .dmi_id_list = &(const struct dmi_system_id[]) {
14287                         {
14288                                 .callback = intel_dmi_reverse_brightness,
14289                                 .ident = "NCR Corporation",
14290                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14291                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14292                                 },
14293                         },
14294                         { }  /* terminating entry */
14295                 },
14296                 .hook = quirk_invert_brightness,
14297         },
14298 };
14299
14300 static struct intel_quirk intel_quirks[] = {
14301         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14302         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14303
14304         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14305         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14306
14307         /* 830 needs to leave pipe A & dpll A up */
14308         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14309
14310         /* 830 needs to leave pipe B & dpll B up */
14311         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14312
14313         /* Lenovo U160 cannot use SSC on LVDS */
14314         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14315
14316         /* Sony Vaio Y cannot use SSC on LVDS */
14317         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14318
14319         /* Acer Aspire 5734Z must invert backlight brightness */
14320         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14321
14322         /* Acer/eMachines G725 */
14323         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14324
14325         /* Acer/eMachines e725 */
14326         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14327
14328         /* Acer/Packard Bell NCL20 */
14329         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14330
14331         /* Acer Aspire 4736Z */
14332         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14333
14334         /* Acer Aspire 5336 */
14335         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14336
14337         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14338         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14339
14340         /* Acer C720 Chromebook (Core i3 4005U) */
14341         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14342
14343         /* Apple Macbook 2,1 (Core 2 T7400) */
14344         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14345
14346         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14347         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14348
14349         /* HP Chromebook 14 (Celeron 2955U) */
14350         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14351
14352         /* Dell Chromebook 11 */
14353         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14354 };
14355
14356 static void intel_init_quirks(struct drm_device *dev)
14357 {
14358         struct pci_dev *d = dev->pdev;
14359         int i;
14360
14361         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14362                 struct intel_quirk *q = &intel_quirks[i];
14363
14364                 if (d->device == q->device &&
14365                     (d->subsystem_vendor == q->subsystem_vendor ||
14366                      q->subsystem_vendor == PCI_ANY_ID) &&
14367                     (d->subsystem_device == q->subsystem_device ||
14368                      q->subsystem_device == PCI_ANY_ID))
14369                         q->hook(dev);
14370         }
14371         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14372                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14373                         intel_dmi_quirks[i].hook(dev);
14374         }
14375 }
14376
14377 /* Disable the VGA plane that we never use */
14378 static void i915_disable_vga(struct drm_device *dev)
14379 {
14380         struct drm_i915_private *dev_priv = dev->dev_private;
14381         u8 sr1;
14382         u32 vga_reg = i915_vgacntrl_reg(dev);
14383
14384         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14385         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14386         outb(SR01, VGA_SR_INDEX);
14387         sr1 = inb(VGA_SR_DATA);
14388         outb(sr1 | 1<<5, VGA_SR_DATA);
14389         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14390         udelay(300);
14391
14392         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14393         POSTING_READ(vga_reg);
14394 }
14395
14396 void intel_modeset_init_hw(struct drm_device *dev)
14397 {
14398         intel_prepare_ddi(dev);
14399
14400         if (IS_VALLEYVIEW(dev))
14401                 vlv_update_cdclk(dev);
14402
14403         intel_init_clock_gating(dev);
14404
14405         intel_enable_gt_powersave(dev);
14406 }
14407
14408 void intel_modeset_init(struct drm_device *dev)
14409 {
14410         struct drm_i915_private *dev_priv = dev->dev_private;
14411         int sprite, ret;
14412         enum pipe pipe;
14413         struct intel_crtc *crtc;
14414
14415         drm_mode_config_init(dev);
14416
14417         dev->mode_config.min_width = 0;
14418         dev->mode_config.min_height = 0;
14419
14420         dev->mode_config.preferred_depth = 24;
14421         dev->mode_config.prefer_shadow = 1;
14422
14423         dev->mode_config.allow_fb_modifiers = true;
14424
14425         dev->mode_config.funcs = &intel_mode_funcs;
14426
14427         intel_init_quirks(dev);
14428
14429         intel_init_pm(dev);
14430
14431         if (INTEL_INFO(dev)->num_pipes == 0)
14432                 return;
14433
14434         intel_init_display(dev);
14435         intel_init_audio(dev);
14436
14437         if (IS_GEN2(dev)) {
14438                 dev->mode_config.max_width = 2048;
14439                 dev->mode_config.max_height = 2048;
14440         } else if (IS_GEN3(dev)) {
14441                 dev->mode_config.max_width = 4096;
14442                 dev->mode_config.max_height = 4096;
14443         } else {
14444                 dev->mode_config.max_width = 8192;
14445                 dev->mode_config.max_height = 8192;
14446         }
14447
14448         if (IS_845G(dev) || IS_I865G(dev)) {
14449                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14450                 dev->mode_config.cursor_height = 1023;
14451         } else if (IS_GEN2(dev)) {
14452                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14453                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14454         } else {
14455                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14456                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14457         }
14458
14459         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14460
14461         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14462                       INTEL_INFO(dev)->num_pipes,
14463                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14464
14465         for_each_pipe(dev_priv, pipe) {
14466                 intel_crtc_init(dev, pipe);
14467                 for_each_sprite(dev_priv, pipe, sprite) {
14468                         ret = intel_plane_init(dev, pipe, sprite);
14469                         if (ret)
14470                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14471                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14472                 }
14473         }
14474
14475         intel_init_dpio(dev);
14476
14477         intel_shared_dpll_init(dev);
14478
14479         /* Just disable it once at startup */
14480         i915_disable_vga(dev);
14481         intel_setup_outputs(dev);
14482
14483         /* Just in case the BIOS is doing something questionable. */
14484         intel_fbc_disable(dev);
14485
14486         drm_modeset_lock_all(dev);
14487         intel_modeset_setup_hw_state(dev, false);
14488         drm_modeset_unlock_all(dev);
14489
14490         for_each_intel_crtc(dev, crtc) {
14491                 if (!crtc->active)
14492                         continue;
14493
14494                 /*
14495                  * Note that reserving the BIOS fb up front prevents us
14496                  * from stuffing other stolen allocations like the ring
14497                  * on top.  This prevents some ugliness at boot time, and
14498                  * can even allow for smooth boot transitions if the BIOS
14499                  * fb is large enough for the active pipe configuration.
14500                  */
14501                 if (dev_priv->display.get_initial_plane_config) {
14502                         dev_priv->display.get_initial_plane_config(crtc,
14503                                                            &crtc->plane_config);
14504                         /*
14505                          * If the fb is shared between multiple heads, we'll
14506                          * just get the first one.
14507                          */
14508                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14509                 }
14510         }
14511 }
14512
14513 static void intel_enable_pipe_a(struct drm_device *dev)
14514 {
14515         struct intel_connector *connector;
14516         struct drm_connector *crt = NULL;
14517         struct intel_load_detect_pipe load_detect_temp;
14518         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14519
14520         /* We can't just switch on the pipe A, we need to set things up with a
14521          * proper mode and output configuration. As a gross hack, enable pipe A
14522          * by enabling the load detect pipe once. */
14523         for_each_intel_connector(dev, connector) {
14524                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14525                         crt = &connector->base;
14526                         break;
14527                 }
14528         }
14529
14530         if (!crt)
14531                 return;
14532
14533         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14534                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14535 }
14536
14537 static bool
14538 intel_check_plane_mapping(struct intel_crtc *crtc)
14539 {
14540         struct drm_device *dev = crtc->base.dev;
14541         struct drm_i915_private *dev_priv = dev->dev_private;
14542         u32 reg, val;
14543
14544         if (INTEL_INFO(dev)->num_pipes == 1)
14545                 return true;
14546
14547         reg = DSPCNTR(!crtc->plane);
14548         val = I915_READ(reg);
14549
14550         if ((val & DISPLAY_PLANE_ENABLE) &&
14551             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14552                 return false;
14553
14554         return true;
14555 }
14556
14557 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14558 {
14559         struct drm_device *dev = crtc->base.dev;
14560         struct drm_i915_private *dev_priv = dev->dev_private;
14561         u32 reg;
14562
14563         /* Clear any frame start delays used for debugging left by the BIOS */
14564         reg = PIPECONF(crtc->config->cpu_transcoder);
14565         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14566
14567         /* restore vblank interrupts to correct state */
14568         drm_crtc_vblank_reset(&crtc->base);
14569         if (crtc->active) {
14570                 update_scanline_offset(crtc);
14571                 drm_crtc_vblank_on(&crtc->base);
14572         }
14573
14574         /* We need to sanitize the plane -> pipe mapping first because this will
14575          * disable the crtc (and hence change the state) if it is wrong. Note
14576          * that gen4+ has a fixed plane -> pipe mapping.  */
14577         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14578                 struct intel_connector *connector;
14579                 bool plane;
14580
14581                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14582                               crtc->base.base.id);
14583
14584                 /* Pipe has the wrong plane attached and the plane is active.
14585                  * Temporarily change the plane mapping and disable everything
14586                  * ...  */
14587                 plane = crtc->plane;
14588                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14589                 crtc->plane = !plane;
14590                 intel_crtc_disable_planes(&crtc->base);
14591                 dev_priv->display.crtc_disable(&crtc->base);
14592                 crtc->plane = plane;
14593
14594                 /* ... and break all links. */
14595                 for_each_intel_connector(dev, connector) {
14596                         if (connector->encoder->base.crtc != &crtc->base)
14597                                 continue;
14598
14599                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14600                         connector->base.encoder = NULL;
14601                 }
14602                 /* multiple connectors may have the same encoder:
14603                  *  handle them and break crtc link separately */
14604                 for_each_intel_connector(dev, connector)
14605                         if (connector->encoder->base.crtc == &crtc->base) {
14606                                 connector->encoder->base.crtc = NULL;
14607                                 connector->encoder->connectors_active = false;
14608                         }
14609
14610                 WARN_ON(crtc->active);
14611                 crtc->base.state->enable = false;
14612                 crtc->base.state->active = false;
14613                 crtc->base.enabled = false;
14614         }
14615
14616         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14617             crtc->pipe == PIPE_A && !crtc->active) {
14618                 /* BIOS forgot to enable pipe A, this mostly happens after
14619                  * resume. Force-enable the pipe to fix this, the update_dpms
14620                  * call below we restore the pipe to the right state, but leave
14621                  * the required bits on. */
14622                 intel_enable_pipe_a(dev);
14623         }
14624
14625         /* Adjust the state of the output pipe according to whether we
14626          * have active connectors/encoders. */
14627         intel_crtc_update_dpms(&crtc->base);
14628
14629         if (crtc->active != crtc->base.state->enable) {
14630                 struct intel_encoder *encoder;
14631
14632                 /* This can happen either due to bugs in the get_hw_state
14633                  * functions or because the pipe is force-enabled due to the
14634                  * pipe A quirk. */
14635                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14636                               crtc->base.base.id,
14637                               crtc->base.state->enable ? "enabled" : "disabled",
14638                               crtc->active ? "enabled" : "disabled");
14639
14640                 crtc->base.state->enable = crtc->active;
14641                 crtc->base.state->active = crtc->active;
14642                 crtc->base.enabled = crtc->active;
14643
14644                 /* Because we only establish the connector -> encoder ->
14645                  * crtc links if something is active, this means the
14646                  * crtc is now deactivated. Break the links. connector
14647                  * -> encoder links are only establish when things are
14648                  *  actually up, hence no need to break them. */
14649                 WARN_ON(crtc->active);
14650
14651                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14652                         WARN_ON(encoder->connectors_active);
14653                         encoder->base.crtc = NULL;
14654                 }
14655         }
14656
14657         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14658                 /*
14659                  * We start out with underrun reporting disabled to avoid races.
14660                  * For correct bookkeeping mark this on active crtcs.
14661                  *
14662                  * Also on gmch platforms we dont have any hardware bits to
14663                  * disable the underrun reporting. Which means we need to start
14664                  * out with underrun reporting disabled also on inactive pipes,
14665                  * since otherwise we'll complain about the garbage we read when
14666                  * e.g. coming up after runtime pm.
14667                  *
14668                  * No protection against concurrent access is required - at
14669                  * worst a fifo underrun happens which also sets this to false.
14670                  */
14671                 crtc->cpu_fifo_underrun_disabled = true;
14672                 crtc->pch_fifo_underrun_disabled = true;
14673         }
14674 }
14675
14676 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14677 {
14678         struct intel_connector *connector;
14679         struct drm_device *dev = encoder->base.dev;
14680
14681         /* We need to check both for a crtc link (meaning that the
14682          * encoder is active and trying to read from a pipe) and the
14683          * pipe itself being active. */
14684         bool has_active_crtc = encoder->base.crtc &&
14685                 to_intel_crtc(encoder->base.crtc)->active;
14686
14687         if (encoder->connectors_active && !has_active_crtc) {
14688                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14689                               encoder->base.base.id,
14690                               encoder->base.name);
14691
14692                 /* Connector is active, but has no active pipe. This is
14693                  * fallout from our resume register restoring. Disable
14694                  * the encoder manually again. */
14695                 if (encoder->base.crtc) {
14696                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14697                                       encoder->base.base.id,
14698                                       encoder->base.name);
14699                         encoder->disable(encoder);
14700                         if (encoder->post_disable)
14701                                 encoder->post_disable(encoder);
14702                 }
14703                 encoder->base.crtc = NULL;
14704                 encoder->connectors_active = false;
14705
14706                 /* Inconsistent output/port/pipe state happens presumably due to
14707                  * a bug in one of the get_hw_state functions. Or someplace else
14708                  * in our code, like the register restore mess on resume. Clamp
14709                  * things to off as a safer default. */
14710                 for_each_intel_connector(dev, connector) {
14711                         if (connector->encoder != encoder)
14712                                 continue;
14713                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14714                         connector->base.encoder = NULL;
14715                 }
14716         }
14717         /* Enabled encoders without active connectors will be fixed in
14718          * the crtc fixup. */
14719 }
14720
14721 void i915_redisable_vga_power_on(struct drm_device *dev)
14722 {
14723         struct drm_i915_private *dev_priv = dev->dev_private;
14724         u32 vga_reg = i915_vgacntrl_reg(dev);
14725
14726         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14727                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14728                 i915_disable_vga(dev);
14729         }
14730 }
14731
14732 void i915_redisable_vga(struct drm_device *dev)
14733 {
14734         struct drm_i915_private *dev_priv = dev->dev_private;
14735
14736         /* This function can be called both from intel_modeset_setup_hw_state or
14737          * at a very early point in our resume sequence, where the power well
14738          * structures are not yet restored. Since this function is at a very
14739          * paranoid "someone might have enabled VGA while we were not looking"
14740          * level, just check if the power well is enabled instead of trying to
14741          * follow the "don't touch the power well if we don't need it" policy
14742          * the rest of the driver uses. */
14743         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14744                 return;
14745
14746         i915_redisable_vga_power_on(dev);
14747 }
14748
14749 static bool primary_get_hw_state(struct intel_crtc *crtc)
14750 {
14751         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14752
14753         if (!crtc->active)
14754                 return false;
14755
14756         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14757 }
14758
14759 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14760 {
14761         struct drm_i915_private *dev_priv = dev->dev_private;
14762         enum pipe pipe;
14763         struct intel_crtc *crtc;
14764         struct intel_encoder *encoder;
14765         struct intel_connector *connector;
14766         int i;
14767
14768         for_each_intel_crtc(dev, crtc) {
14769                 struct drm_plane *primary = crtc->base.primary;
14770                 struct intel_plane_state *plane_state;
14771
14772                 memset(crtc->config, 0, sizeof(*crtc->config));
14773
14774                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14775
14776                 crtc->active = dev_priv->display.get_pipe_config(crtc,
14777                                                                  crtc->config);
14778
14779                 crtc->base.state->enable = crtc->active;
14780                 crtc->base.state->active = crtc->active;
14781                 crtc->base.enabled = crtc->active;
14782
14783                 plane_state = to_intel_plane_state(primary->state);
14784                 plane_state->visible = primary_get_hw_state(crtc);
14785
14786                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14787                               crtc->base.base.id,
14788                               crtc->active ? "enabled" : "disabled");
14789         }
14790
14791         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14792                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14793
14794                 pll->on = pll->get_hw_state(dev_priv, pll,
14795                                             &pll->config.hw_state);
14796                 pll->active = 0;
14797                 pll->config.crtc_mask = 0;
14798                 for_each_intel_crtc(dev, crtc) {
14799                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14800                                 pll->active++;
14801                                 pll->config.crtc_mask |= 1 << crtc->pipe;
14802                         }
14803                 }
14804
14805                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14806                               pll->name, pll->config.crtc_mask, pll->on);
14807
14808                 if (pll->config.crtc_mask)
14809                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14810         }
14811
14812         for_each_intel_encoder(dev, encoder) {
14813                 pipe = 0;
14814
14815                 if (encoder->get_hw_state(encoder, &pipe)) {
14816                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14817                         encoder->base.crtc = &crtc->base;
14818                         encoder->get_config(encoder, crtc->config);
14819                 } else {
14820                         encoder->base.crtc = NULL;
14821                 }
14822
14823                 encoder->connectors_active = false;
14824                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14825                               encoder->base.base.id,
14826                               encoder->base.name,
14827                               encoder->base.crtc ? "enabled" : "disabled",
14828                               pipe_name(pipe));
14829         }
14830
14831         for_each_intel_connector(dev, connector) {
14832                 if (connector->get_hw_state(connector)) {
14833                         connector->base.dpms = DRM_MODE_DPMS_ON;
14834                         connector->encoder->connectors_active = true;
14835                         connector->base.encoder = &connector->encoder->base;
14836                 } else {
14837                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14838                         connector->base.encoder = NULL;
14839                 }
14840                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14841                               connector->base.base.id,
14842                               connector->base.name,
14843                               connector->base.encoder ? "enabled" : "disabled");
14844         }
14845 }
14846
14847 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14848  * and i915 state tracking structures. */
14849 void intel_modeset_setup_hw_state(struct drm_device *dev,
14850                                   bool force_restore)
14851 {
14852         struct drm_i915_private *dev_priv = dev->dev_private;
14853         enum pipe pipe;
14854         struct intel_crtc *crtc;
14855         struct intel_encoder *encoder;
14856         int i;
14857
14858         intel_modeset_readout_hw_state(dev);
14859
14860         /*
14861          * Now that we have the config, copy it to each CRTC struct
14862          * Note that this could go away if we move to using crtc_config
14863          * checking everywhere.
14864          */
14865         for_each_intel_crtc(dev, crtc) {
14866                 if (crtc->active && i915.fastboot) {
14867                         intel_mode_from_pipe_config(&crtc->base.mode,
14868                                                     crtc->config);
14869                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14870                                       crtc->base.base.id);
14871                         drm_mode_debug_printmodeline(&crtc->base.mode);
14872                 }
14873         }
14874
14875         /* HW state is read out, now we need to sanitize this mess. */
14876         for_each_intel_encoder(dev, encoder) {
14877                 intel_sanitize_encoder(encoder);
14878         }
14879
14880         for_each_pipe(dev_priv, pipe) {
14881                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14882                 intel_sanitize_crtc(crtc);
14883                 intel_dump_pipe_config(crtc, crtc->config,
14884                                        "[setup_hw_state]");
14885         }
14886
14887         intel_modeset_update_connector_atomic_state(dev);
14888
14889         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14890                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14891
14892                 if (!pll->on || pll->active)
14893                         continue;
14894
14895                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14896
14897                 pll->disable(dev_priv, pll);
14898                 pll->on = false;
14899         }
14900
14901         if (IS_GEN9(dev))
14902                 skl_wm_get_hw_state(dev);
14903         else if (HAS_PCH_SPLIT(dev))
14904                 ilk_wm_get_hw_state(dev);
14905
14906         if (force_restore) {
14907                 i915_redisable_vga(dev);
14908
14909                 /*
14910                  * We need to use raw interfaces for restoring state to avoid
14911                  * checking (bogus) intermediate states.
14912                  */
14913                 for_each_pipe(dev_priv, pipe) {
14914                         struct drm_crtc *crtc =
14915                                 dev_priv->pipe_to_crtc_mapping[pipe];
14916
14917                         intel_crtc_restore_mode(crtc);
14918                 }
14919         } else {
14920                 intel_modeset_update_staged_output_state(dev);
14921         }
14922
14923         intel_modeset_check_state(dev);
14924 }
14925
14926 void intel_modeset_gem_init(struct drm_device *dev)
14927 {
14928         struct drm_i915_private *dev_priv = dev->dev_private;
14929         struct drm_crtc *c;
14930         struct drm_i915_gem_object *obj;
14931         int ret;
14932
14933         mutex_lock(&dev->struct_mutex);
14934         intel_init_gt_powersave(dev);
14935         mutex_unlock(&dev->struct_mutex);
14936
14937         /*
14938          * There may be no VBT; and if the BIOS enabled SSC we can
14939          * just keep using it to avoid unnecessary flicker.  Whereas if the
14940          * BIOS isn't using it, don't assume it will work even if the VBT
14941          * indicates as much.
14942          */
14943         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14944                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14945                                                 DREF_SSC1_ENABLE);
14946
14947         intel_modeset_init_hw(dev);
14948
14949         intel_setup_overlay(dev);
14950
14951         /*
14952          * Make sure any fbs we allocated at startup are properly
14953          * pinned & fenced.  When we do the allocation it's too early
14954          * for this.
14955          */
14956         for_each_crtc(dev, c) {
14957                 obj = intel_fb_obj(c->primary->fb);
14958                 if (obj == NULL)
14959                         continue;
14960
14961                 mutex_lock(&dev->struct_mutex);
14962                 ret = intel_pin_and_fence_fb_obj(c->primary,
14963                                                  c->primary->fb,
14964                                                  c->primary->state,
14965                                                  NULL);
14966                 mutex_unlock(&dev->struct_mutex);
14967                 if (ret) {
14968                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
14969                                   to_intel_crtc(c)->pipe);
14970                         drm_framebuffer_unreference(c->primary->fb);
14971                         c->primary->fb = NULL;
14972                         update_state_fb(c->primary);
14973                 }
14974         }
14975
14976         intel_backlight_register(dev);
14977 }
14978
14979 void intel_connector_unregister(struct intel_connector *intel_connector)
14980 {
14981         struct drm_connector *connector = &intel_connector->base;
14982
14983         intel_panel_destroy_backlight(connector);
14984         drm_connector_unregister(connector);
14985 }
14986
14987 void intel_modeset_cleanup(struct drm_device *dev)
14988 {
14989         struct drm_i915_private *dev_priv = dev->dev_private;
14990         struct drm_connector *connector;
14991
14992         intel_disable_gt_powersave(dev);
14993
14994         intel_backlight_unregister(dev);
14995
14996         /*
14997          * Interrupts and polling as the first thing to avoid creating havoc.
14998          * Too much stuff here (turning of connectors, ...) would
14999          * experience fancy races otherwise.
15000          */
15001         intel_irq_uninstall(dev_priv);
15002
15003         /*
15004          * Due to the hpd irq storm handling the hotplug work can re-arm the
15005          * poll handlers. Hence disable polling after hpd handling is shut down.
15006          */
15007         drm_kms_helper_poll_fini(dev);
15008
15009         mutex_lock(&dev->struct_mutex);
15010
15011         intel_unregister_dsm_handler();
15012
15013         intel_fbc_disable(dev);
15014
15015         mutex_unlock(&dev->struct_mutex);
15016
15017         /* flush any delayed tasks or pending work */
15018         flush_scheduled_work();
15019
15020         /* destroy the backlight and sysfs files before encoders/connectors */
15021         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15022                 struct intel_connector *intel_connector;
15023
15024                 intel_connector = to_intel_connector(connector);
15025                 intel_connector->unregister(intel_connector);
15026         }
15027
15028         drm_mode_config_cleanup(dev);
15029
15030         intel_cleanup_overlay(dev);
15031
15032         mutex_lock(&dev->struct_mutex);
15033         intel_cleanup_gt_powersave(dev);
15034         mutex_unlock(&dev->struct_mutex);
15035 }
15036
15037 /*
15038  * Return which encoder is currently attached for connector.
15039  */
15040 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15041 {
15042         return &intel_attached_encoder(connector)->base;
15043 }
15044
15045 void intel_connector_attach_encoder(struct intel_connector *connector,
15046                                     struct intel_encoder *encoder)
15047 {
15048         connector->encoder = encoder;
15049         drm_mode_connector_attach_encoder(&connector->base,
15050                                           &encoder->base);
15051 }
15052
15053 /*
15054  * set vga decode state - true == enable VGA decode
15055  */
15056 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15057 {
15058         struct drm_i915_private *dev_priv = dev->dev_private;
15059         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15060         u16 gmch_ctrl;
15061
15062         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15063                 DRM_ERROR("failed to read control word\n");
15064                 return -EIO;
15065         }
15066
15067         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15068                 return 0;
15069
15070         if (state)
15071                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15072         else
15073                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15074
15075         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15076                 DRM_ERROR("failed to write control word\n");
15077                 return -EIO;
15078         }
15079
15080         return 0;
15081 }
15082
15083 struct intel_display_error_state {
15084
15085         u32 power_well_driver;
15086
15087         int num_transcoders;
15088
15089         struct intel_cursor_error_state {
15090                 u32 control;
15091                 u32 position;
15092                 u32 base;
15093                 u32 size;
15094         } cursor[I915_MAX_PIPES];
15095
15096         struct intel_pipe_error_state {
15097                 bool power_domain_on;
15098                 u32 source;
15099                 u32 stat;
15100         } pipe[I915_MAX_PIPES];
15101
15102         struct intel_plane_error_state {
15103                 u32 control;
15104                 u32 stride;
15105                 u32 size;
15106                 u32 pos;
15107                 u32 addr;
15108                 u32 surface;
15109                 u32 tile_offset;
15110         } plane[I915_MAX_PIPES];
15111
15112         struct intel_transcoder_error_state {
15113                 bool power_domain_on;
15114                 enum transcoder cpu_transcoder;
15115
15116                 u32 conf;
15117
15118                 u32 htotal;
15119                 u32 hblank;
15120                 u32 hsync;
15121                 u32 vtotal;
15122                 u32 vblank;
15123                 u32 vsync;
15124         } transcoder[4];
15125 };
15126
15127 struct intel_display_error_state *
15128 intel_display_capture_error_state(struct drm_device *dev)
15129 {
15130         struct drm_i915_private *dev_priv = dev->dev_private;
15131         struct intel_display_error_state *error;
15132         int transcoders[] = {
15133                 TRANSCODER_A,
15134                 TRANSCODER_B,
15135                 TRANSCODER_C,
15136                 TRANSCODER_EDP,
15137         };
15138         int i;
15139
15140         if (INTEL_INFO(dev)->num_pipes == 0)
15141                 return NULL;
15142
15143         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15144         if (error == NULL)
15145                 return NULL;
15146
15147         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15148                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15149
15150         for_each_pipe(dev_priv, i) {
15151                 error->pipe[i].power_domain_on =
15152                         __intel_display_power_is_enabled(dev_priv,
15153                                                          POWER_DOMAIN_PIPE(i));
15154                 if (!error->pipe[i].power_domain_on)
15155                         continue;
15156
15157                 error->cursor[i].control = I915_READ(CURCNTR(i));
15158                 error->cursor[i].position = I915_READ(CURPOS(i));
15159                 error->cursor[i].base = I915_READ(CURBASE(i));
15160
15161                 error->plane[i].control = I915_READ(DSPCNTR(i));
15162                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15163                 if (INTEL_INFO(dev)->gen <= 3) {
15164                         error->plane[i].size = I915_READ(DSPSIZE(i));
15165                         error->plane[i].pos = I915_READ(DSPPOS(i));
15166                 }
15167                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15168                         error->plane[i].addr = I915_READ(DSPADDR(i));
15169                 if (INTEL_INFO(dev)->gen >= 4) {
15170                         error->plane[i].surface = I915_READ(DSPSURF(i));
15171                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15172                 }
15173
15174                 error->pipe[i].source = I915_READ(PIPESRC(i));
15175
15176                 if (HAS_GMCH_DISPLAY(dev))
15177                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15178         }
15179
15180         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15181         if (HAS_DDI(dev_priv->dev))
15182                 error->num_transcoders++; /* Account for eDP. */
15183
15184         for (i = 0; i < error->num_transcoders; i++) {
15185                 enum transcoder cpu_transcoder = transcoders[i];
15186
15187                 error->transcoder[i].power_domain_on =
15188                         __intel_display_power_is_enabled(dev_priv,
15189                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15190                 if (!error->transcoder[i].power_domain_on)
15191                         continue;
15192
15193                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15194
15195                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15196                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15197                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15198                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15199                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15200                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15201                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15202         }
15203
15204         return error;
15205 }
15206
15207 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15208
15209 void
15210 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15211                                 struct drm_device *dev,
15212                                 struct intel_display_error_state *error)
15213 {
15214         struct drm_i915_private *dev_priv = dev->dev_private;
15215         int i;
15216
15217         if (!error)
15218                 return;
15219
15220         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15221         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15222                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15223                            error->power_well_driver);
15224         for_each_pipe(dev_priv, i) {
15225                 err_printf(m, "Pipe [%d]:\n", i);
15226                 err_printf(m, "  Power: %s\n",
15227                            error->pipe[i].power_domain_on ? "on" : "off");
15228                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15229                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15230
15231                 err_printf(m, "Plane [%d]:\n", i);
15232                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15233                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15234                 if (INTEL_INFO(dev)->gen <= 3) {
15235                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15236                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15237                 }
15238                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15239                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15240                 if (INTEL_INFO(dev)->gen >= 4) {
15241                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15242                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15243                 }
15244
15245                 err_printf(m, "Cursor [%d]:\n", i);
15246                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15247                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15248                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15249         }
15250
15251         for (i = 0; i < error->num_transcoders; i++) {
15252                 err_printf(m, "CPU transcoder: %c\n",
15253                            transcoder_name(error->transcoder[i].cpu_transcoder));
15254                 err_printf(m, "  Power: %s\n",
15255                            error->transcoder[i].power_domain_on ? "on" : "off");
15256                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15257                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15258                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15259                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15260                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15261                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15262                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15263         }
15264 }
15265
15266 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15267 {
15268         struct intel_crtc *crtc;
15269
15270         for_each_intel_crtc(dev, crtc) {
15271                 struct intel_unpin_work *work;
15272
15273                 spin_lock_irq(&dev->event_lock);
15274
15275                 work = crtc->unpin_work;
15276
15277                 if (work && work->event &&
15278                     work->event->base.file_priv == file) {
15279                         kfree(work->event);
15280                         work->event = NULL;
15281                 }
15282
15283                 spin_unlock_irq(&dev->event_lock);
15284         }
15285 }