OSDN Git Service

drm/i915: Move drm_framebuffer_unreference out of struct_mutex for flips
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_dp_helper.h>
42 #include <drm/drm_crtc_helper.h>
43 #include <drm/drm_plane_helper.h>
44 #include <drm/drm_rect.h>
45 #include <linux/dma_remapping.h>
46
47 /* Primary plane formats supported by all gen */
48 #define COMMON_PRIMARY_FORMATS \
49         DRM_FORMAT_C8, \
50         DRM_FORMAT_RGB565, \
51         DRM_FORMAT_XRGB8888, \
52         DRM_FORMAT_ARGB8888
53
54 /* Primary plane formats for gen <= 3 */
55 static const uint32_t intel_primary_formats_gen2[] = {
56         COMMON_PRIMARY_FORMATS,
57         DRM_FORMAT_XRGB1555,
58         DRM_FORMAT_ARGB1555,
59 };
60
61 /* Primary plane formats for gen >= 4 */
62 static const uint32_t intel_primary_formats_gen4[] = {
63         COMMON_PRIMARY_FORMATS, \
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_ABGR8888,
66         DRM_FORMAT_XRGB2101010,
67         DRM_FORMAT_ARGB2101010,
68         DRM_FORMAT_XBGR2101010,
69         DRM_FORMAT_ABGR2101010,
70 };
71
72 /* Cursor formats */
73 static const uint32_t intel_cursor_formats[] = {
74         DRM_FORMAT_ARGB8888,
75 };
76
77 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
78
79 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
80                                 struct intel_crtc_state *pipe_config);
81 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
82                                    struct intel_crtc_state *pipe_config);
83
84 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85                           int x, int y, struct drm_framebuffer *old_fb);
86 static int intel_framebuffer_init(struct drm_device *dev,
87                                   struct intel_framebuffer *ifb,
88                                   struct drm_mode_fb_cmd2 *mode_cmd,
89                                   struct drm_i915_gem_object *obj);
90 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
92 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
93                                          struct intel_link_m_n *m_n,
94                                          struct intel_link_m_n *m2_n2);
95 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
96 static void haswell_set_pipeconf(struct drm_crtc *crtc);
97 static void intel_set_pipe_csc(struct drm_crtc *crtc);
98 static void vlv_prepare_pll(struct intel_crtc *crtc,
99                             const struct intel_crtc_state *pipe_config);
100 static void chv_prepare_pll(struct intel_crtc *crtc,
101                             const struct intel_crtc_state *pipe_config);
102 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107         if (!connector->mst_port)
108                 return connector->encoder;
109         else
110                 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4800000, .max = 6480000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403         clock->m = clock->m1 * clock->m2;
404         clock->p = clock->p1 * clock->p2;
405         if (WARN_ON(clock->n == 0 || clock->p == 0))
406                 return;
407         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412  * Returns whether any output on the specified pipe is of the specified type
413  */
414 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
415 {
416         struct drm_device *dev = crtc->base.dev;
417         struct intel_encoder *encoder;
418
419         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
420                 if (encoder->type == type)
421                         return true;
422
423         return false;
424 }
425
426 /**
427  * Returns whether any output on the specified pipe will have the specified
428  * type after a staged modeset is complete, i.e., the same as
429  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430  * encoder->crtc.
431  */
432 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433 {
434         struct drm_device *dev = crtc->base.dev;
435         struct intel_encoder *encoder;
436
437         for_each_intel_encoder(dev, encoder)
438                 if (encoder->new_crtc == crtc && encoder->type == type)
439                         return true;
440
441         return false;
442 }
443
444 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
445                                                 int refclk)
446 {
447         struct drm_device *dev = crtc->base.dev;
448         const intel_limit_t *limit;
449
450         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
451                 if (intel_is_dual_link_lvds(dev)) {
452                         if (refclk == 100000)
453                                 limit = &intel_limits_ironlake_dual_lvds_100m;
454                         else
455                                 limit = &intel_limits_ironlake_dual_lvds;
456                 } else {
457                         if (refclk == 100000)
458                                 limit = &intel_limits_ironlake_single_lvds_100m;
459                         else
460                                 limit = &intel_limits_ironlake_single_lvds;
461                 }
462         } else
463                 limit = &intel_limits_ironlake_dac;
464
465         return limit;
466 }
467
468 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
469 {
470         struct drm_device *dev = crtc->base.dev;
471         const intel_limit_t *limit;
472
473         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
474                 if (intel_is_dual_link_lvds(dev))
475                         limit = &intel_limits_g4x_dual_channel_lvds;
476                 else
477                         limit = &intel_limits_g4x_single_channel_lvds;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
480                 limit = &intel_limits_g4x_hdmi;
481         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
482                 limit = &intel_limits_g4x_sdvo;
483         } else /* The option is for other outputs */
484                 limit = &intel_limits_i9xx_sdvo;
485
486         return limit;
487 }
488
489 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
490 {
491         struct drm_device *dev = crtc->base.dev;
492         const intel_limit_t *limit;
493
494         if (HAS_PCH_SPLIT(dev))
495                 limit = intel_ironlake_limit(crtc, refclk);
496         else if (IS_G4X(dev)) {
497                 limit = intel_g4x_limit(crtc);
498         } else if (IS_PINEVIEW(dev)) {
499                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
500                         limit = &intel_limits_pineview_lvds;
501                 else
502                         limit = &intel_limits_pineview_sdvo;
503         } else if (IS_CHERRYVIEW(dev)) {
504                 limit = &intel_limits_chv;
505         } else if (IS_VALLEYVIEW(dev)) {
506                 limit = &intel_limits_vlv;
507         } else if (!IS_GEN2(dev)) {
508                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
509                         limit = &intel_limits_i9xx_lvds;
510                 else
511                         limit = &intel_limits_i9xx_sdvo;
512         } else {
513                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
514                         limit = &intel_limits_i8xx_lvds;
515                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
516                         limit = &intel_limits_i8xx_dvo;
517                 else
518                         limit = &intel_limits_i8xx_dac;
519         }
520         return limit;
521 }
522
523 /* m1 is reserved as 0 in Pineview, n is a ring counter */
524 static void pineview_clock(int refclk, intel_clock_t *clock)
525 {
526         clock->m = clock->m2 + 2;
527         clock->p = clock->p1 * clock->p2;
528         if (WARN_ON(clock->n == 0 || clock->p == 0))
529                 return;
530         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
532 }
533
534 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535 {
536         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537 }
538
539 static void i9xx_clock(int refclk, intel_clock_t *clock)
540 {
541         clock->m = i9xx_dpll_compute_m(clock);
542         clock->p = clock->p1 * clock->p2;
543         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544                 return;
545         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
547 }
548
549 static void chv_clock(int refclk, intel_clock_t *clock)
550 {
551         clock->m = clock->m1 * clock->m2;
552         clock->p = clock->p1 * clock->p2;
553         if (WARN_ON(clock->n == 0 || clock->p == 0))
554                 return;
555         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556                         clock->n << 22);
557         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558 }
559
560 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
561 /**
562  * Returns whether the given set of divisors are valid for a given refclk with
563  * the given connectors.
564  */
565
566 static bool intel_PLL_is_valid(struct drm_device *dev,
567                                const intel_limit_t *limit,
568                                const intel_clock_t *clock)
569 {
570         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
571                 INTELPllInvalid("n out of range\n");
572         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
573                 INTELPllInvalid("p1 out of range\n");
574         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
575                 INTELPllInvalid("m2 out of range\n");
576         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
577                 INTELPllInvalid("m1 out of range\n");
578
579         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580                 if (clock->m1 <= clock->m2)
581                         INTELPllInvalid("m1 <= m2\n");
582
583         if (!IS_VALLEYVIEW(dev)) {
584                 if (clock->p < limit->p.min || limit->p.max < clock->p)
585                         INTELPllInvalid("p out of range\n");
586                 if (clock->m < limit->m.min || limit->m.max < clock->m)
587                         INTELPllInvalid("m out of range\n");
588         }
589
590         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
591                 INTELPllInvalid("vco out of range\n");
592         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593          * connector, etc., rather than just a single range.
594          */
595         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
596                 INTELPllInvalid("dot out of range\n");
597
598         return true;
599 }
600
601 static bool
602 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
603                     int target, int refclk, intel_clock_t *match_clock,
604                     intel_clock_t *best_clock)
605 {
606         struct drm_device *dev = crtc->base.dev;
607         intel_clock_t clock;
608         int err = target;
609
610         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
611                 /*
612                  * For LVDS just rely on its current settings for dual-channel.
613                  * We haven't figured out how to reliably set up different
614                  * single/dual channel state, if we even can.
615                  */
616                 if (intel_is_dual_link_lvds(dev))
617                         clock.p2 = limit->p2.p2_fast;
618                 else
619                         clock.p2 = limit->p2.p2_slow;
620         } else {
621                 if (target < limit->p2.dot_limit)
622                         clock.p2 = limit->p2.p2_slow;
623                 else
624                         clock.p2 = limit->p2.p2_fast;
625         }
626
627         memset(best_clock, 0, sizeof(*best_clock));
628
629         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630              clock.m1++) {
631                 for (clock.m2 = limit->m2.min;
632                      clock.m2 <= limit->m2.max; clock.m2++) {
633                         if (clock.m2 >= clock.m1)
634                                 break;
635                         for (clock.n = limit->n.min;
636                              clock.n <= limit->n.max; clock.n++) {
637                                 for (clock.p1 = limit->p1.min;
638                                         clock.p1 <= limit->p1.max; clock.p1++) {
639                                         int this_err;
640
641                                         i9xx_clock(refclk, &clock);
642                                         if (!intel_PLL_is_valid(dev, limit,
643                                                                 &clock))
644                                                 continue;
645                                         if (match_clock &&
646                                             clock.p != match_clock->p)
647                                                 continue;
648
649                                         this_err = abs(clock.dot - target);
650                                         if (this_err < err) {
651                                                 *best_clock = clock;
652                                                 err = this_err;
653                                         }
654                                 }
655                         }
656                 }
657         }
658
659         return (err != target);
660 }
661
662 static bool
663 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
664                    int target, int refclk, intel_clock_t *match_clock,
665                    intel_clock_t *best_clock)
666 {
667         struct drm_device *dev = crtc->base.dev;
668         intel_clock_t clock;
669         int err = target;
670
671         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
672                 /*
673                  * For LVDS just rely on its current settings for dual-channel.
674                  * We haven't figured out how to reliably set up different
675                  * single/dual channel state, if we even can.
676                  */
677                 if (intel_is_dual_link_lvds(dev))
678                         clock.p2 = limit->p2.p2_fast;
679                 else
680                         clock.p2 = limit->p2.p2_slow;
681         } else {
682                 if (target < limit->p2.dot_limit)
683                         clock.p2 = limit->p2.p2_slow;
684                 else
685                         clock.p2 = limit->p2.p2_fast;
686         }
687
688         memset(best_clock, 0, sizeof(*best_clock));
689
690         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691              clock.m1++) {
692                 for (clock.m2 = limit->m2.min;
693                      clock.m2 <= limit->m2.max; clock.m2++) {
694                         for (clock.n = limit->n.min;
695                              clock.n <= limit->n.max; clock.n++) {
696                                 for (clock.p1 = limit->p1.min;
697                                         clock.p1 <= limit->p1.max; clock.p1++) {
698                                         int this_err;
699
700                                         pineview_clock(refclk, &clock);
701                                         if (!intel_PLL_is_valid(dev, limit,
702                                                                 &clock))
703                                                 continue;
704                                         if (match_clock &&
705                                             clock.p != match_clock->p)
706                                                 continue;
707
708                                         this_err = abs(clock.dot - target);
709                                         if (this_err < err) {
710                                                 *best_clock = clock;
711                                                 err = this_err;
712                                         }
713                                 }
714                         }
715                 }
716         }
717
718         return (err != target);
719 }
720
721 static bool
722 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
723                    int target, int refclk, intel_clock_t *match_clock,
724                    intel_clock_t *best_clock)
725 {
726         struct drm_device *dev = crtc->base.dev;
727         intel_clock_t clock;
728         int max_n;
729         bool found;
730         /* approximately equals target * 0.00585 */
731         int err_most = (target >> 8) + (target >> 9);
732         found = false;
733
734         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
735                 if (intel_is_dual_link_lvds(dev))
736                         clock.p2 = limit->p2.p2_fast;
737                 else
738                         clock.p2 = limit->p2.p2_slow;
739         } else {
740                 if (target < limit->p2.dot_limit)
741                         clock.p2 = limit->p2.p2_slow;
742                 else
743                         clock.p2 = limit->p2.p2_fast;
744         }
745
746         memset(best_clock, 0, sizeof(*best_clock));
747         max_n = limit->n.max;
748         /* based on hardware requirement, prefer smaller n to precision */
749         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750                 /* based on hardware requirement, prefere larger m1,m2 */
751                 for (clock.m1 = limit->m1.max;
752                      clock.m1 >= limit->m1.min; clock.m1--) {
753                         for (clock.m2 = limit->m2.max;
754                              clock.m2 >= limit->m2.min; clock.m2--) {
755                                 for (clock.p1 = limit->p1.max;
756                                      clock.p1 >= limit->p1.min; clock.p1--) {
757                                         int this_err;
758
759                                         i9xx_clock(refclk, &clock);
760                                         if (!intel_PLL_is_valid(dev, limit,
761                                                                 &clock))
762                                                 continue;
763
764                                         this_err = abs(clock.dot - target);
765                                         if (this_err < err_most) {
766                                                 *best_clock = clock;
767                                                 err_most = this_err;
768                                                 max_n = clock.n;
769                                                 found = true;
770                                         }
771                                 }
772                         }
773                 }
774         }
775         return found;
776 }
777
778 static bool
779 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
780                    int target, int refclk, intel_clock_t *match_clock,
781                    intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc->base.dev;
784         intel_clock_t clock;
785         unsigned int bestppm = 1000000;
786         /* min update 19.2 MHz */
787         int max_n = min(limit->n.max, refclk / 19200);
788         bool found = false;
789
790         target *= 5; /* fast clock */
791
792         memset(best_clock, 0, sizeof(*best_clock));
793
794         /* based on hardware requirement, prefer smaller n to precision */
795         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
797                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
798                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799                                 clock.p = clock.p1 * clock.p2;
800                                 /* based on hardware requirement, prefer bigger m1,m2 values */
801                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
802                                         unsigned int ppm, diff;
803
804                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805                                                                      refclk * clock.m1);
806
807                                         vlv_clock(refclk, &clock);
808
809                                         if (!intel_PLL_is_valid(dev, limit,
810                                                                 &clock))
811                                                 continue;
812
813                                         diff = abs(clock.dot - target);
814                                         ppm = div_u64(1000000ULL * diff, target);
815
816                                         if (ppm < 100 && clock.p > best_clock->p) {
817                                                 bestppm = 0;
818                                                 *best_clock = clock;
819                                                 found = true;
820                                         }
821
822                                         if (bestppm >= 10 && ppm < bestppm - 10) {
823                                                 bestppm = ppm;
824                                                 *best_clock = clock;
825                                                 found = true;
826                                         }
827                                 }
828                         }
829                 }
830         }
831
832         return found;
833 }
834
835 static bool
836 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
837                    int target, int refclk, intel_clock_t *match_clock,
838                    intel_clock_t *best_clock)
839 {
840         struct drm_device *dev = crtc->base.dev;
841         intel_clock_t clock;
842         uint64_t m2;
843         int found = false;
844
845         memset(best_clock, 0, sizeof(*best_clock));
846
847         /*
848          * Based on hardware doc, the n always set to 1, and m1 always
849          * set to 2.  If requires to support 200Mhz refclk, we need to
850          * revisit this because n may not 1 anymore.
851          */
852         clock.n = 1, clock.m1 = 2;
853         target *= 5;    /* fast clock */
854
855         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856                 for (clock.p2 = limit->p2.p2_fast;
857                                 clock.p2 >= limit->p2.p2_slow;
858                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860                         clock.p = clock.p1 * clock.p2;
861
862                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863                                         clock.n) << 22, refclk * clock.m1);
864
865                         if (m2 > INT_MAX/clock.m1)
866                                 continue;
867
868                         clock.m2 = m2;
869
870                         chv_clock(refclk, &clock);
871
872                         if (!intel_PLL_is_valid(dev, limit, &clock))
873                                 continue;
874
875                         /* based on hardware requirement, prefer bigger p
876                          */
877                         if (clock.p > best_clock->p) {
878                                 *best_clock = clock;
879                                 found = true;
880                         }
881                 }
882         }
883
884         return found;
885 }
886
887 bool intel_crtc_active(struct drm_crtc *crtc)
888 {
889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891         /* Be paranoid as we can arrive here with only partial
892          * state retrieved from the hardware during setup.
893          *
894          * We can ditch the adjusted_mode.crtc_clock check as soon
895          * as Haswell has gained clock readout/fastboot support.
896          *
897          * We can ditch the crtc->primary->fb check as soon as we can
898          * properly reconstruct framebuffers.
899          *
900          * FIXME: The intel_crtc->active here should be switched to
901          * crtc->state->active once we have proper CRTC states wired up
902          * for atomic.
903          */
904         return intel_crtc->active && crtc->primary->state->fb &&
905                 intel_crtc->config->base.adjusted_mode.crtc_clock;
906 }
907
908 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
909                                              enum pipe pipe)
910 {
911         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
913
914         return intel_crtc->config->cpu_transcoder;
915 }
916
917 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         u32 reg = PIPEDSL(pipe);
921         u32 line1, line2;
922         u32 line_mask;
923
924         if (IS_GEN2(dev))
925                 line_mask = DSL_LINEMASK_GEN2;
926         else
927                 line_mask = DSL_LINEMASK_GEN3;
928
929         line1 = I915_READ(reg) & line_mask;
930         mdelay(5);
931         line2 = I915_READ(reg) & line_mask;
932
933         return line1 == line2;
934 }
935
936 /*
937  * intel_wait_for_pipe_off - wait for pipe to turn off
938  * @crtc: crtc whose pipe to wait for
939  *
940  * After disabling a pipe, we can't wait for vblank in the usual way,
941  * spinning on the vblank interrupt status bit, since we won't actually
942  * see an interrupt when the pipe is disabled.
943  *
944  * On Gen4 and above:
945  *   wait for the pipe register state bit to turn off
946  *
947  * Otherwise:
948  *   wait for the display line value to settle (it usually
949  *   ends up stopping at the start of the next frame).
950  *
951  */
952 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
953 {
954         struct drm_device *dev = crtc->base.dev;
955         struct drm_i915_private *dev_priv = dev->dev_private;
956         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
957         enum pipe pipe = crtc->pipe;
958
959         if (INTEL_INFO(dev)->gen >= 4) {
960                 int reg = PIPECONF(cpu_transcoder);
961
962                 /* Wait for the Pipe State to go off */
963                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
964                              100))
965                         WARN(1, "pipe_off wait timed out\n");
966         } else {
967                 /* Wait for the display line to settle */
968                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
969                         WARN(1, "pipe_off wait timed out\n");
970         }
971 }
972
973 /*
974  * ibx_digital_port_connected - is the specified port connected?
975  * @dev_priv: i915 private structure
976  * @port: the port to test
977  *
978  * Returns true if @port is connected, false otherwise.
979  */
980 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
981                                 struct intel_digital_port *port)
982 {
983         u32 bit;
984
985         if (HAS_PCH_IBX(dev_priv->dev)) {
986                 switch (port->port) {
987                 case PORT_B:
988                         bit = SDE_PORTB_HOTPLUG;
989                         break;
990                 case PORT_C:
991                         bit = SDE_PORTC_HOTPLUG;
992                         break;
993                 case PORT_D:
994                         bit = SDE_PORTD_HOTPLUG;
995                         break;
996                 default:
997                         return true;
998                 }
999         } else {
1000                 switch (port->port) {
1001                 case PORT_B:
1002                         bit = SDE_PORTB_HOTPLUG_CPT;
1003                         break;
1004                 case PORT_C:
1005                         bit = SDE_PORTC_HOTPLUG_CPT;
1006                         break;
1007                 case PORT_D:
1008                         bit = SDE_PORTD_HOTPLUG_CPT;
1009                         break;
1010                 default:
1011                         return true;
1012                 }
1013         }
1014
1015         return I915_READ(SDEISR) & bit;
1016 }
1017
1018 static const char *state_string(bool enabled)
1019 {
1020         return enabled ? "on" : "off";
1021 }
1022
1023 /* Only for pre-ILK configs */
1024 void assert_pll(struct drm_i915_private *dev_priv,
1025                 enum pipe pipe, bool state)
1026 {
1027         int reg;
1028         u32 val;
1029         bool cur_state;
1030
1031         reg = DPLL(pipe);
1032         val = I915_READ(reg);
1033         cur_state = !!(val & DPLL_VCO_ENABLE);
1034         I915_STATE_WARN(cur_state != state,
1035              "PLL state assertion failure (expected %s, current %s)\n",
1036              state_string(state), state_string(cur_state));
1037 }
1038
1039 /* XXX: the dsi pll is shared between MIPI DSI ports */
1040 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1041 {
1042         u32 val;
1043         bool cur_state;
1044
1045         mutex_lock(&dev_priv->dpio_lock);
1046         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1047         mutex_unlock(&dev_priv->dpio_lock);
1048
1049         cur_state = val & DSI_PLL_VCO_EN;
1050         I915_STATE_WARN(cur_state != state,
1051              "DSI PLL state assertion failure (expected %s, current %s)\n",
1052              state_string(state), state_string(cur_state));
1053 }
1054 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1055 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1056
1057 struct intel_shared_dpll *
1058 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1059 {
1060         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1061
1062         if (crtc->config->shared_dpll < 0)
1063                 return NULL;
1064
1065         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1066 }
1067
1068 /* For ILK+ */
1069 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1070                         struct intel_shared_dpll *pll,
1071                         bool state)
1072 {
1073         bool cur_state;
1074         struct intel_dpll_hw_state hw_state;
1075
1076         if (WARN (!pll,
1077                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1078                 return;
1079
1080         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1081         I915_STATE_WARN(cur_state != state,
1082              "%s assertion failure (expected %s, current %s)\n",
1083              pll->name, state_string(state), state_string(cur_state));
1084 }
1085
1086 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1087                           enum pipe pipe, bool state)
1088 {
1089         int reg;
1090         u32 val;
1091         bool cur_state;
1092         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1093                                                                       pipe);
1094
1095         if (HAS_DDI(dev_priv->dev)) {
1096                 /* DDI does not have a specific FDI_TX register */
1097                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1098                 val = I915_READ(reg);
1099                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1100         } else {
1101                 reg = FDI_TX_CTL(pipe);
1102                 val = I915_READ(reg);
1103                 cur_state = !!(val & FDI_TX_ENABLE);
1104         }
1105         I915_STATE_WARN(cur_state != state,
1106              "FDI TX state assertion failure (expected %s, current %s)\n",
1107              state_string(state), state_string(cur_state));
1108 }
1109 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1110 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1111
1112 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1113                           enum pipe pipe, bool state)
1114 {
1115         int reg;
1116         u32 val;
1117         bool cur_state;
1118
1119         reg = FDI_RX_CTL(pipe);
1120         val = I915_READ(reg);
1121         cur_state = !!(val & FDI_RX_ENABLE);
1122         I915_STATE_WARN(cur_state != state,
1123              "FDI RX state assertion failure (expected %s, current %s)\n",
1124              state_string(state), state_string(cur_state));
1125 }
1126 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1127 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1128
1129 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1130                                       enum pipe pipe)
1131 {
1132         int reg;
1133         u32 val;
1134
1135         /* ILK FDI PLL is always enabled */
1136         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1137                 return;
1138
1139         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1140         if (HAS_DDI(dev_priv->dev))
1141                 return;
1142
1143         reg = FDI_TX_CTL(pipe);
1144         val = I915_READ(reg);
1145         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1146 }
1147
1148 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1149                        enum pipe pipe, bool state)
1150 {
1151         int reg;
1152         u32 val;
1153         bool cur_state;
1154
1155         reg = FDI_RX_CTL(pipe);
1156         val = I915_READ(reg);
1157         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1158         I915_STATE_WARN(cur_state != state,
1159              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1160              state_string(state), state_string(cur_state));
1161 }
1162
1163 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1164                            enum pipe pipe)
1165 {
1166         struct drm_device *dev = dev_priv->dev;
1167         int pp_reg;
1168         u32 val;
1169         enum pipe panel_pipe = PIPE_A;
1170         bool locked = true;
1171
1172         if (WARN_ON(HAS_DDI(dev)))
1173                 return;
1174
1175         if (HAS_PCH_SPLIT(dev)) {
1176                 u32 port_sel;
1177
1178                 pp_reg = PCH_PP_CONTROL;
1179                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1180
1181                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1182                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1183                         panel_pipe = PIPE_B;
1184                 /* XXX: else fix for eDP */
1185         } else if (IS_VALLEYVIEW(dev)) {
1186                 /* presumably write lock depends on pipe, not port select */
1187                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1188                 panel_pipe = pipe;
1189         } else {
1190                 pp_reg = PP_CONTROL;
1191                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1192                         panel_pipe = PIPE_B;
1193         }
1194
1195         val = I915_READ(pp_reg);
1196         if (!(val & PANEL_POWER_ON) ||
1197             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1198                 locked = false;
1199
1200         I915_STATE_WARN(panel_pipe == pipe && locked,
1201              "panel assertion failure, pipe %c regs locked\n",
1202              pipe_name(pipe));
1203 }
1204
1205 static void assert_cursor(struct drm_i915_private *dev_priv,
1206                           enum pipe pipe, bool state)
1207 {
1208         struct drm_device *dev = dev_priv->dev;
1209         bool cur_state;
1210
1211         if (IS_845G(dev) || IS_I865G(dev))
1212                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1213         else
1214                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1215
1216         I915_STATE_WARN(cur_state != state,
1217              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1218              pipe_name(pipe), state_string(state), state_string(cur_state));
1219 }
1220 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1221 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1222
1223 void assert_pipe(struct drm_i915_private *dev_priv,
1224                  enum pipe pipe, bool state)
1225 {
1226         int reg;
1227         u32 val;
1228         bool cur_state;
1229         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1230                                                                       pipe);
1231
1232         /* if we need the pipe quirk it must be always on */
1233         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1234             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1235                 state = true;
1236
1237         if (!intel_display_power_is_enabled(dev_priv,
1238                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1239                 cur_state = false;
1240         } else {
1241                 reg = PIPECONF(cpu_transcoder);
1242                 val = I915_READ(reg);
1243                 cur_state = !!(val & PIPECONF_ENABLE);
1244         }
1245
1246         I915_STATE_WARN(cur_state != state,
1247              "pipe %c assertion failure (expected %s, current %s)\n",
1248              pipe_name(pipe), state_string(state), state_string(cur_state));
1249 }
1250
1251 static void assert_plane(struct drm_i915_private *dev_priv,
1252                          enum plane plane, bool state)
1253 {
1254         int reg;
1255         u32 val;
1256         bool cur_state;
1257
1258         reg = DSPCNTR(plane);
1259         val = I915_READ(reg);
1260         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1261         I915_STATE_WARN(cur_state != state,
1262              "plane %c assertion failure (expected %s, current %s)\n",
1263              plane_name(plane), state_string(state), state_string(cur_state));
1264 }
1265
1266 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1267 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1268
1269 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1270                                    enum pipe pipe)
1271 {
1272         struct drm_device *dev = dev_priv->dev;
1273         int reg, i;
1274         u32 val;
1275         int cur_pipe;
1276
1277         /* Primary planes are fixed to pipes on gen4+ */
1278         if (INTEL_INFO(dev)->gen >= 4) {
1279                 reg = DSPCNTR(pipe);
1280                 val = I915_READ(reg);
1281                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1282                      "plane %c assertion failure, should be disabled but not\n",
1283                      plane_name(pipe));
1284                 return;
1285         }
1286
1287         /* Need to check both planes against the pipe */
1288         for_each_pipe(dev_priv, i) {
1289                 reg = DSPCNTR(i);
1290                 val = I915_READ(reg);
1291                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1292                         DISPPLANE_SEL_PIPE_SHIFT;
1293                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1294                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1295                      plane_name(i), pipe_name(pipe));
1296         }
1297 }
1298
1299 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1300                                     enum pipe pipe)
1301 {
1302         struct drm_device *dev = dev_priv->dev;
1303         int reg, sprite;
1304         u32 val;
1305
1306         if (INTEL_INFO(dev)->gen >= 9) {
1307                 for_each_sprite(dev_priv, pipe, sprite) {
1308                         val = I915_READ(PLANE_CTL(pipe, sprite));
1309                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1310                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1311                              sprite, pipe_name(pipe));
1312                 }
1313         } else if (IS_VALLEYVIEW(dev)) {
1314                 for_each_sprite(dev_priv, pipe, sprite) {
1315                         reg = SPCNTR(pipe, sprite);
1316                         val = I915_READ(reg);
1317                         I915_STATE_WARN(val & SP_ENABLE,
1318                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                              sprite_name(pipe, sprite), pipe_name(pipe));
1320                 }
1321         } else if (INTEL_INFO(dev)->gen >= 7) {
1322                 reg = SPRCTL(pipe);
1323                 val = I915_READ(reg);
1324                 I915_STATE_WARN(val & SPRITE_ENABLE,
1325                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1326                      plane_name(pipe), pipe_name(pipe));
1327         } else if (INTEL_INFO(dev)->gen >= 5) {
1328                 reg = DVSCNTR(pipe);
1329                 val = I915_READ(reg);
1330                 I915_STATE_WARN(val & DVS_ENABLE,
1331                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1332                      plane_name(pipe), pipe_name(pipe));
1333         }
1334 }
1335
1336 static void assert_vblank_disabled(struct drm_crtc *crtc)
1337 {
1338         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1339                 drm_crtc_vblank_put(crtc);
1340 }
1341
1342 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1343 {
1344         u32 val;
1345         bool enabled;
1346
1347         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1348
1349         val = I915_READ(PCH_DREF_CONTROL);
1350         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1351                             DREF_SUPERSPREAD_SOURCE_MASK));
1352         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1353 }
1354
1355 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1356                                            enum pipe pipe)
1357 {
1358         int reg;
1359         u32 val;
1360         bool enabled;
1361
1362         reg = PCH_TRANSCONF(pipe);
1363         val = I915_READ(reg);
1364         enabled = !!(val & TRANS_ENABLE);
1365         I915_STATE_WARN(enabled,
1366              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1367              pipe_name(pipe));
1368 }
1369
1370 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1371                             enum pipe pipe, u32 port_sel, u32 val)
1372 {
1373         if ((val & DP_PORT_EN) == 0)
1374                 return false;
1375
1376         if (HAS_PCH_CPT(dev_priv->dev)) {
1377                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1378                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1379                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1380                         return false;
1381         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1382                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1383                         return false;
1384         } else {
1385                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1392                               enum pipe pipe, u32 val)
1393 {
1394         if ((val & SDVO_ENABLE) == 0)
1395                 return false;
1396
1397         if (HAS_PCH_CPT(dev_priv->dev)) {
1398                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1399                         return false;
1400         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1401                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1402                         return false;
1403         } else {
1404                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1405                         return false;
1406         }
1407         return true;
1408 }
1409
1410 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1411                               enum pipe pipe, u32 val)
1412 {
1413         if ((val & LVDS_PORT_EN) == 0)
1414                 return false;
1415
1416         if (HAS_PCH_CPT(dev_priv->dev)) {
1417                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1418                         return false;
1419         } else {
1420                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1421                         return false;
1422         }
1423         return true;
1424 }
1425
1426 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1427                               enum pipe pipe, u32 val)
1428 {
1429         if ((val & ADPA_DAC_ENABLE) == 0)
1430                 return false;
1431         if (HAS_PCH_CPT(dev_priv->dev)) {
1432                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1433                         return false;
1434         } else {
1435                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1436                         return false;
1437         }
1438         return true;
1439 }
1440
1441 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1442                                    enum pipe pipe, int reg, u32 port_sel)
1443 {
1444         u32 val = I915_READ(reg);
1445         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1446              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1447              reg, pipe_name(pipe));
1448
1449         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1450              && (val & DP_PIPEB_SELECT),
1451              "IBX PCH dp port still using transcoder B\n");
1452 }
1453
1454 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1455                                      enum pipe pipe, int reg)
1456 {
1457         u32 val = I915_READ(reg);
1458         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1459              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1460              reg, pipe_name(pipe));
1461
1462         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1463              && (val & SDVO_PIPE_B_SELECT),
1464              "IBX PCH hdmi port still using transcoder B\n");
1465 }
1466
1467 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1468                                       enum pipe pipe)
1469 {
1470         int reg;
1471         u32 val;
1472
1473         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1474         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1475         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1476
1477         reg = PCH_ADPA;
1478         val = I915_READ(reg);
1479         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1480              "PCH VGA enabled on transcoder %c, should be disabled\n",
1481              pipe_name(pipe));
1482
1483         reg = PCH_LVDS;
1484         val = I915_READ(reg);
1485         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1486              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1487              pipe_name(pipe));
1488
1489         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1490         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1491         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1492 }
1493
1494 static void intel_init_dpio(struct drm_device *dev)
1495 {
1496         struct drm_i915_private *dev_priv = dev->dev_private;
1497
1498         if (!IS_VALLEYVIEW(dev))
1499                 return;
1500
1501         /*
1502          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1503          * CHV x1 PHY (DP/HDMI D)
1504          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1505          */
1506         if (IS_CHERRYVIEW(dev)) {
1507                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1508                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1509         } else {
1510                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1511         }
1512 }
1513
1514 static void vlv_enable_pll(struct intel_crtc *crtc,
1515                            const struct intel_crtc_state *pipe_config)
1516 {
1517         struct drm_device *dev = crtc->base.dev;
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519         int reg = DPLL(crtc->pipe);
1520         u32 dpll = pipe_config->dpll_hw_state.dpll;
1521
1522         assert_pipe_disabled(dev_priv, crtc->pipe);
1523
1524         /* No really, not for ILK+ */
1525         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1526
1527         /* PLL is protected by panel, make sure we can write it */
1528         if (IS_MOBILE(dev_priv->dev))
1529                 assert_panel_unlocked(dev_priv, crtc->pipe);
1530
1531         I915_WRITE(reg, dpll);
1532         POSTING_READ(reg);
1533         udelay(150);
1534
1535         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1536                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1537
1538         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1539         POSTING_READ(DPLL_MD(crtc->pipe));
1540
1541         /* We do this three times for luck */
1542         I915_WRITE(reg, dpll);
1543         POSTING_READ(reg);
1544         udelay(150); /* wait for warmup */
1545         I915_WRITE(reg, dpll);
1546         POSTING_READ(reg);
1547         udelay(150); /* wait for warmup */
1548         I915_WRITE(reg, dpll);
1549         POSTING_READ(reg);
1550         udelay(150); /* wait for warmup */
1551 }
1552
1553 static void chv_enable_pll(struct intel_crtc *crtc,
1554                            const struct intel_crtc_state *pipe_config)
1555 {
1556         struct drm_device *dev = crtc->base.dev;
1557         struct drm_i915_private *dev_priv = dev->dev_private;
1558         int pipe = crtc->pipe;
1559         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1560         u32 tmp;
1561
1562         assert_pipe_disabled(dev_priv, crtc->pipe);
1563
1564         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1565
1566         mutex_lock(&dev_priv->dpio_lock);
1567
1568         /* Enable back the 10bit clock to display controller */
1569         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1570         tmp |= DPIO_DCLKP_EN;
1571         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1572
1573         /*
1574          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1575          */
1576         udelay(1);
1577
1578         /* Enable PLL */
1579         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1580
1581         /* Check PLL is locked */
1582         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1583                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1584
1585         /* not sure when this should be written */
1586         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1587         POSTING_READ(DPLL_MD(pipe));
1588
1589         mutex_unlock(&dev_priv->dpio_lock);
1590 }
1591
1592 static int intel_num_dvo_pipes(struct drm_device *dev)
1593 {
1594         struct intel_crtc *crtc;
1595         int count = 0;
1596
1597         for_each_intel_crtc(dev, crtc)
1598                 count += crtc->active &&
1599                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1600
1601         return count;
1602 }
1603
1604 static void i9xx_enable_pll(struct intel_crtc *crtc)
1605 {
1606         struct drm_device *dev = crtc->base.dev;
1607         struct drm_i915_private *dev_priv = dev->dev_private;
1608         int reg = DPLL(crtc->pipe);
1609         u32 dpll = crtc->config->dpll_hw_state.dpll;
1610
1611         assert_pipe_disabled(dev_priv, crtc->pipe);
1612
1613         /* No really, not for ILK+ */
1614         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1615
1616         /* PLL is protected by panel, make sure we can write it */
1617         if (IS_MOBILE(dev) && !IS_I830(dev))
1618                 assert_panel_unlocked(dev_priv, crtc->pipe);
1619
1620         /* Enable DVO 2x clock on both PLLs if necessary */
1621         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1622                 /*
1623                  * It appears to be important that we don't enable this
1624                  * for the current pipe before otherwise configuring the
1625                  * PLL. No idea how this should be handled if multiple
1626                  * DVO outputs are enabled simultaneosly.
1627                  */
1628                 dpll |= DPLL_DVO_2X_MODE;
1629                 I915_WRITE(DPLL(!crtc->pipe),
1630                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1631         }
1632
1633         /* Wait for the clocks to stabilize. */
1634         POSTING_READ(reg);
1635         udelay(150);
1636
1637         if (INTEL_INFO(dev)->gen >= 4) {
1638                 I915_WRITE(DPLL_MD(crtc->pipe),
1639                            crtc->config->dpll_hw_state.dpll_md);
1640         } else {
1641                 /* The pixel multiplier can only be updated once the
1642                  * DPLL is enabled and the clocks are stable.
1643                  *
1644                  * So write it again.
1645                  */
1646                 I915_WRITE(reg, dpll);
1647         }
1648
1649         /* We do this three times for luck */
1650         I915_WRITE(reg, dpll);
1651         POSTING_READ(reg);
1652         udelay(150); /* wait for warmup */
1653         I915_WRITE(reg, dpll);
1654         POSTING_READ(reg);
1655         udelay(150); /* wait for warmup */
1656         I915_WRITE(reg, dpll);
1657         POSTING_READ(reg);
1658         udelay(150); /* wait for warmup */
1659 }
1660
1661 /**
1662  * i9xx_disable_pll - disable a PLL
1663  * @dev_priv: i915 private structure
1664  * @pipe: pipe PLL to disable
1665  *
1666  * Disable the PLL for @pipe, making sure the pipe is off first.
1667  *
1668  * Note!  This is for pre-ILK only.
1669  */
1670 static void i9xx_disable_pll(struct intel_crtc *crtc)
1671 {
1672         struct drm_device *dev = crtc->base.dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         enum pipe pipe = crtc->pipe;
1675
1676         /* Disable DVO 2x clock on both PLLs if necessary */
1677         if (IS_I830(dev) &&
1678             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1679             intel_num_dvo_pipes(dev) == 1) {
1680                 I915_WRITE(DPLL(PIPE_B),
1681                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1682                 I915_WRITE(DPLL(PIPE_A),
1683                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1684         }
1685
1686         /* Don't disable pipe or pipe PLLs if needed */
1687         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1688             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1689                 return;
1690
1691         /* Make sure the pipe isn't still relying on us */
1692         assert_pipe_disabled(dev_priv, pipe);
1693
1694         I915_WRITE(DPLL(pipe), 0);
1695         POSTING_READ(DPLL(pipe));
1696 }
1697
1698 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1699 {
1700         u32 val = 0;
1701
1702         /* Make sure the pipe isn't still relying on us */
1703         assert_pipe_disabled(dev_priv, pipe);
1704
1705         /*
1706          * Leave integrated clock source and reference clock enabled for pipe B.
1707          * The latter is needed for VGA hotplug / manual detection.
1708          */
1709         if (pipe == PIPE_B)
1710                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1711         I915_WRITE(DPLL(pipe), val);
1712         POSTING_READ(DPLL(pipe));
1713
1714 }
1715
1716 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1717 {
1718         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1719         u32 val;
1720
1721         /* Make sure the pipe isn't still relying on us */
1722         assert_pipe_disabled(dev_priv, pipe);
1723
1724         /* Set PLL en = 0 */
1725         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1726         if (pipe != PIPE_A)
1727                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1728         I915_WRITE(DPLL(pipe), val);
1729         POSTING_READ(DPLL(pipe));
1730
1731         mutex_lock(&dev_priv->dpio_lock);
1732
1733         /* Disable 10bit clock to display controller */
1734         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1735         val &= ~DPIO_DCLKP_EN;
1736         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1737
1738         /* disable left/right clock distribution */
1739         if (pipe != PIPE_B) {
1740                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1741                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1742                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1743         } else {
1744                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1745                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1746                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1747         }
1748
1749         mutex_unlock(&dev_priv->dpio_lock);
1750 }
1751
1752 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1753                 struct intel_digital_port *dport)
1754 {
1755         u32 port_mask;
1756         int dpll_reg;
1757
1758         switch (dport->port) {
1759         case PORT_B:
1760                 port_mask = DPLL_PORTB_READY_MASK;
1761                 dpll_reg = DPLL(0);
1762                 break;
1763         case PORT_C:
1764                 port_mask = DPLL_PORTC_READY_MASK;
1765                 dpll_reg = DPLL(0);
1766                 break;
1767         case PORT_D:
1768                 port_mask = DPLL_PORTD_READY_MASK;
1769                 dpll_reg = DPIO_PHY_STATUS;
1770                 break;
1771         default:
1772                 BUG();
1773         }
1774
1775         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1776                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1777                      port_name(dport->port), I915_READ(dpll_reg));
1778 }
1779
1780 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1781 {
1782         struct drm_device *dev = crtc->base.dev;
1783         struct drm_i915_private *dev_priv = dev->dev_private;
1784         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1785
1786         if (WARN_ON(pll == NULL))
1787                 return;
1788
1789         WARN_ON(!pll->config.crtc_mask);
1790         if (pll->active == 0) {
1791                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1792                 WARN_ON(pll->on);
1793                 assert_shared_dpll_disabled(dev_priv, pll);
1794
1795                 pll->mode_set(dev_priv, pll);
1796         }
1797 }
1798
1799 /**
1800  * intel_enable_shared_dpll - enable PCH PLL
1801  * @dev_priv: i915 private structure
1802  * @pipe: pipe PLL to enable
1803  *
1804  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1805  * drives the transcoder clock.
1806  */
1807 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1808 {
1809         struct drm_device *dev = crtc->base.dev;
1810         struct drm_i915_private *dev_priv = dev->dev_private;
1811         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1812
1813         if (WARN_ON(pll == NULL))
1814                 return;
1815
1816         if (WARN_ON(pll->config.crtc_mask == 0))
1817                 return;
1818
1819         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1820                       pll->name, pll->active, pll->on,
1821                       crtc->base.base.id);
1822
1823         if (pll->active++) {
1824                 WARN_ON(!pll->on);
1825                 assert_shared_dpll_enabled(dev_priv, pll);
1826                 return;
1827         }
1828         WARN_ON(pll->on);
1829
1830         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1831
1832         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1833         pll->enable(dev_priv, pll);
1834         pll->on = true;
1835 }
1836
1837 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1838 {
1839         struct drm_device *dev = crtc->base.dev;
1840         struct drm_i915_private *dev_priv = dev->dev_private;
1841         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1842
1843         /* PCH only available on ILK+ */
1844         BUG_ON(INTEL_INFO(dev)->gen < 5);
1845         if (WARN_ON(pll == NULL))
1846                return;
1847
1848         if (WARN_ON(pll->config.crtc_mask == 0))
1849                 return;
1850
1851         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1852                       pll->name, pll->active, pll->on,
1853                       crtc->base.base.id);
1854
1855         if (WARN_ON(pll->active == 0)) {
1856                 assert_shared_dpll_disabled(dev_priv, pll);
1857                 return;
1858         }
1859
1860         assert_shared_dpll_enabled(dev_priv, pll);
1861         WARN_ON(!pll->on);
1862         if (--pll->active)
1863                 return;
1864
1865         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1866         pll->disable(dev_priv, pll);
1867         pll->on = false;
1868
1869         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1870 }
1871
1872 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1873                                            enum pipe pipe)
1874 {
1875         struct drm_device *dev = dev_priv->dev;
1876         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1878         uint32_t reg, val, pipeconf_val;
1879
1880         /* PCH only available on ILK+ */
1881         BUG_ON(!HAS_PCH_SPLIT(dev));
1882
1883         /* Make sure PCH DPLL is enabled */
1884         assert_shared_dpll_enabled(dev_priv,
1885                                    intel_crtc_to_shared_dpll(intel_crtc));
1886
1887         /* FDI must be feeding us bits for PCH ports */
1888         assert_fdi_tx_enabled(dev_priv, pipe);
1889         assert_fdi_rx_enabled(dev_priv, pipe);
1890
1891         if (HAS_PCH_CPT(dev)) {
1892                 /* Workaround: Set the timing override bit before enabling the
1893                  * pch transcoder. */
1894                 reg = TRANS_CHICKEN2(pipe);
1895                 val = I915_READ(reg);
1896                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1897                 I915_WRITE(reg, val);
1898         }
1899
1900         reg = PCH_TRANSCONF(pipe);
1901         val = I915_READ(reg);
1902         pipeconf_val = I915_READ(PIPECONF(pipe));
1903
1904         if (HAS_PCH_IBX(dev_priv->dev)) {
1905                 /*
1906                  * make the BPC in transcoder be consistent with
1907                  * that in pipeconf reg.
1908                  */
1909                 val &= ~PIPECONF_BPC_MASK;
1910                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1911         }
1912
1913         val &= ~TRANS_INTERLACE_MASK;
1914         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1915                 if (HAS_PCH_IBX(dev_priv->dev) &&
1916                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1917                         val |= TRANS_LEGACY_INTERLACED_ILK;
1918                 else
1919                         val |= TRANS_INTERLACED;
1920         else
1921                 val |= TRANS_PROGRESSIVE;
1922
1923         I915_WRITE(reg, val | TRANS_ENABLE);
1924         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1925                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1926 }
1927
1928 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1929                                       enum transcoder cpu_transcoder)
1930 {
1931         u32 val, pipeconf_val;
1932
1933         /* PCH only available on ILK+ */
1934         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1935
1936         /* FDI must be feeding us bits for PCH ports */
1937         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1938         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1939
1940         /* Workaround: set timing override bit. */
1941         val = I915_READ(_TRANSA_CHICKEN2);
1942         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1943         I915_WRITE(_TRANSA_CHICKEN2, val);
1944
1945         val = TRANS_ENABLE;
1946         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1947
1948         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1949             PIPECONF_INTERLACED_ILK)
1950                 val |= TRANS_INTERLACED;
1951         else
1952                 val |= TRANS_PROGRESSIVE;
1953
1954         I915_WRITE(LPT_TRANSCONF, val);
1955         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1956                 DRM_ERROR("Failed to enable PCH transcoder\n");
1957 }
1958
1959 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1960                                             enum pipe pipe)
1961 {
1962         struct drm_device *dev = dev_priv->dev;
1963         uint32_t reg, val;
1964
1965         /* FDI relies on the transcoder */
1966         assert_fdi_tx_disabled(dev_priv, pipe);
1967         assert_fdi_rx_disabled(dev_priv, pipe);
1968
1969         /* Ports must be off as well */
1970         assert_pch_ports_disabled(dev_priv, pipe);
1971
1972         reg = PCH_TRANSCONF(pipe);
1973         val = I915_READ(reg);
1974         val &= ~TRANS_ENABLE;
1975         I915_WRITE(reg, val);
1976         /* wait for PCH transcoder off, transcoder state */
1977         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1978                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1979
1980         if (!HAS_PCH_IBX(dev)) {
1981                 /* Workaround: Clear the timing override chicken bit again. */
1982                 reg = TRANS_CHICKEN2(pipe);
1983                 val = I915_READ(reg);
1984                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1985                 I915_WRITE(reg, val);
1986         }
1987 }
1988
1989 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1990 {
1991         u32 val;
1992
1993         val = I915_READ(LPT_TRANSCONF);
1994         val &= ~TRANS_ENABLE;
1995         I915_WRITE(LPT_TRANSCONF, val);
1996         /* wait for PCH transcoder off, transcoder state */
1997         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1998                 DRM_ERROR("Failed to disable PCH transcoder\n");
1999
2000         /* Workaround: clear timing override bit. */
2001         val = I915_READ(_TRANSA_CHICKEN2);
2002         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2003         I915_WRITE(_TRANSA_CHICKEN2, val);
2004 }
2005
2006 /**
2007  * intel_enable_pipe - enable a pipe, asserting requirements
2008  * @crtc: crtc responsible for the pipe
2009  *
2010  * Enable @crtc's pipe, making sure that various hardware specific requirements
2011  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2012  */
2013 static void intel_enable_pipe(struct intel_crtc *crtc)
2014 {
2015         struct drm_device *dev = crtc->base.dev;
2016         struct drm_i915_private *dev_priv = dev->dev_private;
2017         enum pipe pipe = crtc->pipe;
2018         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2019                                                                       pipe);
2020         enum pipe pch_transcoder;
2021         int reg;
2022         u32 val;
2023
2024         assert_planes_disabled(dev_priv, pipe);
2025         assert_cursor_disabled(dev_priv, pipe);
2026         assert_sprites_disabled(dev_priv, pipe);
2027
2028         if (HAS_PCH_LPT(dev_priv->dev))
2029                 pch_transcoder = TRANSCODER_A;
2030         else
2031                 pch_transcoder = pipe;
2032
2033         /*
2034          * A pipe without a PLL won't actually be able to drive bits from
2035          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2036          * need the check.
2037          */
2038         if (!HAS_PCH_SPLIT(dev_priv->dev))
2039                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2040                         assert_dsi_pll_enabled(dev_priv);
2041                 else
2042                         assert_pll_enabled(dev_priv, pipe);
2043         else {
2044                 if (crtc->config->has_pch_encoder) {
2045                         /* if driving the PCH, we need FDI enabled */
2046                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2047                         assert_fdi_tx_pll_enabled(dev_priv,
2048                                                   (enum pipe) cpu_transcoder);
2049                 }
2050                 /* FIXME: assert CPU port conditions for SNB+ */
2051         }
2052
2053         reg = PIPECONF(cpu_transcoder);
2054         val = I915_READ(reg);
2055         if (val & PIPECONF_ENABLE) {
2056                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2057                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2058                 return;
2059         }
2060
2061         I915_WRITE(reg, val | PIPECONF_ENABLE);
2062         POSTING_READ(reg);
2063 }
2064
2065 /**
2066  * intel_disable_pipe - disable a pipe, asserting requirements
2067  * @crtc: crtc whose pipes is to be disabled
2068  *
2069  * Disable the pipe of @crtc, making sure that various hardware
2070  * specific requirements are met, if applicable, e.g. plane
2071  * disabled, panel fitter off, etc.
2072  *
2073  * Will wait until the pipe has shut down before returning.
2074  */
2075 static void intel_disable_pipe(struct intel_crtc *crtc)
2076 {
2077         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2078         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2079         enum pipe pipe = crtc->pipe;
2080         int reg;
2081         u32 val;
2082
2083         /*
2084          * Make sure planes won't keep trying to pump pixels to us,
2085          * or we might hang the display.
2086          */
2087         assert_planes_disabled(dev_priv, pipe);
2088         assert_cursor_disabled(dev_priv, pipe);
2089         assert_sprites_disabled(dev_priv, pipe);
2090
2091         reg = PIPECONF(cpu_transcoder);
2092         val = I915_READ(reg);
2093         if ((val & PIPECONF_ENABLE) == 0)
2094                 return;
2095
2096         /*
2097          * Double wide has implications for planes
2098          * so best keep it disabled when not needed.
2099          */
2100         if (crtc->config->double_wide)
2101                 val &= ~PIPECONF_DOUBLE_WIDE;
2102
2103         /* Don't disable pipe or pipe PLLs if needed */
2104         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2105             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2106                 val &= ~PIPECONF_ENABLE;
2107
2108         I915_WRITE(reg, val);
2109         if ((val & PIPECONF_ENABLE) == 0)
2110                 intel_wait_for_pipe_off(crtc);
2111 }
2112
2113 /*
2114  * Plane regs are double buffered, going from enabled->disabled needs a
2115  * trigger in order to latch.  The display address reg provides this.
2116  */
2117 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2118                                enum plane plane)
2119 {
2120         struct drm_device *dev = dev_priv->dev;
2121         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2122
2123         I915_WRITE(reg, I915_READ(reg));
2124         POSTING_READ(reg);
2125 }
2126
2127 /**
2128  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2129  * @plane:  plane to be enabled
2130  * @crtc: crtc for the plane
2131  *
2132  * Enable @plane on @crtc, making sure that the pipe is running first.
2133  */
2134 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2135                                           struct drm_crtc *crtc)
2136 {
2137         struct drm_device *dev = plane->dev;
2138         struct drm_i915_private *dev_priv = dev->dev_private;
2139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2140
2141         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2142         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2143
2144         if (intel_crtc->primary_enabled)
2145                 return;
2146
2147         intel_crtc->primary_enabled = true;
2148
2149         dev_priv->display.update_primary_plane(crtc, plane->fb,
2150                                                crtc->x, crtc->y);
2151
2152         /*
2153          * BDW signals flip done immediately if the plane
2154          * is disabled, even if the plane enable is already
2155          * armed to occur at the next vblank :(
2156          */
2157         if (IS_BROADWELL(dev))
2158                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2159 }
2160
2161 /**
2162  * intel_disable_primary_hw_plane - disable the primary hardware plane
2163  * @plane: plane to be disabled
2164  * @crtc: crtc for the plane
2165  *
2166  * Disable @plane on @crtc, making sure that the pipe is running first.
2167  */
2168 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2169                                            struct drm_crtc *crtc)
2170 {
2171         struct drm_device *dev = plane->dev;
2172         struct drm_i915_private *dev_priv = dev->dev_private;
2173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2174
2175         if (WARN_ON(!intel_crtc->active))
2176                 return;
2177
2178         if (!intel_crtc->primary_enabled)
2179                 return;
2180
2181         intel_crtc->primary_enabled = false;
2182
2183         dev_priv->display.update_primary_plane(crtc, plane->fb,
2184                                                crtc->x, crtc->y);
2185 }
2186
2187 static bool need_vtd_wa(struct drm_device *dev)
2188 {
2189 #ifdef CONFIG_INTEL_IOMMU
2190         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2191                 return true;
2192 #endif
2193         return false;
2194 }
2195
2196 int
2197 intel_fb_align_height(struct drm_device *dev, int height,
2198                       uint32_t pixel_format,
2199                       uint64_t fb_format_modifier)
2200 {
2201         int tile_height;
2202         uint32_t bits_per_pixel;
2203
2204         switch (fb_format_modifier) {
2205         case DRM_FORMAT_MOD_NONE:
2206                 tile_height = 1;
2207                 break;
2208         case I915_FORMAT_MOD_X_TILED:
2209                 tile_height = IS_GEN2(dev) ? 16 : 8;
2210                 break;
2211         case I915_FORMAT_MOD_Y_TILED:
2212                 tile_height = 32;
2213                 break;
2214         case I915_FORMAT_MOD_Yf_TILED:
2215                 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2216                 switch (bits_per_pixel) {
2217                 default:
2218                 case 8:
2219                         tile_height = 64;
2220                         break;
2221                 case 16:
2222                 case 32:
2223                         tile_height = 32;
2224                         break;
2225                 case 64:
2226                         tile_height = 16;
2227                         break;
2228                 case 128:
2229                         WARN_ONCE(1,
2230                                   "128-bit pixels are not supported for display!");
2231                         tile_height = 16;
2232                         break;
2233                 }
2234                 break;
2235         default:
2236                 MISSING_CASE(fb_format_modifier);
2237                 tile_height = 1;
2238                 break;
2239         }
2240
2241         return ALIGN(height, tile_height);
2242 }
2243
2244 int
2245 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2246                            struct drm_framebuffer *fb,
2247                            struct intel_engine_cs *pipelined)
2248 {
2249         struct drm_device *dev = fb->dev;
2250         struct drm_i915_private *dev_priv = dev->dev_private;
2251         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2252         u32 alignment;
2253         int ret;
2254
2255         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2256
2257         switch (fb->modifier[0]) {
2258         case DRM_FORMAT_MOD_NONE:
2259                 if (INTEL_INFO(dev)->gen >= 9)
2260                         alignment = 256 * 1024;
2261                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2262                         alignment = 128 * 1024;
2263                 else if (INTEL_INFO(dev)->gen >= 4)
2264                         alignment = 4 * 1024;
2265                 else
2266                         alignment = 64 * 1024;
2267                 break;
2268         case I915_FORMAT_MOD_X_TILED:
2269                 if (INTEL_INFO(dev)->gen >= 9)
2270                         alignment = 256 * 1024;
2271                 else {
2272                         /* pin() will align the object as required by fence */
2273                         alignment = 0;
2274                 }
2275                 break;
2276         case I915_FORMAT_MOD_Y_TILED:
2277         case I915_FORMAT_MOD_Yf_TILED:
2278                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2279                           "Y tiling bo slipped through, driver bug!\n"))
2280                         return -EINVAL;
2281                 alignment = 1 * 1024 * 1024;
2282                 break;
2283         default:
2284                 MISSING_CASE(fb->modifier[0]);
2285                 return -EINVAL;
2286         }
2287
2288         /* Note that the w/a also requires 64 PTE of padding following the
2289          * bo. We currently fill all unused PTE with the shadow page and so
2290          * we should always have valid PTE following the scanout preventing
2291          * the VT-d warning.
2292          */
2293         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2294                 alignment = 256 * 1024;
2295
2296         /*
2297          * Global gtt pte registers are special registers which actually forward
2298          * writes to a chunk of system memory. Which means that there is no risk
2299          * that the register values disappear as soon as we call
2300          * intel_runtime_pm_put(), so it is correct to wrap only the
2301          * pin/unpin/fence and not more.
2302          */
2303         intel_runtime_pm_get(dev_priv);
2304
2305         dev_priv->mm.interruptible = false;
2306         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2307         if (ret)
2308                 goto err_interruptible;
2309
2310         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2311          * fence, whereas 965+ only requires a fence if using
2312          * framebuffer compression.  For simplicity, we always install
2313          * a fence as the cost is not that onerous.
2314          */
2315         ret = i915_gem_object_get_fence(obj);
2316         if (ret)
2317                 goto err_unpin;
2318
2319         i915_gem_object_pin_fence(obj);
2320
2321         dev_priv->mm.interruptible = true;
2322         intel_runtime_pm_put(dev_priv);
2323         return 0;
2324
2325 err_unpin:
2326         i915_gem_object_unpin_from_display_plane(obj);
2327 err_interruptible:
2328         dev_priv->mm.interruptible = true;
2329         intel_runtime_pm_put(dev_priv);
2330         return ret;
2331 }
2332
2333 static void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2334 {
2335         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2336
2337         i915_gem_object_unpin_fence(obj);
2338         i915_gem_object_unpin_from_display_plane(obj);
2339 }
2340
2341 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2342  * is assumed to be a power-of-two. */
2343 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2344                                              unsigned int tiling_mode,
2345                                              unsigned int cpp,
2346                                              unsigned int pitch)
2347 {
2348         if (tiling_mode != I915_TILING_NONE) {
2349                 unsigned int tile_rows, tiles;
2350
2351                 tile_rows = *y / 8;
2352                 *y %= 8;
2353
2354                 tiles = *x / (512/cpp);
2355                 *x %= 512/cpp;
2356
2357                 return tile_rows * pitch * 8 + tiles * 4096;
2358         } else {
2359                 unsigned int offset;
2360
2361                 offset = *y * pitch + *x * cpp;
2362                 *y = 0;
2363                 *x = (offset & 4095) / cpp;
2364                 return offset & -4096;
2365         }
2366 }
2367
2368 static int i9xx_format_to_fourcc(int format)
2369 {
2370         switch (format) {
2371         case DISPPLANE_8BPP:
2372                 return DRM_FORMAT_C8;
2373         case DISPPLANE_BGRX555:
2374                 return DRM_FORMAT_XRGB1555;
2375         case DISPPLANE_BGRX565:
2376                 return DRM_FORMAT_RGB565;
2377         default:
2378         case DISPPLANE_BGRX888:
2379                 return DRM_FORMAT_XRGB8888;
2380         case DISPPLANE_RGBX888:
2381                 return DRM_FORMAT_XBGR8888;
2382         case DISPPLANE_BGRX101010:
2383                 return DRM_FORMAT_XRGB2101010;
2384         case DISPPLANE_RGBX101010:
2385                 return DRM_FORMAT_XBGR2101010;
2386         }
2387 }
2388
2389 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2390 {
2391         switch (format) {
2392         case PLANE_CTL_FORMAT_RGB_565:
2393                 return DRM_FORMAT_RGB565;
2394         default:
2395         case PLANE_CTL_FORMAT_XRGB_8888:
2396                 if (rgb_order) {
2397                         if (alpha)
2398                                 return DRM_FORMAT_ABGR8888;
2399                         else
2400                                 return DRM_FORMAT_XBGR8888;
2401                 } else {
2402                         if (alpha)
2403                                 return DRM_FORMAT_ARGB8888;
2404                         else
2405                                 return DRM_FORMAT_XRGB8888;
2406                 }
2407         case PLANE_CTL_FORMAT_XRGB_2101010:
2408                 if (rgb_order)
2409                         return DRM_FORMAT_XBGR2101010;
2410                 else
2411                         return DRM_FORMAT_XRGB2101010;
2412         }
2413 }
2414
2415 static bool
2416 intel_alloc_plane_obj(struct intel_crtc *crtc,
2417                       struct intel_initial_plane_config *plane_config)
2418 {
2419         struct drm_device *dev = crtc->base.dev;
2420         struct drm_i915_gem_object *obj = NULL;
2421         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2422         struct drm_framebuffer *fb = &plane_config->fb->base;
2423         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2424         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2425                                     PAGE_SIZE);
2426
2427         size_aligned -= base_aligned;
2428
2429         if (plane_config->size == 0)
2430                 return false;
2431
2432         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2433                                                              base_aligned,
2434                                                              base_aligned,
2435                                                              size_aligned);
2436         if (!obj)
2437                 return false;
2438
2439         obj->tiling_mode = plane_config->tiling;
2440         if (obj->tiling_mode == I915_TILING_X)
2441                 obj->stride = fb->pitches[0];
2442
2443         mode_cmd.pixel_format = fb->pixel_format;
2444         mode_cmd.width = fb->width;
2445         mode_cmd.height = fb->height;
2446         mode_cmd.pitches[0] = fb->pitches[0];
2447         mode_cmd.modifier[0] = fb->modifier[0];
2448         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2449
2450         mutex_lock(&dev->struct_mutex);
2451
2452         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2453                                    &mode_cmd, obj)) {
2454                 DRM_DEBUG_KMS("intel fb init failed\n");
2455                 goto out_unref_obj;
2456         }
2457
2458         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2459         mutex_unlock(&dev->struct_mutex);
2460
2461         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2462         return true;
2463
2464 out_unref_obj:
2465         drm_gem_object_unreference(&obj->base);
2466         mutex_unlock(&dev->struct_mutex);
2467         return false;
2468 }
2469
2470 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2471 static void
2472 update_state_fb(struct drm_plane *plane)
2473 {
2474         if (plane->fb == plane->state->fb)
2475                 return;
2476
2477         if (plane->state->fb)
2478                 drm_framebuffer_unreference(plane->state->fb);
2479         plane->state->fb = plane->fb;
2480         if (plane->state->fb)
2481                 drm_framebuffer_reference(plane->state->fb);
2482 }
2483
2484 static void
2485 intel_find_plane_obj(struct intel_crtc *intel_crtc,
2486                      struct intel_initial_plane_config *plane_config)
2487 {
2488         struct drm_device *dev = intel_crtc->base.dev;
2489         struct drm_i915_private *dev_priv = dev->dev_private;
2490         struct drm_crtc *c;
2491         struct intel_crtc *i;
2492         struct drm_i915_gem_object *obj;
2493
2494         if (!plane_config->fb)
2495                 return;
2496
2497         if (intel_alloc_plane_obj(intel_crtc, plane_config)) {
2498                 struct drm_plane *primary = intel_crtc->base.primary;
2499
2500                 primary->fb = &plane_config->fb->base;
2501                 primary->state->crtc = &intel_crtc->base;
2502                 update_state_fb(primary);
2503
2504                 return;
2505         }
2506
2507         kfree(plane_config->fb);
2508
2509         /*
2510          * Failed to alloc the obj, check to see if we should share
2511          * an fb with another CRTC instead
2512          */
2513         for_each_crtc(dev, c) {
2514                 i = to_intel_crtc(c);
2515
2516                 if (c == &intel_crtc->base)
2517                         continue;
2518
2519                 if (!i->active)
2520                         continue;
2521
2522                 obj = intel_fb_obj(c->primary->fb);
2523                 if (obj == NULL)
2524                         continue;
2525
2526                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2527                         struct drm_plane *primary = intel_crtc->base.primary;
2528
2529                         if (obj->tiling_mode != I915_TILING_NONE)
2530                                 dev_priv->preserve_bios_swizzle = true;
2531
2532                         drm_framebuffer_reference(c->primary->fb);
2533                         primary->fb = c->primary->fb;
2534                         primary->state->crtc = &intel_crtc->base;
2535                         update_state_fb(intel_crtc->base.primary);
2536                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2537                         break;
2538                 }
2539         }
2540
2541 }
2542
2543 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2544                                       struct drm_framebuffer *fb,
2545                                       int x, int y)
2546 {
2547         struct drm_device *dev = crtc->dev;
2548         struct drm_i915_private *dev_priv = dev->dev_private;
2549         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2550         struct drm_i915_gem_object *obj;
2551         int plane = intel_crtc->plane;
2552         unsigned long linear_offset;
2553         u32 dspcntr;
2554         u32 reg = DSPCNTR(plane);
2555         int pixel_size;
2556
2557         if (!intel_crtc->primary_enabled) {
2558                 I915_WRITE(reg, 0);
2559                 if (INTEL_INFO(dev)->gen >= 4)
2560                         I915_WRITE(DSPSURF(plane), 0);
2561                 else
2562                         I915_WRITE(DSPADDR(plane), 0);
2563                 POSTING_READ(reg);
2564                 return;
2565         }
2566
2567         obj = intel_fb_obj(fb);
2568         if (WARN_ON(obj == NULL))
2569                 return;
2570
2571         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2572
2573         dspcntr = DISPPLANE_GAMMA_ENABLE;
2574
2575         dspcntr |= DISPLAY_PLANE_ENABLE;
2576
2577         if (INTEL_INFO(dev)->gen < 4) {
2578                 if (intel_crtc->pipe == PIPE_B)
2579                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2580
2581                 /* pipesrc and dspsize control the size that is scaled from,
2582                  * which should always be the user's requested size.
2583                  */
2584                 I915_WRITE(DSPSIZE(plane),
2585                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2586                            (intel_crtc->config->pipe_src_w - 1));
2587                 I915_WRITE(DSPPOS(plane), 0);
2588         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2589                 I915_WRITE(PRIMSIZE(plane),
2590                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2591                            (intel_crtc->config->pipe_src_w - 1));
2592                 I915_WRITE(PRIMPOS(plane), 0);
2593                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2594         }
2595
2596         switch (fb->pixel_format) {
2597         case DRM_FORMAT_C8:
2598                 dspcntr |= DISPPLANE_8BPP;
2599                 break;
2600         case DRM_FORMAT_XRGB1555:
2601         case DRM_FORMAT_ARGB1555:
2602                 dspcntr |= DISPPLANE_BGRX555;
2603                 break;
2604         case DRM_FORMAT_RGB565:
2605                 dspcntr |= DISPPLANE_BGRX565;
2606                 break;
2607         case DRM_FORMAT_XRGB8888:
2608         case DRM_FORMAT_ARGB8888:
2609                 dspcntr |= DISPPLANE_BGRX888;
2610                 break;
2611         case DRM_FORMAT_XBGR8888:
2612         case DRM_FORMAT_ABGR8888:
2613                 dspcntr |= DISPPLANE_RGBX888;
2614                 break;
2615         case DRM_FORMAT_XRGB2101010:
2616         case DRM_FORMAT_ARGB2101010:
2617                 dspcntr |= DISPPLANE_BGRX101010;
2618                 break;
2619         case DRM_FORMAT_XBGR2101010:
2620         case DRM_FORMAT_ABGR2101010:
2621                 dspcntr |= DISPPLANE_RGBX101010;
2622                 break;
2623         default:
2624                 BUG();
2625         }
2626
2627         if (INTEL_INFO(dev)->gen >= 4 &&
2628             obj->tiling_mode != I915_TILING_NONE)
2629                 dspcntr |= DISPPLANE_TILED;
2630
2631         if (IS_G4X(dev))
2632                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2633
2634         linear_offset = y * fb->pitches[0] + x * pixel_size;
2635
2636         if (INTEL_INFO(dev)->gen >= 4) {
2637                 intel_crtc->dspaddr_offset =
2638                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2639                                                        pixel_size,
2640                                                        fb->pitches[0]);
2641                 linear_offset -= intel_crtc->dspaddr_offset;
2642         } else {
2643                 intel_crtc->dspaddr_offset = linear_offset;
2644         }
2645
2646         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2647                 dspcntr |= DISPPLANE_ROTATE_180;
2648
2649                 x += (intel_crtc->config->pipe_src_w - 1);
2650                 y += (intel_crtc->config->pipe_src_h - 1);
2651
2652                 /* Finding the last pixel of the last line of the display
2653                 data and adding to linear_offset*/
2654                 linear_offset +=
2655                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2656                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2657         }
2658
2659         I915_WRITE(reg, dspcntr);
2660
2661         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2662                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2663                       fb->pitches[0]);
2664         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2665         if (INTEL_INFO(dev)->gen >= 4) {
2666                 I915_WRITE(DSPSURF(plane),
2667                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2668                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2669                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2670         } else
2671                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2672         POSTING_READ(reg);
2673 }
2674
2675 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2676                                           struct drm_framebuffer *fb,
2677                                           int x, int y)
2678 {
2679         struct drm_device *dev = crtc->dev;
2680         struct drm_i915_private *dev_priv = dev->dev_private;
2681         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2682         struct drm_i915_gem_object *obj;
2683         int plane = intel_crtc->plane;
2684         unsigned long linear_offset;
2685         u32 dspcntr;
2686         u32 reg = DSPCNTR(plane);
2687         int pixel_size;
2688
2689         if (!intel_crtc->primary_enabled) {
2690                 I915_WRITE(reg, 0);
2691                 I915_WRITE(DSPSURF(plane), 0);
2692                 POSTING_READ(reg);
2693                 return;
2694         }
2695
2696         obj = intel_fb_obj(fb);
2697         if (WARN_ON(obj == NULL))
2698                 return;
2699
2700         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2701
2702         dspcntr = DISPPLANE_GAMMA_ENABLE;
2703
2704         dspcntr |= DISPLAY_PLANE_ENABLE;
2705
2706         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2707                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2708
2709         switch (fb->pixel_format) {
2710         case DRM_FORMAT_C8:
2711                 dspcntr |= DISPPLANE_8BPP;
2712                 break;
2713         case DRM_FORMAT_RGB565:
2714                 dspcntr |= DISPPLANE_BGRX565;
2715                 break;
2716         case DRM_FORMAT_XRGB8888:
2717         case DRM_FORMAT_ARGB8888:
2718                 dspcntr |= DISPPLANE_BGRX888;
2719                 break;
2720         case DRM_FORMAT_XBGR8888:
2721         case DRM_FORMAT_ABGR8888:
2722                 dspcntr |= DISPPLANE_RGBX888;
2723                 break;
2724         case DRM_FORMAT_XRGB2101010:
2725         case DRM_FORMAT_ARGB2101010:
2726                 dspcntr |= DISPPLANE_BGRX101010;
2727                 break;
2728         case DRM_FORMAT_XBGR2101010:
2729         case DRM_FORMAT_ABGR2101010:
2730                 dspcntr |= DISPPLANE_RGBX101010;
2731                 break;
2732         default:
2733                 BUG();
2734         }
2735
2736         if (obj->tiling_mode != I915_TILING_NONE)
2737                 dspcntr |= DISPPLANE_TILED;
2738
2739         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2740                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2741
2742         linear_offset = y * fb->pitches[0] + x * pixel_size;
2743         intel_crtc->dspaddr_offset =
2744                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2745                                                pixel_size,
2746                                                fb->pitches[0]);
2747         linear_offset -= intel_crtc->dspaddr_offset;
2748         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2749                 dspcntr |= DISPPLANE_ROTATE_180;
2750
2751                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2752                         x += (intel_crtc->config->pipe_src_w - 1);
2753                         y += (intel_crtc->config->pipe_src_h - 1);
2754
2755                         /* Finding the last pixel of the last line of the display
2756                         data and adding to linear_offset*/
2757                         linear_offset +=
2758                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2759                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2760                 }
2761         }
2762
2763         I915_WRITE(reg, dspcntr);
2764
2765         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2766                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2767                       fb->pitches[0]);
2768         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2769         I915_WRITE(DSPSURF(plane),
2770                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2771         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2772                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2773         } else {
2774                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2775                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2776         }
2777         POSTING_READ(reg);
2778 }
2779
2780 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2781                               uint32_t pixel_format)
2782 {
2783         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2784
2785         /*
2786          * The stride is either expressed as a multiple of 64 bytes
2787          * chunks for linear buffers or in number of tiles for tiled
2788          * buffers.
2789          */
2790         switch (fb_modifier) {
2791         case DRM_FORMAT_MOD_NONE:
2792                 return 64;
2793         case I915_FORMAT_MOD_X_TILED:
2794                 if (INTEL_INFO(dev)->gen == 2)
2795                         return 128;
2796                 return 512;
2797         case I915_FORMAT_MOD_Y_TILED:
2798                 /* No need to check for old gens and Y tiling since this is
2799                  * about the display engine and those will be blocked before
2800                  * we get here.
2801                  */
2802                 return 128;
2803         case I915_FORMAT_MOD_Yf_TILED:
2804                 if (bits_per_pixel == 8)
2805                         return 64;
2806                 else
2807                         return 128;
2808         default:
2809                 MISSING_CASE(fb_modifier);
2810                 return 64;
2811         }
2812 }
2813
2814 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2815                                          struct drm_framebuffer *fb,
2816                                          int x, int y)
2817 {
2818         struct drm_device *dev = crtc->dev;
2819         struct drm_i915_private *dev_priv = dev->dev_private;
2820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2821         struct drm_i915_gem_object *obj;
2822         int pipe = intel_crtc->pipe;
2823         u32 plane_ctl, stride_div;
2824
2825         if (!intel_crtc->primary_enabled) {
2826                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2827                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2828                 POSTING_READ(PLANE_CTL(pipe, 0));
2829                 return;
2830         }
2831
2832         plane_ctl = PLANE_CTL_ENABLE |
2833                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2834                     PLANE_CTL_PIPE_CSC_ENABLE;
2835
2836         switch (fb->pixel_format) {
2837         case DRM_FORMAT_RGB565:
2838                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2839                 break;
2840         case DRM_FORMAT_XRGB8888:
2841                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2842                 break;
2843         case DRM_FORMAT_ARGB8888:
2844                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2845                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2846                 break;
2847         case DRM_FORMAT_XBGR8888:
2848                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2849                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2850                 break;
2851         case DRM_FORMAT_ABGR8888:
2852                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2853                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2854                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2855                 break;
2856         case DRM_FORMAT_XRGB2101010:
2857                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2858                 break;
2859         case DRM_FORMAT_XBGR2101010:
2860                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2861                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2862                 break;
2863         default:
2864                 BUG();
2865         }
2866
2867         switch (fb->modifier[0]) {
2868         case DRM_FORMAT_MOD_NONE:
2869                 break;
2870         case I915_FORMAT_MOD_X_TILED:
2871                 plane_ctl |= PLANE_CTL_TILED_X;
2872                 break;
2873         case I915_FORMAT_MOD_Y_TILED:
2874                 plane_ctl |= PLANE_CTL_TILED_Y;
2875                 break;
2876         case I915_FORMAT_MOD_Yf_TILED:
2877                 plane_ctl |= PLANE_CTL_TILED_YF;
2878                 break;
2879         default:
2880                 MISSING_CASE(fb->modifier[0]);
2881         }
2882
2883         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2884         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2885                 plane_ctl |= PLANE_CTL_ROTATE_180;
2886
2887         obj = intel_fb_obj(fb);
2888         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2889                                                fb->pixel_format);
2890
2891         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2892
2893         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2894                       i915_gem_obj_ggtt_offset(obj),
2895                       x, y, fb->width, fb->height,
2896                       fb->pitches[0]);
2897
2898         I915_WRITE(PLANE_POS(pipe, 0), 0);
2899         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2900         I915_WRITE(PLANE_SIZE(pipe, 0),
2901                    (intel_crtc->config->pipe_src_h - 1) << 16 |
2902                    (intel_crtc->config->pipe_src_w - 1));
2903         I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
2904         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2905
2906         POSTING_READ(PLANE_SURF(pipe, 0));
2907 }
2908
2909 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2910 static int
2911 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2912                            int x, int y, enum mode_set_atomic state)
2913 {
2914         struct drm_device *dev = crtc->dev;
2915         struct drm_i915_private *dev_priv = dev->dev_private;
2916
2917         if (dev_priv->display.disable_fbc)
2918                 dev_priv->display.disable_fbc(dev);
2919
2920         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2921
2922         return 0;
2923 }
2924
2925 static void intel_complete_page_flips(struct drm_device *dev)
2926 {
2927         struct drm_crtc *crtc;
2928
2929         for_each_crtc(dev, crtc) {
2930                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2931                 enum plane plane = intel_crtc->plane;
2932
2933                 intel_prepare_page_flip(dev, plane);
2934                 intel_finish_page_flip_plane(dev, plane);
2935         }
2936 }
2937
2938 static void intel_update_primary_planes(struct drm_device *dev)
2939 {
2940         struct drm_i915_private *dev_priv = dev->dev_private;
2941         struct drm_crtc *crtc;
2942
2943         for_each_crtc(dev, crtc) {
2944                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2945
2946                 drm_modeset_lock(&crtc->mutex, NULL);
2947                 /*
2948                  * FIXME: Once we have proper support for primary planes (and
2949                  * disabling them without disabling the entire crtc) allow again
2950                  * a NULL crtc->primary->fb.
2951                  */
2952                 if (intel_crtc->active && crtc->primary->fb)
2953                         dev_priv->display.update_primary_plane(crtc,
2954                                                                crtc->primary->fb,
2955                                                                crtc->x,
2956                                                                crtc->y);
2957                 drm_modeset_unlock(&crtc->mutex);
2958         }
2959 }
2960
2961 void intel_prepare_reset(struct drm_device *dev)
2962 {
2963         struct drm_i915_private *dev_priv = to_i915(dev);
2964         struct intel_crtc *crtc;
2965
2966         /* no reset support for gen2 */
2967         if (IS_GEN2(dev))
2968                 return;
2969
2970         /* reset doesn't touch the display */
2971         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2972                 return;
2973
2974         drm_modeset_lock_all(dev);
2975
2976         /*
2977          * Disabling the crtcs gracefully seems nicer. Also the
2978          * g33 docs say we should at least disable all the planes.
2979          */
2980         for_each_intel_crtc(dev, crtc) {
2981                 if (crtc->active)
2982                         dev_priv->display.crtc_disable(&crtc->base);
2983         }
2984 }
2985
2986 void intel_finish_reset(struct drm_device *dev)
2987 {
2988         struct drm_i915_private *dev_priv = to_i915(dev);
2989
2990         /*
2991          * Flips in the rings will be nuked by the reset,
2992          * so complete all pending flips so that user space
2993          * will get its events and not get stuck.
2994          */
2995         intel_complete_page_flips(dev);
2996
2997         /* no reset support for gen2 */
2998         if (IS_GEN2(dev))
2999                 return;
3000
3001         /* reset doesn't touch the display */
3002         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3003                 /*
3004                  * Flips in the rings have been nuked by the reset,
3005                  * so update the base address of all primary
3006                  * planes to the the last fb to make sure we're
3007                  * showing the correct fb after a reset.
3008                  */
3009                 intel_update_primary_planes(dev);
3010                 return;
3011         }
3012
3013         /*
3014          * The display has been reset as well,
3015          * so need a full re-initialization.
3016          */
3017         intel_runtime_pm_disable_interrupts(dev_priv);
3018         intel_runtime_pm_enable_interrupts(dev_priv);
3019
3020         intel_modeset_init_hw(dev);
3021
3022         spin_lock_irq(&dev_priv->irq_lock);
3023         if (dev_priv->display.hpd_irq_setup)
3024                 dev_priv->display.hpd_irq_setup(dev);
3025         spin_unlock_irq(&dev_priv->irq_lock);
3026
3027         intel_modeset_setup_hw_state(dev, true);
3028
3029         intel_hpd_init(dev_priv);
3030
3031         drm_modeset_unlock_all(dev);
3032 }
3033
3034 static int
3035 intel_finish_fb(struct drm_framebuffer *old_fb)
3036 {
3037         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3038         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3039         bool was_interruptible = dev_priv->mm.interruptible;
3040         int ret;
3041
3042         /* Big Hammer, we also need to ensure that any pending
3043          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3044          * current scanout is retired before unpinning the old
3045          * framebuffer.
3046          *
3047          * This should only fail upon a hung GPU, in which case we
3048          * can safely continue.
3049          */
3050         dev_priv->mm.interruptible = false;
3051         ret = i915_gem_object_finish_gpu(obj);
3052         dev_priv->mm.interruptible = was_interruptible;
3053
3054         return ret;
3055 }
3056
3057 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3058 {
3059         struct drm_device *dev = crtc->dev;
3060         struct drm_i915_private *dev_priv = dev->dev_private;
3061         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3062         bool pending;
3063
3064         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3065             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3066                 return false;
3067
3068         spin_lock_irq(&dev->event_lock);
3069         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3070         spin_unlock_irq(&dev->event_lock);
3071
3072         return pending;
3073 }
3074
3075 static void intel_update_pipe_size(struct intel_crtc *crtc)
3076 {
3077         struct drm_device *dev = crtc->base.dev;
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         const struct drm_display_mode *adjusted_mode;
3080
3081         if (!i915.fastboot)
3082                 return;
3083
3084         /*
3085          * Update pipe size and adjust fitter if needed: the reason for this is
3086          * that in compute_mode_changes we check the native mode (not the pfit
3087          * mode) to see if we can flip rather than do a full mode set. In the
3088          * fastboot case, we'll flip, but if we don't update the pipesrc and
3089          * pfit state, we'll end up with a big fb scanned out into the wrong
3090          * sized surface.
3091          *
3092          * To fix this properly, we need to hoist the checks up into
3093          * compute_mode_changes (or above), check the actual pfit state and
3094          * whether the platform allows pfit disable with pipe active, and only
3095          * then update the pipesrc and pfit state, even on the flip path.
3096          */
3097
3098         adjusted_mode = &crtc->config->base.adjusted_mode;
3099
3100         I915_WRITE(PIPESRC(crtc->pipe),
3101                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3102                    (adjusted_mode->crtc_vdisplay - 1));
3103         if (!crtc->config->pch_pfit.enabled &&
3104             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3105              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3106                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3107                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3108                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3109         }
3110         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3111         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3112 }
3113
3114 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3115 {
3116         struct drm_device *dev = crtc->dev;
3117         struct drm_i915_private *dev_priv = dev->dev_private;
3118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3119         int pipe = intel_crtc->pipe;
3120         u32 reg, temp;
3121
3122         /* enable normal train */
3123         reg = FDI_TX_CTL(pipe);
3124         temp = I915_READ(reg);
3125         if (IS_IVYBRIDGE(dev)) {
3126                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3127                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3128         } else {
3129                 temp &= ~FDI_LINK_TRAIN_NONE;
3130                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3131         }
3132         I915_WRITE(reg, temp);
3133
3134         reg = FDI_RX_CTL(pipe);
3135         temp = I915_READ(reg);
3136         if (HAS_PCH_CPT(dev)) {
3137                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3138                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3139         } else {
3140                 temp &= ~FDI_LINK_TRAIN_NONE;
3141                 temp |= FDI_LINK_TRAIN_NONE;
3142         }
3143         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3144
3145         /* wait one idle pattern time */
3146         POSTING_READ(reg);
3147         udelay(1000);
3148
3149         /* IVB wants error correction enabled */
3150         if (IS_IVYBRIDGE(dev))
3151                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3152                            FDI_FE_ERRC_ENABLE);
3153 }
3154
3155 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3156 {
3157         return crtc->base.state->enable && crtc->active &&
3158                 crtc->config->has_pch_encoder;
3159 }
3160
3161 static void ivb_modeset_global_resources(struct drm_device *dev)
3162 {
3163         struct drm_i915_private *dev_priv = dev->dev_private;
3164         struct intel_crtc *pipe_B_crtc =
3165                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3166         struct intel_crtc *pipe_C_crtc =
3167                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3168         uint32_t temp;
3169
3170         /*
3171          * When everything is off disable fdi C so that we could enable fdi B
3172          * with all lanes. Note that we don't care about enabled pipes without
3173          * an enabled pch encoder.
3174          */
3175         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3176             !pipe_has_enabled_pch(pipe_C_crtc)) {
3177                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3178                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3179
3180                 temp = I915_READ(SOUTH_CHICKEN1);
3181                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3182                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3183                 I915_WRITE(SOUTH_CHICKEN1, temp);
3184         }
3185 }
3186
3187 /* The FDI link training functions for ILK/Ibexpeak. */
3188 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3189 {
3190         struct drm_device *dev = crtc->dev;
3191         struct drm_i915_private *dev_priv = dev->dev_private;
3192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3193         int pipe = intel_crtc->pipe;
3194         u32 reg, temp, tries;
3195
3196         /* FDI needs bits from pipe first */
3197         assert_pipe_enabled(dev_priv, pipe);
3198
3199         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3200            for train result */
3201         reg = FDI_RX_IMR(pipe);
3202         temp = I915_READ(reg);
3203         temp &= ~FDI_RX_SYMBOL_LOCK;
3204         temp &= ~FDI_RX_BIT_LOCK;
3205         I915_WRITE(reg, temp);
3206         I915_READ(reg);
3207         udelay(150);
3208
3209         /* enable CPU FDI TX and PCH FDI RX */
3210         reg = FDI_TX_CTL(pipe);
3211         temp = I915_READ(reg);
3212         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3213         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3214         temp &= ~FDI_LINK_TRAIN_NONE;
3215         temp |= FDI_LINK_TRAIN_PATTERN_1;
3216         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3217
3218         reg = FDI_RX_CTL(pipe);
3219         temp = I915_READ(reg);
3220         temp &= ~FDI_LINK_TRAIN_NONE;
3221         temp |= FDI_LINK_TRAIN_PATTERN_1;
3222         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3223
3224         POSTING_READ(reg);
3225         udelay(150);
3226
3227         /* Ironlake workaround, enable clock pointer after FDI enable*/
3228         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3229         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3230                    FDI_RX_PHASE_SYNC_POINTER_EN);
3231
3232         reg = FDI_RX_IIR(pipe);
3233         for (tries = 0; tries < 5; tries++) {
3234                 temp = I915_READ(reg);
3235                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3236
3237                 if ((temp & FDI_RX_BIT_LOCK)) {
3238                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3239                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3240                         break;
3241                 }
3242         }
3243         if (tries == 5)
3244                 DRM_ERROR("FDI train 1 fail!\n");
3245
3246         /* Train 2 */
3247         reg = FDI_TX_CTL(pipe);
3248         temp = I915_READ(reg);
3249         temp &= ~FDI_LINK_TRAIN_NONE;
3250         temp |= FDI_LINK_TRAIN_PATTERN_2;
3251         I915_WRITE(reg, temp);
3252
3253         reg = FDI_RX_CTL(pipe);
3254         temp = I915_READ(reg);
3255         temp &= ~FDI_LINK_TRAIN_NONE;
3256         temp |= FDI_LINK_TRAIN_PATTERN_2;
3257         I915_WRITE(reg, temp);
3258
3259         POSTING_READ(reg);
3260         udelay(150);
3261
3262         reg = FDI_RX_IIR(pipe);
3263         for (tries = 0; tries < 5; tries++) {
3264                 temp = I915_READ(reg);
3265                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3266
3267                 if (temp & FDI_RX_SYMBOL_LOCK) {
3268                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3269                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3270                         break;
3271                 }
3272         }
3273         if (tries == 5)
3274                 DRM_ERROR("FDI train 2 fail!\n");
3275
3276         DRM_DEBUG_KMS("FDI train done\n");
3277
3278 }
3279
3280 static const int snb_b_fdi_train_param[] = {
3281         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3282         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3283         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3284         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3285 };
3286
3287 /* The FDI link training functions for SNB/Cougarpoint. */
3288 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3289 {
3290         struct drm_device *dev = crtc->dev;
3291         struct drm_i915_private *dev_priv = dev->dev_private;
3292         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3293         int pipe = intel_crtc->pipe;
3294         u32 reg, temp, i, retry;
3295
3296         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3297            for train result */
3298         reg = FDI_RX_IMR(pipe);
3299         temp = I915_READ(reg);
3300         temp &= ~FDI_RX_SYMBOL_LOCK;
3301         temp &= ~FDI_RX_BIT_LOCK;
3302         I915_WRITE(reg, temp);
3303
3304         POSTING_READ(reg);
3305         udelay(150);
3306
3307         /* enable CPU FDI TX and PCH FDI RX */
3308         reg = FDI_TX_CTL(pipe);
3309         temp = I915_READ(reg);
3310         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3311         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3312         temp &= ~FDI_LINK_TRAIN_NONE;
3313         temp |= FDI_LINK_TRAIN_PATTERN_1;
3314         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3315         /* SNB-B */
3316         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3317         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3318
3319         I915_WRITE(FDI_RX_MISC(pipe),
3320                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3321
3322         reg = FDI_RX_CTL(pipe);
3323         temp = I915_READ(reg);
3324         if (HAS_PCH_CPT(dev)) {
3325                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3326                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3327         } else {
3328                 temp &= ~FDI_LINK_TRAIN_NONE;
3329                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3330         }
3331         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3332
3333         POSTING_READ(reg);
3334         udelay(150);
3335
3336         for (i = 0; i < 4; i++) {
3337                 reg = FDI_TX_CTL(pipe);
3338                 temp = I915_READ(reg);
3339                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3340                 temp |= snb_b_fdi_train_param[i];
3341                 I915_WRITE(reg, temp);
3342
3343                 POSTING_READ(reg);
3344                 udelay(500);
3345
3346                 for (retry = 0; retry < 5; retry++) {
3347                         reg = FDI_RX_IIR(pipe);
3348                         temp = I915_READ(reg);
3349                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3350                         if (temp & FDI_RX_BIT_LOCK) {
3351                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3352                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3353                                 break;
3354                         }
3355                         udelay(50);
3356                 }
3357                 if (retry < 5)
3358                         break;
3359         }
3360         if (i == 4)
3361                 DRM_ERROR("FDI train 1 fail!\n");
3362
3363         /* Train 2 */
3364         reg = FDI_TX_CTL(pipe);
3365         temp = I915_READ(reg);
3366         temp &= ~FDI_LINK_TRAIN_NONE;
3367         temp |= FDI_LINK_TRAIN_PATTERN_2;
3368         if (IS_GEN6(dev)) {
3369                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3370                 /* SNB-B */
3371                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3372         }
3373         I915_WRITE(reg, temp);
3374
3375         reg = FDI_RX_CTL(pipe);
3376         temp = I915_READ(reg);
3377         if (HAS_PCH_CPT(dev)) {
3378                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3379                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3380         } else {
3381                 temp &= ~FDI_LINK_TRAIN_NONE;
3382                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3383         }
3384         I915_WRITE(reg, temp);
3385
3386         POSTING_READ(reg);
3387         udelay(150);
3388
3389         for (i = 0; i < 4; i++) {
3390                 reg = FDI_TX_CTL(pipe);
3391                 temp = I915_READ(reg);
3392                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3393                 temp |= snb_b_fdi_train_param[i];
3394                 I915_WRITE(reg, temp);
3395
3396                 POSTING_READ(reg);
3397                 udelay(500);
3398
3399                 for (retry = 0; retry < 5; retry++) {
3400                         reg = FDI_RX_IIR(pipe);
3401                         temp = I915_READ(reg);
3402                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3403                         if (temp & FDI_RX_SYMBOL_LOCK) {
3404                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3405                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3406                                 break;
3407                         }
3408                         udelay(50);
3409                 }
3410                 if (retry < 5)
3411                         break;
3412         }
3413         if (i == 4)
3414                 DRM_ERROR("FDI train 2 fail!\n");
3415
3416         DRM_DEBUG_KMS("FDI train done.\n");
3417 }
3418
3419 /* Manual link training for Ivy Bridge A0 parts */
3420 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3421 {
3422         struct drm_device *dev = crtc->dev;
3423         struct drm_i915_private *dev_priv = dev->dev_private;
3424         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3425         int pipe = intel_crtc->pipe;
3426         u32 reg, temp, i, j;
3427
3428         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3429            for train result */
3430         reg = FDI_RX_IMR(pipe);
3431         temp = I915_READ(reg);
3432         temp &= ~FDI_RX_SYMBOL_LOCK;
3433         temp &= ~FDI_RX_BIT_LOCK;
3434         I915_WRITE(reg, temp);
3435
3436         POSTING_READ(reg);
3437         udelay(150);
3438
3439         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3440                       I915_READ(FDI_RX_IIR(pipe)));
3441
3442         /* Try each vswing and preemphasis setting twice before moving on */
3443         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3444                 /* disable first in case we need to retry */
3445                 reg = FDI_TX_CTL(pipe);
3446                 temp = I915_READ(reg);
3447                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3448                 temp &= ~FDI_TX_ENABLE;
3449                 I915_WRITE(reg, temp);
3450
3451                 reg = FDI_RX_CTL(pipe);
3452                 temp = I915_READ(reg);
3453                 temp &= ~FDI_LINK_TRAIN_AUTO;
3454                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3455                 temp &= ~FDI_RX_ENABLE;
3456                 I915_WRITE(reg, temp);
3457
3458                 /* enable CPU FDI TX and PCH FDI RX */
3459                 reg = FDI_TX_CTL(pipe);
3460                 temp = I915_READ(reg);
3461                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3462                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3463                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3464                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3465                 temp |= snb_b_fdi_train_param[j/2];
3466                 temp |= FDI_COMPOSITE_SYNC;
3467                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3468
3469                 I915_WRITE(FDI_RX_MISC(pipe),
3470                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3471
3472                 reg = FDI_RX_CTL(pipe);
3473                 temp = I915_READ(reg);
3474                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3475                 temp |= FDI_COMPOSITE_SYNC;
3476                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3477
3478                 POSTING_READ(reg);
3479                 udelay(1); /* should be 0.5us */
3480
3481                 for (i = 0; i < 4; i++) {
3482                         reg = FDI_RX_IIR(pipe);
3483                         temp = I915_READ(reg);
3484                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3485
3486                         if (temp & FDI_RX_BIT_LOCK ||
3487                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3488                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3489                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3490                                               i);
3491                                 break;
3492                         }
3493                         udelay(1); /* should be 0.5us */
3494                 }
3495                 if (i == 4) {
3496                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3497                         continue;
3498                 }
3499
3500                 /* Train 2 */
3501                 reg = FDI_TX_CTL(pipe);
3502                 temp = I915_READ(reg);
3503                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3504                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3505                 I915_WRITE(reg, temp);
3506
3507                 reg = FDI_RX_CTL(pipe);
3508                 temp = I915_READ(reg);
3509                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3510                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3511                 I915_WRITE(reg, temp);
3512
3513                 POSTING_READ(reg);
3514                 udelay(2); /* should be 1.5us */
3515
3516                 for (i = 0; i < 4; i++) {
3517                         reg = FDI_RX_IIR(pipe);
3518                         temp = I915_READ(reg);
3519                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3520
3521                         if (temp & FDI_RX_SYMBOL_LOCK ||
3522                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3523                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3524                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3525                                               i);
3526                                 goto train_done;
3527                         }
3528                         udelay(2); /* should be 1.5us */
3529                 }
3530                 if (i == 4)
3531                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3532         }
3533
3534 train_done:
3535         DRM_DEBUG_KMS("FDI train done.\n");
3536 }
3537
3538 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3539 {
3540         struct drm_device *dev = intel_crtc->base.dev;
3541         struct drm_i915_private *dev_priv = dev->dev_private;
3542         int pipe = intel_crtc->pipe;
3543         u32 reg, temp;
3544
3545
3546         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3547         reg = FDI_RX_CTL(pipe);
3548         temp = I915_READ(reg);
3549         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3550         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3551         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3552         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3553
3554         POSTING_READ(reg);
3555         udelay(200);
3556
3557         /* Switch from Rawclk to PCDclk */
3558         temp = I915_READ(reg);
3559         I915_WRITE(reg, temp | FDI_PCDCLK);
3560
3561         POSTING_READ(reg);
3562         udelay(200);
3563
3564         /* Enable CPU FDI TX PLL, always on for Ironlake */
3565         reg = FDI_TX_CTL(pipe);
3566         temp = I915_READ(reg);
3567         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3568                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3569
3570                 POSTING_READ(reg);
3571                 udelay(100);
3572         }
3573 }
3574
3575 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3576 {
3577         struct drm_device *dev = intel_crtc->base.dev;
3578         struct drm_i915_private *dev_priv = dev->dev_private;
3579         int pipe = intel_crtc->pipe;
3580         u32 reg, temp;
3581
3582         /* Switch from PCDclk to Rawclk */
3583         reg = FDI_RX_CTL(pipe);
3584         temp = I915_READ(reg);
3585         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3586
3587         /* Disable CPU FDI TX PLL */
3588         reg = FDI_TX_CTL(pipe);
3589         temp = I915_READ(reg);
3590         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3591
3592         POSTING_READ(reg);
3593         udelay(100);
3594
3595         reg = FDI_RX_CTL(pipe);
3596         temp = I915_READ(reg);
3597         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3598
3599         /* Wait for the clocks to turn off. */
3600         POSTING_READ(reg);
3601         udelay(100);
3602 }
3603
3604 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3605 {
3606         struct drm_device *dev = crtc->dev;
3607         struct drm_i915_private *dev_priv = dev->dev_private;
3608         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3609         int pipe = intel_crtc->pipe;
3610         u32 reg, temp;
3611
3612         /* disable CPU FDI tx and PCH FDI rx */
3613         reg = FDI_TX_CTL(pipe);
3614         temp = I915_READ(reg);
3615         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3616         POSTING_READ(reg);
3617
3618         reg = FDI_RX_CTL(pipe);
3619         temp = I915_READ(reg);
3620         temp &= ~(0x7 << 16);
3621         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3622         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3623
3624         POSTING_READ(reg);
3625         udelay(100);
3626
3627         /* Ironlake workaround, disable clock pointer after downing FDI */
3628         if (HAS_PCH_IBX(dev))
3629                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3630
3631         /* still set train pattern 1 */
3632         reg = FDI_TX_CTL(pipe);
3633         temp = I915_READ(reg);
3634         temp &= ~FDI_LINK_TRAIN_NONE;
3635         temp |= FDI_LINK_TRAIN_PATTERN_1;
3636         I915_WRITE(reg, temp);
3637
3638         reg = FDI_RX_CTL(pipe);
3639         temp = I915_READ(reg);
3640         if (HAS_PCH_CPT(dev)) {
3641                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3642                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3643         } else {
3644                 temp &= ~FDI_LINK_TRAIN_NONE;
3645                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3646         }
3647         /* BPC in FDI rx is consistent with that in PIPECONF */
3648         temp &= ~(0x07 << 16);
3649         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3650         I915_WRITE(reg, temp);
3651
3652         POSTING_READ(reg);
3653         udelay(100);
3654 }
3655
3656 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3657 {
3658         struct intel_crtc *crtc;
3659
3660         /* Note that we don't need to be called with mode_config.lock here
3661          * as our list of CRTC objects is static for the lifetime of the
3662          * device and so cannot disappear as we iterate. Similarly, we can
3663          * happily treat the predicates as racy, atomic checks as userspace
3664          * cannot claim and pin a new fb without at least acquring the
3665          * struct_mutex and so serialising with us.
3666          */
3667         for_each_intel_crtc(dev, crtc) {
3668                 if (atomic_read(&crtc->unpin_work_count) == 0)
3669                         continue;
3670
3671                 if (crtc->unpin_work)
3672                         intel_wait_for_vblank(dev, crtc->pipe);
3673
3674                 return true;
3675         }
3676
3677         return false;
3678 }
3679
3680 static void page_flip_completed(struct intel_crtc *intel_crtc)
3681 {
3682         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3683         struct intel_unpin_work *work = intel_crtc->unpin_work;
3684
3685         /* ensure that the unpin work is consistent wrt ->pending. */
3686         smp_rmb();
3687         intel_crtc->unpin_work = NULL;
3688
3689         if (work->event)
3690                 drm_send_vblank_event(intel_crtc->base.dev,
3691                                       intel_crtc->pipe,
3692                                       work->event);
3693
3694         drm_crtc_vblank_put(&intel_crtc->base);
3695
3696         wake_up_all(&dev_priv->pending_flip_queue);
3697         queue_work(dev_priv->wq, &work->work);
3698
3699         trace_i915_flip_complete(intel_crtc->plane,
3700                                  work->pending_flip_obj);
3701 }
3702
3703 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3704 {
3705         struct drm_device *dev = crtc->dev;
3706         struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3709         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3710                                        !intel_crtc_has_pending_flip(crtc),
3711                                        60*HZ) == 0)) {
3712                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3713
3714                 spin_lock_irq(&dev->event_lock);
3715                 if (intel_crtc->unpin_work) {
3716                         WARN_ONCE(1, "Removing stuck page flip\n");
3717                         page_flip_completed(intel_crtc);
3718                 }
3719                 spin_unlock_irq(&dev->event_lock);
3720         }
3721
3722         if (crtc->primary->fb) {
3723                 mutex_lock(&dev->struct_mutex);
3724                 intel_finish_fb(crtc->primary->fb);
3725                 mutex_unlock(&dev->struct_mutex);
3726         }
3727 }
3728
3729 /* Program iCLKIP clock to the desired frequency */
3730 static void lpt_program_iclkip(struct drm_crtc *crtc)
3731 {
3732         struct drm_device *dev = crtc->dev;
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3735         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3736         u32 temp;
3737
3738         mutex_lock(&dev_priv->dpio_lock);
3739
3740         /* It is necessary to ungate the pixclk gate prior to programming
3741          * the divisors, and gate it back when it is done.
3742          */
3743         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3744
3745         /* Disable SSCCTL */
3746         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3747                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3748                                 SBI_SSCCTL_DISABLE,
3749                         SBI_ICLK);
3750
3751         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3752         if (clock == 20000) {
3753                 auxdiv = 1;
3754                 divsel = 0x41;
3755                 phaseinc = 0x20;
3756         } else {
3757                 /* The iCLK virtual clock root frequency is in MHz,
3758                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3759                  * divisors, it is necessary to divide one by another, so we
3760                  * convert the virtual clock precision to KHz here for higher
3761                  * precision.
3762                  */
3763                 u32 iclk_virtual_root_freq = 172800 * 1000;
3764                 u32 iclk_pi_range = 64;
3765                 u32 desired_divisor, msb_divisor_value, pi_value;
3766
3767                 desired_divisor = (iclk_virtual_root_freq / clock);
3768                 msb_divisor_value = desired_divisor / iclk_pi_range;
3769                 pi_value = desired_divisor % iclk_pi_range;
3770
3771                 auxdiv = 0;
3772                 divsel = msb_divisor_value - 2;
3773                 phaseinc = pi_value;
3774         }
3775
3776         /* This should not happen with any sane values */
3777         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3778                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3779         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3780                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3781
3782         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3783                         clock,
3784                         auxdiv,
3785                         divsel,
3786                         phasedir,
3787                         phaseinc);
3788
3789         /* Program SSCDIVINTPHASE6 */
3790         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3791         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3792         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3793         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3794         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3795         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3796         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3797         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3798
3799         /* Program SSCAUXDIV */
3800         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3801         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3802         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3803         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3804
3805         /* Enable modulator and associated divider */
3806         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3807         temp &= ~SBI_SSCCTL_DISABLE;
3808         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3809
3810         /* Wait for initialization time */
3811         udelay(24);
3812
3813         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3814
3815         mutex_unlock(&dev_priv->dpio_lock);
3816 }
3817
3818 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3819                                                 enum pipe pch_transcoder)
3820 {
3821         struct drm_device *dev = crtc->base.dev;
3822         struct drm_i915_private *dev_priv = dev->dev_private;
3823         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3824
3825         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3826                    I915_READ(HTOTAL(cpu_transcoder)));
3827         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3828                    I915_READ(HBLANK(cpu_transcoder)));
3829         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3830                    I915_READ(HSYNC(cpu_transcoder)));
3831
3832         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3833                    I915_READ(VTOTAL(cpu_transcoder)));
3834         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3835                    I915_READ(VBLANK(cpu_transcoder)));
3836         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3837                    I915_READ(VSYNC(cpu_transcoder)));
3838         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3839                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3840 }
3841
3842 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3843 {
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845         uint32_t temp;
3846
3847         temp = I915_READ(SOUTH_CHICKEN1);
3848         if (temp & FDI_BC_BIFURCATION_SELECT)
3849                 return;
3850
3851         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3852         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3853
3854         temp |= FDI_BC_BIFURCATION_SELECT;
3855         DRM_DEBUG_KMS("enabling fdi C rx\n");
3856         I915_WRITE(SOUTH_CHICKEN1, temp);
3857         POSTING_READ(SOUTH_CHICKEN1);
3858 }
3859
3860 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3861 {
3862         struct drm_device *dev = intel_crtc->base.dev;
3863         struct drm_i915_private *dev_priv = dev->dev_private;
3864
3865         switch (intel_crtc->pipe) {
3866         case PIPE_A:
3867                 break;
3868         case PIPE_B:
3869                 if (intel_crtc->config->fdi_lanes > 2)
3870                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3871                 else
3872                         cpt_enable_fdi_bc_bifurcation(dev);
3873
3874                 break;
3875         case PIPE_C:
3876                 cpt_enable_fdi_bc_bifurcation(dev);
3877
3878                 break;
3879         default:
3880                 BUG();
3881         }
3882 }
3883
3884 /*
3885  * Enable PCH resources required for PCH ports:
3886  *   - PCH PLLs
3887  *   - FDI training & RX/TX
3888  *   - update transcoder timings
3889  *   - DP transcoding bits
3890  *   - transcoder
3891  */
3892 static void ironlake_pch_enable(struct drm_crtc *crtc)
3893 {
3894         struct drm_device *dev = crtc->dev;
3895         struct drm_i915_private *dev_priv = dev->dev_private;
3896         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3897         int pipe = intel_crtc->pipe;
3898         u32 reg, temp;
3899
3900         assert_pch_transcoder_disabled(dev_priv, pipe);
3901
3902         if (IS_IVYBRIDGE(dev))
3903                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3904
3905         /* Write the TU size bits before fdi link training, so that error
3906          * detection works. */
3907         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3908                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3909
3910         /* For PCH output, training FDI link */
3911         dev_priv->display.fdi_link_train(crtc);
3912
3913         /* We need to program the right clock selection before writing the pixel
3914          * mutliplier into the DPLL. */
3915         if (HAS_PCH_CPT(dev)) {
3916                 u32 sel;
3917
3918                 temp = I915_READ(PCH_DPLL_SEL);
3919                 temp |= TRANS_DPLL_ENABLE(pipe);
3920                 sel = TRANS_DPLLB_SEL(pipe);
3921                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3922                         temp |= sel;
3923                 else
3924                         temp &= ~sel;
3925                 I915_WRITE(PCH_DPLL_SEL, temp);
3926         }
3927
3928         /* XXX: pch pll's can be enabled any time before we enable the PCH
3929          * transcoder, and we actually should do this to not upset any PCH
3930          * transcoder that already use the clock when we share it.
3931          *
3932          * Note that enable_shared_dpll tries to do the right thing, but
3933          * get_shared_dpll unconditionally resets the pll - we need that to have
3934          * the right LVDS enable sequence. */
3935         intel_enable_shared_dpll(intel_crtc);
3936
3937         /* set transcoder timing, panel must allow it */
3938         assert_panel_unlocked(dev_priv, pipe);
3939         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3940
3941         intel_fdi_normal_train(crtc);
3942
3943         /* For PCH DP, enable TRANS_DP_CTL */
3944         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3945                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3946                 reg = TRANS_DP_CTL(pipe);
3947                 temp = I915_READ(reg);
3948                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3949                           TRANS_DP_SYNC_MASK |
3950                           TRANS_DP_BPC_MASK);
3951                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3952                          TRANS_DP_ENH_FRAMING);
3953                 temp |= bpc << 9; /* same format but at 11:9 */
3954
3955                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3956                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3957                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3958                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3959
3960                 switch (intel_trans_dp_port_sel(crtc)) {
3961                 case PCH_DP_B:
3962                         temp |= TRANS_DP_PORT_SEL_B;
3963                         break;
3964                 case PCH_DP_C:
3965                         temp |= TRANS_DP_PORT_SEL_C;
3966                         break;
3967                 case PCH_DP_D:
3968                         temp |= TRANS_DP_PORT_SEL_D;
3969                         break;
3970                 default:
3971                         BUG();
3972                 }
3973
3974                 I915_WRITE(reg, temp);
3975         }
3976
3977         ironlake_enable_pch_transcoder(dev_priv, pipe);
3978 }
3979
3980 static void lpt_pch_enable(struct drm_crtc *crtc)
3981 {
3982         struct drm_device *dev = crtc->dev;
3983         struct drm_i915_private *dev_priv = dev->dev_private;
3984         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3985         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3986
3987         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3988
3989         lpt_program_iclkip(crtc);
3990
3991         /* Set transcoder timing. */
3992         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3993
3994         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3995 }
3996
3997 void intel_put_shared_dpll(struct intel_crtc *crtc)
3998 {
3999         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4000
4001         if (pll == NULL)
4002                 return;
4003
4004         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4005                 WARN(1, "bad %s crtc mask\n", pll->name);
4006                 return;
4007         }
4008
4009         pll->config.crtc_mask &= ~(1 << crtc->pipe);
4010         if (pll->config.crtc_mask == 0) {
4011                 WARN_ON(pll->on);
4012                 WARN_ON(pll->active);
4013         }
4014
4015         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4016 }
4017
4018 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4019                                                 struct intel_crtc_state *crtc_state)
4020 {
4021         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4022         struct intel_shared_dpll *pll;
4023         enum intel_dpll_id i;
4024
4025         if (HAS_PCH_IBX(dev_priv->dev)) {
4026                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4027                 i = (enum intel_dpll_id) crtc->pipe;
4028                 pll = &dev_priv->shared_dplls[i];
4029
4030                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4031                               crtc->base.base.id, pll->name);
4032
4033                 WARN_ON(pll->new_config->crtc_mask);
4034
4035                 goto found;
4036         }
4037
4038         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4039                 pll = &dev_priv->shared_dplls[i];
4040
4041                 /* Only want to check enabled timings first */
4042                 if (pll->new_config->crtc_mask == 0)
4043                         continue;
4044
4045                 if (memcmp(&crtc_state->dpll_hw_state,
4046                            &pll->new_config->hw_state,
4047                            sizeof(pll->new_config->hw_state)) == 0) {
4048                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4049                                       crtc->base.base.id, pll->name,
4050                                       pll->new_config->crtc_mask,
4051                                       pll->active);
4052                         goto found;
4053                 }
4054         }
4055
4056         /* Ok no matching timings, maybe there's a free one? */
4057         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4058                 pll = &dev_priv->shared_dplls[i];
4059                 if (pll->new_config->crtc_mask == 0) {
4060                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4061                                       crtc->base.base.id, pll->name);
4062                         goto found;
4063                 }
4064         }
4065
4066         return NULL;
4067
4068 found:
4069         if (pll->new_config->crtc_mask == 0)
4070                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4071
4072         crtc_state->shared_dpll = i;
4073         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4074                          pipe_name(crtc->pipe));
4075
4076         pll->new_config->crtc_mask |= 1 << crtc->pipe;
4077
4078         return pll;
4079 }
4080
4081 /**
4082  * intel_shared_dpll_start_config - start a new PLL staged config
4083  * @dev_priv: DRM device
4084  * @clear_pipes: mask of pipes that will have their PLLs freed
4085  *
4086  * Starts a new PLL staged config, copying the current config but
4087  * releasing the references of pipes specified in clear_pipes.
4088  */
4089 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4090                                           unsigned clear_pipes)
4091 {
4092         struct intel_shared_dpll *pll;
4093         enum intel_dpll_id i;
4094
4095         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4096                 pll = &dev_priv->shared_dplls[i];
4097
4098                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4099                                           GFP_KERNEL);
4100                 if (!pll->new_config)
4101                         goto cleanup;
4102
4103                 pll->new_config->crtc_mask &= ~clear_pipes;
4104         }
4105
4106         return 0;
4107
4108 cleanup:
4109         while (--i >= 0) {
4110                 pll = &dev_priv->shared_dplls[i];
4111                 kfree(pll->new_config);
4112                 pll->new_config = NULL;
4113         }
4114
4115         return -ENOMEM;
4116 }
4117
4118 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4119 {
4120         struct intel_shared_dpll *pll;
4121         enum intel_dpll_id i;
4122
4123         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4124                 pll = &dev_priv->shared_dplls[i];
4125
4126                 WARN_ON(pll->new_config == &pll->config);
4127
4128                 pll->config = *pll->new_config;
4129                 kfree(pll->new_config);
4130                 pll->new_config = NULL;
4131         }
4132 }
4133
4134 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4135 {
4136         struct intel_shared_dpll *pll;
4137         enum intel_dpll_id i;
4138
4139         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4140                 pll = &dev_priv->shared_dplls[i];
4141
4142                 WARN_ON(pll->new_config == &pll->config);
4143
4144                 kfree(pll->new_config);
4145                 pll->new_config = NULL;
4146         }
4147 }
4148
4149 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4150 {
4151         struct drm_i915_private *dev_priv = dev->dev_private;
4152         int dslreg = PIPEDSL(pipe);
4153         u32 temp;
4154
4155         temp = I915_READ(dslreg);
4156         udelay(500);
4157         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4158                 if (wait_for(I915_READ(dslreg) != temp, 5))
4159                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4160         }
4161 }
4162
4163 static void skylake_pfit_enable(struct intel_crtc *crtc)
4164 {
4165         struct drm_device *dev = crtc->base.dev;
4166         struct drm_i915_private *dev_priv = dev->dev_private;
4167         int pipe = crtc->pipe;
4168
4169         if (crtc->config->pch_pfit.enabled) {
4170                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4171                 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4172                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4173         }
4174 }
4175
4176 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4177 {
4178         struct drm_device *dev = crtc->base.dev;
4179         struct drm_i915_private *dev_priv = dev->dev_private;
4180         int pipe = crtc->pipe;
4181
4182         if (crtc->config->pch_pfit.enabled) {
4183                 /* Force use of hard-coded filter coefficients
4184                  * as some pre-programmed values are broken,
4185                  * e.g. x201.
4186                  */
4187                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4188                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4189                                                  PF_PIPE_SEL_IVB(pipe));
4190                 else
4191                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4192                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4193                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4194         }
4195 }
4196
4197 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4198 {
4199         struct drm_device *dev = crtc->dev;
4200         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4201         struct drm_plane *plane;
4202         struct intel_plane *intel_plane;
4203
4204         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4205                 intel_plane = to_intel_plane(plane);
4206                 if (intel_plane->pipe == pipe)
4207                         intel_plane_restore(&intel_plane->base);
4208         }
4209 }
4210
4211 /*
4212  * Disable a plane internally without actually modifying the plane's state.
4213  * This will allow us to easily restore the plane later by just reprogramming
4214  * its state.
4215  */
4216 static void disable_plane_internal(struct drm_plane *plane)
4217 {
4218         struct intel_plane *intel_plane = to_intel_plane(plane);
4219         struct drm_plane_state *state =
4220                 plane->funcs->atomic_duplicate_state(plane);
4221         struct intel_plane_state *intel_state = to_intel_plane_state(state);
4222
4223         intel_state->visible = false;
4224         intel_plane->commit_plane(plane, intel_state);
4225
4226         intel_plane_destroy_state(plane, state);
4227 }
4228
4229 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4230 {
4231         struct drm_device *dev = crtc->dev;
4232         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4233         struct drm_plane *plane;
4234         struct intel_plane *intel_plane;
4235
4236         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4237                 intel_plane = to_intel_plane(plane);
4238                 if (plane->fb && intel_plane->pipe == pipe)
4239                         disable_plane_internal(plane);
4240         }
4241 }
4242
4243 void hsw_enable_ips(struct intel_crtc *crtc)
4244 {
4245         struct drm_device *dev = crtc->base.dev;
4246         struct drm_i915_private *dev_priv = dev->dev_private;
4247
4248         if (!crtc->config->ips_enabled)
4249                 return;
4250
4251         /* We can only enable IPS after we enable a plane and wait for a vblank */
4252         intel_wait_for_vblank(dev, crtc->pipe);
4253
4254         assert_plane_enabled(dev_priv, crtc->plane);
4255         if (IS_BROADWELL(dev)) {
4256                 mutex_lock(&dev_priv->rps.hw_lock);
4257                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4258                 mutex_unlock(&dev_priv->rps.hw_lock);
4259                 /* Quoting Art Runyan: "its not safe to expect any particular
4260                  * value in IPS_CTL bit 31 after enabling IPS through the
4261                  * mailbox." Moreover, the mailbox may return a bogus state,
4262                  * so we need to just enable it and continue on.
4263                  */
4264         } else {
4265                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4266                 /* The bit only becomes 1 in the next vblank, so this wait here
4267                  * is essentially intel_wait_for_vblank. If we don't have this
4268                  * and don't wait for vblanks until the end of crtc_enable, then
4269                  * the HW state readout code will complain that the expected
4270                  * IPS_CTL value is not the one we read. */
4271                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4272                         DRM_ERROR("Timed out waiting for IPS enable\n");
4273         }
4274 }
4275
4276 void hsw_disable_ips(struct intel_crtc *crtc)
4277 {
4278         struct drm_device *dev = crtc->base.dev;
4279         struct drm_i915_private *dev_priv = dev->dev_private;
4280
4281         if (!crtc->config->ips_enabled)
4282                 return;
4283
4284         assert_plane_enabled(dev_priv, crtc->plane);
4285         if (IS_BROADWELL(dev)) {
4286                 mutex_lock(&dev_priv->rps.hw_lock);
4287                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4288                 mutex_unlock(&dev_priv->rps.hw_lock);
4289                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4290                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4291                         DRM_ERROR("Timed out waiting for IPS disable\n");
4292         } else {
4293                 I915_WRITE(IPS_CTL, 0);
4294                 POSTING_READ(IPS_CTL);
4295         }
4296
4297         /* We need to wait for a vblank before we can disable the plane. */
4298         intel_wait_for_vblank(dev, crtc->pipe);
4299 }
4300
4301 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4302 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4303 {
4304         struct drm_device *dev = crtc->dev;
4305         struct drm_i915_private *dev_priv = dev->dev_private;
4306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4307         enum pipe pipe = intel_crtc->pipe;
4308         int palreg = PALETTE(pipe);
4309         int i;
4310         bool reenable_ips = false;
4311
4312         /* The clocks have to be on to load the palette. */
4313         if (!crtc->state->enable || !intel_crtc->active)
4314                 return;
4315
4316         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4317                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4318                         assert_dsi_pll_enabled(dev_priv);
4319                 else
4320                         assert_pll_enabled(dev_priv, pipe);
4321         }
4322
4323         /* use legacy palette for Ironlake */
4324         if (!HAS_GMCH_DISPLAY(dev))
4325                 palreg = LGC_PALETTE(pipe);
4326
4327         /* Workaround : Do not read or write the pipe palette/gamma data while
4328          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4329          */
4330         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4331             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4332              GAMMA_MODE_MODE_SPLIT)) {
4333                 hsw_disable_ips(intel_crtc);
4334                 reenable_ips = true;
4335         }
4336
4337         for (i = 0; i < 256; i++) {
4338                 I915_WRITE(palreg + 4 * i,
4339                            (intel_crtc->lut_r[i] << 16) |
4340                            (intel_crtc->lut_g[i] << 8) |
4341                            intel_crtc->lut_b[i]);
4342         }
4343
4344         if (reenable_ips)
4345                 hsw_enable_ips(intel_crtc);
4346 }
4347
4348 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4349 {
4350         if (!enable && intel_crtc->overlay) {
4351                 struct drm_device *dev = intel_crtc->base.dev;
4352                 struct drm_i915_private *dev_priv = dev->dev_private;
4353
4354                 mutex_lock(&dev->struct_mutex);
4355                 dev_priv->mm.interruptible = false;
4356                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4357                 dev_priv->mm.interruptible = true;
4358                 mutex_unlock(&dev->struct_mutex);
4359         }
4360
4361         /* Let userspace switch the overlay on again. In most cases userspace
4362          * has to recompute where to put it anyway.
4363          */
4364 }
4365
4366 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4367 {
4368         struct drm_device *dev = crtc->dev;
4369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4370         int pipe = intel_crtc->pipe;
4371
4372         intel_enable_primary_hw_plane(crtc->primary, crtc);
4373         intel_enable_sprite_planes(crtc);
4374         intel_crtc_update_cursor(crtc, true);
4375         intel_crtc_dpms_overlay(intel_crtc, true);
4376
4377         hsw_enable_ips(intel_crtc);
4378
4379         mutex_lock(&dev->struct_mutex);
4380         intel_fbc_update(dev);
4381         mutex_unlock(&dev->struct_mutex);
4382
4383         /*
4384          * FIXME: Once we grow proper nuclear flip support out of this we need
4385          * to compute the mask of flip planes precisely. For the time being
4386          * consider this a flip from a NULL plane.
4387          */
4388         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4389 }
4390
4391 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4392 {
4393         struct drm_device *dev = crtc->dev;
4394         struct drm_i915_private *dev_priv = dev->dev_private;
4395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4396         int pipe = intel_crtc->pipe;
4397
4398         intel_crtc_wait_for_pending_flips(crtc);
4399
4400         if (dev_priv->fbc.crtc == intel_crtc)
4401                 intel_fbc_disable(dev);
4402
4403         hsw_disable_ips(intel_crtc);
4404
4405         intel_crtc_dpms_overlay(intel_crtc, false);
4406         intel_crtc_update_cursor(crtc, false);
4407         intel_disable_sprite_planes(crtc);
4408         intel_disable_primary_hw_plane(crtc->primary, crtc);
4409
4410         /*
4411          * FIXME: Once we grow proper nuclear flip support out of this we need
4412          * to compute the mask of flip planes precisely. For the time being
4413          * consider this a flip to a NULL plane.
4414          */
4415         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4416 }
4417
4418 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4419 {
4420         struct drm_device *dev = crtc->dev;
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4423         struct intel_encoder *encoder;
4424         int pipe = intel_crtc->pipe;
4425
4426         WARN_ON(!crtc->state->enable);
4427
4428         if (intel_crtc->active)
4429                 return;
4430
4431         if (intel_crtc->config->has_pch_encoder)
4432                 intel_prepare_shared_dpll(intel_crtc);
4433
4434         if (intel_crtc->config->has_dp_encoder)
4435                 intel_dp_set_m_n(intel_crtc, M1_N1);
4436
4437         intel_set_pipe_timings(intel_crtc);
4438
4439         if (intel_crtc->config->has_pch_encoder) {
4440                 intel_cpu_transcoder_set_m_n(intel_crtc,
4441                                      &intel_crtc->config->fdi_m_n, NULL);
4442         }
4443
4444         ironlake_set_pipeconf(crtc);
4445
4446         intel_crtc->active = true;
4447
4448         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4449         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4450
4451         for_each_encoder_on_crtc(dev, crtc, encoder)
4452                 if (encoder->pre_enable)
4453                         encoder->pre_enable(encoder);
4454
4455         if (intel_crtc->config->has_pch_encoder) {
4456                 /* Note: FDI PLL enabling _must_ be done before we enable the
4457                  * cpu pipes, hence this is separate from all the other fdi/pch
4458                  * enabling. */
4459                 ironlake_fdi_pll_enable(intel_crtc);
4460         } else {
4461                 assert_fdi_tx_disabled(dev_priv, pipe);
4462                 assert_fdi_rx_disabled(dev_priv, pipe);
4463         }
4464
4465         ironlake_pfit_enable(intel_crtc);
4466
4467         /*
4468          * On ILK+ LUT must be loaded before the pipe is running but with
4469          * clocks enabled
4470          */
4471         intel_crtc_load_lut(crtc);
4472
4473         intel_update_watermarks(crtc);
4474         intel_enable_pipe(intel_crtc);
4475
4476         if (intel_crtc->config->has_pch_encoder)
4477                 ironlake_pch_enable(crtc);
4478
4479         assert_vblank_disabled(crtc);
4480         drm_crtc_vblank_on(crtc);
4481
4482         for_each_encoder_on_crtc(dev, crtc, encoder)
4483                 encoder->enable(encoder);
4484
4485         if (HAS_PCH_CPT(dev))
4486                 cpt_verify_modeset(dev, intel_crtc->pipe);
4487
4488         intel_crtc_enable_planes(crtc);
4489 }
4490
4491 /* IPS only exists on ULT machines and is tied to pipe A. */
4492 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4493 {
4494         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4495 }
4496
4497 /*
4498  * This implements the workaround described in the "notes" section of the mode
4499  * set sequence documentation. When going from no pipes or single pipe to
4500  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4501  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4502  */
4503 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4504 {
4505         struct drm_device *dev = crtc->base.dev;
4506         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4507
4508         /* We want to get the other_active_crtc only if there's only 1 other
4509          * active crtc. */
4510         for_each_intel_crtc(dev, crtc_it) {
4511                 if (!crtc_it->active || crtc_it == crtc)
4512                         continue;
4513
4514                 if (other_active_crtc)
4515                         return;
4516
4517                 other_active_crtc = crtc_it;
4518         }
4519         if (!other_active_crtc)
4520                 return;
4521
4522         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4523         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4524 }
4525
4526 static void haswell_crtc_enable(struct drm_crtc *crtc)
4527 {
4528         struct drm_device *dev = crtc->dev;
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4531         struct intel_encoder *encoder;
4532         int pipe = intel_crtc->pipe;
4533
4534         WARN_ON(!crtc->state->enable);
4535
4536         if (intel_crtc->active)
4537                 return;
4538
4539         if (intel_crtc_to_shared_dpll(intel_crtc))
4540                 intel_enable_shared_dpll(intel_crtc);
4541
4542         if (intel_crtc->config->has_dp_encoder)
4543                 intel_dp_set_m_n(intel_crtc, M1_N1);
4544
4545         intel_set_pipe_timings(intel_crtc);
4546
4547         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4548                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4549                            intel_crtc->config->pixel_multiplier - 1);
4550         }
4551
4552         if (intel_crtc->config->has_pch_encoder) {
4553                 intel_cpu_transcoder_set_m_n(intel_crtc,
4554                                      &intel_crtc->config->fdi_m_n, NULL);
4555         }
4556
4557         haswell_set_pipeconf(crtc);
4558
4559         intel_set_pipe_csc(crtc);
4560
4561         intel_crtc->active = true;
4562
4563         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4564         for_each_encoder_on_crtc(dev, crtc, encoder)
4565                 if (encoder->pre_enable)
4566                         encoder->pre_enable(encoder);
4567
4568         if (intel_crtc->config->has_pch_encoder) {
4569                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4570                                                       true);
4571                 dev_priv->display.fdi_link_train(crtc);
4572         }
4573
4574         intel_ddi_enable_pipe_clock(intel_crtc);
4575
4576         if (IS_SKYLAKE(dev))
4577                 skylake_pfit_enable(intel_crtc);
4578         else
4579                 ironlake_pfit_enable(intel_crtc);
4580
4581         /*
4582          * On ILK+ LUT must be loaded before the pipe is running but with
4583          * clocks enabled
4584          */
4585         intel_crtc_load_lut(crtc);
4586
4587         intel_ddi_set_pipe_settings(crtc);
4588         intel_ddi_enable_transcoder_func(crtc);
4589
4590         intel_update_watermarks(crtc);
4591         intel_enable_pipe(intel_crtc);
4592
4593         if (intel_crtc->config->has_pch_encoder)
4594                 lpt_pch_enable(crtc);
4595
4596         if (intel_crtc->config->dp_encoder_is_mst)
4597                 intel_ddi_set_vc_payload_alloc(crtc, true);
4598
4599         assert_vblank_disabled(crtc);
4600         drm_crtc_vblank_on(crtc);
4601
4602         for_each_encoder_on_crtc(dev, crtc, encoder) {
4603                 encoder->enable(encoder);
4604                 intel_opregion_notify_encoder(encoder, true);
4605         }
4606
4607         /* If we change the relative order between pipe/planes enabling, we need
4608          * to change the workaround. */
4609         haswell_mode_set_planes_workaround(intel_crtc);
4610         intel_crtc_enable_planes(crtc);
4611 }
4612
4613 static void skylake_pfit_disable(struct intel_crtc *crtc)
4614 {
4615         struct drm_device *dev = crtc->base.dev;
4616         struct drm_i915_private *dev_priv = dev->dev_private;
4617         int pipe = crtc->pipe;
4618
4619         /* To avoid upsetting the power well on haswell only disable the pfit if
4620          * it's in use. The hw state code will make sure we get this right. */
4621         if (crtc->config->pch_pfit.enabled) {
4622                 I915_WRITE(PS_CTL(pipe), 0);
4623                 I915_WRITE(PS_WIN_POS(pipe), 0);
4624                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4625         }
4626 }
4627
4628 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4629 {
4630         struct drm_device *dev = crtc->base.dev;
4631         struct drm_i915_private *dev_priv = dev->dev_private;
4632         int pipe = crtc->pipe;
4633
4634         /* To avoid upsetting the power well on haswell only disable the pfit if
4635          * it's in use. The hw state code will make sure we get this right. */
4636         if (crtc->config->pch_pfit.enabled) {
4637                 I915_WRITE(PF_CTL(pipe), 0);
4638                 I915_WRITE(PF_WIN_POS(pipe), 0);
4639                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4640         }
4641 }
4642
4643 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4644 {
4645         struct drm_device *dev = crtc->dev;
4646         struct drm_i915_private *dev_priv = dev->dev_private;
4647         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4648         struct intel_encoder *encoder;
4649         int pipe = intel_crtc->pipe;
4650         u32 reg, temp;
4651
4652         if (!intel_crtc->active)
4653                 return;
4654
4655         intel_crtc_disable_planes(crtc);
4656
4657         for_each_encoder_on_crtc(dev, crtc, encoder)
4658                 encoder->disable(encoder);
4659
4660         drm_crtc_vblank_off(crtc);
4661         assert_vblank_disabled(crtc);
4662
4663         if (intel_crtc->config->has_pch_encoder)
4664                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4665
4666         intel_disable_pipe(intel_crtc);
4667
4668         ironlake_pfit_disable(intel_crtc);
4669
4670         for_each_encoder_on_crtc(dev, crtc, encoder)
4671                 if (encoder->post_disable)
4672                         encoder->post_disable(encoder);
4673
4674         if (intel_crtc->config->has_pch_encoder) {
4675                 ironlake_fdi_disable(crtc);
4676
4677                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4678
4679                 if (HAS_PCH_CPT(dev)) {
4680                         /* disable TRANS_DP_CTL */
4681                         reg = TRANS_DP_CTL(pipe);
4682                         temp = I915_READ(reg);
4683                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4684                                   TRANS_DP_PORT_SEL_MASK);
4685                         temp |= TRANS_DP_PORT_SEL_NONE;
4686                         I915_WRITE(reg, temp);
4687
4688                         /* disable DPLL_SEL */
4689                         temp = I915_READ(PCH_DPLL_SEL);
4690                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4691                         I915_WRITE(PCH_DPLL_SEL, temp);
4692                 }
4693
4694                 /* disable PCH DPLL */
4695                 intel_disable_shared_dpll(intel_crtc);
4696
4697                 ironlake_fdi_pll_disable(intel_crtc);
4698         }
4699
4700         intel_crtc->active = false;
4701         intel_update_watermarks(crtc);
4702
4703         mutex_lock(&dev->struct_mutex);
4704         intel_fbc_update(dev);
4705         mutex_unlock(&dev->struct_mutex);
4706 }
4707
4708 static void haswell_crtc_disable(struct drm_crtc *crtc)
4709 {
4710         struct drm_device *dev = crtc->dev;
4711         struct drm_i915_private *dev_priv = dev->dev_private;
4712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713         struct intel_encoder *encoder;
4714         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4715
4716         if (!intel_crtc->active)
4717                 return;
4718
4719         intel_crtc_disable_planes(crtc);
4720
4721         for_each_encoder_on_crtc(dev, crtc, encoder) {
4722                 intel_opregion_notify_encoder(encoder, false);
4723                 encoder->disable(encoder);
4724         }
4725
4726         drm_crtc_vblank_off(crtc);
4727         assert_vblank_disabled(crtc);
4728
4729         if (intel_crtc->config->has_pch_encoder)
4730                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4731                                                       false);
4732         intel_disable_pipe(intel_crtc);
4733
4734         if (intel_crtc->config->dp_encoder_is_mst)
4735                 intel_ddi_set_vc_payload_alloc(crtc, false);
4736
4737         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4738
4739         if (IS_SKYLAKE(dev))
4740                 skylake_pfit_disable(intel_crtc);
4741         else
4742                 ironlake_pfit_disable(intel_crtc);
4743
4744         intel_ddi_disable_pipe_clock(intel_crtc);
4745
4746         if (intel_crtc->config->has_pch_encoder) {
4747                 lpt_disable_pch_transcoder(dev_priv);
4748                 intel_ddi_fdi_disable(crtc);
4749         }
4750
4751         for_each_encoder_on_crtc(dev, crtc, encoder)
4752                 if (encoder->post_disable)
4753                         encoder->post_disable(encoder);
4754
4755         intel_crtc->active = false;
4756         intel_update_watermarks(crtc);
4757
4758         mutex_lock(&dev->struct_mutex);
4759         intel_fbc_update(dev);
4760         mutex_unlock(&dev->struct_mutex);
4761
4762         if (intel_crtc_to_shared_dpll(intel_crtc))
4763                 intel_disable_shared_dpll(intel_crtc);
4764 }
4765
4766 static void ironlake_crtc_off(struct drm_crtc *crtc)
4767 {
4768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4769         intel_put_shared_dpll(intel_crtc);
4770 }
4771
4772
4773 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4774 {
4775         struct drm_device *dev = crtc->base.dev;
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777         struct intel_crtc_state *pipe_config = crtc->config;
4778
4779         if (!pipe_config->gmch_pfit.control)
4780                 return;
4781
4782         /*
4783          * The panel fitter should only be adjusted whilst the pipe is disabled,
4784          * according to register description and PRM.
4785          */
4786         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4787         assert_pipe_disabled(dev_priv, crtc->pipe);
4788
4789         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4790         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4791
4792         /* Border color in case we don't scale up to the full screen. Black by
4793          * default, change to something else for debugging. */
4794         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4795 }
4796
4797 static enum intel_display_power_domain port_to_power_domain(enum port port)
4798 {
4799         switch (port) {
4800         case PORT_A:
4801                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4802         case PORT_B:
4803                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4804         case PORT_C:
4805                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4806         case PORT_D:
4807                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4808         default:
4809                 WARN_ON_ONCE(1);
4810                 return POWER_DOMAIN_PORT_OTHER;
4811         }
4812 }
4813
4814 #define for_each_power_domain(domain, mask)                             \
4815         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4816                 if ((1 << (domain)) & (mask))
4817
4818 enum intel_display_power_domain
4819 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4820 {
4821         struct drm_device *dev = intel_encoder->base.dev;
4822         struct intel_digital_port *intel_dig_port;
4823
4824         switch (intel_encoder->type) {
4825         case INTEL_OUTPUT_UNKNOWN:
4826                 /* Only DDI platforms should ever use this output type */
4827                 WARN_ON_ONCE(!HAS_DDI(dev));
4828         case INTEL_OUTPUT_DISPLAYPORT:
4829         case INTEL_OUTPUT_HDMI:
4830         case INTEL_OUTPUT_EDP:
4831                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4832                 return port_to_power_domain(intel_dig_port->port);
4833         case INTEL_OUTPUT_DP_MST:
4834                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4835                 return port_to_power_domain(intel_dig_port->port);
4836         case INTEL_OUTPUT_ANALOG:
4837                 return POWER_DOMAIN_PORT_CRT;
4838         case INTEL_OUTPUT_DSI:
4839                 return POWER_DOMAIN_PORT_DSI;
4840         default:
4841                 return POWER_DOMAIN_PORT_OTHER;
4842         }
4843 }
4844
4845 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4846 {
4847         struct drm_device *dev = crtc->dev;
4848         struct intel_encoder *intel_encoder;
4849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4850         enum pipe pipe = intel_crtc->pipe;
4851         unsigned long mask;
4852         enum transcoder transcoder;
4853
4854         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4855
4856         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4857         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4858         if (intel_crtc->config->pch_pfit.enabled ||
4859             intel_crtc->config->pch_pfit.force_thru)
4860                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4861
4862         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4863                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4864
4865         return mask;
4866 }
4867
4868 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4869 {
4870         struct drm_i915_private *dev_priv = dev->dev_private;
4871         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4872         struct intel_crtc *crtc;
4873
4874         /*
4875          * First get all needed power domains, then put all unneeded, to avoid
4876          * any unnecessary toggling of the power wells.
4877          */
4878         for_each_intel_crtc(dev, crtc) {
4879                 enum intel_display_power_domain domain;
4880
4881                 if (!crtc->base.state->enable)
4882                         continue;
4883
4884                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4885
4886                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4887                         intel_display_power_get(dev_priv, domain);
4888         }
4889
4890         if (dev_priv->display.modeset_global_resources)
4891                 dev_priv->display.modeset_global_resources(dev);
4892
4893         for_each_intel_crtc(dev, crtc) {
4894                 enum intel_display_power_domain domain;
4895
4896                 for_each_power_domain(domain, crtc->enabled_power_domains)
4897                         intel_display_power_put(dev_priv, domain);
4898
4899                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4900         }
4901
4902         intel_display_set_init_power(dev_priv, false);
4903 }
4904
4905 /* returns HPLL frequency in kHz */
4906 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4907 {
4908         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4909
4910         /* Obtain SKU information */
4911         mutex_lock(&dev_priv->dpio_lock);
4912         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4913                 CCK_FUSE_HPLL_FREQ_MASK;
4914         mutex_unlock(&dev_priv->dpio_lock);
4915
4916         return vco_freq[hpll_freq] * 1000;
4917 }
4918
4919 static void vlv_update_cdclk(struct drm_device *dev)
4920 {
4921         struct drm_i915_private *dev_priv = dev->dev_private;
4922
4923         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4924         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4925                          dev_priv->vlv_cdclk_freq);
4926
4927         /*
4928          * Program the gmbus_freq based on the cdclk frequency.
4929          * BSpec erroneously claims we should aim for 4MHz, but
4930          * in fact 1MHz is the correct frequency.
4931          */
4932         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4933 }
4934
4935 /* Adjust CDclk dividers to allow high res or save power if possible */
4936 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4937 {
4938         struct drm_i915_private *dev_priv = dev->dev_private;
4939         u32 val, cmd;
4940
4941         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4942
4943         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4944                 cmd = 2;
4945         else if (cdclk == 266667)
4946                 cmd = 1;
4947         else
4948                 cmd = 0;
4949
4950         mutex_lock(&dev_priv->rps.hw_lock);
4951         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4952         val &= ~DSPFREQGUAR_MASK;
4953         val |= (cmd << DSPFREQGUAR_SHIFT);
4954         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4955         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4956                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4957                      50)) {
4958                 DRM_ERROR("timed out waiting for CDclk change\n");
4959         }
4960         mutex_unlock(&dev_priv->rps.hw_lock);
4961
4962         if (cdclk == 400000) {
4963                 u32 divider;
4964
4965                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4966
4967                 mutex_lock(&dev_priv->dpio_lock);
4968                 /* adjust cdclk divider */
4969                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4970                 val &= ~DISPLAY_FREQUENCY_VALUES;
4971                 val |= divider;
4972                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4973
4974                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4975                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4976                              50))
4977                         DRM_ERROR("timed out waiting for CDclk change\n");
4978                 mutex_unlock(&dev_priv->dpio_lock);
4979         }
4980
4981         mutex_lock(&dev_priv->dpio_lock);
4982         /* adjust self-refresh exit latency value */
4983         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4984         val &= ~0x7f;
4985
4986         /*
4987          * For high bandwidth configs, we set a higher latency in the bunit
4988          * so that the core display fetch happens in time to avoid underruns.
4989          */
4990         if (cdclk == 400000)
4991                 val |= 4500 / 250; /* 4.5 usec */
4992         else
4993                 val |= 3000 / 250; /* 3.0 usec */
4994         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4995         mutex_unlock(&dev_priv->dpio_lock);
4996
4997         vlv_update_cdclk(dev);
4998 }
4999
5000 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5001 {
5002         struct drm_i915_private *dev_priv = dev->dev_private;
5003         u32 val, cmd;
5004
5005         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5006
5007         switch (cdclk) {
5008         case 333333:
5009         case 320000:
5010         case 266667:
5011         case 200000:
5012                 break;
5013         default:
5014                 MISSING_CASE(cdclk);
5015                 return;
5016         }
5017
5018         /*
5019          * Specs are full of misinformation, but testing on actual
5020          * hardware has shown that we just need to write the desired
5021          * CCK divider into the Punit register.
5022          */
5023         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5024
5025         mutex_lock(&dev_priv->rps.hw_lock);
5026         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5027         val &= ~DSPFREQGUAR_MASK_CHV;
5028         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5029         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5030         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5031                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5032                      50)) {
5033                 DRM_ERROR("timed out waiting for CDclk change\n");
5034         }
5035         mutex_unlock(&dev_priv->rps.hw_lock);
5036
5037         vlv_update_cdclk(dev);
5038 }
5039
5040 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5041                                  int max_pixclk)
5042 {
5043         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5044         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5045
5046         /*
5047          * Really only a few cases to deal with, as only 4 CDclks are supported:
5048          *   200MHz
5049          *   267MHz
5050          *   320/333MHz (depends on HPLL freq)
5051          *   400MHz (VLV only)
5052          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5053          * of the lower bin and adjust if needed.
5054          *
5055          * We seem to get an unstable or solid color picture at 200MHz.
5056          * Not sure what's wrong. For now use 200MHz only when all pipes
5057          * are off.
5058          */
5059         if (!IS_CHERRYVIEW(dev_priv) &&
5060             max_pixclk > freq_320*limit/100)
5061                 return 400000;
5062         else if (max_pixclk > 266667*limit/100)
5063                 return freq_320;
5064         else if (max_pixclk > 0)
5065                 return 266667;
5066         else
5067                 return 200000;
5068 }
5069
5070 /* compute the max pixel clock for new configuration */
5071 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5072 {
5073         struct drm_device *dev = dev_priv->dev;
5074         struct intel_crtc *intel_crtc;
5075         int max_pixclk = 0;
5076
5077         for_each_intel_crtc(dev, intel_crtc) {
5078                 if (intel_crtc->new_enabled)
5079                         max_pixclk = max(max_pixclk,
5080                                          intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5081         }
5082
5083         return max_pixclk;
5084 }
5085
5086 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5087                                             unsigned *prepare_pipes)
5088 {
5089         struct drm_i915_private *dev_priv = dev->dev_private;
5090         struct intel_crtc *intel_crtc;
5091         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5092
5093         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5094             dev_priv->vlv_cdclk_freq)
5095                 return;
5096
5097         /* disable/enable all currently active pipes while we change cdclk */
5098         for_each_intel_crtc(dev, intel_crtc)
5099                 if (intel_crtc->base.state->enable)
5100                         *prepare_pipes |= (1 << intel_crtc->pipe);
5101 }
5102
5103 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5104 {
5105         unsigned int credits, default_credits;
5106
5107         if (IS_CHERRYVIEW(dev_priv))
5108                 default_credits = PFI_CREDIT(12);
5109         else
5110                 default_credits = PFI_CREDIT(8);
5111
5112         if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5113                 /* CHV suggested value is 31 or 63 */
5114                 if (IS_CHERRYVIEW(dev_priv))
5115                         credits = PFI_CREDIT_31;
5116                 else
5117                         credits = PFI_CREDIT(15);
5118         } else {
5119                 credits = default_credits;
5120         }
5121
5122         /*
5123          * WA - write default credits before re-programming
5124          * FIXME: should we also set the resend bit here?
5125          */
5126         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5127                    default_credits);
5128
5129         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5130                    credits | PFI_CREDIT_RESEND);
5131
5132         /*
5133          * FIXME is this guaranteed to clear
5134          * immediately or should we poll for it?
5135          */
5136         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5137 }
5138
5139 static void valleyview_modeset_global_resources(struct drm_device *dev)
5140 {
5141         struct drm_i915_private *dev_priv = dev->dev_private;
5142         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5143         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5144
5145         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5146                 /*
5147                  * FIXME: We can end up here with all power domains off, yet
5148                  * with a CDCLK frequency other than the minimum. To account
5149                  * for this take the PIPE-A power domain, which covers the HW
5150                  * blocks needed for the following programming. This can be
5151                  * removed once it's guaranteed that we get here either with
5152                  * the minimum CDCLK set, or the required power domains
5153                  * enabled.
5154                  */
5155                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5156
5157                 if (IS_CHERRYVIEW(dev))
5158                         cherryview_set_cdclk(dev, req_cdclk);
5159                 else
5160                         valleyview_set_cdclk(dev, req_cdclk);
5161
5162                 vlv_program_pfi_credits(dev_priv);
5163
5164                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5165         }
5166 }
5167
5168 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5169 {
5170         struct drm_device *dev = crtc->dev;
5171         struct drm_i915_private *dev_priv = to_i915(dev);
5172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5173         struct intel_encoder *encoder;
5174         int pipe = intel_crtc->pipe;
5175         bool is_dsi;
5176
5177         WARN_ON(!crtc->state->enable);
5178
5179         if (intel_crtc->active)
5180                 return;
5181
5182         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5183
5184         if (!is_dsi) {
5185                 if (IS_CHERRYVIEW(dev))
5186                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5187                 else
5188                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5189         }
5190
5191         if (intel_crtc->config->has_dp_encoder)
5192                 intel_dp_set_m_n(intel_crtc, M1_N1);
5193
5194         intel_set_pipe_timings(intel_crtc);
5195
5196         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5197                 struct drm_i915_private *dev_priv = dev->dev_private;
5198
5199                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5200                 I915_WRITE(CHV_CANVAS(pipe), 0);
5201         }
5202
5203         i9xx_set_pipeconf(intel_crtc);
5204
5205         intel_crtc->active = true;
5206
5207         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5208
5209         for_each_encoder_on_crtc(dev, crtc, encoder)
5210                 if (encoder->pre_pll_enable)
5211                         encoder->pre_pll_enable(encoder);
5212
5213         if (!is_dsi) {
5214                 if (IS_CHERRYVIEW(dev))
5215                         chv_enable_pll(intel_crtc, intel_crtc->config);
5216                 else
5217                         vlv_enable_pll(intel_crtc, intel_crtc->config);
5218         }
5219
5220         for_each_encoder_on_crtc(dev, crtc, encoder)
5221                 if (encoder->pre_enable)
5222                         encoder->pre_enable(encoder);
5223
5224         i9xx_pfit_enable(intel_crtc);
5225
5226         intel_crtc_load_lut(crtc);
5227
5228         intel_update_watermarks(crtc);
5229         intel_enable_pipe(intel_crtc);
5230
5231         assert_vblank_disabled(crtc);
5232         drm_crtc_vblank_on(crtc);
5233
5234         for_each_encoder_on_crtc(dev, crtc, encoder)
5235                 encoder->enable(encoder);
5236
5237         intel_crtc_enable_planes(crtc);
5238
5239         /* Underruns don't raise interrupts, so check manually. */
5240         i9xx_check_fifo_underruns(dev_priv);
5241 }
5242
5243 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5244 {
5245         struct drm_device *dev = crtc->base.dev;
5246         struct drm_i915_private *dev_priv = dev->dev_private;
5247
5248         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5249         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5250 }
5251
5252 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5253 {
5254         struct drm_device *dev = crtc->dev;
5255         struct drm_i915_private *dev_priv = to_i915(dev);
5256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5257         struct intel_encoder *encoder;
5258         int pipe = intel_crtc->pipe;
5259
5260         WARN_ON(!crtc->state->enable);
5261
5262         if (intel_crtc->active)
5263                 return;
5264
5265         i9xx_set_pll_dividers(intel_crtc);
5266
5267         if (intel_crtc->config->has_dp_encoder)
5268                 intel_dp_set_m_n(intel_crtc, M1_N1);
5269
5270         intel_set_pipe_timings(intel_crtc);
5271
5272         i9xx_set_pipeconf(intel_crtc);
5273
5274         intel_crtc->active = true;
5275
5276         if (!IS_GEN2(dev))
5277                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5278
5279         for_each_encoder_on_crtc(dev, crtc, encoder)
5280                 if (encoder->pre_enable)
5281                         encoder->pre_enable(encoder);
5282
5283         i9xx_enable_pll(intel_crtc);
5284
5285         i9xx_pfit_enable(intel_crtc);
5286
5287         intel_crtc_load_lut(crtc);
5288
5289         intel_update_watermarks(crtc);
5290         intel_enable_pipe(intel_crtc);
5291
5292         assert_vblank_disabled(crtc);
5293         drm_crtc_vblank_on(crtc);
5294
5295         for_each_encoder_on_crtc(dev, crtc, encoder)
5296                 encoder->enable(encoder);
5297
5298         intel_crtc_enable_planes(crtc);
5299
5300         /*
5301          * Gen2 reports pipe underruns whenever all planes are disabled.
5302          * So don't enable underrun reporting before at least some planes
5303          * are enabled.
5304          * FIXME: Need to fix the logic to work when we turn off all planes
5305          * but leave the pipe running.
5306          */
5307         if (IS_GEN2(dev))
5308                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5309
5310         /* Underruns don't raise interrupts, so check manually. */
5311         i9xx_check_fifo_underruns(dev_priv);
5312 }
5313
5314 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5315 {
5316         struct drm_device *dev = crtc->base.dev;
5317         struct drm_i915_private *dev_priv = dev->dev_private;
5318
5319         if (!crtc->config->gmch_pfit.control)
5320                 return;
5321
5322         assert_pipe_disabled(dev_priv, crtc->pipe);
5323
5324         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5325                          I915_READ(PFIT_CONTROL));
5326         I915_WRITE(PFIT_CONTROL, 0);
5327 }
5328
5329 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5330 {
5331         struct drm_device *dev = crtc->dev;
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5334         struct intel_encoder *encoder;
5335         int pipe = intel_crtc->pipe;
5336
5337         if (!intel_crtc->active)
5338                 return;
5339
5340         /*
5341          * Gen2 reports pipe underruns whenever all planes are disabled.
5342          * So diasble underrun reporting before all the planes get disabled.
5343          * FIXME: Need to fix the logic to work when we turn off all planes
5344          * but leave the pipe running.
5345          */
5346         if (IS_GEN2(dev))
5347                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5348
5349         /*
5350          * Vblank time updates from the shadow to live plane control register
5351          * are blocked if the memory self-refresh mode is active at that
5352          * moment. So to make sure the plane gets truly disabled, disable
5353          * first the self-refresh mode. The self-refresh enable bit in turn
5354          * will be checked/applied by the HW only at the next frame start
5355          * event which is after the vblank start event, so we need to have a
5356          * wait-for-vblank between disabling the plane and the pipe.
5357          */
5358         intel_set_memory_cxsr(dev_priv, false);
5359         intel_crtc_disable_planes(crtc);
5360
5361         /*
5362          * On gen2 planes are double buffered but the pipe isn't, so we must
5363          * wait for planes to fully turn off before disabling the pipe.
5364          * We also need to wait on all gmch platforms because of the
5365          * self-refresh mode constraint explained above.
5366          */
5367         intel_wait_for_vblank(dev, pipe);
5368
5369         for_each_encoder_on_crtc(dev, crtc, encoder)
5370                 encoder->disable(encoder);
5371
5372         drm_crtc_vblank_off(crtc);
5373         assert_vblank_disabled(crtc);
5374
5375         intel_disable_pipe(intel_crtc);
5376
5377         i9xx_pfit_disable(intel_crtc);
5378
5379         for_each_encoder_on_crtc(dev, crtc, encoder)
5380                 if (encoder->post_disable)
5381                         encoder->post_disable(encoder);
5382
5383         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5384                 if (IS_CHERRYVIEW(dev))
5385                         chv_disable_pll(dev_priv, pipe);
5386                 else if (IS_VALLEYVIEW(dev))
5387                         vlv_disable_pll(dev_priv, pipe);
5388                 else
5389                         i9xx_disable_pll(intel_crtc);
5390         }
5391
5392         if (!IS_GEN2(dev))
5393                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5394
5395         intel_crtc->active = false;
5396         intel_update_watermarks(crtc);
5397
5398         mutex_lock(&dev->struct_mutex);
5399         intel_fbc_update(dev);
5400         mutex_unlock(&dev->struct_mutex);
5401 }
5402
5403 static void i9xx_crtc_off(struct drm_crtc *crtc)
5404 {
5405 }
5406
5407 /* Master function to enable/disable CRTC and corresponding power wells */
5408 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5409 {
5410         struct drm_device *dev = crtc->dev;
5411         struct drm_i915_private *dev_priv = dev->dev_private;
5412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5413         enum intel_display_power_domain domain;
5414         unsigned long domains;
5415
5416         if (enable) {
5417                 if (!intel_crtc->active) {
5418                         domains = get_crtc_power_domains(crtc);
5419                         for_each_power_domain(domain, domains)
5420                                 intel_display_power_get(dev_priv, domain);
5421                         intel_crtc->enabled_power_domains = domains;
5422
5423                         dev_priv->display.crtc_enable(crtc);
5424                 }
5425         } else {
5426                 if (intel_crtc->active) {
5427                         dev_priv->display.crtc_disable(crtc);
5428
5429                         domains = intel_crtc->enabled_power_domains;
5430                         for_each_power_domain(domain, domains)
5431                                 intel_display_power_put(dev_priv, domain);
5432                         intel_crtc->enabled_power_domains = 0;
5433                 }
5434         }
5435 }
5436
5437 /**
5438  * Sets the power management mode of the pipe and plane.
5439  */
5440 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5441 {
5442         struct drm_device *dev = crtc->dev;
5443         struct intel_encoder *intel_encoder;
5444         bool enable = false;
5445
5446         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5447                 enable |= intel_encoder->connectors_active;
5448
5449         intel_crtc_control(crtc, enable);
5450 }
5451
5452 static void intel_crtc_disable(struct drm_crtc *crtc)
5453 {
5454         struct drm_device *dev = crtc->dev;
5455         struct drm_connector *connector;
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457
5458         /* crtc should still be enabled when we disable it. */
5459         WARN_ON(!crtc->state->enable);
5460
5461         dev_priv->display.crtc_disable(crtc);
5462         dev_priv->display.off(crtc);
5463
5464         crtc->primary->funcs->disable_plane(crtc->primary);
5465
5466         /* Update computed state. */
5467         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5468                 if (!connector->encoder || !connector->encoder->crtc)
5469                         continue;
5470
5471                 if (connector->encoder->crtc != crtc)
5472                         continue;
5473
5474                 connector->dpms = DRM_MODE_DPMS_OFF;
5475                 to_intel_encoder(connector->encoder)->connectors_active = false;
5476         }
5477 }
5478
5479 void intel_encoder_destroy(struct drm_encoder *encoder)
5480 {
5481         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5482
5483         drm_encoder_cleanup(encoder);
5484         kfree(intel_encoder);
5485 }
5486
5487 /* Simple dpms helper for encoders with just one connector, no cloning and only
5488  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5489  * state of the entire output pipe. */
5490 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5491 {
5492         if (mode == DRM_MODE_DPMS_ON) {
5493                 encoder->connectors_active = true;
5494
5495                 intel_crtc_update_dpms(encoder->base.crtc);
5496         } else {
5497                 encoder->connectors_active = false;
5498
5499                 intel_crtc_update_dpms(encoder->base.crtc);
5500         }
5501 }
5502
5503 /* Cross check the actual hw state with our own modeset state tracking (and it's
5504  * internal consistency). */
5505 static void intel_connector_check_state(struct intel_connector *connector)
5506 {
5507         if (connector->get_hw_state(connector)) {
5508                 struct intel_encoder *encoder = connector->encoder;
5509                 struct drm_crtc *crtc;
5510                 bool encoder_enabled;
5511                 enum pipe pipe;
5512
5513                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5514                               connector->base.base.id,
5515                               connector->base.name);
5516
5517                 /* there is no real hw state for MST connectors */
5518                 if (connector->mst_port)
5519                         return;
5520
5521                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5522                      "wrong connector dpms state\n");
5523                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5524                      "active connector not linked to encoder\n");
5525
5526                 if (encoder) {
5527                         I915_STATE_WARN(!encoder->connectors_active,
5528                              "encoder->connectors_active not set\n");
5529
5530                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5531                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5532                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
5533                                 return;
5534
5535                         crtc = encoder->base.crtc;
5536
5537                         I915_STATE_WARN(!crtc->state->enable,
5538                                         "crtc not enabled\n");
5539                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5540                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5541                              "encoder active on the wrong pipe\n");
5542                 }
5543         }
5544 }
5545
5546 /* Even simpler default implementation, if there's really no special case to
5547  * consider. */
5548 void intel_connector_dpms(struct drm_connector *connector, int mode)
5549 {
5550         /* All the simple cases only support two dpms states. */
5551         if (mode != DRM_MODE_DPMS_ON)
5552                 mode = DRM_MODE_DPMS_OFF;
5553
5554         if (mode == connector->dpms)
5555                 return;
5556
5557         connector->dpms = mode;
5558
5559         /* Only need to change hw state when actually enabled */
5560         if (connector->encoder)
5561                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5562
5563         intel_modeset_check_state(connector->dev);
5564 }
5565
5566 /* Simple connector->get_hw_state implementation for encoders that support only
5567  * one connector and no cloning and hence the encoder state determines the state
5568  * of the connector. */
5569 bool intel_connector_get_hw_state(struct intel_connector *connector)
5570 {
5571         enum pipe pipe = 0;
5572         struct intel_encoder *encoder = connector->encoder;
5573
5574         return encoder->get_hw_state(encoder, &pipe);
5575 }
5576
5577 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5578                                      struct intel_crtc_state *pipe_config)
5579 {
5580         struct drm_i915_private *dev_priv = dev->dev_private;
5581         struct intel_crtc *pipe_B_crtc =
5582                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5583
5584         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5585                       pipe_name(pipe), pipe_config->fdi_lanes);
5586         if (pipe_config->fdi_lanes > 4) {
5587                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5588                               pipe_name(pipe), pipe_config->fdi_lanes);
5589                 return false;
5590         }
5591
5592         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5593                 if (pipe_config->fdi_lanes > 2) {
5594                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5595                                       pipe_config->fdi_lanes);
5596                         return false;
5597                 } else {
5598                         return true;
5599                 }
5600         }
5601
5602         if (INTEL_INFO(dev)->num_pipes == 2)
5603                 return true;
5604
5605         /* Ivybridge 3 pipe is really complicated */
5606         switch (pipe) {
5607         case PIPE_A:
5608                 return true;
5609         case PIPE_B:
5610                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5611                     pipe_config->fdi_lanes > 2) {
5612                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5613                                       pipe_name(pipe), pipe_config->fdi_lanes);
5614                         return false;
5615                 }
5616                 return true;
5617         case PIPE_C:
5618                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5619                     pipe_B_crtc->config->fdi_lanes <= 2) {
5620                         if (pipe_config->fdi_lanes > 2) {
5621                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5622                                               pipe_name(pipe), pipe_config->fdi_lanes);
5623                                 return false;
5624                         }
5625                 } else {
5626                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5627                         return false;
5628                 }
5629                 return true;
5630         default:
5631                 BUG();
5632         }
5633 }
5634
5635 #define RETRY 1
5636 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5637                                        struct intel_crtc_state *pipe_config)
5638 {
5639         struct drm_device *dev = intel_crtc->base.dev;
5640         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5641         int lane, link_bw, fdi_dotclock;
5642         bool setup_ok, needs_recompute = false;
5643
5644 retry:
5645         /* FDI is a binary signal running at ~2.7GHz, encoding
5646          * each output octet as 10 bits. The actual frequency
5647          * is stored as a divider into a 100MHz clock, and the
5648          * mode pixel clock is stored in units of 1KHz.
5649          * Hence the bw of each lane in terms of the mode signal
5650          * is:
5651          */
5652         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5653
5654         fdi_dotclock = adjusted_mode->crtc_clock;
5655
5656         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5657                                            pipe_config->pipe_bpp);
5658
5659         pipe_config->fdi_lanes = lane;
5660
5661         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5662                                link_bw, &pipe_config->fdi_m_n);
5663
5664         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5665                                             intel_crtc->pipe, pipe_config);
5666         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5667                 pipe_config->pipe_bpp -= 2*3;
5668                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5669                               pipe_config->pipe_bpp);
5670                 needs_recompute = true;
5671                 pipe_config->bw_constrained = true;
5672
5673                 goto retry;
5674         }
5675
5676         if (needs_recompute)
5677                 return RETRY;
5678
5679         return setup_ok ? 0 : -EINVAL;
5680 }
5681
5682 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5683                                    struct intel_crtc_state *pipe_config)
5684 {
5685         pipe_config->ips_enabled = i915.enable_ips &&
5686                                    hsw_crtc_supports_ips(crtc) &&
5687                                    pipe_config->pipe_bpp <= 24;
5688 }
5689
5690 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5691                                      struct intel_crtc_state *pipe_config)
5692 {
5693         struct drm_device *dev = crtc->base.dev;
5694         struct drm_i915_private *dev_priv = dev->dev_private;
5695         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5696
5697         /* FIXME should check pixel clock limits on all platforms */
5698         if (INTEL_INFO(dev)->gen < 4) {
5699                 int clock_limit =
5700                         dev_priv->display.get_display_clock_speed(dev);
5701
5702                 /*
5703                  * Enable pixel doubling when the dot clock
5704                  * is > 90% of the (display) core speed.
5705                  *
5706                  * GDG double wide on either pipe,
5707                  * otherwise pipe A only.
5708                  */
5709                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5710                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5711                         clock_limit *= 2;
5712                         pipe_config->double_wide = true;
5713                 }
5714
5715                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5716                         return -EINVAL;
5717         }
5718
5719         /*
5720          * Pipe horizontal size must be even in:
5721          * - DVO ganged mode
5722          * - LVDS dual channel mode
5723          * - Double wide pipe
5724          */
5725         if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5726              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5727                 pipe_config->pipe_src_w &= ~1;
5728
5729         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5730          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5731          */
5732         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5733                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5734                 return -EINVAL;
5735
5736         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5737                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5738         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5739                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5740                  * for lvds. */
5741                 pipe_config->pipe_bpp = 8*3;
5742         }
5743
5744         if (HAS_IPS(dev))
5745                 hsw_compute_ips_config(crtc, pipe_config);
5746
5747         if (pipe_config->has_pch_encoder)
5748                 return ironlake_fdi_compute_config(crtc, pipe_config);
5749
5750         return 0;
5751 }
5752
5753 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5754 {
5755         struct drm_i915_private *dev_priv = dev->dev_private;
5756         u32 val;
5757         int divider;
5758
5759         if (dev_priv->hpll_freq == 0)
5760                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5761
5762         mutex_lock(&dev_priv->dpio_lock);
5763         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5764         mutex_unlock(&dev_priv->dpio_lock);
5765
5766         divider = val & DISPLAY_FREQUENCY_VALUES;
5767
5768         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5769              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5770              "cdclk change in progress\n");
5771
5772         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5773 }
5774
5775 static int i945_get_display_clock_speed(struct drm_device *dev)
5776 {
5777         return 400000;
5778 }
5779
5780 static int i915_get_display_clock_speed(struct drm_device *dev)
5781 {
5782         return 333000;
5783 }
5784
5785 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5786 {
5787         return 200000;
5788 }
5789
5790 static int pnv_get_display_clock_speed(struct drm_device *dev)
5791 {
5792         u16 gcfgc = 0;
5793
5794         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5795
5796         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5797         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5798                 return 267000;
5799         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5800                 return 333000;
5801         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5802                 return 444000;
5803         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5804                 return 200000;
5805         default:
5806                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5807         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5808                 return 133000;
5809         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5810                 return 167000;
5811         }
5812 }
5813
5814 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5815 {
5816         u16 gcfgc = 0;
5817
5818         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5819
5820         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5821                 return 133000;
5822         else {
5823                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5824                 case GC_DISPLAY_CLOCK_333_MHZ:
5825                         return 333000;
5826                 default:
5827                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5828                         return 190000;
5829                 }
5830         }
5831 }
5832
5833 static int i865_get_display_clock_speed(struct drm_device *dev)
5834 {
5835         return 266000;
5836 }
5837
5838 static int i855_get_display_clock_speed(struct drm_device *dev)
5839 {
5840         u16 hpllcc = 0;
5841         /* Assume that the hardware is in the high speed state.  This
5842          * should be the default.
5843          */
5844         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5845         case GC_CLOCK_133_200:
5846         case GC_CLOCK_100_200:
5847                 return 200000;
5848         case GC_CLOCK_166_250:
5849                 return 250000;
5850         case GC_CLOCK_100_133:
5851                 return 133000;
5852         }
5853
5854         /* Shouldn't happen */
5855         return 0;
5856 }
5857
5858 static int i830_get_display_clock_speed(struct drm_device *dev)
5859 {
5860         return 133000;
5861 }
5862
5863 static void
5864 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5865 {
5866         while (*num > DATA_LINK_M_N_MASK ||
5867                *den > DATA_LINK_M_N_MASK) {
5868                 *num >>= 1;
5869                 *den >>= 1;
5870         }
5871 }
5872
5873 static void compute_m_n(unsigned int m, unsigned int n,
5874                         uint32_t *ret_m, uint32_t *ret_n)
5875 {
5876         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5877         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5878         intel_reduce_m_n_ratio(ret_m, ret_n);
5879 }
5880
5881 void
5882 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5883                        int pixel_clock, int link_clock,
5884                        struct intel_link_m_n *m_n)
5885 {
5886         m_n->tu = 64;
5887
5888         compute_m_n(bits_per_pixel * pixel_clock,
5889                     link_clock * nlanes * 8,
5890                     &m_n->gmch_m, &m_n->gmch_n);
5891
5892         compute_m_n(pixel_clock, link_clock,
5893                     &m_n->link_m, &m_n->link_n);
5894 }
5895
5896 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5897 {
5898         if (i915.panel_use_ssc >= 0)
5899                 return i915.panel_use_ssc != 0;
5900         return dev_priv->vbt.lvds_use_ssc
5901                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5902 }
5903
5904 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5905 {
5906         struct drm_device *dev = crtc->base.dev;
5907         struct drm_i915_private *dev_priv = dev->dev_private;
5908         int refclk;
5909
5910         if (IS_VALLEYVIEW(dev)) {
5911                 refclk = 100000;
5912         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5913             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5914                 refclk = dev_priv->vbt.lvds_ssc_freq;
5915                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5916         } else if (!IS_GEN2(dev)) {
5917                 refclk = 96000;
5918         } else {
5919                 refclk = 48000;
5920         }
5921
5922         return refclk;
5923 }
5924
5925 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5926 {
5927         return (1 << dpll->n) << 16 | dpll->m2;
5928 }
5929
5930 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5931 {
5932         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5933 }
5934
5935 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5936                                      struct intel_crtc_state *crtc_state,
5937                                      intel_clock_t *reduced_clock)
5938 {
5939         struct drm_device *dev = crtc->base.dev;
5940         u32 fp, fp2 = 0;
5941
5942         if (IS_PINEVIEW(dev)) {
5943                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
5944                 if (reduced_clock)
5945                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5946         } else {
5947                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
5948                 if (reduced_clock)
5949                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5950         }
5951
5952         crtc_state->dpll_hw_state.fp0 = fp;
5953
5954         crtc->lowfreq_avail = false;
5955         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5956             reduced_clock && i915.powersave) {
5957                 crtc_state->dpll_hw_state.fp1 = fp2;
5958                 crtc->lowfreq_avail = true;
5959         } else {
5960                 crtc_state->dpll_hw_state.fp1 = fp;
5961         }
5962 }
5963
5964 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5965                 pipe)
5966 {
5967         u32 reg_val;
5968
5969         /*
5970          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5971          * and set it to a reasonable value instead.
5972          */
5973         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5974         reg_val &= 0xffffff00;
5975         reg_val |= 0x00000030;
5976         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5977
5978         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5979         reg_val &= 0x8cffffff;
5980         reg_val = 0x8c000000;
5981         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5982
5983         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5984         reg_val &= 0xffffff00;
5985         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5986
5987         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5988         reg_val &= 0x00ffffff;
5989         reg_val |= 0xb0000000;
5990         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5991 }
5992
5993 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5994                                          struct intel_link_m_n *m_n)
5995 {
5996         struct drm_device *dev = crtc->base.dev;
5997         struct drm_i915_private *dev_priv = dev->dev_private;
5998         int pipe = crtc->pipe;
5999
6000         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6001         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6002         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6003         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6004 }
6005
6006 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6007                                          struct intel_link_m_n *m_n,
6008                                          struct intel_link_m_n *m2_n2)
6009 {
6010         struct drm_device *dev = crtc->base.dev;
6011         struct drm_i915_private *dev_priv = dev->dev_private;
6012         int pipe = crtc->pipe;
6013         enum transcoder transcoder = crtc->config->cpu_transcoder;
6014
6015         if (INTEL_INFO(dev)->gen >= 5) {
6016                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6017                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6018                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6019                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6020                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6021                  * for gen < 8) and if DRRS is supported (to make sure the
6022                  * registers are not unnecessarily accessed).
6023                  */
6024                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6025                         crtc->config->has_drrs) {
6026                         I915_WRITE(PIPE_DATA_M2(transcoder),
6027                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6028                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6029                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6030                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6031                 }
6032         } else {
6033                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6034                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6035                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6036                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6037         }
6038 }
6039
6040 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6041 {
6042         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6043
6044         if (m_n == M1_N1) {
6045                 dp_m_n = &crtc->config->dp_m_n;
6046                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6047         } else if (m_n == M2_N2) {
6048
6049                 /*
6050                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6051                  * needs to be programmed into M1_N1.
6052                  */
6053                 dp_m_n = &crtc->config->dp_m2_n2;
6054         } else {
6055                 DRM_ERROR("Unsupported divider value\n");
6056                 return;
6057         }
6058
6059         if (crtc->config->has_pch_encoder)
6060                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6061         else
6062                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6063 }
6064
6065 static void vlv_update_pll(struct intel_crtc *crtc,
6066                            struct intel_crtc_state *pipe_config)
6067 {
6068         u32 dpll, dpll_md;
6069
6070         /*
6071          * Enable DPIO clock input. We should never disable the reference
6072          * clock for pipe B, since VGA hotplug / manual detection depends
6073          * on it.
6074          */
6075         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6076                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6077         /* We should never disable this, set it here for state tracking */
6078         if (crtc->pipe == PIPE_B)
6079                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6080         dpll |= DPLL_VCO_ENABLE;
6081         pipe_config->dpll_hw_state.dpll = dpll;
6082
6083         dpll_md = (pipe_config->pixel_multiplier - 1)
6084                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6085         pipe_config->dpll_hw_state.dpll_md = dpll_md;
6086 }
6087
6088 static void vlv_prepare_pll(struct intel_crtc *crtc,
6089                             const struct intel_crtc_state *pipe_config)
6090 {
6091         struct drm_device *dev = crtc->base.dev;
6092         struct drm_i915_private *dev_priv = dev->dev_private;
6093         int pipe = crtc->pipe;
6094         u32 mdiv;
6095         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6096         u32 coreclk, reg_val;
6097
6098         mutex_lock(&dev_priv->dpio_lock);
6099
6100         bestn = pipe_config->dpll.n;
6101         bestm1 = pipe_config->dpll.m1;
6102         bestm2 = pipe_config->dpll.m2;
6103         bestp1 = pipe_config->dpll.p1;
6104         bestp2 = pipe_config->dpll.p2;
6105
6106         /* See eDP HDMI DPIO driver vbios notes doc */
6107
6108         /* PLL B needs special handling */
6109         if (pipe == PIPE_B)
6110                 vlv_pllb_recal_opamp(dev_priv, pipe);
6111
6112         /* Set up Tx target for periodic Rcomp update */
6113         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6114
6115         /* Disable target IRef on PLL */
6116         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6117         reg_val &= 0x00ffffff;
6118         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6119
6120         /* Disable fast lock */
6121         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6122
6123         /* Set idtafcrecal before PLL is enabled */
6124         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6125         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6126         mdiv |= ((bestn << DPIO_N_SHIFT));
6127         mdiv |= (1 << DPIO_K_SHIFT);
6128
6129         /*
6130          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6131          * but we don't support that).
6132          * Note: don't use the DAC post divider as it seems unstable.
6133          */
6134         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6135         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6136
6137         mdiv |= DPIO_ENABLE_CALIBRATION;
6138         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6139
6140         /* Set HBR and RBR LPF coefficients */
6141         if (pipe_config->port_clock == 162000 ||
6142             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6143             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6144                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6145                                  0x009f0003);
6146         else
6147                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6148                                  0x00d0000f);
6149
6150         if (pipe_config->has_dp_encoder) {
6151                 /* Use SSC source */
6152                 if (pipe == PIPE_A)
6153                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6154                                          0x0df40000);
6155                 else
6156                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6157                                          0x0df70000);
6158         } else { /* HDMI or VGA */
6159                 /* Use bend source */
6160                 if (pipe == PIPE_A)
6161                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6162                                          0x0df70000);
6163                 else
6164                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6165                                          0x0df40000);
6166         }
6167
6168         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6169         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6170         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6171             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6172                 coreclk |= 0x01000000;
6173         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6174
6175         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6176         mutex_unlock(&dev_priv->dpio_lock);
6177 }
6178
6179 static void chv_update_pll(struct intel_crtc *crtc,
6180                            struct intel_crtc_state *pipe_config)
6181 {
6182         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6183                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6184                 DPLL_VCO_ENABLE;
6185         if (crtc->pipe != PIPE_A)
6186                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6187
6188         pipe_config->dpll_hw_state.dpll_md =
6189                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6190 }
6191
6192 static void chv_prepare_pll(struct intel_crtc *crtc,
6193                             const struct intel_crtc_state *pipe_config)
6194 {
6195         struct drm_device *dev = crtc->base.dev;
6196         struct drm_i915_private *dev_priv = dev->dev_private;
6197         int pipe = crtc->pipe;
6198         int dpll_reg = DPLL(crtc->pipe);
6199         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6200         u32 loopfilter, tribuf_calcntr;
6201         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6202         u32 dpio_val;
6203         int vco;
6204
6205         bestn = pipe_config->dpll.n;
6206         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6207         bestm1 = pipe_config->dpll.m1;
6208         bestm2 = pipe_config->dpll.m2 >> 22;
6209         bestp1 = pipe_config->dpll.p1;
6210         bestp2 = pipe_config->dpll.p2;
6211         vco = pipe_config->dpll.vco;
6212         dpio_val = 0;
6213         loopfilter = 0;
6214
6215         /*
6216          * Enable Refclk and SSC
6217          */
6218         I915_WRITE(dpll_reg,
6219                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6220
6221         mutex_lock(&dev_priv->dpio_lock);
6222
6223         /* p1 and p2 divider */
6224         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6225                         5 << DPIO_CHV_S1_DIV_SHIFT |
6226                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6227                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6228                         1 << DPIO_CHV_K_DIV_SHIFT);
6229
6230         /* Feedback post-divider - m2 */
6231         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6232
6233         /* Feedback refclk divider - n and m1 */
6234         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6235                         DPIO_CHV_M1_DIV_BY_2 |
6236                         1 << DPIO_CHV_N_DIV_SHIFT);
6237
6238         /* M2 fraction division */
6239         if (bestm2_frac)
6240                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6241
6242         /* M2 fraction division enable */
6243         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6244         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6245         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6246         if (bestm2_frac)
6247                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6248         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6249
6250         /* Program digital lock detect threshold */
6251         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6252         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6253                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6254         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6255         if (!bestm2_frac)
6256                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6257         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6258
6259         /* Loop filter */
6260         if (vco == 5400000) {
6261                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6262                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6263                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6264                 tribuf_calcntr = 0x9;
6265         } else if (vco <= 6200000) {
6266                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6267                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6268                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6269                 tribuf_calcntr = 0x9;
6270         } else if (vco <= 6480000) {
6271                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6272                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6273                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6274                 tribuf_calcntr = 0x8;
6275         } else {
6276                 /* Not supported. Apply the same limits as in the max case */
6277                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6278                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6279                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6280                 tribuf_calcntr = 0;
6281         }
6282         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6283
6284         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(pipe));
6285         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6286         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6287         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6288
6289         /* AFC Recal */
6290         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6291                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6292                         DPIO_AFC_RECAL);
6293
6294         mutex_unlock(&dev_priv->dpio_lock);
6295 }
6296
6297 /**
6298  * vlv_force_pll_on - forcibly enable just the PLL
6299  * @dev_priv: i915 private structure
6300  * @pipe: pipe PLL to enable
6301  * @dpll: PLL configuration
6302  *
6303  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6304  * in cases where we need the PLL enabled even when @pipe is not going to
6305  * be enabled.
6306  */
6307 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6308                       const struct dpll *dpll)
6309 {
6310         struct intel_crtc *crtc =
6311                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6312         struct intel_crtc_state pipe_config = {
6313                 .pixel_multiplier = 1,
6314                 .dpll = *dpll,
6315         };
6316
6317         if (IS_CHERRYVIEW(dev)) {
6318                 chv_update_pll(crtc, &pipe_config);
6319                 chv_prepare_pll(crtc, &pipe_config);
6320                 chv_enable_pll(crtc, &pipe_config);
6321         } else {
6322                 vlv_update_pll(crtc, &pipe_config);
6323                 vlv_prepare_pll(crtc, &pipe_config);
6324                 vlv_enable_pll(crtc, &pipe_config);
6325         }
6326 }
6327
6328 /**
6329  * vlv_force_pll_off - forcibly disable just the PLL
6330  * @dev_priv: i915 private structure
6331  * @pipe: pipe PLL to disable
6332  *
6333  * Disable the PLL for @pipe. To be used in cases where we need
6334  * the PLL enabled even when @pipe is not going to be enabled.
6335  */
6336 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6337 {
6338         if (IS_CHERRYVIEW(dev))
6339                 chv_disable_pll(to_i915(dev), pipe);
6340         else
6341                 vlv_disable_pll(to_i915(dev), pipe);
6342 }
6343
6344 static void i9xx_update_pll(struct intel_crtc *crtc,
6345                             struct intel_crtc_state *crtc_state,
6346                             intel_clock_t *reduced_clock,
6347                             int num_connectors)
6348 {
6349         struct drm_device *dev = crtc->base.dev;
6350         struct drm_i915_private *dev_priv = dev->dev_private;
6351         u32 dpll;
6352         bool is_sdvo;
6353         struct dpll *clock = &crtc_state->dpll;
6354
6355         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6356
6357         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6358                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6359
6360         dpll = DPLL_VGA_MODE_DIS;
6361
6362         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6363                 dpll |= DPLLB_MODE_LVDS;
6364         else
6365                 dpll |= DPLLB_MODE_DAC_SERIAL;
6366
6367         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6368                 dpll |= (crtc_state->pixel_multiplier - 1)
6369                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6370         }
6371
6372         if (is_sdvo)
6373                 dpll |= DPLL_SDVO_HIGH_SPEED;
6374
6375         if (crtc_state->has_dp_encoder)
6376                 dpll |= DPLL_SDVO_HIGH_SPEED;
6377
6378         /* compute bitmask from p1 value */
6379         if (IS_PINEVIEW(dev))
6380                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6381         else {
6382                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6383                 if (IS_G4X(dev) && reduced_clock)
6384                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6385         }
6386         switch (clock->p2) {
6387         case 5:
6388                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6389                 break;
6390         case 7:
6391                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6392                 break;
6393         case 10:
6394                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6395                 break;
6396         case 14:
6397                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6398                 break;
6399         }
6400         if (INTEL_INFO(dev)->gen >= 4)
6401                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6402
6403         if (crtc_state->sdvo_tv_clock)
6404                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6405         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6406                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6407                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6408         else
6409                 dpll |= PLL_REF_INPUT_DREFCLK;
6410
6411         dpll |= DPLL_VCO_ENABLE;
6412         crtc_state->dpll_hw_state.dpll = dpll;
6413
6414         if (INTEL_INFO(dev)->gen >= 4) {
6415                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6416                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6417                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6418         }
6419 }
6420
6421 static void i8xx_update_pll(struct intel_crtc *crtc,
6422                             struct intel_crtc_state *crtc_state,
6423                             intel_clock_t *reduced_clock,
6424                             int num_connectors)
6425 {
6426         struct drm_device *dev = crtc->base.dev;
6427         struct drm_i915_private *dev_priv = dev->dev_private;
6428         u32 dpll;
6429         struct dpll *clock = &crtc_state->dpll;
6430
6431         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6432
6433         dpll = DPLL_VGA_MODE_DIS;
6434
6435         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6436                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6437         } else {
6438                 if (clock->p1 == 2)
6439                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6440                 else
6441                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6442                 if (clock->p2 == 4)
6443                         dpll |= PLL_P2_DIVIDE_BY_4;
6444         }
6445
6446         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6447                 dpll |= DPLL_DVO_2X_MODE;
6448
6449         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6450                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6451                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6452         else
6453                 dpll |= PLL_REF_INPUT_DREFCLK;
6454
6455         dpll |= DPLL_VCO_ENABLE;
6456         crtc_state->dpll_hw_state.dpll = dpll;
6457 }
6458
6459 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6460 {
6461         struct drm_device *dev = intel_crtc->base.dev;
6462         struct drm_i915_private *dev_priv = dev->dev_private;
6463         enum pipe pipe = intel_crtc->pipe;
6464         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6465         struct drm_display_mode *adjusted_mode =
6466                 &intel_crtc->config->base.adjusted_mode;
6467         uint32_t crtc_vtotal, crtc_vblank_end;
6468         int vsyncshift = 0;
6469
6470         /* We need to be careful not to changed the adjusted mode, for otherwise
6471          * the hw state checker will get angry at the mismatch. */
6472         crtc_vtotal = adjusted_mode->crtc_vtotal;
6473         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6474
6475         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6476                 /* the chip adds 2 halflines automatically */
6477                 crtc_vtotal -= 1;
6478                 crtc_vblank_end -= 1;
6479
6480                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6481                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6482                 else
6483                         vsyncshift = adjusted_mode->crtc_hsync_start -
6484                                 adjusted_mode->crtc_htotal / 2;
6485                 if (vsyncshift < 0)
6486                         vsyncshift += adjusted_mode->crtc_htotal;
6487         }
6488
6489         if (INTEL_INFO(dev)->gen > 3)
6490                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6491
6492         I915_WRITE(HTOTAL(cpu_transcoder),
6493                    (adjusted_mode->crtc_hdisplay - 1) |
6494                    ((adjusted_mode->crtc_htotal - 1) << 16));
6495         I915_WRITE(HBLANK(cpu_transcoder),
6496                    (adjusted_mode->crtc_hblank_start - 1) |
6497                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6498         I915_WRITE(HSYNC(cpu_transcoder),
6499                    (adjusted_mode->crtc_hsync_start - 1) |
6500                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6501
6502         I915_WRITE(VTOTAL(cpu_transcoder),
6503                    (adjusted_mode->crtc_vdisplay - 1) |
6504                    ((crtc_vtotal - 1) << 16));
6505         I915_WRITE(VBLANK(cpu_transcoder),
6506                    (adjusted_mode->crtc_vblank_start - 1) |
6507                    ((crtc_vblank_end - 1) << 16));
6508         I915_WRITE(VSYNC(cpu_transcoder),
6509                    (adjusted_mode->crtc_vsync_start - 1) |
6510                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6511
6512         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6513          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6514          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6515          * bits. */
6516         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6517             (pipe == PIPE_B || pipe == PIPE_C))
6518                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6519
6520         /* pipesrc controls the size that is scaled from, which should
6521          * always be the user's requested size.
6522          */
6523         I915_WRITE(PIPESRC(pipe),
6524                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6525                    (intel_crtc->config->pipe_src_h - 1));
6526 }
6527
6528 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6529                                    struct intel_crtc_state *pipe_config)
6530 {
6531         struct drm_device *dev = crtc->base.dev;
6532         struct drm_i915_private *dev_priv = dev->dev_private;
6533         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6534         uint32_t tmp;
6535
6536         tmp = I915_READ(HTOTAL(cpu_transcoder));
6537         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6538         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6539         tmp = I915_READ(HBLANK(cpu_transcoder));
6540         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6541         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6542         tmp = I915_READ(HSYNC(cpu_transcoder));
6543         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6544         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6545
6546         tmp = I915_READ(VTOTAL(cpu_transcoder));
6547         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6548         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6549         tmp = I915_READ(VBLANK(cpu_transcoder));
6550         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6551         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6552         tmp = I915_READ(VSYNC(cpu_transcoder));
6553         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6554         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6555
6556         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6557                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6558                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6559                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6560         }
6561
6562         tmp = I915_READ(PIPESRC(crtc->pipe));
6563         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6564         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6565
6566         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6567         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6568 }
6569
6570 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6571                                  struct intel_crtc_state *pipe_config)
6572 {
6573         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6574         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6575         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6576         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6577
6578         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6579         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6580         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6581         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6582
6583         mode->flags = pipe_config->base.adjusted_mode.flags;
6584
6585         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6586         mode->flags |= pipe_config->base.adjusted_mode.flags;
6587 }
6588
6589 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6590 {
6591         struct drm_device *dev = intel_crtc->base.dev;
6592         struct drm_i915_private *dev_priv = dev->dev_private;
6593         uint32_t pipeconf;
6594
6595         pipeconf = 0;
6596
6597         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6598             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6599                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6600
6601         if (intel_crtc->config->double_wide)
6602                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6603
6604         /* only g4x and later have fancy bpc/dither controls */
6605         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6606                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6607                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6608                         pipeconf |= PIPECONF_DITHER_EN |
6609                                     PIPECONF_DITHER_TYPE_SP;
6610
6611                 switch (intel_crtc->config->pipe_bpp) {
6612                 case 18:
6613                         pipeconf |= PIPECONF_6BPC;
6614                         break;
6615                 case 24:
6616                         pipeconf |= PIPECONF_8BPC;
6617                         break;
6618                 case 30:
6619                         pipeconf |= PIPECONF_10BPC;
6620                         break;
6621                 default:
6622                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6623                         BUG();
6624                 }
6625         }
6626
6627         if (HAS_PIPE_CXSR(dev)) {
6628                 if (intel_crtc->lowfreq_avail) {
6629                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6630                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6631                 } else {
6632                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6633                 }
6634         }
6635
6636         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6637                 if (INTEL_INFO(dev)->gen < 4 ||
6638                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6639                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6640                 else
6641                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6642         } else
6643                 pipeconf |= PIPECONF_PROGRESSIVE;
6644
6645         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6646                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6647
6648         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6649         POSTING_READ(PIPECONF(intel_crtc->pipe));
6650 }
6651
6652 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6653                                    struct intel_crtc_state *crtc_state)
6654 {
6655         struct drm_device *dev = crtc->base.dev;
6656         struct drm_i915_private *dev_priv = dev->dev_private;
6657         int refclk, num_connectors = 0;
6658         intel_clock_t clock, reduced_clock;
6659         bool ok, has_reduced_clock = false;
6660         bool is_lvds = false, is_dsi = false;
6661         struct intel_encoder *encoder;
6662         const intel_limit_t *limit;
6663
6664         for_each_intel_encoder(dev, encoder) {
6665                 if (encoder->new_crtc != crtc)
6666                         continue;
6667
6668                 switch (encoder->type) {
6669                 case INTEL_OUTPUT_LVDS:
6670                         is_lvds = true;
6671                         break;
6672                 case INTEL_OUTPUT_DSI:
6673                         is_dsi = true;
6674                         break;
6675                 default:
6676                         break;
6677                 }
6678
6679                 num_connectors++;
6680         }
6681
6682         if (is_dsi)
6683                 return 0;
6684
6685         if (!crtc_state->clock_set) {
6686                 refclk = i9xx_get_refclk(crtc, num_connectors);
6687
6688                 /*
6689                  * Returns a set of divisors for the desired target clock with
6690                  * the given refclk, or FALSE.  The returned values represent
6691                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6692                  * 2) / p1 / p2.
6693                  */
6694                 limit = intel_limit(crtc, refclk);
6695                 ok = dev_priv->display.find_dpll(limit, crtc,
6696                                                  crtc_state->port_clock,
6697                                                  refclk, NULL, &clock);
6698                 if (!ok) {
6699                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6700                         return -EINVAL;
6701                 }
6702
6703                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6704                         /*
6705                          * Ensure we match the reduced clock's P to the target
6706                          * clock.  If the clocks don't match, we can't switch
6707                          * the display clock by using the FP0/FP1. In such case
6708                          * we will disable the LVDS downclock feature.
6709                          */
6710                         has_reduced_clock =
6711                                 dev_priv->display.find_dpll(limit, crtc,
6712                                                             dev_priv->lvds_downclock,
6713                                                             refclk, &clock,
6714                                                             &reduced_clock);
6715                 }
6716                 /* Compat-code for transition, will disappear. */
6717                 crtc_state->dpll.n = clock.n;
6718                 crtc_state->dpll.m1 = clock.m1;
6719                 crtc_state->dpll.m2 = clock.m2;
6720                 crtc_state->dpll.p1 = clock.p1;
6721                 crtc_state->dpll.p2 = clock.p2;
6722         }
6723
6724         if (IS_GEN2(dev)) {
6725                 i8xx_update_pll(crtc, crtc_state,
6726                                 has_reduced_clock ? &reduced_clock : NULL,
6727                                 num_connectors);
6728         } else if (IS_CHERRYVIEW(dev)) {
6729                 chv_update_pll(crtc, crtc_state);
6730         } else if (IS_VALLEYVIEW(dev)) {
6731                 vlv_update_pll(crtc, crtc_state);
6732         } else {
6733                 i9xx_update_pll(crtc, crtc_state,
6734                                 has_reduced_clock ? &reduced_clock : NULL,
6735                                 num_connectors);
6736         }
6737
6738         return 0;
6739 }
6740
6741 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6742                                  struct intel_crtc_state *pipe_config)
6743 {
6744         struct drm_device *dev = crtc->base.dev;
6745         struct drm_i915_private *dev_priv = dev->dev_private;
6746         uint32_t tmp;
6747
6748         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6749                 return;
6750
6751         tmp = I915_READ(PFIT_CONTROL);
6752         if (!(tmp & PFIT_ENABLE))
6753                 return;
6754
6755         /* Check whether the pfit is attached to our pipe. */
6756         if (INTEL_INFO(dev)->gen < 4) {
6757                 if (crtc->pipe != PIPE_B)
6758                         return;
6759         } else {
6760                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6761                         return;
6762         }
6763
6764         pipe_config->gmch_pfit.control = tmp;
6765         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6766         if (INTEL_INFO(dev)->gen < 5)
6767                 pipe_config->gmch_pfit.lvds_border_bits =
6768                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6769 }
6770
6771 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6772                                struct intel_crtc_state *pipe_config)
6773 {
6774         struct drm_device *dev = crtc->base.dev;
6775         struct drm_i915_private *dev_priv = dev->dev_private;
6776         int pipe = pipe_config->cpu_transcoder;
6777         intel_clock_t clock;
6778         u32 mdiv;
6779         int refclk = 100000;
6780
6781         /* In case of MIPI DPLL will not even be used */
6782         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6783                 return;
6784
6785         mutex_lock(&dev_priv->dpio_lock);
6786         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6787         mutex_unlock(&dev_priv->dpio_lock);
6788
6789         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6790         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6791         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6792         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6793         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6794
6795         vlv_clock(refclk, &clock);
6796
6797         /* clock.dot is the fast clock */
6798         pipe_config->port_clock = clock.dot / 5;
6799 }
6800
6801 static void
6802 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6803                               struct intel_initial_plane_config *plane_config)
6804 {
6805         struct drm_device *dev = crtc->base.dev;
6806         struct drm_i915_private *dev_priv = dev->dev_private;
6807         u32 val, base, offset;
6808         int pipe = crtc->pipe, plane = crtc->plane;
6809         int fourcc, pixel_format;
6810         int aligned_height;
6811         struct drm_framebuffer *fb;
6812         struct intel_framebuffer *intel_fb;
6813
6814         val = I915_READ(DSPCNTR(plane));
6815         if (!(val & DISPLAY_PLANE_ENABLE))
6816                 return;
6817
6818         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6819         if (!intel_fb) {
6820                 DRM_DEBUG_KMS("failed to alloc fb\n");
6821                 return;
6822         }
6823
6824         fb = &intel_fb->base;
6825
6826         if (INTEL_INFO(dev)->gen >= 4) {
6827                 if (val & DISPPLANE_TILED) {
6828                         plane_config->tiling = I915_TILING_X;
6829                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6830                 }
6831         }
6832
6833         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6834         fourcc = i9xx_format_to_fourcc(pixel_format);
6835         fb->pixel_format = fourcc;
6836         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6837
6838         if (INTEL_INFO(dev)->gen >= 4) {
6839                 if (plane_config->tiling)
6840                         offset = I915_READ(DSPTILEOFF(plane));
6841                 else
6842                         offset = I915_READ(DSPLINOFF(plane));
6843                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6844         } else {
6845                 base = I915_READ(DSPADDR(plane));
6846         }
6847         plane_config->base = base;
6848
6849         val = I915_READ(PIPESRC(pipe));
6850         fb->width = ((val >> 16) & 0xfff) + 1;
6851         fb->height = ((val >> 0) & 0xfff) + 1;
6852
6853         val = I915_READ(DSPSTRIDE(pipe));
6854         fb->pitches[0] = val & 0xffffffc0;
6855
6856         aligned_height = intel_fb_align_height(dev, fb->height,
6857                                                fb->pixel_format,
6858                                                fb->modifier[0]);
6859
6860         plane_config->size = fb->pitches[0] * aligned_height;
6861
6862         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6863                       pipe_name(pipe), plane, fb->width, fb->height,
6864                       fb->bits_per_pixel, base, fb->pitches[0],
6865                       plane_config->size);
6866
6867         plane_config->fb = intel_fb;
6868 }
6869
6870 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6871                                struct intel_crtc_state *pipe_config)
6872 {
6873         struct drm_device *dev = crtc->base.dev;
6874         struct drm_i915_private *dev_priv = dev->dev_private;
6875         int pipe = pipe_config->cpu_transcoder;
6876         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6877         intel_clock_t clock;
6878         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6879         int refclk = 100000;
6880
6881         mutex_lock(&dev_priv->dpio_lock);
6882         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6883         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6884         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6885         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6886         mutex_unlock(&dev_priv->dpio_lock);
6887
6888         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6889         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6890         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6891         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6892         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6893
6894         chv_clock(refclk, &clock);
6895
6896         /* clock.dot is the fast clock */
6897         pipe_config->port_clock = clock.dot / 5;
6898 }
6899
6900 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6901                                  struct intel_crtc_state *pipe_config)
6902 {
6903         struct drm_device *dev = crtc->base.dev;
6904         struct drm_i915_private *dev_priv = dev->dev_private;
6905         uint32_t tmp;
6906
6907         if (!intel_display_power_is_enabled(dev_priv,
6908                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6909                 return false;
6910
6911         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6912         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6913
6914         tmp = I915_READ(PIPECONF(crtc->pipe));
6915         if (!(tmp & PIPECONF_ENABLE))
6916                 return false;
6917
6918         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6919                 switch (tmp & PIPECONF_BPC_MASK) {
6920                 case PIPECONF_6BPC:
6921                         pipe_config->pipe_bpp = 18;
6922                         break;
6923                 case PIPECONF_8BPC:
6924                         pipe_config->pipe_bpp = 24;
6925                         break;
6926                 case PIPECONF_10BPC:
6927                         pipe_config->pipe_bpp = 30;
6928                         break;
6929                 default:
6930                         break;
6931                 }
6932         }
6933
6934         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6935                 pipe_config->limited_color_range = true;
6936
6937         if (INTEL_INFO(dev)->gen < 4)
6938                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6939
6940         intel_get_pipe_timings(crtc, pipe_config);
6941
6942         i9xx_get_pfit_config(crtc, pipe_config);
6943
6944         if (INTEL_INFO(dev)->gen >= 4) {
6945                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6946                 pipe_config->pixel_multiplier =
6947                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6948                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6949                 pipe_config->dpll_hw_state.dpll_md = tmp;
6950         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6951                 tmp = I915_READ(DPLL(crtc->pipe));
6952                 pipe_config->pixel_multiplier =
6953                         ((tmp & SDVO_MULTIPLIER_MASK)
6954                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6955         } else {
6956                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6957                  * port and will be fixed up in the encoder->get_config
6958                  * function. */
6959                 pipe_config->pixel_multiplier = 1;
6960         }
6961         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6962         if (!IS_VALLEYVIEW(dev)) {
6963                 /*
6964                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6965                  * on 830. Filter it out here so that we don't
6966                  * report errors due to that.
6967                  */
6968                 if (IS_I830(dev))
6969                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6970
6971                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6972                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6973         } else {
6974                 /* Mask out read-only status bits. */
6975                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6976                                                      DPLL_PORTC_READY_MASK |
6977                                                      DPLL_PORTB_READY_MASK);
6978         }
6979
6980         if (IS_CHERRYVIEW(dev))
6981                 chv_crtc_clock_get(crtc, pipe_config);
6982         else if (IS_VALLEYVIEW(dev))
6983                 vlv_crtc_clock_get(crtc, pipe_config);
6984         else
6985                 i9xx_crtc_clock_get(crtc, pipe_config);
6986
6987         return true;
6988 }
6989
6990 static void ironlake_init_pch_refclk(struct drm_device *dev)
6991 {
6992         struct drm_i915_private *dev_priv = dev->dev_private;
6993         struct intel_encoder *encoder;
6994         u32 val, final;
6995         bool has_lvds = false;
6996         bool has_cpu_edp = false;
6997         bool has_panel = false;
6998         bool has_ck505 = false;
6999         bool can_ssc = false;
7000
7001         /* We need to take the global config into account */
7002         for_each_intel_encoder(dev, encoder) {
7003                 switch (encoder->type) {
7004                 case INTEL_OUTPUT_LVDS:
7005                         has_panel = true;
7006                         has_lvds = true;
7007                         break;
7008                 case INTEL_OUTPUT_EDP:
7009                         has_panel = true;
7010                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7011                                 has_cpu_edp = true;
7012                         break;
7013                 default:
7014                         break;
7015                 }
7016         }
7017
7018         if (HAS_PCH_IBX(dev)) {
7019                 has_ck505 = dev_priv->vbt.display_clock_mode;
7020                 can_ssc = has_ck505;
7021         } else {
7022                 has_ck505 = false;
7023                 can_ssc = true;
7024         }
7025
7026         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7027                       has_panel, has_lvds, has_ck505);
7028
7029         /* Ironlake: try to setup display ref clock before DPLL
7030          * enabling. This is only under driver's control after
7031          * PCH B stepping, previous chipset stepping should be
7032          * ignoring this setting.
7033          */
7034         val = I915_READ(PCH_DREF_CONTROL);
7035
7036         /* As we must carefully and slowly disable/enable each source in turn,
7037          * compute the final state we want first and check if we need to
7038          * make any changes at all.
7039          */
7040         final = val;
7041         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7042         if (has_ck505)
7043                 final |= DREF_NONSPREAD_CK505_ENABLE;
7044         else
7045                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7046
7047         final &= ~DREF_SSC_SOURCE_MASK;
7048         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7049         final &= ~DREF_SSC1_ENABLE;
7050
7051         if (has_panel) {
7052                 final |= DREF_SSC_SOURCE_ENABLE;
7053
7054                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7055                         final |= DREF_SSC1_ENABLE;
7056
7057                 if (has_cpu_edp) {
7058                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7059                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7060                         else
7061                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7062                 } else
7063                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7064         } else {
7065                 final |= DREF_SSC_SOURCE_DISABLE;
7066                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7067         }
7068
7069         if (final == val)
7070                 return;
7071
7072         /* Always enable nonspread source */
7073         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7074
7075         if (has_ck505)
7076                 val |= DREF_NONSPREAD_CK505_ENABLE;
7077         else
7078                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7079
7080         if (has_panel) {
7081                 val &= ~DREF_SSC_SOURCE_MASK;
7082                 val |= DREF_SSC_SOURCE_ENABLE;
7083
7084                 /* SSC must be turned on before enabling the CPU output  */
7085                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7086                         DRM_DEBUG_KMS("Using SSC on panel\n");
7087                         val |= DREF_SSC1_ENABLE;
7088                 } else
7089                         val &= ~DREF_SSC1_ENABLE;
7090
7091                 /* Get SSC going before enabling the outputs */
7092                 I915_WRITE(PCH_DREF_CONTROL, val);
7093                 POSTING_READ(PCH_DREF_CONTROL);
7094                 udelay(200);
7095
7096                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7097
7098                 /* Enable CPU source on CPU attached eDP */
7099                 if (has_cpu_edp) {
7100                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7101                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7102                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7103                         } else
7104                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7105                 } else
7106                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7107
7108                 I915_WRITE(PCH_DREF_CONTROL, val);
7109                 POSTING_READ(PCH_DREF_CONTROL);
7110                 udelay(200);
7111         } else {
7112                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7113
7114                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7115
7116                 /* Turn off CPU output */
7117                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7118
7119                 I915_WRITE(PCH_DREF_CONTROL, val);
7120                 POSTING_READ(PCH_DREF_CONTROL);
7121                 udelay(200);
7122
7123                 /* Turn off the SSC source */
7124                 val &= ~DREF_SSC_SOURCE_MASK;
7125                 val |= DREF_SSC_SOURCE_DISABLE;
7126
7127                 /* Turn off SSC1 */
7128                 val &= ~DREF_SSC1_ENABLE;
7129
7130                 I915_WRITE(PCH_DREF_CONTROL, val);
7131                 POSTING_READ(PCH_DREF_CONTROL);
7132                 udelay(200);
7133         }
7134
7135         BUG_ON(val != final);
7136 }
7137
7138 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7139 {
7140         uint32_t tmp;
7141
7142         tmp = I915_READ(SOUTH_CHICKEN2);
7143         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7144         I915_WRITE(SOUTH_CHICKEN2, tmp);
7145
7146         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7147                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7148                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7149
7150         tmp = I915_READ(SOUTH_CHICKEN2);
7151         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7152         I915_WRITE(SOUTH_CHICKEN2, tmp);
7153
7154         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7155                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7156                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7157 }
7158
7159 /* WaMPhyProgramming:hsw */
7160 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7161 {
7162         uint32_t tmp;
7163
7164         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7165         tmp &= ~(0xFF << 24);
7166         tmp |= (0x12 << 24);
7167         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7168
7169         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7170         tmp |= (1 << 11);
7171         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7172
7173         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7174         tmp |= (1 << 11);
7175         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7176
7177         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7178         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7179         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7180
7181         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7182         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7183         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7184
7185         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7186         tmp &= ~(7 << 13);
7187         tmp |= (5 << 13);
7188         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7189
7190         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7191         tmp &= ~(7 << 13);
7192         tmp |= (5 << 13);
7193         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7194
7195         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7196         tmp &= ~0xFF;
7197         tmp |= 0x1C;
7198         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7199
7200         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7201         tmp &= ~0xFF;
7202         tmp |= 0x1C;
7203         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7204
7205         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7206         tmp &= ~(0xFF << 16);
7207         tmp |= (0x1C << 16);
7208         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7209
7210         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7211         tmp &= ~(0xFF << 16);
7212         tmp |= (0x1C << 16);
7213         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7214
7215         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7216         tmp |= (1 << 27);
7217         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7218
7219         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7220         tmp |= (1 << 27);
7221         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7222
7223         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7224         tmp &= ~(0xF << 28);
7225         tmp |= (4 << 28);
7226         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7227
7228         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7229         tmp &= ~(0xF << 28);
7230         tmp |= (4 << 28);
7231         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7232 }
7233
7234 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7235  * Programming" based on the parameters passed:
7236  * - Sequence to enable CLKOUT_DP
7237  * - Sequence to enable CLKOUT_DP without spread
7238  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7239  */
7240 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7241                                  bool with_fdi)
7242 {
7243         struct drm_i915_private *dev_priv = dev->dev_private;
7244         uint32_t reg, tmp;
7245
7246         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7247                 with_spread = true;
7248         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7249                  with_fdi, "LP PCH doesn't have FDI\n"))
7250                 with_fdi = false;
7251
7252         mutex_lock(&dev_priv->dpio_lock);
7253
7254         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7255         tmp &= ~SBI_SSCCTL_DISABLE;
7256         tmp |= SBI_SSCCTL_PATHALT;
7257         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7258
7259         udelay(24);
7260
7261         if (with_spread) {
7262                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7263                 tmp &= ~SBI_SSCCTL_PATHALT;
7264                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7265
7266                 if (with_fdi) {
7267                         lpt_reset_fdi_mphy(dev_priv);
7268                         lpt_program_fdi_mphy(dev_priv);
7269                 }
7270         }
7271
7272         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7273                SBI_GEN0 : SBI_DBUFF0;
7274         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7275         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7276         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7277
7278         mutex_unlock(&dev_priv->dpio_lock);
7279 }
7280
7281 /* Sequence to disable CLKOUT_DP */
7282 static void lpt_disable_clkout_dp(struct drm_device *dev)
7283 {
7284         struct drm_i915_private *dev_priv = dev->dev_private;
7285         uint32_t reg, tmp;
7286
7287         mutex_lock(&dev_priv->dpio_lock);
7288
7289         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7290                SBI_GEN0 : SBI_DBUFF0;
7291         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7292         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7293         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7294
7295         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7296         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7297                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7298                         tmp |= SBI_SSCCTL_PATHALT;
7299                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7300                         udelay(32);
7301                 }
7302                 tmp |= SBI_SSCCTL_DISABLE;
7303                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7304         }
7305
7306         mutex_unlock(&dev_priv->dpio_lock);
7307 }
7308
7309 static void lpt_init_pch_refclk(struct drm_device *dev)
7310 {
7311         struct intel_encoder *encoder;
7312         bool has_vga = false;
7313
7314         for_each_intel_encoder(dev, encoder) {
7315                 switch (encoder->type) {
7316                 case INTEL_OUTPUT_ANALOG:
7317                         has_vga = true;
7318                         break;
7319                 default:
7320                         break;
7321                 }
7322         }
7323
7324         if (has_vga)
7325                 lpt_enable_clkout_dp(dev, true, true);
7326         else
7327                 lpt_disable_clkout_dp(dev);
7328 }
7329
7330 /*
7331  * Initialize reference clocks when the driver loads
7332  */
7333 void intel_init_pch_refclk(struct drm_device *dev)
7334 {
7335         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7336                 ironlake_init_pch_refclk(dev);
7337         else if (HAS_PCH_LPT(dev))
7338                 lpt_init_pch_refclk(dev);
7339 }
7340
7341 static int ironlake_get_refclk(struct drm_crtc *crtc)
7342 {
7343         struct drm_device *dev = crtc->dev;
7344         struct drm_i915_private *dev_priv = dev->dev_private;
7345         struct intel_encoder *encoder;
7346         int num_connectors = 0;
7347         bool is_lvds = false;
7348
7349         for_each_intel_encoder(dev, encoder) {
7350                 if (encoder->new_crtc != to_intel_crtc(crtc))
7351                         continue;
7352
7353                 switch (encoder->type) {
7354                 case INTEL_OUTPUT_LVDS:
7355                         is_lvds = true;
7356                         break;
7357                 default:
7358                         break;
7359                 }
7360                 num_connectors++;
7361         }
7362
7363         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7364                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7365                               dev_priv->vbt.lvds_ssc_freq);
7366                 return dev_priv->vbt.lvds_ssc_freq;
7367         }
7368
7369         return 120000;
7370 }
7371
7372 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7373 {
7374         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7376         int pipe = intel_crtc->pipe;
7377         uint32_t val;
7378
7379         val = 0;
7380
7381         switch (intel_crtc->config->pipe_bpp) {
7382         case 18:
7383                 val |= PIPECONF_6BPC;
7384                 break;
7385         case 24:
7386                 val |= PIPECONF_8BPC;
7387                 break;
7388         case 30:
7389                 val |= PIPECONF_10BPC;
7390                 break;
7391         case 36:
7392                 val |= PIPECONF_12BPC;
7393                 break;
7394         default:
7395                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7396                 BUG();
7397         }
7398
7399         if (intel_crtc->config->dither)
7400                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7401
7402         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7403                 val |= PIPECONF_INTERLACED_ILK;
7404         else
7405                 val |= PIPECONF_PROGRESSIVE;
7406
7407         if (intel_crtc->config->limited_color_range)
7408                 val |= PIPECONF_COLOR_RANGE_SELECT;
7409
7410         I915_WRITE(PIPECONF(pipe), val);
7411         POSTING_READ(PIPECONF(pipe));
7412 }
7413
7414 /*
7415  * Set up the pipe CSC unit.
7416  *
7417  * Currently only full range RGB to limited range RGB conversion
7418  * is supported, but eventually this should handle various
7419  * RGB<->YCbCr scenarios as well.
7420  */
7421 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7422 {
7423         struct drm_device *dev = crtc->dev;
7424         struct drm_i915_private *dev_priv = dev->dev_private;
7425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7426         int pipe = intel_crtc->pipe;
7427         uint16_t coeff = 0x7800; /* 1.0 */
7428
7429         /*
7430          * TODO: Check what kind of values actually come out of the pipe
7431          * with these coeff/postoff values and adjust to get the best
7432          * accuracy. Perhaps we even need to take the bpc value into
7433          * consideration.
7434          */
7435
7436         if (intel_crtc->config->limited_color_range)
7437                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7438
7439         /*
7440          * GY/GU and RY/RU should be the other way around according
7441          * to BSpec, but reality doesn't agree. Just set them up in
7442          * a way that results in the correct picture.
7443          */
7444         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7445         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7446
7447         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7448         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7449
7450         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7451         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7452
7453         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7454         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7455         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7456
7457         if (INTEL_INFO(dev)->gen > 6) {
7458                 uint16_t postoff = 0;
7459
7460                 if (intel_crtc->config->limited_color_range)
7461                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7462
7463                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7464                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7465                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7466
7467                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7468         } else {
7469                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7470
7471                 if (intel_crtc->config->limited_color_range)
7472                         mode |= CSC_BLACK_SCREEN_OFFSET;
7473
7474                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7475         }
7476 }
7477
7478 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7479 {
7480         struct drm_device *dev = crtc->dev;
7481         struct drm_i915_private *dev_priv = dev->dev_private;
7482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7483         enum pipe pipe = intel_crtc->pipe;
7484         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7485         uint32_t val;
7486
7487         val = 0;
7488
7489         if (IS_HASWELL(dev) && intel_crtc->config->dither)
7490                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7491
7492         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7493                 val |= PIPECONF_INTERLACED_ILK;
7494         else
7495                 val |= PIPECONF_PROGRESSIVE;
7496
7497         I915_WRITE(PIPECONF(cpu_transcoder), val);
7498         POSTING_READ(PIPECONF(cpu_transcoder));
7499
7500         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7501         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7502
7503         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7504                 val = 0;
7505
7506                 switch (intel_crtc->config->pipe_bpp) {
7507                 case 18:
7508                         val |= PIPEMISC_DITHER_6_BPC;
7509                         break;
7510                 case 24:
7511                         val |= PIPEMISC_DITHER_8_BPC;
7512                         break;
7513                 case 30:
7514                         val |= PIPEMISC_DITHER_10_BPC;
7515                         break;
7516                 case 36:
7517                         val |= PIPEMISC_DITHER_12_BPC;
7518                         break;
7519                 default:
7520                         /* Case prevented by pipe_config_set_bpp. */
7521                         BUG();
7522                 }
7523
7524                 if (intel_crtc->config->dither)
7525                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7526
7527                 I915_WRITE(PIPEMISC(pipe), val);
7528         }
7529 }
7530
7531 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7532                                     struct intel_crtc_state *crtc_state,
7533                                     intel_clock_t *clock,
7534                                     bool *has_reduced_clock,
7535                                     intel_clock_t *reduced_clock)
7536 {
7537         struct drm_device *dev = crtc->dev;
7538         struct drm_i915_private *dev_priv = dev->dev_private;
7539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7540         int refclk;
7541         const intel_limit_t *limit;
7542         bool ret, is_lvds = false;
7543
7544         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7545
7546         refclk = ironlake_get_refclk(crtc);
7547
7548         /*
7549          * Returns a set of divisors for the desired target clock with the given
7550          * refclk, or FALSE.  The returned values represent the clock equation:
7551          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7552          */
7553         limit = intel_limit(intel_crtc, refclk);
7554         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7555                                           crtc_state->port_clock,
7556                                           refclk, NULL, clock);
7557         if (!ret)
7558                 return false;
7559
7560         if (is_lvds && dev_priv->lvds_downclock_avail) {
7561                 /*
7562                  * Ensure we match the reduced clock's P to the target clock.
7563                  * If the clocks don't match, we can't switch the display clock
7564                  * by using the FP0/FP1. In such case we will disable the LVDS
7565                  * downclock feature.
7566                 */
7567                 *has_reduced_clock =
7568                         dev_priv->display.find_dpll(limit, intel_crtc,
7569                                                     dev_priv->lvds_downclock,
7570                                                     refclk, clock,
7571                                                     reduced_clock);
7572         }
7573
7574         return true;
7575 }
7576
7577 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7578 {
7579         /*
7580          * Account for spread spectrum to avoid
7581          * oversubscribing the link. Max center spread
7582          * is 2.5%; use 5% for safety's sake.
7583          */
7584         u32 bps = target_clock * bpp * 21 / 20;
7585         return DIV_ROUND_UP(bps, link_bw * 8);
7586 }
7587
7588 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7589 {
7590         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7591 }
7592
7593 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7594                                       struct intel_crtc_state *crtc_state,
7595                                       u32 *fp,
7596                                       intel_clock_t *reduced_clock, u32 *fp2)
7597 {
7598         struct drm_crtc *crtc = &intel_crtc->base;
7599         struct drm_device *dev = crtc->dev;
7600         struct drm_i915_private *dev_priv = dev->dev_private;
7601         struct intel_encoder *intel_encoder;
7602         uint32_t dpll;
7603         int factor, num_connectors = 0;
7604         bool is_lvds = false, is_sdvo = false;
7605
7606         for_each_intel_encoder(dev, intel_encoder) {
7607                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7608                         continue;
7609
7610                 switch (intel_encoder->type) {
7611                 case INTEL_OUTPUT_LVDS:
7612                         is_lvds = true;
7613                         break;
7614                 case INTEL_OUTPUT_SDVO:
7615                 case INTEL_OUTPUT_HDMI:
7616                         is_sdvo = true;
7617                         break;
7618                 default:
7619                         break;
7620                 }
7621
7622                 num_connectors++;
7623         }
7624
7625         /* Enable autotuning of the PLL clock (if permissible) */
7626         factor = 21;
7627         if (is_lvds) {
7628                 if ((intel_panel_use_ssc(dev_priv) &&
7629                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7630                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7631                         factor = 25;
7632         } else if (crtc_state->sdvo_tv_clock)
7633                 factor = 20;
7634
7635         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7636                 *fp |= FP_CB_TUNE;
7637
7638         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7639                 *fp2 |= FP_CB_TUNE;
7640
7641         dpll = 0;
7642
7643         if (is_lvds)
7644                 dpll |= DPLLB_MODE_LVDS;
7645         else
7646                 dpll |= DPLLB_MODE_DAC_SERIAL;
7647
7648         dpll |= (crtc_state->pixel_multiplier - 1)
7649                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7650
7651         if (is_sdvo)
7652                 dpll |= DPLL_SDVO_HIGH_SPEED;
7653         if (crtc_state->has_dp_encoder)
7654                 dpll |= DPLL_SDVO_HIGH_SPEED;
7655
7656         /* compute bitmask from p1 value */
7657         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7658         /* also FPA1 */
7659         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7660
7661         switch (crtc_state->dpll.p2) {
7662         case 5:
7663                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7664                 break;
7665         case 7:
7666                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7667                 break;
7668         case 10:
7669                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7670                 break;
7671         case 14:
7672                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7673                 break;
7674         }
7675
7676         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7677                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7678         else
7679                 dpll |= PLL_REF_INPUT_DREFCLK;
7680
7681         return dpll | DPLL_VCO_ENABLE;
7682 }
7683
7684 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7685                                        struct intel_crtc_state *crtc_state)
7686 {
7687         struct drm_device *dev = crtc->base.dev;
7688         intel_clock_t clock, reduced_clock;
7689         u32 dpll = 0, fp = 0, fp2 = 0;
7690         bool ok, has_reduced_clock = false;
7691         bool is_lvds = false;
7692         struct intel_shared_dpll *pll;
7693
7694         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7695
7696         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7697              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7698
7699         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7700                                      &has_reduced_clock, &reduced_clock);
7701         if (!ok && !crtc_state->clock_set) {
7702                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7703                 return -EINVAL;
7704         }
7705         /* Compat-code for transition, will disappear. */
7706         if (!crtc_state->clock_set) {
7707                 crtc_state->dpll.n = clock.n;
7708                 crtc_state->dpll.m1 = clock.m1;
7709                 crtc_state->dpll.m2 = clock.m2;
7710                 crtc_state->dpll.p1 = clock.p1;
7711                 crtc_state->dpll.p2 = clock.p2;
7712         }
7713
7714         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7715         if (crtc_state->has_pch_encoder) {
7716                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7717                 if (has_reduced_clock)
7718                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7719
7720                 dpll = ironlake_compute_dpll(crtc, crtc_state,
7721                                              &fp, &reduced_clock,
7722                                              has_reduced_clock ? &fp2 : NULL);
7723
7724                 crtc_state->dpll_hw_state.dpll = dpll;
7725                 crtc_state->dpll_hw_state.fp0 = fp;
7726                 if (has_reduced_clock)
7727                         crtc_state->dpll_hw_state.fp1 = fp2;
7728                 else
7729                         crtc_state->dpll_hw_state.fp1 = fp;
7730
7731                 pll = intel_get_shared_dpll(crtc, crtc_state);
7732                 if (pll == NULL) {
7733                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7734                                          pipe_name(crtc->pipe));
7735                         return -EINVAL;
7736                 }
7737         }
7738
7739         if (is_lvds && has_reduced_clock && i915.powersave)
7740                 crtc->lowfreq_avail = true;
7741         else
7742                 crtc->lowfreq_avail = false;
7743
7744         return 0;
7745 }
7746
7747 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7748                                          struct intel_link_m_n *m_n)
7749 {
7750         struct drm_device *dev = crtc->base.dev;
7751         struct drm_i915_private *dev_priv = dev->dev_private;
7752         enum pipe pipe = crtc->pipe;
7753
7754         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7755         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7756         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7757                 & ~TU_SIZE_MASK;
7758         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7759         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7760                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7761 }
7762
7763 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7764                                          enum transcoder transcoder,
7765                                          struct intel_link_m_n *m_n,
7766                                          struct intel_link_m_n *m2_n2)
7767 {
7768         struct drm_device *dev = crtc->base.dev;
7769         struct drm_i915_private *dev_priv = dev->dev_private;
7770         enum pipe pipe = crtc->pipe;
7771
7772         if (INTEL_INFO(dev)->gen >= 5) {
7773                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7774                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7775                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7776                         & ~TU_SIZE_MASK;
7777                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7778                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7779                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7780                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7781                  * gen < 8) and if DRRS is supported (to make sure the
7782                  * registers are not unnecessarily read).
7783                  */
7784                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7785                         crtc->config->has_drrs) {
7786                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7787                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7788                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7789                                         & ~TU_SIZE_MASK;
7790                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7791                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7792                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7793                 }
7794         } else {
7795                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7796                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7797                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7798                         & ~TU_SIZE_MASK;
7799                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7800                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7801                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7802         }
7803 }
7804
7805 void intel_dp_get_m_n(struct intel_crtc *crtc,
7806                       struct intel_crtc_state *pipe_config)
7807 {
7808         if (pipe_config->has_pch_encoder)
7809                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7810         else
7811                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7812                                              &pipe_config->dp_m_n,
7813                                              &pipe_config->dp_m2_n2);
7814 }
7815
7816 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7817                                         struct intel_crtc_state *pipe_config)
7818 {
7819         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7820                                      &pipe_config->fdi_m_n, NULL);
7821 }
7822
7823 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7824                                     struct intel_crtc_state *pipe_config)
7825 {
7826         struct drm_device *dev = crtc->base.dev;
7827         struct drm_i915_private *dev_priv = dev->dev_private;
7828         uint32_t tmp;
7829
7830         tmp = I915_READ(PS_CTL(crtc->pipe));
7831
7832         if (tmp & PS_ENABLE) {
7833                 pipe_config->pch_pfit.enabled = true;
7834                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7835                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7836         }
7837 }
7838
7839 static void
7840 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7841                                  struct intel_initial_plane_config *plane_config)
7842 {
7843         struct drm_device *dev = crtc->base.dev;
7844         struct drm_i915_private *dev_priv = dev->dev_private;
7845         u32 val, base, offset, stride_mult, tiling;
7846         int pipe = crtc->pipe;
7847         int fourcc, pixel_format;
7848         int aligned_height;
7849         struct drm_framebuffer *fb;
7850         struct intel_framebuffer *intel_fb;
7851
7852         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7853         if (!intel_fb) {
7854                 DRM_DEBUG_KMS("failed to alloc fb\n");
7855                 return;
7856         }
7857
7858         fb = &intel_fb->base;
7859
7860         val = I915_READ(PLANE_CTL(pipe, 0));
7861         if (!(val & PLANE_CTL_ENABLE))
7862                 goto error;
7863
7864         pixel_format = val & PLANE_CTL_FORMAT_MASK;
7865         fourcc = skl_format_to_fourcc(pixel_format,
7866                                       val & PLANE_CTL_ORDER_RGBX,
7867                                       val & PLANE_CTL_ALPHA_MASK);
7868         fb->pixel_format = fourcc;
7869         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7870
7871         tiling = val & PLANE_CTL_TILED_MASK;
7872         switch (tiling) {
7873         case PLANE_CTL_TILED_LINEAR:
7874                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7875                 break;
7876         case PLANE_CTL_TILED_X:
7877                 plane_config->tiling = I915_TILING_X;
7878                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7879                 break;
7880         case PLANE_CTL_TILED_Y:
7881                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7882                 break;
7883         case PLANE_CTL_TILED_YF:
7884                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7885                 break;
7886         default:
7887                 MISSING_CASE(tiling);
7888                 goto error;
7889         }
7890
7891         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7892         plane_config->base = base;
7893
7894         offset = I915_READ(PLANE_OFFSET(pipe, 0));
7895
7896         val = I915_READ(PLANE_SIZE(pipe, 0));
7897         fb->height = ((val >> 16) & 0xfff) + 1;
7898         fb->width = ((val >> 0) & 0x1fff) + 1;
7899
7900         val = I915_READ(PLANE_STRIDE(pipe, 0));
7901         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7902                                                 fb->pixel_format);
7903         fb->pitches[0] = (val & 0x3ff) * stride_mult;
7904
7905         aligned_height = intel_fb_align_height(dev, fb->height,
7906                                                fb->pixel_format,
7907                                                fb->modifier[0]);
7908
7909         plane_config->size = fb->pitches[0] * aligned_height;
7910
7911         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7912                       pipe_name(pipe), fb->width, fb->height,
7913                       fb->bits_per_pixel, base, fb->pitches[0],
7914                       plane_config->size);
7915
7916         plane_config->fb = intel_fb;
7917         return;
7918
7919 error:
7920         kfree(fb);
7921 }
7922
7923 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7924                                      struct intel_crtc_state *pipe_config)
7925 {
7926         struct drm_device *dev = crtc->base.dev;
7927         struct drm_i915_private *dev_priv = dev->dev_private;
7928         uint32_t tmp;
7929
7930         tmp = I915_READ(PF_CTL(crtc->pipe));
7931
7932         if (tmp & PF_ENABLE) {
7933                 pipe_config->pch_pfit.enabled = true;
7934                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7935                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7936
7937                 /* We currently do not free assignements of panel fitters on
7938                  * ivb/hsw (since we don't use the higher upscaling modes which
7939                  * differentiates them) so just WARN about this case for now. */
7940                 if (IS_GEN7(dev)) {
7941                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7942                                 PF_PIPE_SEL_IVB(crtc->pipe));
7943                 }
7944         }
7945 }
7946
7947 static void
7948 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7949                                   struct intel_initial_plane_config *plane_config)
7950 {
7951         struct drm_device *dev = crtc->base.dev;
7952         struct drm_i915_private *dev_priv = dev->dev_private;
7953         u32 val, base, offset;
7954         int pipe = crtc->pipe;
7955         int fourcc, pixel_format;
7956         int aligned_height;
7957         struct drm_framebuffer *fb;
7958         struct intel_framebuffer *intel_fb;
7959
7960         val = I915_READ(DSPCNTR(pipe));
7961         if (!(val & DISPLAY_PLANE_ENABLE))
7962                 return;
7963
7964         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7965         if (!intel_fb) {
7966                 DRM_DEBUG_KMS("failed to alloc fb\n");
7967                 return;
7968         }
7969
7970         fb = &intel_fb->base;
7971
7972         if (INTEL_INFO(dev)->gen >= 4) {
7973                 if (val & DISPPLANE_TILED) {
7974                         plane_config->tiling = I915_TILING_X;
7975                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7976                 }
7977         }
7978
7979         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7980         fourcc = i9xx_format_to_fourcc(pixel_format);
7981         fb->pixel_format = fourcc;
7982         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7983
7984         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
7985         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7986                 offset = I915_READ(DSPOFFSET(pipe));
7987         } else {
7988                 if (plane_config->tiling)
7989                         offset = I915_READ(DSPTILEOFF(pipe));
7990                 else
7991                         offset = I915_READ(DSPLINOFF(pipe));
7992         }
7993         plane_config->base = base;
7994
7995         val = I915_READ(PIPESRC(pipe));
7996         fb->width = ((val >> 16) & 0xfff) + 1;
7997         fb->height = ((val >> 0) & 0xfff) + 1;
7998
7999         val = I915_READ(DSPSTRIDE(pipe));
8000         fb->pitches[0] = val & 0xffffffc0;
8001
8002         aligned_height = intel_fb_align_height(dev, fb->height,
8003                                                fb->pixel_format,
8004                                                fb->modifier[0]);
8005
8006         plane_config->size = fb->pitches[0] * aligned_height;
8007
8008         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8009                       pipe_name(pipe), fb->width, fb->height,
8010                       fb->bits_per_pixel, base, fb->pitches[0],
8011                       plane_config->size);
8012
8013         plane_config->fb = intel_fb;
8014 }
8015
8016 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8017                                      struct intel_crtc_state *pipe_config)
8018 {
8019         struct drm_device *dev = crtc->base.dev;
8020         struct drm_i915_private *dev_priv = dev->dev_private;
8021         uint32_t tmp;
8022
8023         if (!intel_display_power_is_enabled(dev_priv,
8024                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8025                 return false;
8026
8027         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8028         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8029
8030         tmp = I915_READ(PIPECONF(crtc->pipe));
8031         if (!(tmp & PIPECONF_ENABLE))
8032                 return false;
8033
8034         switch (tmp & PIPECONF_BPC_MASK) {
8035         case PIPECONF_6BPC:
8036                 pipe_config->pipe_bpp = 18;
8037                 break;
8038         case PIPECONF_8BPC:
8039                 pipe_config->pipe_bpp = 24;
8040                 break;
8041         case PIPECONF_10BPC:
8042                 pipe_config->pipe_bpp = 30;
8043                 break;
8044         case PIPECONF_12BPC:
8045                 pipe_config->pipe_bpp = 36;
8046                 break;
8047         default:
8048                 break;
8049         }
8050
8051         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8052                 pipe_config->limited_color_range = true;
8053
8054         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8055                 struct intel_shared_dpll *pll;
8056
8057                 pipe_config->has_pch_encoder = true;
8058
8059                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8060                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8061                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8062
8063                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8064
8065                 if (HAS_PCH_IBX(dev_priv->dev)) {
8066                         pipe_config->shared_dpll =
8067                                 (enum intel_dpll_id) crtc->pipe;
8068                 } else {
8069                         tmp = I915_READ(PCH_DPLL_SEL);
8070                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8071                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8072                         else
8073                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8074                 }
8075
8076                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8077
8078                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8079                                            &pipe_config->dpll_hw_state));
8080
8081                 tmp = pipe_config->dpll_hw_state.dpll;
8082                 pipe_config->pixel_multiplier =
8083                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8084                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8085
8086                 ironlake_pch_clock_get(crtc, pipe_config);
8087         } else {
8088                 pipe_config->pixel_multiplier = 1;
8089         }
8090
8091         intel_get_pipe_timings(crtc, pipe_config);
8092
8093         ironlake_get_pfit_config(crtc, pipe_config);
8094
8095         return true;
8096 }
8097
8098 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8099 {
8100         struct drm_device *dev = dev_priv->dev;
8101         struct intel_crtc *crtc;
8102
8103         for_each_intel_crtc(dev, crtc)
8104                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8105                      pipe_name(crtc->pipe));
8106
8107         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8108         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8109         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8110         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8111         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8112         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8113              "CPU PWM1 enabled\n");
8114         if (IS_HASWELL(dev))
8115                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8116                      "CPU PWM2 enabled\n");
8117         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8118              "PCH PWM1 enabled\n");
8119         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8120              "Utility pin enabled\n");
8121         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8122
8123         /*
8124          * In theory we can still leave IRQs enabled, as long as only the HPD
8125          * interrupts remain enabled. We used to check for that, but since it's
8126          * gen-specific and since we only disable LCPLL after we fully disable
8127          * the interrupts, the check below should be enough.
8128          */
8129         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8130 }
8131
8132 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8133 {
8134         struct drm_device *dev = dev_priv->dev;
8135
8136         if (IS_HASWELL(dev))
8137                 return I915_READ(D_COMP_HSW);
8138         else
8139                 return I915_READ(D_COMP_BDW);
8140 }
8141
8142 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8143 {
8144         struct drm_device *dev = dev_priv->dev;
8145
8146         if (IS_HASWELL(dev)) {
8147                 mutex_lock(&dev_priv->rps.hw_lock);
8148                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8149                                             val))
8150                         DRM_ERROR("Failed to write to D_COMP\n");
8151                 mutex_unlock(&dev_priv->rps.hw_lock);
8152         } else {
8153                 I915_WRITE(D_COMP_BDW, val);
8154                 POSTING_READ(D_COMP_BDW);
8155         }
8156 }
8157
8158 /*
8159  * This function implements pieces of two sequences from BSpec:
8160  * - Sequence for display software to disable LCPLL
8161  * - Sequence for display software to allow package C8+
8162  * The steps implemented here are just the steps that actually touch the LCPLL
8163  * register. Callers should take care of disabling all the display engine
8164  * functions, doing the mode unset, fixing interrupts, etc.
8165  */
8166 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8167                               bool switch_to_fclk, bool allow_power_down)
8168 {
8169         uint32_t val;
8170
8171         assert_can_disable_lcpll(dev_priv);
8172
8173         val = I915_READ(LCPLL_CTL);
8174
8175         if (switch_to_fclk) {
8176                 val |= LCPLL_CD_SOURCE_FCLK;
8177                 I915_WRITE(LCPLL_CTL, val);
8178
8179                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8180                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
8181                         DRM_ERROR("Switching to FCLK failed\n");
8182
8183                 val = I915_READ(LCPLL_CTL);
8184         }
8185
8186         val |= LCPLL_PLL_DISABLE;
8187         I915_WRITE(LCPLL_CTL, val);
8188         POSTING_READ(LCPLL_CTL);
8189
8190         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8191                 DRM_ERROR("LCPLL still locked\n");
8192
8193         val = hsw_read_dcomp(dev_priv);
8194         val |= D_COMP_COMP_DISABLE;
8195         hsw_write_dcomp(dev_priv, val);
8196         ndelay(100);
8197
8198         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8199                      1))
8200                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8201
8202         if (allow_power_down) {
8203                 val = I915_READ(LCPLL_CTL);
8204                 val |= LCPLL_POWER_DOWN_ALLOW;
8205                 I915_WRITE(LCPLL_CTL, val);
8206                 POSTING_READ(LCPLL_CTL);
8207         }
8208 }
8209
8210 /*
8211  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8212  * source.
8213  */
8214 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8215 {
8216         uint32_t val;
8217
8218         val = I915_READ(LCPLL_CTL);
8219
8220         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8221                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8222                 return;
8223
8224         /*
8225          * Make sure we're not on PC8 state before disabling PC8, otherwise
8226          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8227          */
8228         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8229
8230         if (val & LCPLL_POWER_DOWN_ALLOW) {
8231                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8232                 I915_WRITE(LCPLL_CTL, val);
8233                 POSTING_READ(LCPLL_CTL);
8234         }
8235
8236         val = hsw_read_dcomp(dev_priv);
8237         val |= D_COMP_COMP_FORCE;
8238         val &= ~D_COMP_COMP_DISABLE;
8239         hsw_write_dcomp(dev_priv, val);
8240
8241         val = I915_READ(LCPLL_CTL);
8242         val &= ~LCPLL_PLL_DISABLE;
8243         I915_WRITE(LCPLL_CTL, val);
8244
8245         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8246                 DRM_ERROR("LCPLL not locked yet\n");
8247
8248         if (val & LCPLL_CD_SOURCE_FCLK) {
8249                 val = I915_READ(LCPLL_CTL);
8250                 val &= ~LCPLL_CD_SOURCE_FCLK;
8251                 I915_WRITE(LCPLL_CTL, val);
8252
8253                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8254                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8255                         DRM_ERROR("Switching back to LCPLL failed\n");
8256         }
8257
8258         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8259 }
8260
8261 /*
8262  * Package states C8 and deeper are really deep PC states that can only be
8263  * reached when all the devices on the system allow it, so even if the graphics
8264  * device allows PC8+, it doesn't mean the system will actually get to these
8265  * states. Our driver only allows PC8+ when going into runtime PM.
8266  *
8267  * The requirements for PC8+ are that all the outputs are disabled, the power
8268  * well is disabled and most interrupts are disabled, and these are also
8269  * requirements for runtime PM. When these conditions are met, we manually do
8270  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8271  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8272  * hang the machine.
8273  *
8274  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8275  * the state of some registers, so when we come back from PC8+ we need to
8276  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8277  * need to take care of the registers kept by RC6. Notice that this happens even
8278  * if we don't put the device in PCI D3 state (which is what currently happens
8279  * because of the runtime PM support).
8280  *
8281  * For more, read "Display Sequences for Package C8" on the hardware
8282  * documentation.
8283  */
8284 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8285 {
8286         struct drm_device *dev = dev_priv->dev;
8287         uint32_t val;
8288
8289         DRM_DEBUG_KMS("Enabling package C8+\n");
8290
8291         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8292                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8293                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8294                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8295         }
8296
8297         lpt_disable_clkout_dp(dev);
8298         hsw_disable_lcpll(dev_priv, true, true);
8299 }
8300
8301 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8302 {
8303         struct drm_device *dev = dev_priv->dev;
8304         uint32_t val;
8305
8306         DRM_DEBUG_KMS("Disabling package C8+\n");
8307
8308         hsw_restore_lcpll(dev_priv);
8309         lpt_init_pch_refclk(dev);
8310
8311         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8312                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8313                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8314                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8315         }
8316
8317         intel_prepare_ddi(dev);
8318 }
8319
8320 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8321                                       struct intel_crtc_state *crtc_state)
8322 {
8323         if (!intel_ddi_pll_select(crtc, crtc_state))
8324                 return -EINVAL;
8325
8326         crtc->lowfreq_avail = false;
8327
8328         return 0;
8329 }
8330
8331 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8332                                 enum port port,
8333                                 struct intel_crtc_state *pipe_config)
8334 {
8335         u32 temp, dpll_ctl1;
8336
8337         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8338         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8339
8340         switch (pipe_config->ddi_pll_sel) {
8341         case SKL_DPLL0:
8342                 /*
8343                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8344                  * of the shared DPLL framework and thus needs to be read out
8345                  * separately
8346                  */
8347                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8348                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8349                 break;
8350         case SKL_DPLL1:
8351                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8352                 break;
8353         case SKL_DPLL2:
8354                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8355                 break;
8356         case SKL_DPLL3:
8357                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8358                 break;
8359         }
8360 }
8361
8362 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8363                                 enum port port,
8364                                 struct intel_crtc_state *pipe_config)
8365 {
8366         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8367
8368         switch (pipe_config->ddi_pll_sel) {
8369         case PORT_CLK_SEL_WRPLL1:
8370                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8371                 break;
8372         case PORT_CLK_SEL_WRPLL2:
8373                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8374                 break;
8375         }
8376 }
8377
8378 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8379                                        struct intel_crtc_state *pipe_config)
8380 {
8381         struct drm_device *dev = crtc->base.dev;
8382         struct drm_i915_private *dev_priv = dev->dev_private;
8383         struct intel_shared_dpll *pll;
8384         enum port port;
8385         uint32_t tmp;
8386
8387         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8388
8389         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8390
8391         if (IS_SKYLAKE(dev))
8392                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8393         else
8394                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8395
8396         if (pipe_config->shared_dpll >= 0) {
8397                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8398
8399                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8400                                            &pipe_config->dpll_hw_state));
8401         }
8402
8403         /*
8404          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8405          * DDI E. So just check whether this pipe is wired to DDI E and whether
8406          * the PCH transcoder is on.
8407          */
8408         if (INTEL_INFO(dev)->gen < 9 &&
8409             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8410                 pipe_config->has_pch_encoder = true;
8411
8412                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8413                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8414                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8415
8416                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8417         }
8418 }
8419
8420 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8421                                     struct intel_crtc_state *pipe_config)
8422 {
8423         struct drm_device *dev = crtc->base.dev;
8424         struct drm_i915_private *dev_priv = dev->dev_private;
8425         enum intel_display_power_domain pfit_domain;
8426         uint32_t tmp;
8427
8428         if (!intel_display_power_is_enabled(dev_priv,
8429                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8430                 return false;
8431
8432         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8433         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8434
8435         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8436         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8437                 enum pipe trans_edp_pipe;
8438                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8439                 default:
8440                         WARN(1, "unknown pipe linked to edp transcoder\n");
8441                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8442                 case TRANS_DDI_EDP_INPUT_A_ON:
8443                         trans_edp_pipe = PIPE_A;
8444                         break;
8445                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8446                         trans_edp_pipe = PIPE_B;
8447                         break;
8448                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8449                         trans_edp_pipe = PIPE_C;
8450                         break;
8451                 }
8452
8453                 if (trans_edp_pipe == crtc->pipe)
8454                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8455         }
8456
8457         if (!intel_display_power_is_enabled(dev_priv,
8458                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8459                 return false;
8460
8461         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8462         if (!(tmp & PIPECONF_ENABLE))
8463                 return false;
8464
8465         haswell_get_ddi_port_state(crtc, pipe_config);
8466
8467         intel_get_pipe_timings(crtc, pipe_config);
8468
8469         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8470         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8471                 if (IS_SKYLAKE(dev))
8472                         skylake_get_pfit_config(crtc, pipe_config);
8473                 else
8474                         ironlake_get_pfit_config(crtc, pipe_config);
8475         }
8476
8477         if (IS_HASWELL(dev))
8478                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8479                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8480
8481         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8482                 pipe_config->pixel_multiplier =
8483                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8484         } else {
8485                 pipe_config->pixel_multiplier = 1;
8486         }
8487
8488         return true;
8489 }
8490
8491 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8492 {
8493         struct drm_device *dev = crtc->dev;
8494         struct drm_i915_private *dev_priv = dev->dev_private;
8495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8496         uint32_t cntl = 0, size = 0;
8497
8498         if (base) {
8499                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8500                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8501                 unsigned int stride = roundup_pow_of_two(width) * 4;
8502
8503                 switch (stride) {
8504                 default:
8505                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8506                                   width, stride);
8507                         stride = 256;
8508                         /* fallthrough */
8509                 case 256:
8510                 case 512:
8511                 case 1024:
8512                 case 2048:
8513                         break;
8514                 }
8515
8516                 cntl |= CURSOR_ENABLE |
8517                         CURSOR_GAMMA_ENABLE |
8518                         CURSOR_FORMAT_ARGB |
8519                         CURSOR_STRIDE(stride);
8520
8521                 size = (height << 12) | width;
8522         }
8523
8524         if (intel_crtc->cursor_cntl != 0 &&
8525             (intel_crtc->cursor_base != base ||
8526              intel_crtc->cursor_size != size ||
8527              intel_crtc->cursor_cntl != cntl)) {
8528                 /* On these chipsets we can only modify the base/size/stride
8529                  * whilst the cursor is disabled.
8530                  */
8531                 I915_WRITE(_CURACNTR, 0);
8532                 POSTING_READ(_CURACNTR);
8533                 intel_crtc->cursor_cntl = 0;
8534         }
8535
8536         if (intel_crtc->cursor_base != base) {
8537                 I915_WRITE(_CURABASE, base);
8538                 intel_crtc->cursor_base = base;
8539         }
8540
8541         if (intel_crtc->cursor_size != size) {
8542                 I915_WRITE(CURSIZE, size);
8543                 intel_crtc->cursor_size = size;
8544         }
8545
8546         if (intel_crtc->cursor_cntl != cntl) {
8547                 I915_WRITE(_CURACNTR, cntl);
8548                 POSTING_READ(_CURACNTR);
8549                 intel_crtc->cursor_cntl = cntl;
8550         }
8551 }
8552
8553 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8554 {
8555         struct drm_device *dev = crtc->dev;
8556         struct drm_i915_private *dev_priv = dev->dev_private;
8557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8558         int pipe = intel_crtc->pipe;
8559         uint32_t cntl;
8560
8561         cntl = 0;
8562         if (base) {
8563                 cntl = MCURSOR_GAMMA_ENABLE;
8564                 switch (intel_crtc->base.cursor->state->crtc_w) {
8565                         case 64:
8566                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8567                                 break;
8568                         case 128:
8569                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8570                                 break;
8571                         case 256:
8572                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8573                                 break;
8574                         default:
8575                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8576                                 return;
8577                 }
8578                 cntl |= pipe << 28; /* Connect to correct pipe */
8579
8580                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8581                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8582         }
8583
8584         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8585                 cntl |= CURSOR_ROTATE_180;
8586
8587         if (intel_crtc->cursor_cntl != cntl) {
8588                 I915_WRITE(CURCNTR(pipe), cntl);
8589                 POSTING_READ(CURCNTR(pipe));
8590                 intel_crtc->cursor_cntl = cntl;
8591         }
8592
8593         /* and commit changes on next vblank */
8594         I915_WRITE(CURBASE(pipe), base);
8595         POSTING_READ(CURBASE(pipe));
8596
8597         intel_crtc->cursor_base = base;
8598 }
8599
8600 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8601 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8602                                      bool on)
8603 {
8604         struct drm_device *dev = crtc->dev;
8605         struct drm_i915_private *dev_priv = dev->dev_private;
8606         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8607         int pipe = intel_crtc->pipe;
8608         int x = crtc->cursor_x;
8609         int y = crtc->cursor_y;
8610         u32 base = 0, pos = 0;
8611
8612         if (on)
8613                 base = intel_crtc->cursor_addr;
8614
8615         if (x >= intel_crtc->config->pipe_src_w)
8616                 base = 0;
8617
8618         if (y >= intel_crtc->config->pipe_src_h)
8619                 base = 0;
8620
8621         if (x < 0) {
8622                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8623                         base = 0;
8624
8625                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8626                 x = -x;
8627         }
8628         pos |= x << CURSOR_X_SHIFT;
8629
8630         if (y < 0) {
8631                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8632                         base = 0;
8633
8634                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8635                 y = -y;
8636         }
8637         pos |= y << CURSOR_Y_SHIFT;
8638
8639         if (base == 0 && intel_crtc->cursor_base == 0)
8640                 return;
8641
8642         I915_WRITE(CURPOS(pipe), pos);
8643
8644         /* ILK+ do this automagically */
8645         if (HAS_GMCH_DISPLAY(dev) &&
8646             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8647                 base += (intel_crtc->base.cursor->state->crtc_h *
8648                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8649         }
8650
8651         if (IS_845G(dev) || IS_I865G(dev))
8652                 i845_update_cursor(crtc, base);
8653         else
8654                 i9xx_update_cursor(crtc, base);
8655 }
8656
8657 static bool cursor_size_ok(struct drm_device *dev,
8658                            uint32_t width, uint32_t height)
8659 {
8660         if (width == 0 || height == 0)
8661                 return false;
8662
8663         /*
8664          * 845g/865g are special in that they are only limited by
8665          * the width of their cursors, the height is arbitrary up to
8666          * the precision of the register. Everything else requires
8667          * square cursors, limited to a few power-of-two sizes.
8668          */
8669         if (IS_845G(dev) || IS_I865G(dev)) {
8670                 if ((width & 63) != 0)
8671                         return false;
8672
8673                 if (width > (IS_845G(dev) ? 64 : 512))
8674                         return false;
8675
8676                 if (height > 1023)
8677                         return false;
8678         } else {
8679                 switch (width | height) {
8680                 case 256:
8681                 case 128:
8682                         if (IS_GEN2(dev))
8683                                 return false;
8684                 case 64:
8685                         break;
8686                 default:
8687                         return false;
8688                 }
8689         }
8690
8691         return true;
8692 }
8693
8694 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8695                                  u16 *blue, uint32_t start, uint32_t size)
8696 {
8697         int end = (start + size > 256) ? 256 : start + size, i;
8698         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8699
8700         for (i = start; i < end; i++) {
8701                 intel_crtc->lut_r[i] = red[i] >> 8;
8702                 intel_crtc->lut_g[i] = green[i] >> 8;
8703                 intel_crtc->lut_b[i] = blue[i] >> 8;
8704         }
8705
8706         intel_crtc_load_lut(crtc);
8707 }
8708
8709 /* VESA 640x480x72Hz mode to set on the pipe */
8710 static struct drm_display_mode load_detect_mode = {
8711         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8712                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8713 };
8714
8715 struct drm_framebuffer *
8716 __intel_framebuffer_create(struct drm_device *dev,
8717                            struct drm_mode_fb_cmd2 *mode_cmd,
8718                            struct drm_i915_gem_object *obj)
8719 {
8720         struct intel_framebuffer *intel_fb;
8721         int ret;
8722
8723         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8724         if (!intel_fb) {
8725                 drm_gem_object_unreference(&obj->base);
8726                 return ERR_PTR(-ENOMEM);
8727         }
8728
8729         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8730         if (ret)
8731                 goto err;
8732
8733         return &intel_fb->base;
8734 err:
8735         drm_gem_object_unreference(&obj->base);
8736         kfree(intel_fb);
8737
8738         return ERR_PTR(ret);
8739 }
8740
8741 static struct drm_framebuffer *
8742 intel_framebuffer_create(struct drm_device *dev,
8743                          struct drm_mode_fb_cmd2 *mode_cmd,
8744                          struct drm_i915_gem_object *obj)
8745 {
8746         struct drm_framebuffer *fb;
8747         int ret;
8748
8749         ret = i915_mutex_lock_interruptible(dev);
8750         if (ret)
8751                 return ERR_PTR(ret);
8752         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8753         mutex_unlock(&dev->struct_mutex);
8754
8755         return fb;
8756 }
8757
8758 static u32
8759 intel_framebuffer_pitch_for_width(int width, int bpp)
8760 {
8761         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8762         return ALIGN(pitch, 64);
8763 }
8764
8765 static u32
8766 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8767 {
8768         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8769         return PAGE_ALIGN(pitch * mode->vdisplay);
8770 }
8771
8772 static struct drm_framebuffer *
8773 intel_framebuffer_create_for_mode(struct drm_device *dev,
8774                                   struct drm_display_mode *mode,
8775                                   int depth, int bpp)
8776 {
8777         struct drm_i915_gem_object *obj;
8778         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8779
8780         obj = i915_gem_alloc_object(dev,
8781                                     intel_framebuffer_size_for_mode(mode, bpp));
8782         if (obj == NULL)
8783                 return ERR_PTR(-ENOMEM);
8784
8785         mode_cmd.width = mode->hdisplay;
8786         mode_cmd.height = mode->vdisplay;
8787         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8788                                                                 bpp);
8789         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8790
8791         return intel_framebuffer_create(dev, &mode_cmd, obj);
8792 }
8793
8794 static struct drm_framebuffer *
8795 mode_fits_in_fbdev(struct drm_device *dev,
8796                    struct drm_display_mode *mode)
8797 {
8798 #ifdef CONFIG_DRM_I915_FBDEV
8799         struct drm_i915_private *dev_priv = dev->dev_private;
8800         struct drm_i915_gem_object *obj;
8801         struct drm_framebuffer *fb;
8802
8803         if (!dev_priv->fbdev)
8804                 return NULL;
8805
8806         if (!dev_priv->fbdev->fb)
8807                 return NULL;
8808
8809         obj = dev_priv->fbdev->fb->obj;
8810         BUG_ON(!obj);
8811
8812         fb = &dev_priv->fbdev->fb->base;
8813         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8814                                                                fb->bits_per_pixel))
8815                 return NULL;
8816
8817         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8818                 return NULL;
8819
8820         return fb;
8821 #else
8822         return NULL;
8823 #endif
8824 }
8825
8826 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8827                                 struct drm_display_mode *mode,
8828                                 struct intel_load_detect_pipe *old,
8829                                 struct drm_modeset_acquire_ctx *ctx)
8830 {
8831         struct intel_crtc *intel_crtc;
8832         struct intel_encoder *intel_encoder =
8833                 intel_attached_encoder(connector);
8834         struct drm_crtc *possible_crtc;
8835         struct drm_encoder *encoder = &intel_encoder->base;
8836         struct drm_crtc *crtc = NULL;
8837         struct drm_device *dev = encoder->dev;
8838         struct drm_framebuffer *fb;
8839         struct drm_mode_config *config = &dev->mode_config;
8840         int ret, i = -1;
8841
8842         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8843                       connector->base.id, connector->name,
8844                       encoder->base.id, encoder->name);
8845
8846 retry:
8847         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8848         if (ret)
8849                 goto fail_unlock;
8850
8851         /*
8852          * Algorithm gets a little messy:
8853          *
8854          *   - if the connector already has an assigned crtc, use it (but make
8855          *     sure it's on first)
8856          *
8857          *   - try to find the first unused crtc that can drive this connector,
8858          *     and use that if we find one
8859          */
8860
8861         /* See if we already have a CRTC for this connector */
8862         if (encoder->crtc) {
8863                 crtc = encoder->crtc;
8864
8865                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8866                 if (ret)
8867                         goto fail_unlock;
8868                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8869                 if (ret)
8870                         goto fail_unlock;
8871
8872                 old->dpms_mode = connector->dpms;
8873                 old->load_detect_temp = false;
8874
8875                 /* Make sure the crtc and connector are running */
8876                 if (connector->dpms != DRM_MODE_DPMS_ON)
8877                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8878
8879                 return true;
8880         }
8881
8882         /* Find an unused one (if possible) */
8883         for_each_crtc(dev, possible_crtc) {
8884                 i++;
8885                 if (!(encoder->possible_crtcs & (1 << i)))
8886                         continue;
8887                 if (possible_crtc->state->enable)
8888                         continue;
8889                 /* This can occur when applying the pipe A quirk on resume. */
8890                 if (to_intel_crtc(possible_crtc)->new_enabled)
8891                         continue;
8892
8893                 crtc = possible_crtc;
8894                 break;
8895         }
8896
8897         /*
8898          * If we didn't find an unused CRTC, don't use any.
8899          */
8900         if (!crtc) {
8901                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8902                 goto fail_unlock;
8903         }
8904
8905         ret = drm_modeset_lock(&crtc->mutex, ctx);
8906         if (ret)
8907                 goto fail_unlock;
8908         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8909         if (ret)
8910                 goto fail_unlock;
8911         intel_encoder->new_crtc = to_intel_crtc(crtc);
8912         to_intel_connector(connector)->new_encoder = intel_encoder;
8913
8914         intel_crtc = to_intel_crtc(crtc);
8915         intel_crtc->new_enabled = true;
8916         intel_crtc->new_config = intel_crtc->config;
8917         old->dpms_mode = connector->dpms;
8918         old->load_detect_temp = true;
8919         old->release_fb = NULL;
8920
8921         if (!mode)
8922                 mode = &load_detect_mode;
8923
8924         /* We need a framebuffer large enough to accommodate all accesses
8925          * that the plane may generate whilst we perform load detection.
8926          * We can not rely on the fbcon either being present (we get called
8927          * during its initialisation to detect all boot displays, or it may
8928          * not even exist) or that it is large enough to satisfy the
8929          * requested mode.
8930          */
8931         fb = mode_fits_in_fbdev(dev, mode);
8932         if (fb == NULL) {
8933                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8934                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8935                 old->release_fb = fb;
8936         } else
8937                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8938         if (IS_ERR(fb)) {
8939                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8940                 goto fail;
8941         }
8942
8943         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8944                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8945                 if (old->release_fb)
8946                         old->release_fb->funcs->destroy(old->release_fb);
8947                 goto fail;
8948         }
8949         crtc->primary->crtc = crtc;
8950
8951         /* let the connector get through one full cycle before testing */
8952         intel_wait_for_vblank(dev, intel_crtc->pipe);
8953         return true;
8954
8955  fail:
8956         intel_crtc->new_enabled = crtc->state->enable;
8957         if (intel_crtc->new_enabled)
8958                 intel_crtc->new_config = intel_crtc->config;
8959         else
8960                 intel_crtc->new_config = NULL;
8961 fail_unlock:
8962         if (ret == -EDEADLK) {
8963                 drm_modeset_backoff(ctx);
8964                 goto retry;
8965         }
8966
8967         return false;
8968 }
8969
8970 void intel_release_load_detect_pipe(struct drm_connector *connector,
8971                                     struct intel_load_detect_pipe *old)
8972 {
8973         struct intel_encoder *intel_encoder =
8974                 intel_attached_encoder(connector);
8975         struct drm_encoder *encoder = &intel_encoder->base;
8976         struct drm_crtc *crtc = encoder->crtc;
8977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8978
8979         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8980                       connector->base.id, connector->name,
8981                       encoder->base.id, encoder->name);
8982
8983         if (old->load_detect_temp) {
8984                 to_intel_connector(connector)->new_encoder = NULL;
8985                 intel_encoder->new_crtc = NULL;
8986                 intel_crtc->new_enabled = false;
8987                 intel_crtc->new_config = NULL;
8988                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8989
8990                 if (old->release_fb) {
8991                         drm_framebuffer_unregister_private(old->release_fb);
8992                         drm_framebuffer_unreference(old->release_fb);
8993                 }
8994
8995                 return;
8996         }
8997
8998         /* Switch crtc and encoder back off if necessary */
8999         if (old->dpms_mode != DRM_MODE_DPMS_ON)
9000                 connector->funcs->dpms(connector, old->dpms_mode);
9001 }
9002
9003 static int i9xx_pll_refclk(struct drm_device *dev,
9004                            const struct intel_crtc_state *pipe_config)
9005 {
9006         struct drm_i915_private *dev_priv = dev->dev_private;
9007         u32 dpll = pipe_config->dpll_hw_state.dpll;
9008
9009         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9010                 return dev_priv->vbt.lvds_ssc_freq;
9011         else if (HAS_PCH_SPLIT(dev))
9012                 return 120000;
9013         else if (!IS_GEN2(dev))
9014                 return 96000;
9015         else
9016                 return 48000;
9017 }
9018
9019 /* Returns the clock of the currently programmed mode of the given pipe. */
9020 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9021                                 struct intel_crtc_state *pipe_config)
9022 {
9023         struct drm_device *dev = crtc->base.dev;
9024         struct drm_i915_private *dev_priv = dev->dev_private;
9025         int pipe = pipe_config->cpu_transcoder;
9026         u32 dpll = pipe_config->dpll_hw_state.dpll;
9027         u32 fp;
9028         intel_clock_t clock;
9029         int refclk = i9xx_pll_refclk(dev, pipe_config);
9030
9031         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9032                 fp = pipe_config->dpll_hw_state.fp0;
9033         else
9034                 fp = pipe_config->dpll_hw_state.fp1;
9035
9036         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9037         if (IS_PINEVIEW(dev)) {
9038                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9039                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9040         } else {
9041                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9042                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9043         }
9044
9045         if (!IS_GEN2(dev)) {
9046                 if (IS_PINEVIEW(dev))
9047                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9048                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9049                 else
9050                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9051                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9052
9053                 switch (dpll & DPLL_MODE_MASK) {
9054                 case DPLLB_MODE_DAC_SERIAL:
9055                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9056                                 5 : 10;
9057                         break;
9058                 case DPLLB_MODE_LVDS:
9059                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9060                                 7 : 14;
9061                         break;
9062                 default:
9063                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9064                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9065                         return;
9066                 }
9067
9068                 if (IS_PINEVIEW(dev))
9069                         pineview_clock(refclk, &clock);
9070                 else
9071                         i9xx_clock(refclk, &clock);
9072         } else {
9073                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9074                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9075
9076                 if (is_lvds) {
9077                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9078                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9079
9080                         if (lvds & LVDS_CLKB_POWER_UP)
9081                                 clock.p2 = 7;
9082                         else
9083                                 clock.p2 = 14;
9084                 } else {
9085                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
9086                                 clock.p1 = 2;
9087                         else {
9088                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9089                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9090                         }
9091                         if (dpll & PLL_P2_DIVIDE_BY_4)
9092                                 clock.p2 = 4;
9093                         else
9094                                 clock.p2 = 2;
9095                 }
9096
9097                 i9xx_clock(refclk, &clock);
9098         }
9099
9100         /*
9101          * This value includes pixel_multiplier. We will use
9102          * port_clock to compute adjusted_mode.crtc_clock in the
9103          * encoder's get_config() function.
9104          */
9105         pipe_config->port_clock = clock.dot;
9106 }
9107
9108 int intel_dotclock_calculate(int link_freq,
9109                              const struct intel_link_m_n *m_n)
9110 {
9111         /*
9112          * The calculation for the data clock is:
9113          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9114          * But we want to avoid losing precison if possible, so:
9115          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9116          *
9117          * and the link clock is simpler:
9118          * link_clock = (m * link_clock) / n
9119          */
9120
9121         if (!m_n->link_n)
9122                 return 0;
9123
9124         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9125 }
9126
9127 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9128                                    struct intel_crtc_state *pipe_config)
9129 {
9130         struct drm_device *dev = crtc->base.dev;
9131
9132         /* read out port_clock from the DPLL */
9133         i9xx_crtc_clock_get(crtc, pipe_config);
9134
9135         /*
9136          * This value does not include pixel_multiplier.
9137          * We will check that port_clock and adjusted_mode.crtc_clock
9138          * agree once we know their relationship in the encoder's
9139          * get_config() function.
9140          */
9141         pipe_config->base.adjusted_mode.crtc_clock =
9142                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9143                                          &pipe_config->fdi_m_n);
9144 }
9145
9146 /** Returns the currently programmed mode of the given pipe. */
9147 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9148                                              struct drm_crtc *crtc)
9149 {
9150         struct drm_i915_private *dev_priv = dev->dev_private;
9151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9152         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9153         struct drm_display_mode *mode;
9154         struct intel_crtc_state pipe_config;
9155         int htot = I915_READ(HTOTAL(cpu_transcoder));
9156         int hsync = I915_READ(HSYNC(cpu_transcoder));
9157         int vtot = I915_READ(VTOTAL(cpu_transcoder));
9158         int vsync = I915_READ(VSYNC(cpu_transcoder));
9159         enum pipe pipe = intel_crtc->pipe;
9160
9161         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9162         if (!mode)
9163                 return NULL;
9164
9165         /*
9166          * Construct a pipe_config sufficient for getting the clock info
9167          * back out of crtc_clock_get.
9168          *
9169          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9170          * to use a real value here instead.
9171          */
9172         pipe_config.cpu_transcoder = (enum transcoder) pipe;
9173         pipe_config.pixel_multiplier = 1;
9174         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9175         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9176         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9177         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9178
9179         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9180         mode->hdisplay = (htot & 0xffff) + 1;
9181         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9182         mode->hsync_start = (hsync & 0xffff) + 1;
9183         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9184         mode->vdisplay = (vtot & 0xffff) + 1;
9185         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9186         mode->vsync_start = (vsync & 0xffff) + 1;
9187         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9188
9189         drm_mode_set_name(mode);
9190
9191         return mode;
9192 }
9193
9194 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9195 {
9196         struct drm_device *dev = crtc->dev;
9197         struct drm_i915_private *dev_priv = dev->dev_private;
9198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9199
9200         if (!HAS_GMCH_DISPLAY(dev))
9201                 return;
9202
9203         if (!dev_priv->lvds_downclock_avail)
9204                 return;
9205
9206         /*
9207          * Since this is called by a timer, we should never get here in
9208          * the manual case.
9209          */
9210         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9211                 int pipe = intel_crtc->pipe;
9212                 int dpll_reg = DPLL(pipe);
9213                 int dpll;
9214
9215                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9216
9217                 assert_panel_unlocked(dev_priv, pipe);
9218
9219                 dpll = I915_READ(dpll_reg);
9220                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9221                 I915_WRITE(dpll_reg, dpll);
9222                 intel_wait_for_vblank(dev, pipe);
9223                 dpll = I915_READ(dpll_reg);
9224                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9225                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9226         }
9227
9228 }
9229
9230 void intel_mark_busy(struct drm_device *dev)
9231 {
9232         struct drm_i915_private *dev_priv = dev->dev_private;
9233
9234         if (dev_priv->mm.busy)
9235                 return;
9236
9237         intel_runtime_pm_get(dev_priv);
9238         i915_update_gfx_val(dev_priv);
9239         dev_priv->mm.busy = true;
9240 }
9241
9242 void intel_mark_idle(struct drm_device *dev)
9243 {
9244         struct drm_i915_private *dev_priv = dev->dev_private;
9245         struct drm_crtc *crtc;
9246
9247         if (!dev_priv->mm.busy)
9248                 return;
9249
9250         dev_priv->mm.busy = false;
9251
9252         if (!i915.powersave)
9253                 goto out;
9254
9255         for_each_crtc(dev, crtc) {
9256                 if (!crtc->primary->fb)
9257                         continue;
9258
9259                 intel_decrease_pllclock(crtc);
9260         }
9261
9262         if (INTEL_INFO(dev)->gen >= 6)
9263                 gen6_rps_idle(dev->dev_private);
9264
9265 out:
9266         intel_runtime_pm_put(dev_priv);
9267 }
9268
9269 static void intel_crtc_set_state(struct intel_crtc *crtc,
9270                                  struct intel_crtc_state *crtc_state)
9271 {
9272         kfree(crtc->config);
9273         crtc->config = crtc_state;
9274         crtc->base.state = &crtc_state->base;
9275 }
9276
9277 static void intel_crtc_destroy(struct drm_crtc *crtc)
9278 {
9279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9280         struct drm_device *dev = crtc->dev;
9281         struct intel_unpin_work *work;
9282
9283         spin_lock_irq(&dev->event_lock);
9284         work = intel_crtc->unpin_work;
9285         intel_crtc->unpin_work = NULL;
9286         spin_unlock_irq(&dev->event_lock);
9287
9288         if (work) {
9289                 cancel_work_sync(&work->work);
9290                 kfree(work);
9291         }
9292
9293         intel_crtc_set_state(intel_crtc, NULL);
9294         drm_crtc_cleanup(crtc);
9295
9296         kfree(intel_crtc);
9297 }
9298
9299 static void intel_unpin_work_fn(struct work_struct *__work)
9300 {
9301         struct intel_unpin_work *work =
9302                 container_of(__work, struct intel_unpin_work, work);
9303         struct drm_device *dev = work->crtc->dev;
9304         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9305
9306         mutex_lock(&dev->struct_mutex);
9307         intel_unpin_fb_obj(intel_fb_obj(work->old_fb));
9308         drm_gem_object_unreference(&work->pending_flip_obj->base);
9309
9310         intel_fbc_update(dev);
9311
9312         if (work->flip_queued_req)
9313                 i915_gem_request_assign(&work->flip_queued_req, NULL);
9314         mutex_unlock(&dev->struct_mutex);
9315
9316         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9317         drm_framebuffer_unreference(work->old_fb);
9318
9319         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9320         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9321
9322         kfree(work);
9323 }
9324
9325 static void do_intel_finish_page_flip(struct drm_device *dev,
9326                                       struct drm_crtc *crtc)
9327 {
9328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9329         struct intel_unpin_work *work;
9330         unsigned long flags;
9331
9332         /* Ignore early vblank irqs */
9333         if (intel_crtc == NULL)
9334                 return;
9335
9336         /*
9337          * This is called both by irq handlers and the reset code (to complete
9338          * lost pageflips) so needs the full irqsave spinlocks.
9339          */
9340         spin_lock_irqsave(&dev->event_lock, flags);
9341         work = intel_crtc->unpin_work;
9342
9343         /* Ensure we don't miss a work->pending update ... */
9344         smp_rmb();
9345
9346         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9347                 spin_unlock_irqrestore(&dev->event_lock, flags);
9348                 return;
9349         }
9350
9351         page_flip_completed(intel_crtc);
9352
9353         spin_unlock_irqrestore(&dev->event_lock, flags);
9354 }
9355
9356 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9357 {
9358         struct drm_i915_private *dev_priv = dev->dev_private;
9359         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9360
9361         do_intel_finish_page_flip(dev, crtc);
9362 }
9363
9364 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9365 {
9366         struct drm_i915_private *dev_priv = dev->dev_private;
9367         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9368
9369         do_intel_finish_page_flip(dev, crtc);
9370 }
9371
9372 /* Is 'a' after or equal to 'b'? */
9373 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9374 {
9375         return !((a - b) & 0x80000000);
9376 }
9377
9378 static bool page_flip_finished(struct intel_crtc *crtc)
9379 {
9380         struct drm_device *dev = crtc->base.dev;
9381         struct drm_i915_private *dev_priv = dev->dev_private;
9382
9383         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9384             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9385                 return true;
9386
9387         /*
9388          * The relevant registers doen't exist on pre-ctg.
9389          * As the flip done interrupt doesn't trigger for mmio
9390          * flips on gmch platforms, a flip count check isn't
9391          * really needed there. But since ctg has the registers,
9392          * include it in the check anyway.
9393          */
9394         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9395                 return true;
9396
9397         /*
9398          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9399          * used the same base address. In that case the mmio flip might
9400          * have completed, but the CS hasn't even executed the flip yet.
9401          *
9402          * A flip count check isn't enough as the CS might have updated
9403          * the base address just after start of vblank, but before we
9404          * managed to process the interrupt. This means we'd complete the
9405          * CS flip too soon.
9406          *
9407          * Combining both checks should get us a good enough result. It may
9408          * still happen that the CS flip has been executed, but has not
9409          * yet actually completed. But in case the base address is the same
9410          * anyway, we don't really care.
9411          */
9412         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9413                 crtc->unpin_work->gtt_offset &&
9414                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9415                                     crtc->unpin_work->flip_count);
9416 }
9417
9418 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9419 {
9420         struct drm_i915_private *dev_priv = dev->dev_private;
9421         struct intel_crtc *intel_crtc =
9422                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9423         unsigned long flags;
9424
9425
9426         /*
9427          * This is called both by irq handlers and the reset code (to complete
9428          * lost pageflips) so needs the full irqsave spinlocks.
9429          *
9430          * NB: An MMIO update of the plane base pointer will also
9431          * generate a page-flip completion irq, i.e. every modeset
9432          * is also accompanied by a spurious intel_prepare_page_flip().
9433          */
9434         spin_lock_irqsave(&dev->event_lock, flags);
9435         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9436                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9437         spin_unlock_irqrestore(&dev->event_lock, flags);
9438 }
9439
9440 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9441 {
9442         /* Ensure that the work item is consistent when activating it ... */
9443         smp_wmb();
9444         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9445         /* and that it is marked active as soon as the irq could fire. */
9446         smp_wmb();
9447 }
9448
9449 static int intel_gen2_queue_flip(struct drm_device *dev,
9450                                  struct drm_crtc *crtc,
9451                                  struct drm_framebuffer *fb,
9452                                  struct drm_i915_gem_object *obj,
9453                                  struct intel_engine_cs *ring,
9454                                  uint32_t flags)
9455 {
9456         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9457         u32 flip_mask;
9458         int ret;
9459
9460         ret = intel_ring_begin(ring, 6);
9461         if (ret)
9462                 return ret;
9463
9464         /* Can't queue multiple flips, so wait for the previous
9465          * one to finish before executing the next.
9466          */
9467         if (intel_crtc->plane)
9468                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9469         else
9470                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9471         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9472         intel_ring_emit(ring, MI_NOOP);
9473         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9474                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9475         intel_ring_emit(ring, fb->pitches[0]);
9476         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9477         intel_ring_emit(ring, 0); /* aux display base address, unused */
9478
9479         intel_mark_page_flip_active(intel_crtc);
9480         __intel_ring_advance(ring);
9481         return 0;
9482 }
9483
9484 static int intel_gen3_queue_flip(struct drm_device *dev,
9485                                  struct drm_crtc *crtc,
9486                                  struct drm_framebuffer *fb,
9487                                  struct drm_i915_gem_object *obj,
9488                                  struct intel_engine_cs *ring,
9489                                  uint32_t flags)
9490 {
9491         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9492         u32 flip_mask;
9493         int ret;
9494
9495         ret = intel_ring_begin(ring, 6);
9496         if (ret)
9497                 return ret;
9498
9499         if (intel_crtc->plane)
9500                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9501         else
9502                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9503         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9504         intel_ring_emit(ring, MI_NOOP);
9505         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9506                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9507         intel_ring_emit(ring, fb->pitches[0]);
9508         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9509         intel_ring_emit(ring, MI_NOOP);
9510
9511         intel_mark_page_flip_active(intel_crtc);
9512         __intel_ring_advance(ring);
9513         return 0;
9514 }
9515
9516 static int intel_gen4_queue_flip(struct drm_device *dev,
9517                                  struct drm_crtc *crtc,
9518                                  struct drm_framebuffer *fb,
9519                                  struct drm_i915_gem_object *obj,
9520                                  struct intel_engine_cs *ring,
9521                                  uint32_t flags)
9522 {
9523         struct drm_i915_private *dev_priv = dev->dev_private;
9524         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9525         uint32_t pf, pipesrc;
9526         int ret;
9527
9528         ret = intel_ring_begin(ring, 4);
9529         if (ret)
9530                 return ret;
9531
9532         /* i965+ uses the linear or tiled offsets from the
9533          * Display Registers (which do not change across a page-flip)
9534          * so we need only reprogram the base address.
9535          */
9536         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9537                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9538         intel_ring_emit(ring, fb->pitches[0]);
9539         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9540                         obj->tiling_mode);
9541
9542         /* XXX Enabling the panel-fitter across page-flip is so far
9543          * untested on non-native modes, so ignore it for now.
9544          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9545          */
9546         pf = 0;
9547         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9548         intel_ring_emit(ring, pf | pipesrc);
9549
9550         intel_mark_page_flip_active(intel_crtc);
9551         __intel_ring_advance(ring);
9552         return 0;
9553 }
9554
9555 static int intel_gen6_queue_flip(struct drm_device *dev,
9556                                  struct drm_crtc *crtc,
9557                                  struct drm_framebuffer *fb,
9558                                  struct drm_i915_gem_object *obj,
9559                                  struct intel_engine_cs *ring,
9560                                  uint32_t flags)
9561 {
9562         struct drm_i915_private *dev_priv = dev->dev_private;
9563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9564         uint32_t pf, pipesrc;
9565         int ret;
9566
9567         ret = intel_ring_begin(ring, 4);
9568         if (ret)
9569                 return ret;
9570
9571         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9572                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9573         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9574         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9575
9576         /* Contrary to the suggestions in the documentation,
9577          * "Enable Panel Fitter" does not seem to be required when page
9578          * flipping with a non-native mode, and worse causes a normal
9579          * modeset to fail.
9580          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9581          */
9582         pf = 0;
9583         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9584         intel_ring_emit(ring, pf | pipesrc);
9585
9586         intel_mark_page_flip_active(intel_crtc);
9587         __intel_ring_advance(ring);
9588         return 0;
9589 }
9590
9591 static int intel_gen7_queue_flip(struct drm_device *dev,
9592                                  struct drm_crtc *crtc,
9593                                  struct drm_framebuffer *fb,
9594                                  struct drm_i915_gem_object *obj,
9595                                  struct intel_engine_cs *ring,
9596                                  uint32_t flags)
9597 {
9598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9599         uint32_t plane_bit = 0;
9600         int len, ret;
9601
9602         switch (intel_crtc->plane) {
9603         case PLANE_A:
9604                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9605                 break;
9606         case PLANE_B:
9607                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9608                 break;
9609         case PLANE_C:
9610                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9611                 break;
9612         default:
9613                 WARN_ONCE(1, "unknown plane in flip command\n");
9614                 return -ENODEV;
9615         }
9616
9617         len = 4;
9618         if (ring->id == RCS) {
9619                 len += 6;
9620                 /*
9621                  * On Gen 8, SRM is now taking an extra dword to accommodate
9622                  * 48bits addresses, and we need a NOOP for the batch size to
9623                  * stay even.
9624                  */
9625                 if (IS_GEN8(dev))
9626                         len += 2;
9627         }
9628
9629         /*
9630          * BSpec MI_DISPLAY_FLIP for IVB:
9631          * "The full packet must be contained within the same cache line."
9632          *
9633          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9634          * cacheline, if we ever start emitting more commands before
9635          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9636          * then do the cacheline alignment, and finally emit the
9637          * MI_DISPLAY_FLIP.
9638          */
9639         ret = intel_ring_cacheline_align(ring);
9640         if (ret)
9641                 return ret;
9642
9643         ret = intel_ring_begin(ring, len);
9644         if (ret)
9645                 return ret;
9646
9647         /* Unmask the flip-done completion message. Note that the bspec says that
9648          * we should do this for both the BCS and RCS, and that we must not unmask
9649          * more than one flip event at any time (or ensure that one flip message
9650          * can be sent by waiting for flip-done prior to queueing new flips).
9651          * Experimentation says that BCS works despite DERRMR masking all
9652          * flip-done completion events and that unmasking all planes at once
9653          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9654          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9655          */
9656         if (ring->id == RCS) {
9657                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9658                 intel_ring_emit(ring, DERRMR);
9659                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9660                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9661                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9662                 if (IS_GEN8(dev))
9663                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9664                                               MI_SRM_LRM_GLOBAL_GTT);
9665                 else
9666                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9667                                               MI_SRM_LRM_GLOBAL_GTT);
9668                 intel_ring_emit(ring, DERRMR);
9669                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9670                 if (IS_GEN8(dev)) {
9671                         intel_ring_emit(ring, 0);
9672                         intel_ring_emit(ring, MI_NOOP);
9673                 }
9674         }
9675
9676         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9677         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9678         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9679         intel_ring_emit(ring, (MI_NOOP));
9680
9681         intel_mark_page_flip_active(intel_crtc);
9682         __intel_ring_advance(ring);
9683         return 0;
9684 }
9685
9686 static bool use_mmio_flip(struct intel_engine_cs *ring,
9687                           struct drm_i915_gem_object *obj)
9688 {
9689         /*
9690          * This is not being used for older platforms, because
9691          * non-availability of flip done interrupt forces us to use
9692          * CS flips. Older platforms derive flip done using some clever
9693          * tricks involving the flip_pending status bits and vblank irqs.
9694          * So using MMIO flips there would disrupt this mechanism.
9695          */
9696
9697         if (ring == NULL)
9698                 return true;
9699
9700         if (INTEL_INFO(ring->dev)->gen < 5)
9701                 return false;
9702
9703         if (i915.use_mmio_flip < 0)
9704                 return false;
9705         else if (i915.use_mmio_flip > 0)
9706                 return true;
9707         else if (i915.enable_execlists)
9708                 return true;
9709         else
9710                 return ring != i915_gem_request_get_ring(obj->last_read_req);
9711 }
9712
9713 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9714 {
9715         struct drm_device *dev = intel_crtc->base.dev;
9716         struct drm_i915_private *dev_priv = dev->dev_private;
9717         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9718         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9719         struct drm_i915_gem_object *obj = intel_fb->obj;
9720         const enum pipe pipe = intel_crtc->pipe;
9721         u32 ctl, stride;
9722
9723         ctl = I915_READ(PLANE_CTL(pipe, 0));
9724         ctl &= ~PLANE_CTL_TILED_MASK;
9725         if (obj->tiling_mode == I915_TILING_X)
9726                 ctl |= PLANE_CTL_TILED_X;
9727
9728         /*
9729          * The stride is either expressed as a multiple of 64 bytes chunks for
9730          * linear buffers or in number of tiles for tiled buffers.
9731          */
9732         stride = fb->pitches[0] >> 6;
9733         if (obj->tiling_mode == I915_TILING_X)
9734                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9735
9736         /*
9737          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9738          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9739          */
9740         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9741         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9742
9743         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9744         POSTING_READ(PLANE_SURF(pipe, 0));
9745 }
9746
9747 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9748 {
9749         struct drm_device *dev = intel_crtc->base.dev;
9750         struct drm_i915_private *dev_priv = dev->dev_private;
9751         struct intel_framebuffer *intel_fb =
9752                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9753         struct drm_i915_gem_object *obj = intel_fb->obj;
9754         u32 dspcntr;
9755         u32 reg;
9756
9757         reg = DSPCNTR(intel_crtc->plane);
9758         dspcntr = I915_READ(reg);
9759
9760         if (obj->tiling_mode != I915_TILING_NONE)
9761                 dspcntr |= DISPPLANE_TILED;
9762         else
9763                 dspcntr &= ~DISPPLANE_TILED;
9764
9765         I915_WRITE(reg, dspcntr);
9766
9767         I915_WRITE(DSPSURF(intel_crtc->plane),
9768                    intel_crtc->unpin_work->gtt_offset);
9769         POSTING_READ(DSPSURF(intel_crtc->plane));
9770
9771 }
9772
9773 /*
9774  * XXX: This is the temporary way to update the plane registers until we get
9775  * around to using the usual plane update functions for MMIO flips
9776  */
9777 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9778 {
9779         struct drm_device *dev = intel_crtc->base.dev;
9780         bool atomic_update;
9781         u32 start_vbl_count;
9782
9783         intel_mark_page_flip_active(intel_crtc);
9784
9785         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9786
9787         if (INTEL_INFO(dev)->gen >= 9)
9788                 skl_do_mmio_flip(intel_crtc);
9789         else
9790                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9791                 ilk_do_mmio_flip(intel_crtc);
9792
9793         if (atomic_update)
9794                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9795 }
9796
9797 static void intel_mmio_flip_work_func(struct work_struct *work)
9798 {
9799         struct intel_crtc *crtc =
9800                 container_of(work, struct intel_crtc, mmio_flip.work);
9801         struct intel_mmio_flip *mmio_flip;
9802
9803         mmio_flip = &crtc->mmio_flip;
9804         if (mmio_flip->req)
9805                 WARN_ON(__i915_wait_request(mmio_flip->req,
9806                                             crtc->reset_counter,
9807                                             false, NULL, NULL) != 0);
9808
9809         intel_do_mmio_flip(crtc);
9810         if (mmio_flip->req) {
9811                 mutex_lock(&crtc->base.dev->struct_mutex);
9812                 i915_gem_request_assign(&mmio_flip->req, NULL);
9813                 mutex_unlock(&crtc->base.dev->struct_mutex);
9814         }
9815 }
9816
9817 static int intel_queue_mmio_flip(struct drm_device *dev,
9818                                  struct drm_crtc *crtc,
9819                                  struct drm_framebuffer *fb,
9820                                  struct drm_i915_gem_object *obj,
9821                                  struct intel_engine_cs *ring,
9822                                  uint32_t flags)
9823 {
9824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9825
9826         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9827                                 obj->last_write_req);
9828
9829         schedule_work(&intel_crtc->mmio_flip.work);
9830
9831         return 0;
9832 }
9833
9834 static int intel_default_queue_flip(struct drm_device *dev,
9835                                     struct drm_crtc *crtc,
9836                                     struct drm_framebuffer *fb,
9837                                     struct drm_i915_gem_object *obj,
9838                                     struct intel_engine_cs *ring,
9839                                     uint32_t flags)
9840 {
9841         return -ENODEV;
9842 }
9843
9844 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9845                                          struct drm_crtc *crtc)
9846 {
9847         struct drm_i915_private *dev_priv = dev->dev_private;
9848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9849         struct intel_unpin_work *work = intel_crtc->unpin_work;
9850         u32 addr;
9851
9852         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9853                 return true;
9854
9855         if (!work->enable_stall_check)
9856                 return false;
9857
9858         if (work->flip_ready_vblank == 0) {
9859                 if (work->flip_queued_req &&
9860                     !i915_gem_request_completed(work->flip_queued_req, true))
9861                         return false;
9862
9863                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
9864         }
9865
9866         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
9867                 return false;
9868
9869         /* Potential stall - if we see that the flip has happened,
9870          * assume a missed interrupt. */
9871         if (INTEL_INFO(dev)->gen >= 4)
9872                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9873         else
9874                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9875
9876         /* There is a potential issue here with a false positive after a flip
9877          * to the same address. We could address this by checking for a
9878          * non-incrementing frame counter.
9879          */
9880         return addr == work->gtt_offset;
9881 }
9882
9883 void intel_check_page_flip(struct drm_device *dev, int pipe)
9884 {
9885         struct drm_i915_private *dev_priv = dev->dev_private;
9886         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9888
9889         WARN_ON(!in_irq());
9890
9891         if (crtc == NULL)
9892                 return;
9893
9894         spin_lock(&dev->event_lock);
9895         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9896                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9897                          intel_crtc->unpin_work->flip_queued_vblank,
9898                          drm_vblank_count(dev, pipe));
9899                 page_flip_completed(intel_crtc);
9900         }
9901         spin_unlock(&dev->event_lock);
9902 }
9903
9904 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9905                                 struct drm_framebuffer *fb,
9906                                 struct drm_pending_vblank_event *event,
9907                                 uint32_t page_flip_flags)
9908 {
9909         struct drm_device *dev = crtc->dev;
9910         struct drm_i915_private *dev_priv = dev->dev_private;
9911         struct drm_framebuffer *old_fb = crtc->primary->fb;
9912         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9913         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9914         struct drm_plane *primary = crtc->primary;
9915         enum pipe pipe = intel_crtc->pipe;
9916         struct intel_unpin_work *work;
9917         struct intel_engine_cs *ring;
9918         int ret;
9919
9920         /*
9921          * drm_mode_page_flip_ioctl() should already catch this, but double
9922          * check to be safe.  In the future we may enable pageflipping from
9923          * a disabled primary plane.
9924          */
9925         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9926                 return -EBUSY;
9927
9928         /* Can't change pixel format via MI display flips. */
9929         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9930                 return -EINVAL;
9931
9932         /*
9933          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9934          * Note that pitch changes could also affect these register.
9935          */
9936         if (INTEL_INFO(dev)->gen > 3 &&
9937             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9938              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9939                 return -EINVAL;
9940
9941         if (i915_terminally_wedged(&dev_priv->gpu_error))
9942                 goto out_hang;
9943
9944         work = kzalloc(sizeof(*work), GFP_KERNEL);
9945         if (work == NULL)
9946                 return -ENOMEM;
9947
9948         work->event = event;
9949         work->crtc = crtc;
9950         work->old_fb = old_fb;
9951         INIT_WORK(&work->work, intel_unpin_work_fn);
9952
9953         ret = drm_crtc_vblank_get(crtc);
9954         if (ret)
9955                 goto free_work;
9956
9957         /* We borrow the event spin lock for protecting unpin_work */
9958         spin_lock_irq(&dev->event_lock);
9959         if (intel_crtc->unpin_work) {
9960                 /* Before declaring the flip queue wedged, check if
9961                  * the hardware completed the operation behind our backs.
9962                  */
9963                 if (__intel_pageflip_stall_check(dev, crtc)) {
9964                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9965                         page_flip_completed(intel_crtc);
9966                 } else {
9967                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9968                         spin_unlock_irq(&dev->event_lock);
9969
9970                         drm_crtc_vblank_put(crtc);
9971                         kfree(work);
9972                         return -EBUSY;
9973                 }
9974         }
9975         intel_crtc->unpin_work = work;
9976         spin_unlock_irq(&dev->event_lock);
9977
9978         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9979                 flush_workqueue(dev_priv->wq);
9980
9981         /* Reference the objects for the scheduled work. */
9982         drm_framebuffer_reference(work->old_fb);
9983         drm_gem_object_reference(&obj->base);
9984
9985         crtc->primary->fb = fb;
9986         update_state_fb(crtc->primary);
9987
9988         work->pending_flip_obj = obj;
9989
9990         ret = i915_mutex_lock_interruptible(dev);
9991         if (ret)
9992                 goto cleanup;
9993
9994         atomic_inc(&intel_crtc->unpin_work_count);
9995         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9996
9997         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9998                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9999
10000         if (IS_VALLEYVIEW(dev)) {
10001                 ring = &dev_priv->ring[BCS];
10002                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10003                         /* vlv: DISPLAY_FLIP fails to change tiling */
10004                         ring = NULL;
10005         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10006                 ring = &dev_priv->ring[BCS];
10007         } else if (INTEL_INFO(dev)->gen >= 7) {
10008                 ring = i915_gem_request_get_ring(obj->last_read_req);
10009                 if (ring == NULL || ring->id != RCS)
10010                         ring = &dev_priv->ring[BCS];
10011         } else {
10012                 ring = &dev_priv->ring[RCS];
10013         }
10014
10015         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
10016         if (ret)
10017                 goto cleanup_pending;
10018
10019         work->gtt_offset =
10020                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10021
10022         if (use_mmio_flip(ring, obj)) {
10023                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10024                                             page_flip_flags);
10025                 if (ret)
10026                         goto cleanup_unpin;
10027
10028                 i915_gem_request_assign(&work->flip_queued_req,
10029                                         obj->last_write_req);
10030         } else {
10031                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10032                                                    page_flip_flags);
10033                 if (ret)
10034                         goto cleanup_unpin;
10035
10036                 i915_gem_request_assign(&work->flip_queued_req,
10037                                         intel_ring_get_request(ring));
10038         }
10039
10040         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10041         work->enable_stall_check = true;
10042
10043         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10044                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10045
10046         intel_fbc_disable(dev);
10047         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10048         mutex_unlock(&dev->struct_mutex);
10049
10050         trace_i915_flip_request(intel_crtc->plane, obj);
10051
10052         return 0;
10053
10054 cleanup_unpin:
10055         intel_unpin_fb_obj(obj);
10056 cleanup_pending:
10057         atomic_dec(&intel_crtc->unpin_work_count);
10058         mutex_unlock(&dev->struct_mutex);
10059 cleanup:
10060         crtc->primary->fb = old_fb;
10061         update_state_fb(crtc->primary);
10062
10063         drm_gem_object_unreference_unlocked(&obj->base);
10064         drm_framebuffer_unreference(work->old_fb);
10065
10066         spin_lock_irq(&dev->event_lock);
10067         intel_crtc->unpin_work = NULL;
10068         spin_unlock_irq(&dev->event_lock);
10069
10070         drm_crtc_vblank_put(crtc);
10071 free_work:
10072         kfree(work);
10073
10074         if (ret == -EIO) {
10075 out_hang:
10076                 ret = intel_plane_restore(primary);
10077                 if (ret == 0 && event) {
10078                         spin_lock_irq(&dev->event_lock);
10079                         drm_send_vblank_event(dev, pipe, event);
10080                         spin_unlock_irq(&dev->event_lock);
10081                 }
10082         }
10083         return ret;
10084 }
10085
10086 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10087         .mode_set_base_atomic = intel_pipe_set_base_atomic,
10088         .load_lut = intel_crtc_load_lut,
10089         .atomic_begin = intel_begin_crtc_commit,
10090         .atomic_flush = intel_finish_crtc_commit,
10091 };
10092
10093 /**
10094  * intel_modeset_update_staged_output_state
10095  *
10096  * Updates the staged output configuration state, e.g. after we've read out the
10097  * current hw state.
10098  */
10099 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10100 {
10101         struct intel_crtc *crtc;
10102         struct intel_encoder *encoder;
10103         struct intel_connector *connector;
10104
10105         for_each_intel_connector(dev, connector) {
10106                 connector->new_encoder =
10107                         to_intel_encoder(connector->base.encoder);
10108         }
10109
10110         for_each_intel_encoder(dev, encoder) {
10111                 encoder->new_crtc =
10112                         to_intel_crtc(encoder->base.crtc);
10113         }
10114
10115         for_each_intel_crtc(dev, crtc) {
10116                 crtc->new_enabled = crtc->base.state->enable;
10117
10118                 if (crtc->new_enabled)
10119                         crtc->new_config = crtc->config;
10120                 else
10121                         crtc->new_config = NULL;
10122         }
10123 }
10124
10125 /**
10126  * intel_modeset_commit_output_state
10127  *
10128  * This function copies the stage display pipe configuration to the real one.
10129  */
10130 static void intel_modeset_commit_output_state(struct drm_device *dev)
10131 {
10132         struct intel_crtc *crtc;
10133         struct intel_encoder *encoder;
10134         struct intel_connector *connector;
10135
10136         for_each_intel_connector(dev, connector) {
10137                 connector->base.encoder = &connector->new_encoder->base;
10138         }
10139
10140         for_each_intel_encoder(dev, encoder) {
10141                 encoder->base.crtc = &encoder->new_crtc->base;
10142         }
10143
10144         for_each_intel_crtc(dev, crtc) {
10145                 crtc->base.state->enable = crtc->new_enabled;
10146                 crtc->base.enabled = crtc->new_enabled;
10147         }
10148 }
10149
10150 static void
10151 connected_sink_compute_bpp(struct intel_connector *connector,
10152                            struct intel_crtc_state *pipe_config)
10153 {
10154         int bpp = pipe_config->pipe_bpp;
10155
10156         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10157                 connector->base.base.id,
10158                 connector->base.name);
10159
10160         /* Don't use an invalid EDID bpc value */
10161         if (connector->base.display_info.bpc &&
10162             connector->base.display_info.bpc * 3 < bpp) {
10163                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10164                               bpp, connector->base.display_info.bpc*3);
10165                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10166         }
10167
10168         /* Clamp bpp to 8 on screens without EDID 1.4 */
10169         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10170                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10171                               bpp);
10172                 pipe_config->pipe_bpp = 24;
10173         }
10174 }
10175
10176 static int
10177 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10178                           struct drm_framebuffer *fb,
10179                           struct intel_crtc_state *pipe_config)
10180 {
10181         struct drm_device *dev = crtc->base.dev;
10182         struct intel_connector *connector;
10183         int bpp;
10184
10185         switch (fb->pixel_format) {
10186         case DRM_FORMAT_C8:
10187                 bpp = 8*3; /* since we go through a colormap */
10188                 break;
10189         case DRM_FORMAT_XRGB1555:
10190         case DRM_FORMAT_ARGB1555:
10191                 /* checked in intel_framebuffer_init already */
10192                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10193                         return -EINVAL;
10194         case DRM_FORMAT_RGB565:
10195                 bpp = 6*3; /* min is 18bpp */
10196                 break;
10197         case DRM_FORMAT_XBGR8888:
10198         case DRM_FORMAT_ABGR8888:
10199                 /* checked in intel_framebuffer_init already */
10200                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10201                         return -EINVAL;
10202         case DRM_FORMAT_XRGB8888:
10203         case DRM_FORMAT_ARGB8888:
10204                 bpp = 8*3;
10205                 break;
10206         case DRM_FORMAT_XRGB2101010:
10207         case DRM_FORMAT_ARGB2101010:
10208         case DRM_FORMAT_XBGR2101010:
10209         case DRM_FORMAT_ABGR2101010:
10210                 /* checked in intel_framebuffer_init already */
10211                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10212                         return -EINVAL;
10213                 bpp = 10*3;
10214                 break;
10215         /* TODO: gen4+ supports 16 bpc floating point, too. */
10216         default:
10217                 DRM_DEBUG_KMS("unsupported depth\n");
10218                 return -EINVAL;
10219         }
10220
10221         pipe_config->pipe_bpp = bpp;
10222
10223         /* Clamp display bpp to EDID value */
10224         for_each_intel_connector(dev, connector) {
10225                 if (!connector->new_encoder ||
10226                     connector->new_encoder->new_crtc != crtc)
10227                         continue;
10228
10229                 connected_sink_compute_bpp(connector, pipe_config);
10230         }
10231
10232         return bpp;
10233 }
10234
10235 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10236 {
10237         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10238                         "type: 0x%x flags: 0x%x\n",
10239                 mode->crtc_clock,
10240                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10241                 mode->crtc_hsync_end, mode->crtc_htotal,
10242                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10243                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10244 }
10245
10246 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10247                                    struct intel_crtc_state *pipe_config,
10248                                    const char *context)
10249 {
10250         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10251                       context, pipe_name(crtc->pipe));
10252
10253         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10254         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10255                       pipe_config->pipe_bpp, pipe_config->dither);
10256         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10257                       pipe_config->has_pch_encoder,
10258                       pipe_config->fdi_lanes,
10259                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10260                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10261                       pipe_config->fdi_m_n.tu);
10262         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10263                       pipe_config->has_dp_encoder,
10264                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10265                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10266                       pipe_config->dp_m_n.tu);
10267
10268         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10269                       pipe_config->has_dp_encoder,
10270                       pipe_config->dp_m2_n2.gmch_m,
10271                       pipe_config->dp_m2_n2.gmch_n,
10272                       pipe_config->dp_m2_n2.link_m,
10273                       pipe_config->dp_m2_n2.link_n,
10274                       pipe_config->dp_m2_n2.tu);
10275
10276         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10277                       pipe_config->has_audio,
10278                       pipe_config->has_infoframe);
10279
10280         DRM_DEBUG_KMS("requested mode:\n");
10281         drm_mode_debug_printmodeline(&pipe_config->base.mode);
10282         DRM_DEBUG_KMS("adjusted mode:\n");
10283         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10284         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10285         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10286         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10287                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10288         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10289                       pipe_config->gmch_pfit.control,
10290                       pipe_config->gmch_pfit.pgm_ratios,
10291                       pipe_config->gmch_pfit.lvds_border_bits);
10292         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10293                       pipe_config->pch_pfit.pos,
10294                       pipe_config->pch_pfit.size,
10295                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10296         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10297         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10298 }
10299
10300 static bool encoders_cloneable(const struct intel_encoder *a,
10301                                const struct intel_encoder *b)
10302 {
10303         /* masks could be asymmetric, so check both ways */
10304         return a == b || (a->cloneable & (1 << b->type) &&
10305                           b->cloneable & (1 << a->type));
10306 }
10307
10308 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10309                                          struct intel_encoder *encoder)
10310 {
10311         struct drm_device *dev = crtc->base.dev;
10312         struct intel_encoder *source_encoder;
10313
10314         for_each_intel_encoder(dev, source_encoder) {
10315                 if (source_encoder->new_crtc != crtc)
10316                         continue;
10317
10318                 if (!encoders_cloneable(encoder, source_encoder))
10319                         return false;
10320         }
10321
10322         return true;
10323 }
10324
10325 static bool check_encoder_cloning(struct intel_crtc *crtc)
10326 {
10327         struct drm_device *dev = crtc->base.dev;
10328         struct intel_encoder *encoder;
10329
10330         for_each_intel_encoder(dev, encoder) {
10331                 if (encoder->new_crtc != crtc)
10332                         continue;
10333
10334                 if (!check_single_encoder_cloning(crtc, encoder))
10335                         return false;
10336         }
10337
10338         return true;
10339 }
10340
10341 static bool check_digital_port_conflicts(struct drm_device *dev)
10342 {
10343         struct intel_connector *connector;
10344         unsigned int used_ports = 0;
10345
10346         /*
10347          * Walk the connector list instead of the encoder
10348          * list to detect the problem on ddi platforms
10349          * where there's just one encoder per digital port.
10350          */
10351         for_each_intel_connector(dev, connector) {
10352                 struct intel_encoder *encoder = connector->new_encoder;
10353
10354                 if (!encoder)
10355                         continue;
10356
10357                 WARN_ON(!encoder->new_crtc);
10358
10359                 switch (encoder->type) {
10360                         unsigned int port_mask;
10361                 case INTEL_OUTPUT_UNKNOWN:
10362                         if (WARN_ON(!HAS_DDI(dev)))
10363                                 break;
10364                 case INTEL_OUTPUT_DISPLAYPORT:
10365                 case INTEL_OUTPUT_HDMI:
10366                 case INTEL_OUTPUT_EDP:
10367                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10368
10369                         /* the same port mustn't appear more than once */
10370                         if (used_ports & port_mask)
10371                                 return false;
10372
10373                         used_ports |= port_mask;
10374                 default:
10375                         break;
10376                 }
10377         }
10378
10379         return true;
10380 }
10381
10382 static struct intel_crtc_state *
10383 intel_modeset_pipe_config(struct drm_crtc *crtc,
10384                           struct drm_framebuffer *fb,
10385                           struct drm_display_mode *mode)
10386 {
10387         struct drm_device *dev = crtc->dev;
10388         struct intel_encoder *encoder;
10389         struct intel_crtc_state *pipe_config;
10390         int plane_bpp, ret = -EINVAL;
10391         bool retry = true;
10392
10393         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10394                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10395                 return ERR_PTR(-EINVAL);
10396         }
10397
10398         if (!check_digital_port_conflicts(dev)) {
10399                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10400                 return ERR_PTR(-EINVAL);
10401         }
10402
10403         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10404         if (!pipe_config)
10405                 return ERR_PTR(-ENOMEM);
10406
10407         pipe_config->base.crtc = crtc;
10408         drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10409         drm_mode_copy(&pipe_config->base.mode, mode);
10410
10411         pipe_config->cpu_transcoder =
10412                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10413         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10414
10415         /*
10416          * Sanitize sync polarity flags based on requested ones. If neither
10417          * positive or negative polarity is requested, treat this as meaning
10418          * negative polarity.
10419          */
10420         if (!(pipe_config->base.adjusted_mode.flags &
10421               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10422                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10423
10424         if (!(pipe_config->base.adjusted_mode.flags &
10425               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10426                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10427
10428         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10429          * plane pixel format and any sink constraints into account. Returns the
10430          * source plane bpp so that dithering can be selected on mismatches
10431          * after encoders and crtc also have had their say. */
10432         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10433                                               fb, pipe_config);
10434         if (plane_bpp < 0)
10435                 goto fail;
10436
10437         /*
10438          * Determine the real pipe dimensions. Note that stereo modes can
10439          * increase the actual pipe size due to the frame doubling and
10440          * insertion of additional space for blanks between the frame. This
10441          * is stored in the crtc timings. We use the requested mode to do this
10442          * computation to clearly distinguish it from the adjusted mode, which
10443          * can be changed by the connectors in the below retry loop.
10444          */
10445         drm_crtc_get_hv_timing(&pipe_config->base.mode,
10446                                &pipe_config->pipe_src_w,
10447                                &pipe_config->pipe_src_h);
10448
10449 encoder_retry:
10450         /* Ensure the port clock defaults are reset when retrying. */
10451         pipe_config->port_clock = 0;
10452         pipe_config->pixel_multiplier = 1;
10453
10454         /* Fill in default crtc timings, allow encoders to overwrite them. */
10455         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10456                               CRTC_STEREO_DOUBLE);
10457
10458         /* Pass our mode to the connectors and the CRTC to give them a chance to
10459          * adjust it according to limitations or connector properties, and also
10460          * a chance to reject the mode entirely.
10461          */
10462         for_each_intel_encoder(dev, encoder) {
10463
10464                 if (&encoder->new_crtc->base != crtc)
10465                         continue;
10466
10467                 if (!(encoder->compute_config(encoder, pipe_config))) {
10468                         DRM_DEBUG_KMS("Encoder config failure\n");
10469                         goto fail;
10470                 }
10471         }
10472
10473         /* Set default port clock if not overwritten by the encoder. Needs to be
10474          * done afterwards in case the encoder adjusts the mode. */
10475         if (!pipe_config->port_clock)
10476                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10477                         * pipe_config->pixel_multiplier;
10478
10479         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10480         if (ret < 0) {
10481                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10482                 goto fail;
10483         }
10484
10485         if (ret == RETRY) {
10486                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10487                         ret = -EINVAL;
10488                         goto fail;
10489                 }
10490
10491                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10492                 retry = false;
10493                 goto encoder_retry;
10494         }
10495
10496         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10497         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10498                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10499
10500         return pipe_config;
10501 fail:
10502         kfree(pipe_config);
10503         return ERR_PTR(ret);
10504 }
10505
10506 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10507  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10508 static void
10509 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10510                              unsigned *prepare_pipes, unsigned *disable_pipes)
10511 {
10512         struct intel_crtc *intel_crtc;
10513         struct drm_device *dev = crtc->dev;
10514         struct intel_encoder *encoder;
10515         struct intel_connector *connector;
10516         struct drm_crtc *tmp_crtc;
10517
10518         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10519
10520         /* Check which crtcs have changed outputs connected to them, these need
10521          * to be part of the prepare_pipes mask. We don't (yet) support global
10522          * modeset across multiple crtcs, so modeset_pipes will only have one
10523          * bit set at most. */
10524         for_each_intel_connector(dev, connector) {
10525                 if (connector->base.encoder == &connector->new_encoder->base)
10526                         continue;
10527
10528                 if (connector->base.encoder) {
10529                         tmp_crtc = connector->base.encoder->crtc;
10530
10531                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10532                 }
10533
10534                 if (connector->new_encoder)
10535                         *prepare_pipes |=
10536                                 1 << connector->new_encoder->new_crtc->pipe;
10537         }
10538
10539         for_each_intel_encoder(dev, encoder) {
10540                 if (encoder->base.crtc == &encoder->new_crtc->base)
10541                         continue;
10542
10543                 if (encoder->base.crtc) {
10544                         tmp_crtc = encoder->base.crtc;
10545
10546                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10547                 }
10548
10549                 if (encoder->new_crtc)
10550                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10551         }
10552
10553         /* Check for pipes that will be enabled/disabled ... */
10554         for_each_intel_crtc(dev, intel_crtc) {
10555                 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10556                         continue;
10557
10558                 if (!intel_crtc->new_enabled)
10559                         *disable_pipes |= 1 << intel_crtc->pipe;
10560                 else
10561                         *prepare_pipes |= 1 << intel_crtc->pipe;
10562         }
10563
10564
10565         /* set_mode is also used to update properties on life display pipes. */
10566         intel_crtc = to_intel_crtc(crtc);
10567         if (intel_crtc->new_enabled)
10568                 *prepare_pipes |= 1 << intel_crtc->pipe;
10569
10570         /*
10571          * For simplicity do a full modeset on any pipe where the output routing
10572          * changed. We could be more clever, but that would require us to be
10573          * more careful with calling the relevant encoder->mode_set functions.
10574          */
10575         if (*prepare_pipes)
10576                 *modeset_pipes = *prepare_pipes;
10577
10578         /* ... and mask these out. */
10579         *modeset_pipes &= ~(*disable_pipes);
10580         *prepare_pipes &= ~(*disable_pipes);
10581
10582         /*
10583          * HACK: We don't (yet) fully support global modesets. intel_set_config
10584          * obies this rule, but the modeset restore mode of
10585          * intel_modeset_setup_hw_state does not.
10586          */
10587         *modeset_pipes &= 1 << intel_crtc->pipe;
10588         *prepare_pipes &= 1 << intel_crtc->pipe;
10589
10590         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10591                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10592 }
10593
10594 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10595 {
10596         struct drm_encoder *encoder;
10597         struct drm_device *dev = crtc->dev;
10598
10599         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10600                 if (encoder->crtc == crtc)
10601                         return true;
10602
10603         return false;
10604 }
10605
10606 static void
10607 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10608 {
10609         struct drm_i915_private *dev_priv = dev->dev_private;
10610         struct intel_encoder *intel_encoder;
10611         struct intel_crtc *intel_crtc;
10612         struct drm_connector *connector;
10613
10614         intel_shared_dpll_commit(dev_priv);
10615
10616         for_each_intel_encoder(dev, intel_encoder) {
10617                 if (!intel_encoder->base.crtc)
10618                         continue;
10619
10620                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10621
10622                 if (prepare_pipes & (1 << intel_crtc->pipe))
10623                         intel_encoder->connectors_active = false;
10624         }
10625
10626         intel_modeset_commit_output_state(dev);
10627
10628         /* Double check state. */
10629         for_each_intel_crtc(dev, intel_crtc) {
10630                 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10631                 WARN_ON(intel_crtc->new_config &&
10632                         intel_crtc->new_config != intel_crtc->config);
10633                 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10634         }
10635
10636         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10637                 if (!connector->encoder || !connector->encoder->crtc)
10638                         continue;
10639
10640                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10641
10642                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10643                         struct drm_property *dpms_property =
10644                                 dev->mode_config.dpms_property;
10645
10646                         connector->dpms = DRM_MODE_DPMS_ON;
10647                         drm_object_property_set_value(&connector->base,
10648                                                          dpms_property,
10649                                                          DRM_MODE_DPMS_ON);
10650
10651                         intel_encoder = to_intel_encoder(connector->encoder);
10652                         intel_encoder->connectors_active = true;
10653                 }
10654         }
10655
10656 }
10657
10658 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10659 {
10660         int diff;
10661
10662         if (clock1 == clock2)
10663                 return true;
10664
10665         if (!clock1 || !clock2)
10666                 return false;
10667
10668         diff = abs(clock1 - clock2);
10669
10670         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10671                 return true;
10672
10673         return false;
10674 }
10675
10676 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10677         list_for_each_entry((intel_crtc), \
10678                             &(dev)->mode_config.crtc_list, \
10679                             base.head) \
10680                 if (mask & (1 <<(intel_crtc)->pipe))
10681
10682 static bool
10683 intel_pipe_config_compare(struct drm_device *dev,
10684                           struct intel_crtc_state *current_config,
10685                           struct intel_crtc_state *pipe_config)
10686 {
10687 #define PIPE_CONF_CHECK_X(name) \
10688         if (current_config->name != pipe_config->name) { \
10689                 DRM_ERROR("mismatch in " #name " " \
10690                           "(expected 0x%08x, found 0x%08x)\n", \
10691                           current_config->name, \
10692                           pipe_config->name); \
10693                 return false; \
10694         }
10695
10696 #define PIPE_CONF_CHECK_I(name) \
10697         if (current_config->name != pipe_config->name) { \
10698                 DRM_ERROR("mismatch in " #name " " \
10699                           "(expected %i, found %i)\n", \
10700                           current_config->name, \
10701                           pipe_config->name); \
10702                 return false; \
10703         }
10704
10705 /* This is required for BDW+ where there is only one set of registers for
10706  * switching between high and low RR.
10707  * This macro can be used whenever a comparison has to be made between one
10708  * hw state and multiple sw state variables.
10709  */
10710 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10711         if ((current_config->name != pipe_config->name) && \
10712                 (current_config->alt_name != pipe_config->name)) { \
10713                         DRM_ERROR("mismatch in " #name " " \
10714                                   "(expected %i or %i, found %i)\n", \
10715                                   current_config->name, \
10716                                   current_config->alt_name, \
10717                                   pipe_config->name); \
10718                         return false; \
10719         }
10720
10721 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10722         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10723                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10724                           "(expected %i, found %i)\n", \
10725                           current_config->name & (mask), \
10726                           pipe_config->name & (mask)); \
10727                 return false; \
10728         }
10729
10730 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10731         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10732                 DRM_ERROR("mismatch in " #name " " \
10733                           "(expected %i, found %i)\n", \
10734                           current_config->name, \
10735                           pipe_config->name); \
10736                 return false; \
10737         }
10738
10739 #define PIPE_CONF_QUIRK(quirk)  \
10740         ((current_config->quirks | pipe_config->quirks) & (quirk))
10741
10742         PIPE_CONF_CHECK_I(cpu_transcoder);
10743
10744         PIPE_CONF_CHECK_I(has_pch_encoder);
10745         PIPE_CONF_CHECK_I(fdi_lanes);
10746         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10747         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10748         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10749         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10750         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10751
10752         PIPE_CONF_CHECK_I(has_dp_encoder);
10753
10754         if (INTEL_INFO(dev)->gen < 8) {
10755                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10756                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10757                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10758                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10759                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10760
10761                 if (current_config->has_drrs) {
10762                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10763                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10764                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10765                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10766                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10767                 }
10768         } else {
10769                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10770                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10771                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10772                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10773                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10774         }
10775
10776         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10777         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10778         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10779         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10780         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10781         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10782
10783         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10784         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10785         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10786         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10787         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10788         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10789
10790         PIPE_CONF_CHECK_I(pixel_multiplier);
10791         PIPE_CONF_CHECK_I(has_hdmi_sink);
10792         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10793             IS_VALLEYVIEW(dev))
10794                 PIPE_CONF_CHECK_I(limited_color_range);
10795         PIPE_CONF_CHECK_I(has_infoframe);
10796
10797         PIPE_CONF_CHECK_I(has_audio);
10798
10799         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10800                               DRM_MODE_FLAG_INTERLACE);
10801
10802         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10803                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10804                                       DRM_MODE_FLAG_PHSYNC);
10805                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10806                                       DRM_MODE_FLAG_NHSYNC);
10807                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10808                                       DRM_MODE_FLAG_PVSYNC);
10809                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10810                                       DRM_MODE_FLAG_NVSYNC);
10811         }
10812
10813         PIPE_CONF_CHECK_I(pipe_src_w);
10814         PIPE_CONF_CHECK_I(pipe_src_h);
10815
10816         /*
10817          * FIXME: BIOS likes to set up a cloned config with lvds+external
10818          * screen. Since we don't yet re-compute the pipe config when moving
10819          * just the lvds port away to another pipe the sw tracking won't match.
10820          *
10821          * Proper atomic modesets with recomputed global state will fix this.
10822          * Until then just don't check gmch state for inherited modes.
10823          */
10824         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10825                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10826                 /* pfit ratios are autocomputed by the hw on gen4+ */
10827                 if (INTEL_INFO(dev)->gen < 4)
10828                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10829                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10830         }
10831
10832         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10833         if (current_config->pch_pfit.enabled) {
10834                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10835                 PIPE_CONF_CHECK_I(pch_pfit.size);
10836         }
10837
10838         /* BDW+ don't expose a synchronous way to read the state */
10839         if (IS_HASWELL(dev))
10840                 PIPE_CONF_CHECK_I(ips_enabled);
10841
10842         PIPE_CONF_CHECK_I(double_wide);
10843
10844         PIPE_CONF_CHECK_X(ddi_pll_sel);
10845
10846         PIPE_CONF_CHECK_I(shared_dpll);
10847         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10848         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10849         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10850         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10851         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10852         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10853         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10854         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10855
10856         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10857                 PIPE_CONF_CHECK_I(pipe_bpp);
10858
10859         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10860         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10861
10862 #undef PIPE_CONF_CHECK_X
10863 #undef PIPE_CONF_CHECK_I
10864 #undef PIPE_CONF_CHECK_I_ALT
10865 #undef PIPE_CONF_CHECK_FLAGS
10866 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10867 #undef PIPE_CONF_QUIRK
10868
10869         return true;
10870 }
10871
10872 static void check_wm_state(struct drm_device *dev)
10873 {
10874         struct drm_i915_private *dev_priv = dev->dev_private;
10875         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10876         struct intel_crtc *intel_crtc;
10877         int plane;
10878
10879         if (INTEL_INFO(dev)->gen < 9)
10880                 return;
10881
10882         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10883         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10884
10885         for_each_intel_crtc(dev, intel_crtc) {
10886                 struct skl_ddb_entry *hw_entry, *sw_entry;
10887                 const enum pipe pipe = intel_crtc->pipe;
10888
10889                 if (!intel_crtc->active)
10890                         continue;
10891
10892                 /* planes */
10893                 for_each_plane(dev_priv, pipe, plane) {
10894                         hw_entry = &hw_ddb.plane[pipe][plane];
10895                         sw_entry = &sw_ddb->plane[pipe][plane];
10896
10897                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10898                                 continue;
10899
10900                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10901                                   "(expected (%u,%u), found (%u,%u))\n",
10902                                   pipe_name(pipe), plane + 1,
10903                                   sw_entry->start, sw_entry->end,
10904                                   hw_entry->start, hw_entry->end);
10905                 }
10906
10907                 /* cursor */
10908                 hw_entry = &hw_ddb.cursor[pipe];
10909                 sw_entry = &sw_ddb->cursor[pipe];
10910
10911                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10912                         continue;
10913
10914                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10915                           "(expected (%u,%u), found (%u,%u))\n",
10916                           pipe_name(pipe),
10917                           sw_entry->start, sw_entry->end,
10918                           hw_entry->start, hw_entry->end);
10919         }
10920 }
10921
10922 static void
10923 check_connector_state(struct drm_device *dev)
10924 {
10925         struct intel_connector *connector;
10926
10927         for_each_intel_connector(dev, connector) {
10928                 /* This also checks the encoder/connector hw state with the
10929                  * ->get_hw_state callbacks. */
10930                 intel_connector_check_state(connector);
10931
10932                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10933                      "connector's staged encoder doesn't match current encoder\n");
10934         }
10935 }
10936
10937 static void
10938 check_encoder_state(struct drm_device *dev)
10939 {
10940         struct intel_encoder *encoder;
10941         struct intel_connector *connector;
10942
10943         for_each_intel_encoder(dev, encoder) {
10944                 bool enabled = false;
10945                 bool active = false;
10946                 enum pipe pipe, tracked_pipe;
10947
10948                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10949                               encoder->base.base.id,
10950                               encoder->base.name);
10951
10952                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10953                      "encoder's stage crtc doesn't match current crtc\n");
10954                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10955                      "encoder's active_connectors set, but no crtc\n");
10956
10957                 for_each_intel_connector(dev, connector) {
10958                         if (connector->base.encoder != &encoder->base)
10959                                 continue;
10960                         enabled = true;
10961                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10962                                 active = true;
10963                 }
10964                 /*
10965                  * for MST connectors if we unplug the connector is gone
10966                  * away but the encoder is still connected to a crtc
10967                  * until a modeset happens in response to the hotplug.
10968                  */
10969                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10970                         continue;
10971
10972                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10973                      "encoder's enabled state mismatch "
10974                      "(expected %i, found %i)\n",
10975                      !!encoder->base.crtc, enabled);
10976                 I915_STATE_WARN(active && !encoder->base.crtc,
10977                      "active encoder with no crtc\n");
10978
10979                 I915_STATE_WARN(encoder->connectors_active != active,
10980                      "encoder's computed active state doesn't match tracked active state "
10981                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10982
10983                 active = encoder->get_hw_state(encoder, &pipe);
10984                 I915_STATE_WARN(active != encoder->connectors_active,
10985                      "encoder's hw state doesn't match sw tracking "
10986                      "(expected %i, found %i)\n",
10987                      encoder->connectors_active, active);
10988
10989                 if (!encoder->base.crtc)
10990                         continue;
10991
10992                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10993                 I915_STATE_WARN(active && pipe != tracked_pipe,
10994                      "active encoder's pipe doesn't match"
10995                      "(expected %i, found %i)\n",
10996                      tracked_pipe, pipe);
10997
10998         }
10999 }
11000
11001 static void
11002 check_crtc_state(struct drm_device *dev)
11003 {
11004         struct drm_i915_private *dev_priv = dev->dev_private;
11005         struct intel_crtc *crtc;
11006         struct intel_encoder *encoder;
11007         struct intel_crtc_state pipe_config;
11008
11009         for_each_intel_crtc(dev, crtc) {
11010                 bool enabled = false;
11011                 bool active = false;
11012
11013                 memset(&pipe_config, 0, sizeof(pipe_config));
11014
11015                 DRM_DEBUG_KMS("[CRTC:%d]\n",
11016                               crtc->base.base.id);
11017
11018                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11019                      "active crtc, but not enabled in sw tracking\n");
11020
11021                 for_each_intel_encoder(dev, encoder) {
11022                         if (encoder->base.crtc != &crtc->base)
11023                                 continue;
11024                         enabled = true;
11025                         if (encoder->connectors_active)
11026                                 active = true;
11027                 }
11028
11029                 I915_STATE_WARN(active != crtc->active,
11030                      "crtc's computed active state doesn't match tracked active state "
11031                      "(expected %i, found %i)\n", active, crtc->active);
11032                 I915_STATE_WARN(enabled != crtc->base.state->enable,
11033                      "crtc's computed enabled state doesn't match tracked enabled state "
11034                      "(expected %i, found %i)\n", enabled,
11035                                 crtc->base.state->enable);
11036
11037                 active = dev_priv->display.get_pipe_config(crtc,
11038                                                            &pipe_config);
11039
11040                 /* hw state is inconsistent with the pipe quirk */
11041                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11042                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11043                         active = crtc->active;
11044
11045                 for_each_intel_encoder(dev, encoder) {
11046                         enum pipe pipe;
11047                         if (encoder->base.crtc != &crtc->base)
11048                                 continue;
11049                         if (encoder->get_hw_state(encoder, &pipe))
11050                                 encoder->get_config(encoder, &pipe_config);
11051                 }
11052
11053                 I915_STATE_WARN(crtc->active != active,
11054                      "crtc active state doesn't match with hw state "
11055                      "(expected %i, found %i)\n", crtc->active, active);
11056
11057                 if (active &&
11058                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11059                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
11060                         intel_dump_pipe_config(crtc, &pipe_config,
11061                                                "[hw state]");
11062                         intel_dump_pipe_config(crtc, crtc->config,
11063                                                "[sw state]");
11064                 }
11065         }
11066 }
11067
11068 static void
11069 check_shared_dpll_state(struct drm_device *dev)
11070 {
11071         struct drm_i915_private *dev_priv = dev->dev_private;
11072         struct intel_crtc *crtc;
11073         struct intel_dpll_hw_state dpll_hw_state;
11074         int i;
11075
11076         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11077                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11078                 int enabled_crtcs = 0, active_crtcs = 0;
11079                 bool active;
11080
11081                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11082
11083                 DRM_DEBUG_KMS("%s\n", pll->name);
11084
11085                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11086
11087                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11088                      "more active pll users than references: %i vs %i\n",
11089                      pll->active, hweight32(pll->config.crtc_mask));
11090                 I915_STATE_WARN(pll->active && !pll->on,
11091                      "pll in active use but not on in sw tracking\n");
11092                 I915_STATE_WARN(pll->on && !pll->active,
11093                      "pll in on but not on in use in sw tracking\n");
11094                 I915_STATE_WARN(pll->on != active,
11095                      "pll on state mismatch (expected %i, found %i)\n",
11096                      pll->on, active);
11097
11098                 for_each_intel_crtc(dev, crtc) {
11099                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11100                                 enabled_crtcs++;
11101                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11102                                 active_crtcs++;
11103                 }
11104                 I915_STATE_WARN(pll->active != active_crtcs,
11105                      "pll active crtcs mismatch (expected %i, found %i)\n",
11106                      pll->active, active_crtcs);
11107                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11108                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
11109                      hweight32(pll->config.crtc_mask), enabled_crtcs);
11110
11111                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11112                                        sizeof(dpll_hw_state)),
11113                      "pll hw state mismatch\n");
11114         }
11115 }
11116
11117 void
11118 intel_modeset_check_state(struct drm_device *dev)
11119 {
11120         check_wm_state(dev);
11121         check_connector_state(dev);
11122         check_encoder_state(dev);
11123         check_crtc_state(dev);
11124         check_shared_dpll_state(dev);
11125 }
11126
11127 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11128                                      int dotclock)
11129 {
11130         /*
11131          * FDI already provided one idea for the dotclock.
11132          * Yell if the encoder disagrees.
11133          */
11134         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11135              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11136              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11137 }
11138
11139 static void update_scanline_offset(struct intel_crtc *crtc)
11140 {
11141         struct drm_device *dev = crtc->base.dev;
11142
11143         /*
11144          * The scanline counter increments at the leading edge of hsync.
11145          *
11146          * On most platforms it starts counting from vtotal-1 on the
11147          * first active line. That means the scanline counter value is
11148          * always one less than what we would expect. Ie. just after
11149          * start of vblank, which also occurs at start of hsync (on the
11150          * last active line), the scanline counter will read vblank_start-1.
11151          *
11152          * On gen2 the scanline counter starts counting from 1 instead
11153          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11154          * to keep the value positive), instead of adding one.
11155          *
11156          * On HSW+ the behaviour of the scanline counter depends on the output
11157          * type. For DP ports it behaves like most other platforms, but on HDMI
11158          * there's an extra 1 line difference. So we need to add two instead of
11159          * one to the value.
11160          */
11161         if (IS_GEN2(dev)) {
11162                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11163                 int vtotal;
11164
11165                 vtotal = mode->crtc_vtotal;
11166                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11167                         vtotal /= 2;
11168
11169                 crtc->scanline_offset = vtotal - 1;
11170         } else if (HAS_DDI(dev) &&
11171                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11172                 crtc->scanline_offset = 2;
11173         } else
11174                 crtc->scanline_offset = 1;
11175 }
11176
11177 static struct intel_crtc_state *
11178 intel_modeset_compute_config(struct drm_crtc *crtc,
11179                              struct drm_display_mode *mode,
11180                              struct drm_framebuffer *fb,
11181                              unsigned *modeset_pipes,
11182                              unsigned *prepare_pipes,
11183                              unsigned *disable_pipes)
11184 {
11185         struct intel_crtc_state *pipe_config = NULL;
11186
11187         intel_modeset_affected_pipes(crtc, modeset_pipes,
11188                                      prepare_pipes, disable_pipes);
11189
11190         if ((*modeset_pipes) == 0)
11191                 goto out;
11192
11193         /*
11194          * Note this needs changes when we start tracking multiple modes
11195          * and crtcs.  At that point we'll need to compute the whole config
11196          * (i.e. one pipe_config for each crtc) rather than just the one
11197          * for this crtc.
11198          */
11199         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11200         if (IS_ERR(pipe_config)) {
11201                 goto out;
11202         }
11203         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11204                                "[modeset]");
11205
11206 out:
11207         return pipe_config;
11208 }
11209
11210 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11211                                        unsigned modeset_pipes,
11212                                        unsigned disable_pipes)
11213 {
11214         struct drm_i915_private *dev_priv = to_i915(dev);
11215         unsigned clear_pipes = modeset_pipes | disable_pipes;
11216         struct intel_crtc *intel_crtc;
11217         int ret = 0;
11218
11219         if (!dev_priv->display.crtc_compute_clock)
11220                 return 0;
11221
11222         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11223         if (ret)
11224                 goto done;
11225
11226         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11227                 struct intel_crtc_state *state = intel_crtc->new_config;
11228                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11229                                                            state);
11230                 if (ret) {
11231                         intel_shared_dpll_abort_config(dev_priv);
11232                         goto done;
11233                 }
11234         }
11235
11236 done:
11237         return ret;
11238 }
11239
11240 static int __intel_set_mode(struct drm_crtc *crtc,
11241                             struct drm_display_mode *mode,
11242                             int x, int y, struct drm_framebuffer *fb,
11243                             struct intel_crtc_state *pipe_config,
11244                             unsigned modeset_pipes,
11245                             unsigned prepare_pipes,
11246                             unsigned disable_pipes)
11247 {
11248         struct drm_device *dev = crtc->dev;
11249         struct drm_i915_private *dev_priv = dev->dev_private;
11250         struct drm_display_mode *saved_mode;
11251         struct intel_crtc *intel_crtc;
11252         int ret = 0;
11253
11254         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11255         if (!saved_mode)
11256                 return -ENOMEM;
11257
11258         *saved_mode = crtc->mode;
11259
11260         if (modeset_pipes)
11261                 to_intel_crtc(crtc)->new_config = pipe_config;
11262
11263         /*
11264          * See if the config requires any additional preparation, e.g.
11265          * to adjust global state with pipes off.  We need to do this
11266          * here so we can get the modeset_pipe updated config for the new
11267          * mode set on this crtc.  For other crtcs we need to use the
11268          * adjusted_mode bits in the crtc directly.
11269          */
11270         if (IS_VALLEYVIEW(dev)) {
11271                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11272
11273                 /* may have added more to prepare_pipes than we should */
11274                 prepare_pipes &= ~disable_pipes;
11275         }
11276
11277         ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11278         if (ret)
11279                 goto done;
11280
11281         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11282                 intel_crtc_disable(&intel_crtc->base);
11283
11284         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11285                 if (intel_crtc->base.state->enable)
11286                         dev_priv->display.crtc_disable(&intel_crtc->base);
11287         }
11288
11289         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11290          * to set it here already despite that we pass it down the callchain.
11291          *
11292          * Note we'll need to fix this up when we start tracking multiple
11293          * pipes; here we assume a single modeset_pipe and only track the
11294          * single crtc and mode.
11295          */
11296         if (modeset_pipes) {
11297                 crtc->mode = *mode;
11298                 /* mode_set/enable/disable functions rely on a correct pipe
11299                  * config. */
11300                 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11301
11302                 /*
11303                  * Calculate and store various constants which
11304                  * are later needed by vblank and swap-completion
11305                  * timestamping. They are derived from true hwmode.
11306                  */
11307                 drm_calc_timestamping_constants(crtc,
11308                                                 &pipe_config->base.adjusted_mode);
11309         }
11310
11311         /* Only after disabling all output pipelines that will be changed can we
11312          * update the the output configuration. */
11313         intel_modeset_update_state(dev, prepare_pipes);
11314
11315         modeset_update_crtc_power_domains(dev);
11316
11317         /* Set up the DPLL and any encoders state that needs to adjust or depend
11318          * on the DPLL.
11319          */
11320         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11321                 struct drm_plane *primary = intel_crtc->base.primary;
11322                 int vdisplay, hdisplay;
11323
11324                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11325                 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11326                                                    fb, 0, 0,
11327                                                    hdisplay, vdisplay,
11328                                                    x << 16, y << 16,
11329                                                    hdisplay << 16, vdisplay << 16);
11330         }
11331
11332         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11333         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11334                 update_scanline_offset(intel_crtc);
11335
11336                 dev_priv->display.crtc_enable(&intel_crtc->base);
11337         }
11338
11339         /* FIXME: add subpixel order */
11340 done:
11341         if (ret && crtc->state->enable)
11342                 crtc->mode = *saved_mode;
11343
11344         kfree(saved_mode);
11345         return ret;
11346 }
11347
11348 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11349                                 struct drm_display_mode *mode,
11350                                 int x, int y, struct drm_framebuffer *fb,
11351                                 struct intel_crtc_state *pipe_config,
11352                                 unsigned modeset_pipes,
11353                                 unsigned prepare_pipes,
11354                                 unsigned disable_pipes)
11355 {
11356         int ret;
11357
11358         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11359                                prepare_pipes, disable_pipes);
11360
11361         if (ret == 0)
11362                 intel_modeset_check_state(crtc->dev);
11363
11364         return ret;
11365 }
11366
11367 static int intel_set_mode(struct drm_crtc *crtc,
11368                           struct drm_display_mode *mode,
11369                           int x, int y, struct drm_framebuffer *fb)
11370 {
11371         struct intel_crtc_state *pipe_config;
11372         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11373
11374         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11375                                                    &modeset_pipes,
11376                                                    &prepare_pipes,
11377                                                    &disable_pipes);
11378
11379         if (IS_ERR(pipe_config))
11380                 return PTR_ERR(pipe_config);
11381
11382         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11383                                     modeset_pipes, prepare_pipes,
11384                                     disable_pipes);
11385 }
11386
11387 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11388 {
11389         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11390 }
11391
11392 #undef for_each_intel_crtc_masked
11393
11394 static void intel_set_config_free(struct intel_set_config *config)
11395 {
11396         if (!config)
11397                 return;
11398
11399         kfree(config->save_connector_encoders);
11400         kfree(config->save_encoder_crtcs);
11401         kfree(config->save_crtc_enabled);
11402         kfree(config);
11403 }
11404
11405 static int intel_set_config_save_state(struct drm_device *dev,
11406                                        struct intel_set_config *config)
11407 {
11408         struct drm_crtc *crtc;
11409         struct drm_encoder *encoder;
11410         struct drm_connector *connector;
11411         int count;
11412
11413         config->save_crtc_enabled =
11414                 kcalloc(dev->mode_config.num_crtc,
11415                         sizeof(bool), GFP_KERNEL);
11416         if (!config->save_crtc_enabled)
11417                 return -ENOMEM;
11418
11419         config->save_encoder_crtcs =
11420                 kcalloc(dev->mode_config.num_encoder,
11421                         sizeof(struct drm_crtc *), GFP_KERNEL);
11422         if (!config->save_encoder_crtcs)
11423                 return -ENOMEM;
11424
11425         config->save_connector_encoders =
11426                 kcalloc(dev->mode_config.num_connector,
11427                         sizeof(struct drm_encoder *), GFP_KERNEL);
11428         if (!config->save_connector_encoders)
11429                 return -ENOMEM;
11430
11431         /* Copy data. Note that driver private data is not affected.
11432          * Should anything bad happen only the expected state is
11433          * restored, not the drivers personal bookkeeping.
11434          */
11435         count = 0;
11436         for_each_crtc(dev, crtc) {
11437                 config->save_crtc_enabled[count++] = crtc->state->enable;
11438         }
11439
11440         count = 0;
11441         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11442                 config->save_encoder_crtcs[count++] = encoder->crtc;
11443         }
11444
11445         count = 0;
11446         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11447                 config->save_connector_encoders[count++] = connector->encoder;
11448         }
11449
11450         return 0;
11451 }
11452
11453 static void intel_set_config_restore_state(struct drm_device *dev,
11454                                            struct intel_set_config *config)
11455 {
11456         struct intel_crtc *crtc;
11457         struct intel_encoder *encoder;
11458         struct intel_connector *connector;
11459         int count;
11460
11461         count = 0;
11462         for_each_intel_crtc(dev, crtc) {
11463                 crtc->new_enabled = config->save_crtc_enabled[count++];
11464
11465                 if (crtc->new_enabled)
11466                         crtc->new_config = crtc->config;
11467                 else
11468                         crtc->new_config = NULL;
11469         }
11470
11471         count = 0;
11472         for_each_intel_encoder(dev, encoder) {
11473                 encoder->new_crtc =
11474                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11475         }
11476
11477         count = 0;
11478         for_each_intel_connector(dev, connector) {
11479                 connector->new_encoder =
11480                         to_intel_encoder(config->save_connector_encoders[count++]);
11481         }
11482 }
11483
11484 static bool
11485 is_crtc_connector_off(struct drm_mode_set *set)
11486 {
11487         int i;
11488
11489         if (set->num_connectors == 0)
11490                 return false;
11491
11492         if (WARN_ON(set->connectors == NULL))
11493                 return false;
11494
11495         for (i = 0; i < set->num_connectors; i++)
11496                 if (set->connectors[i]->encoder &&
11497                     set->connectors[i]->encoder->crtc == set->crtc &&
11498                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11499                         return true;
11500
11501         return false;
11502 }
11503
11504 static void
11505 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11506                                       struct intel_set_config *config)
11507 {
11508
11509         /* We should be able to check here if the fb has the same properties
11510          * and then just flip_or_move it */
11511         if (is_crtc_connector_off(set)) {
11512                 config->mode_changed = true;
11513         } else if (set->crtc->primary->fb != set->fb) {
11514                 /*
11515                  * If we have no fb, we can only flip as long as the crtc is
11516                  * active, otherwise we need a full mode set.  The crtc may
11517                  * be active if we've only disabled the primary plane, or
11518                  * in fastboot situations.
11519                  */
11520                 if (set->crtc->primary->fb == NULL) {
11521                         struct intel_crtc *intel_crtc =
11522                                 to_intel_crtc(set->crtc);
11523
11524                         if (intel_crtc->active) {
11525                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11526                                 config->fb_changed = true;
11527                         } else {
11528                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11529                                 config->mode_changed = true;
11530                         }
11531                 } else if (set->fb == NULL) {
11532                         config->mode_changed = true;
11533                 } else if (set->fb->pixel_format !=
11534                            set->crtc->primary->fb->pixel_format) {
11535                         config->mode_changed = true;
11536                 } else {
11537                         config->fb_changed = true;
11538                 }
11539         }
11540
11541         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11542                 config->fb_changed = true;
11543
11544         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11545                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11546                 drm_mode_debug_printmodeline(&set->crtc->mode);
11547                 drm_mode_debug_printmodeline(set->mode);
11548                 config->mode_changed = true;
11549         }
11550
11551         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11552                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11553 }
11554
11555 static int
11556 intel_modeset_stage_output_state(struct drm_device *dev,
11557                                  struct drm_mode_set *set,
11558                                  struct intel_set_config *config)
11559 {
11560         struct intel_connector *connector;
11561         struct intel_encoder *encoder;
11562         struct intel_crtc *crtc;
11563         int ro;
11564
11565         /* The upper layers ensure that we either disable a crtc or have a list
11566          * of connectors. For paranoia, double-check this. */
11567         WARN_ON(!set->fb && (set->num_connectors != 0));
11568         WARN_ON(set->fb && (set->num_connectors == 0));
11569
11570         for_each_intel_connector(dev, connector) {
11571                 /* Otherwise traverse passed in connector list and get encoders
11572                  * for them. */
11573                 for (ro = 0; ro < set->num_connectors; ro++) {
11574                         if (set->connectors[ro] == &connector->base) {
11575                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11576                                 break;
11577                         }
11578                 }
11579
11580                 /* If we disable the crtc, disable all its connectors. Also, if
11581                  * the connector is on the changing crtc but not on the new
11582                  * connector list, disable it. */
11583                 if ((!set->fb || ro == set->num_connectors) &&
11584                     connector->base.encoder &&
11585                     connector->base.encoder->crtc == set->crtc) {
11586                         connector->new_encoder = NULL;
11587
11588                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11589                                 connector->base.base.id,
11590                                 connector->base.name);
11591                 }
11592
11593
11594                 if (&connector->new_encoder->base != connector->base.encoder) {
11595                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11596                                       connector->base.base.id,
11597                                       connector->base.name);
11598                         config->mode_changed = true;
11599                 }
11600         }
11601         /* connector->new_encoder is now updated for all connectors. */
11602
11603         /* Update crtc of enabled connectors. */
11604         for_each_intel_connector(dev, connector) {
11605                 struct drm_crtc *new_crtc;
11606
11607                 if (!connector->new_encoder)
11608                         continue;
11609
11610                 new_crtc = connector->new_encoder->base.crtc;
11611
11612                 for (ro = 0; ro < set->num_connectors; ro++) {
11613                         if (set->connectors[ro] == &connector->base)
11614                                 new_crtc = set->crtc;
11615                 }
11616
11617                 /* Make sure the new CRTC will work with the encoder */
11618                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11619                                          new_crtc)) {
11620                         return -EINVAL;
11621                 }
11622                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11623
11624                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11625                         connector->base.base.id,
11626                         connector->base.name,
11627                         new_crtc->base.id);
11628         }
11629
11630         /* Check for any encoders that needs to be disabled. */
11631         for_each_intel_encoder(dev, encoder) {
11632                 int num_connectors = 0;
11633                 for_each_intel_connector(dev, connector) {
11634                         if (connector->new_encoder == encoder) {
11635                                 WARN_ON(!connector->new_encoder->new_crtc);
11636                                 num_connectors++;
11637                         }
11638                 }
11639
11640                 if (num_connectors == 0)
11641                         encoder->new_crtc = NULL;
11642                 else if (num_connectors > 1)
11643                         return -EINVAL;
11644
11645                 /* Only now check for crtc changes so we don't miss encoders
11646                  * that will be disabled. */
11647                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11648                         DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11649                                       encoder->base.base.id,
11650                                       encoder->base.name);
11651                         config->mode_changed = true;
11652                 }
11653         }
11654         /* Now we've also updated encoder->new_crtc for all encoders. */
11655         for_each_intel_connector(dev, connector) {
11656                 if (connector->new_encoder)
11657                         if (connector->new_encoder != connector->encoder)
11658                                 connector->encoder = connector->new_encoder;
11659         }
11660         for_each_intel_crtc(dev, crtc) {
11661                 crtc->new_enabled = false;
11662
11663                 for_each_intel_encoder(dev, encoder) {
11664                         if (encoder->new_crtc == crtc) {
11665                                 crtc->new_enabled = true;
11666                                 break;
11667                         }
11668                 }
11669
11670                 if (crtc->new_enabled != crtc->base.state->enable) {
11671                         DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11672                                       crtc->base.base.id,
11673                                       crtc->new_enabled ? "en" : "dis");
11674                         config->mode_changed = true;
11675                 }
11676
11677                 if (crtc->new_enabled)
11678                         crtc->new_config = crtc->config;
11679                 else
11680                         crtc->new_config = NULL;
11681         }
11682
11683         return 0;
11684 }
11685
11686 static void disable_crtc_nofb(struct intel_crtc *crtc)
11687 {
11688         struct drm_device *dev = crtc->base.dev;
11689         struct intel_encoder *encoder;
11690         struct intel_connector *connector;
11691
11692         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11693                       pipe_name(crtc->pipe));
11694
11695         for_each_intel_connector(dev, connector) {
11696                 if (connector->new_encoder &&
11697                     connector->new_encoder->new_crtc == crtc)
11698                         connector->new_encoder = NULL;
11699         }
11700
11701         for_each_intel_encoder(dev, encoder) {
11702                 if (encoder->new_crtc == crtc)
11703                         encoder->new_crtc = NULL;
11704         }
11705
11706         crtc->new_enabled = false;
11707         crtc->new_config = NULL;
11708 }
11709
11710 static int intel_crtc_set_config(struct drm_mode_set *set)
11711 {
11712         struct drm_device *dev;
11713         struct drm_mode_set save_set;
11714         struct intel_set_config *config;
11715         struct intel_crtc_state *pipe_config;
11716         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11717         int ret;
11718
11719         BUG_ON(!set);
11720         BUG_ON(!set->crtc);
11721         BUG_ON(!set->crtc->helper_private);
11722
11723         /* Enforce sane interface api - has been abused by the fb helper. */
11724         BUG_ON(!set->mode && set->fb);
11725         BUG_ON(set->fb && set->num_connectors == 0);
11726
11727         if (set->fb) {
11728                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11729                                 set->crtc->base.id, set->fb->base.id,
11730                                 (int)set->num_connectors, set->x, set->y);
11731         } else {
11732                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11733         }
11734
11735         dev = set->crtc->dev;
11736
11737         ret = -ENOMEM;
11738         config = kzalloc(sizeof(*config), GFP_KERNEL);
11739         if (!config)
11740                 goto out_config;
11741
11742         ret = intel_set_config_save_state(dev, config);
11743         if (ret)
11744                 goto out_config;
11745
11746         save_set.crtc = set->crtc;
11747         save_set.mode = &set->crtc->mode;
11748         save_set.x = set->crtc->x;
11749         save_set.y = set->crtc->y;
11750         save_set.fb = set->crtc->primary->fb;
11751
11752         /* Compute whether we need a full modeset, only an fb base update or no
11753          * change at all. In the future we might also check whether only the
11754          * mode changed, e.g. for LVDS where we only change the panel fitter in
11755          * such cases. */
11756         intel_set_config_compute_mode_changes(set, config);
11757
11758         ret = intel_modeset_stage_output_state(dev, set, config);
11759         if (ret)
11760                 goto fail;
11761
11762         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11763                                                    set->fb,
11764                                                    &modeset_pipes,
11765                                                    &prepare_pipes,
11766                                                    &disable_pipes);
11767         if (IS_ERR(pipe_config)) {
11768                 ret = PTR_ERR(pipe_config);
11769                 goto fail;
11770         } else if (pipe_config) {
11771                 if (pipe_config->has_audio !=
11772                     to_intel_crtc(set->crtc)->config->has_audio)
11773                         config->mode_changed = true;
11774
11775                 /*
11776                  * Note we have an issue here with infoframes: current code
11777                  * only updates them on the full mode set path per hw
11778                  * requirements.  So here we should be checking for any
11779                  * required changes and forcing a mode set.
11780                  */
11781         }
11782
11783         /* set_mode will free it in the mode_changed case */
11784         if (!config->mode_changed)
11785                 kfree(pipe_config);
11786
11787         intel_update_pipe_size(to_intel_crtc(set->crtc));
11788
11789         if (config->mode_changed) {
11790                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11791                                            set->x, set->y, set->fb, pipe_config,
11792                                            modeset_pipes, prepare_pipes,
11793                                            disable_pipes);
11794         } else if (config->fb_changed) {
11795                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11796                 struct drm_plane *primary = set->crtc->primary;
11797                 int vdisplay, hdisplay;
11798
11799                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11800                 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11801                                                    0, 0, hdisplay, vdisplay,
11802                                                    set->x << 16, set->y << 16,
11803                                                    hdisplay << 16, vdisplay << 16);
11804
11805                 /*
11806                  * We need to make sure the primary plane is re-enabled if it
11807                  * has previously been turned off.
11808                  */
11809                 if (!intel_crtc->primary_enabled && ret == 0) {
11810                         WARN_ON(!intel_crtc->active);
11811                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11812                 }
11813
11814                 /*
11815                  * In the fastboot case this may be our only check of the
11816                  * state after boot.  It would be better to only do it on
11817                  * the first update, but we don't have a nice way of doing that
11818                  * (and really, set_config isn't used much for high freq page
11819                  * flipping, so increasing its cost here shouldn't be a big
11820                  * deal).
11821                  */
11822                 if (i915.fastboot && ret == 0)
11823                         intel_modeset_check_state(set->crtc->dev);
11824         }
11825
11826         if (ret) {
11827                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11828                               set->crtc->base.id, ret);
11829 fail:
11830                 intel_set_config_restore_state(dev, config);
11831
11832                 /*
11833                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11834                  * force the pipe off to avoid oopsing in the modeset code
11835                  * due to fb==NULL. This should only happen during boot since
11836                  * we don't yet reconstruct the FB from the hardware state.
11837                  */
11838                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11839                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11840
11841                 /* Try to restore the config */
11842                 if (config->mode_changed &&
11843                     intel_set_mode(save_set.crtc, save_set.mode,
11844                                    save_set.x, save_set.y, save_set.fb))
11845                         DRM_ERROR("failed to restore config after modeset failure\n");
11846         }
11847
11848 out_config:
11849         intel_set_config_free(config);
11850         return ret;
11851 }
11852
11853 static const struct drm_crtc_funcs intel_crtc_funcs = {
11854         .gamma_set = intel_crtc_gamma_set,
11855         .set_config = intel_crtc_set_config,
11856         .destroy = intel_crtc_destroy,
11857         .page_flip = intel_crtc_page_flip,
11858         .atomic_duplicate_state = intel_crtc_duplicate_state,
11859         .atomic_destroy_state = intel_crtc_destroy_state,
11860 };
11861
11862 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11863                                       struct intel_shared_dpll *pll,
11864                                       struct intel_dpll_hw_state *hw_state)
11865 {
11866         uint32_t val;
11867
11868         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11869                 return false;
11870
11871         val = I915_READ(PCH_DPLL(pll->id));
11872         hw_state->dpll = val;
11873         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11874         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11875
11876         return val & DPLL_VCO_ENABLE;
11877 }
11878
11879 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11880                                   struct intel_shared_dpll *pll)
11881 {
11882         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11883         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11884 }
11885
11886 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11887                                 struct intel_shared_dpll *pll)
11888 {
11889         /* PCH refclock must be enabled first */
11890         ibx_assert_pch_refclk_enabled(dev_priv);
11891
11892         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11893
11894         /* Wait for the clocks to stabilize. */
11895         POSTING_READ(PCH_DPLL(pll->id));
11896         udelay(150);
11897
11898         /* The pixel multiplier can only be updated once the
11899          * DPLL is enabled and the clocks are stable.
11900          *
11901          * So write it again.
11902          */
11903         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11904         POSTING_READ(PCH_DPLL(pll->id));
11905         udelay(200);
11906 }
11907
11908 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11909                                  struct intel_shared_dpll *pll)
11910 {
11911         struct drm_device *dev = dev_priv->dev;
11912         struct intel_crtc *crtc;
11913
11914         /* Make sure no transcoder isn't still depending on us. */
11915         for_each_intel_crtc(dev, crtc) {
11916                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11917                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11918         }
11919
11920         I915_WRITE(PCH_DPLL(pll->id), 0);
11921         POSTING_READ(PCH_DPLL(pll->id));
11922         udelay(200);
11923 }
11924
11925 static char *ibx_pch_dpll_names[] = {
11926         "PCH DPLL A",
11927         "PCH DPLL B",
11928 };
11929
11930 static void ibx_pch_dpll_init(struct drm_device *dev)
11931 {
11932         struct drm_i915_private *dev_priv = dev->dev_private;
11933         int i;
11934
11935         dev_priv->num_shared_dpll = 2;
11936
11937         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11938                 dev_priv->shared_dplls[i].id = i;
11939                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11940                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11941                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11942                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11943                 dev_priv->shared_dplls[i].get_hw_state =
11944                         ibx_pch_dpll_get_hw_state;
11945         }
11946 }
11947
11948 static void intel_shared_dpll_init(struct drm_device *dev)
11949 {
11950         struct drm_i915_private *dev_priv = dev->dev_private;
11951
11952         if (HAS_DDI(dev))
11953                 intel_ddi_pll_init(dev);
11954         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11955                 ibx_pch_dpll_init(dev);
11956         else
11957                 dev_priv->num_shared_dpll = 0;
11958
11959         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11960 }
11961
11962 /**
11963  * intel_prepare_plane_fb - Prepare fb for usage on plane
11964  * @plane: drm plane to prepare for
11965  * @fb: framebuffer to prepare for presentation
11966  *
11967  * Prepares a framebuffer for usage on a display plane.  Generally this
11968  * involves pinning the underlying object and updating the frontbuffer tracking
11969  * bits.  Some older platforms need special physical address handling for
11970  * cursor planes.
11971  *
11972  * Returns 0 on success, negative error code on failure.
11973  */
11974 int
11975 intel_prepare_plane_fb(struct drm_plane *plane,
11976                        struct drm_framebuffer *fb,
11977                        const struct drm_plane_state *new_state)
11978 {
11979         struct drm_device *dev = plane->dev;
11980         struct intel_plane *intel_plane = to_intel_plane(plane);
11981         enum pipe pipe = intel_plane->pipe;
11982         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11983         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11984         unsigned frontbuffer_bits = 0;
11985         int ret = 0;
11986
11987         if (!obj)
11988                 return 0;
11989
11990         switch (plane->type) {
11991         case DRM_PLANE_TYPE_PRIMARY:
11992                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11993                 break;
11994         case DRM_PLANE_TYPE_CURSOR:
11995                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11996                 break;
11997         case DRM_PLANE_TYPE_OVERLAY:
11998                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11999                 break;
12000         }
12001
12002         mutex_lock(&dev->struct_mutex);
12003
12004         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12005             INTEL_INFO(dev)->cursor_needs_physical) {
12006                 int align = IS_I830(dev) ? 16 * 1024 : 256;
12007                 ret = i915_gem_object_attach_phys(obj, align);
12008                 if (ret)
12009                         DRM_DEBUG_KMS("failed to attach phys object\n");
12010         } else {
12011                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
12012         }
12013
12014         if (ret == 0)
12015                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12016
12017         mutex_unlock(&dev->struct_mutex);
12018
12019         return ret;
12020 }
12021
12022 /**
12023  * intel_cleanup_plane_fb - Cleans up an fb after plane use
12024  * @plane: drm plane to clean up for
12025  * @fb: old framebuffer that was on plane
12026  *
12027  * Cleans up a framebuffer that has just been removed from a plane.
12028  */
12029 void
12030 intel_cleanup_plane_fb(struct drm_plane *plane,
12031                        struct drm_framebuffer *fb,
12032                        const struct drm_plane_state *old_state)
12033 {
12034         struct drm_device *dev = plane->dev;
12035         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12036
12037         if (WARN_ON(!obj))
12038                 return;
12039
12040         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12041             !INTEL_INFO(dev)->cursor_needs_physical) {
12042                 mutex_lock(&dev->struct_mutex);
12043                 intel_unpin_fb_obj(obj);
12044                 mutex_unlock(&dev->struct_mutex);
12045         }
12046 }
12047
12048 static int
12049 intel_check_primary_plane(struct drm_plane *plane,
12050                           struct intel_plane_state *state)
12051 {
12052         struct drm_device *dev = plane->dev;
12053         struct drm_i915_private *dev_priv = dev->dev_private;
12054         struct drm_crtc *crtc = state->base.crtc;
12055         struct intel_crtc *intel_crtc;
12056         struct drm_framebuffer *fb = state->base.fb;
12057         struct drm_rect *dest = &state->dst;
12058         struct drm_rect *src = &state->src;
12059         const struct drm_rect *clip = &state->clip;
12060         int ret;
12061
12062         crtc = crtc ? crtc : plane->crtc;
12063         intel_crtc = to_intel_crtc(crtc);
12064
12065         ret = drm_plane_helper_check_update(plane, crtc, fb,
12066                                             src, dest, clip,
12067                                             DRM_PLANE_HELPER_NO_SCALING,
12068                                             DRM_PLANE_HELPER_NO_SCALING,
12069                                             false, true, &state->visible);
12070         if (ret)
12071                 return ret;
12072
12073         if (intel_crtc->active) {
12074                 intel_crtc->atomic.wait_for_flips = true;
12075
12076                 /*
12077                  * FBC does not work on some platforms for rotated
12078                  * planes, so disable it when rotation is not 0 and
12079                  * update it when rotation is set back to 0.
12080                  *
12081                  * FIXME: This is redundant with the fbc update done in
12082                  * the primary plane enable function except that that
12083                  * one is done too late. We eventually need to unify
12084                  * this.
12085                  */
12086                 if (intel_crtc->primary_enabled &&
12087                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12088                     dev_priv->fbc.crtc == intel_crtc &&
12089                     state->base.rotation != BIT(DRM_ROTATE_0)) {
12090                         intel_crtc->atomic.disable_fbc = true;
12091                 }
12092
12093                 if (state->visible) {
12094                         /*
12095                          * BDW signals flip done immediately if the plane
12096                          * is disabled, even if the plane enable is already
12097                          * armed to occur at the next vblank :(
12098                          */
12099                         if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12100                                 intel_crtc->atomic.wait_vblank = true;
12101                 }
12102
12103                 intel_crtc->atomic.fb_bits |=
12104                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12105
12106                 intel_crtc->atomic.update_fbc = true;
12107
12108                 /* Update watermarks on tiling changes. */
12109                 if (!plane->state->fb || !state->base.fb ||
12110                     plane->state->fb->modifier[0] !=
12111                     state->base.fb->modifier[0])
12112                         intel_crtc->atomic.update_wm = true;
12113         }
12114
12115         return 0;
12116 }
12117
12118 static void
12119 intel_commit_primary_plane(struct drm_plane *plane,
12120                            struct intel_plane_state *state)
12121 {
12122         struct drm_crtc *crtc = state->base.crtc;
12123         struct drm_framebuffer *fb = state->base.fb;
12124         struct drm_device *dev = plane->dev;
12125         struct drm_i915_private *dev_priv = dev->dev_private;
12126         struct intel_crtc *intel_crtc;
12127         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12128         struct intel_plane *intel_plane = to_intel_plane(plane);
12129         struct drm_rect *src = &state->src;
12130
12131         crtc = crtc ? crtc : plane->crtc;
12132         intel_crtc = to_intel_crtc(crtc);
12133
12134         plane->fb = fb;
12135         crtc->x = src->x1 >> 16;
12136         crtc->y = src->y1 >> 16;
12137
12138         intel_plane->obj = obj;
12139
12140         if (intel_crtc->active) {
12141                 if (state->visible) {
12142                         /* FIXME: kill this fastboot hack */
12143                         intel_update_pipe_size(intel_crtc);
12144
12145                         intel_crtc->primary_enabled = true;
12146
12147                         dev_priv->display.update_primary_plane(crtc, plane->fb,
12148                                         crtc->x, crtc->y);
12149                 } else {
12150                         /*
12151                          * If clipping results in a non-visible primary plane,
12152                          * we'll disable the primary plane.  Note that this is
12153                          * a bit different than what happens if userspace
12154                          * explicitly disables the plane by passing fb=0
12155                          * because plane->fb still gets set and pinned.
12156                          */
12157                         intel_disable_primary_hw_plane(plane, crtc);
12158                 }
12159         }
12160 }
12161
12162 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12163 {
12164         struct drm_device *dev = crtc->dev;
12165         struct drm_i915_private *dev_priv = dev->dev_private;
12166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12167         struct intel_plane *intel_plane;
12168         struct drm_plane *p;
12169         unsigned fb_bits = 0;
12170
12171         /* Track fb's for any planes being disabled */
12172         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12173                 intel_plane = to_intel_plane(p);
12174
12175                 if (intel_crtc->atomic.disabled_planes &
12176                     (1 << drm_plane_index(p))) {
12177                         switch (p->type) {
12178                         case DRM_PLANE_TYPE_PRIMARY:
12179                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12180                                 break;
12181                         case DRM_PLANE_TYPE_CURSOR:
12182                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12183                                 break;
12184                         case DRM_PLANE_TYPE_OVERLAY:
12185                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12186                                 break;
12187                         }
12188
12189                         mutex_lock(&dev->struct_mutex);
12190                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12191                         mutex_unlock(&dev->struct_mutex);
12192                 }
12193         }
12194
12195         if (intel_crtc->atomic.wait_for_flips)
12196                 intel_crtc_wait_for_pending_flips(crtc);
12197
12198         if (intel_crtc->atomic.disable_fbc)
12199                 intel_fbc_disable(dev);
12200
12201         if (intel_crtc->atomic.pre_disable_primary)
12202                 intel_pre_disable_primary(crtc);
12203
12204         if (intel_crtc->atomic.update_wm)
12205                 intel_update_watermarks(crtc);
12206
12207         intel_runtime_pm_get(dev_priv);
12208
12209         /* Perform vblank evasion around commit operation */
12210         if (intel_crtc->active)
12211                 intel_crtc->atomic.evade =
12212                         intel_pipe_update_start(intel_crtc,
12213                                                 &intel_crtc->atomic.start_vbl_count);
12214 }
12215
12216 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12217 {
12218         struct drm_device *dev = crtc->dev;
12219         struct drm_i915_private *dev_priv = dev->dev_private;
12220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12221         struct drm_plane *p;
12222
12223         if (intel_crtc->atomic.evade)
12224                 intel_pipe_update_end(intel_crtc,
12225                                       intel_crtc->atomic.start_vbl_count);
12226
12227         intel_runtime_pm_put(dev_priv);
12228
12229         if (intel_crtc->atomic.wait_vblank)
12230                 intel_wait_for_vblank(dev, intel_crtc->pipe);
12231
12232         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12233
12234         if (intel_crtc->atomic.update_fbc) {
12235                 mutex_lock(&dev->struct_mutex);
12236                 intel_fbc_update(dev);
12237                 mutex_unlock(&dev->struct_mutex);
12238         }
12239
12240         if (intel_crtc->atomic.post_enable_primary)
12241                 intel_post_enable_primary(crtc);
12242
12243         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12244                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12245                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12246                                                        false, false);
12247
12248         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12249 }
12250
12251 /**
12252  * intel_plane_destroy - destroy a plane
12253  * @plane: plane to destroy
12254  *
12255  * Common destruction function for all types of planes (primary, cursor,
12256  * sprite).
12257  */
12258 void intel_plane_destroy(struct drm_plane *plane)
12259 {
12260         struct intel_plane *intel_plane = to_intel_plane(plane);
12261         drm_plane_cleanup(plane);
12262         kfree(intel_plane);
12263 }
12264
12265 const struct drm_plane_funcs intel_plane_funcs = {
12266         .update_plane = drm_plane_helper_update,
12267         .disable_plane = drm_plane_helper_disable,
12268         .destroy = intel_plane_destroy,
12269         .set_property = drm_atomic_helper_plane_set_property,
12270         .atomic_get_property = intel_plane_atomic_get_property,
12271         .atomic_set_property = intel_plane_atomic_set_property,
12272         .atomic_duplicate_state = intel_plane_duplicate_state,
12273         .atomic_destroy_state = intel_plane_destroy_state,
12274
12275 };
12276
12277 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12278                                                     int pipe)
12279 {
12280         struct intel_plane *primary;
12281         struct intel_plane_state *state;
12282         const uint32_t *intel_primary_formats;
12283         int num_formats;
12284
12285         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12286         if (primary == NULL)
12287                 return NULL;
12288
12289         state = intel_create_plane_state(&primary->base);
12290         if (!state) {
12291                 kfree(primary);
12292                 return NULL;
12293         }
12294         primary->base.state = &state->base;
12295
12296         primary->can_scale = false;
12297         primary->max_downscale = 1;
12298         primary->pipe = pipe;
12299         primary->plane = pipe;
12300         primary->check_plane = intel_check_primary_plane;
12301         primary->commit_plane = intel_commit_primary_plane;
12302         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12303                 primary->plane = !pipe;
12304
12305         if (INTEL_INFO(dev)->gen <= 3) {
12306                 intel_primary_formats = intel_primary_formats_gen2;
12307                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12308         } else {
12309                 intel_primary_formats = intel_primary_formats_gen4;
12310                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12311         }
12312
12313         drm_universal_plane_init(dev, &primary->base, 0,
12314                                  &intel_plane_funcs,
12315                                  intel_primary_formats, num_formats,
12316                                  DRM_PLANE_TYPE_PRIMARY);
12317
12318         if (INTEL_INFO(dev)->gen >= 4) {
12319                 if (!dev->mode_config.rotation_property)
12320                         dev->mode_config.rotation_property =
12321                                 drm_mode_create_rotation_property(dev,
12322                                                         BIT(DRM_ROTATE_0) |
12323                                                         BIT(DRM_ROTATE_180));
12324                 if (dev->mode_config.rotation_property)
12325                         drm_object_attach_property(&primary->base.base,
12326                                 dev->mode_config.rotation_property,
12327                                 state->base.rotation);
12328         }
12329
12330         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12331
12332         return &primary->base;
12333 }
12334
12335 static int
12336 intel_check_cursor_plane(struct drm_plane *plane,
12337                          struct intel_plane_state *state)
12338 {
12339         struct drm_crtc *crtc = state->base.crtc;
12340         struct drm_device *dev = plane->dev;
12341         struct drm_framebuffer *fb = state->base.fb;
12342         struct drm_rect *dest = &state->dst;
12343         struct drm_rect *src = &state->src;
12344         const struct drm_rect *clip = &state->clip;
12345         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12346         struct intel_crtc *intel_crtc;
12347         unsigned stride;
12348         int ret;
12349
12350         crtc = crtc ? crtc : plane->crtc;
12351         intel_crtc = to_intel_crtc(crtc);
12352
12353         ret = drm_plane_helper_check_update(plane, crtc, fb,
12354                                             src, dest, clip,
12355                                             DRM_PLANE_HELPER_NO_SCALING,
12356                                             DRM_PLANE_HELPER_NO_SCALING,
12357                                             true, true, &state->visible);
12358         if (ret)
12359                 return ret;
12360
12361
12362         /* if we want to turn off the cursor ignore width and height */
12363         if (!obj)
12364                 goto finish;
12365
12366         /* Check for which cursor types we support */
12367         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12368                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12369                           state->base.crtc_w, state->base.crtc_h);
12370                 return -EINVAL;
12371         }
12372
12373         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12374         if (obj->base.size < stride * state->base.crtc_h) {
12375                 DRM_DEBUG_KMS("buffer is too small\n");
12376                 return -ENOMEM;
12377         }
12378
12379         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12380                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12381                 ret = -EINVAL;
12382         }
12383
12384 finish:
12385         if (intel_crtc->active) {
12386                 if (intel_crtc->base.cursor->state->crtc_w != state->base.crtc_w)
12387                         intel_crtc->atomic.update_wm = true;
12388
12389                 intel_crtc->atomic.fb_bits |=
12390                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12391         }
12392
12393         return ret;
12394 }
12395
12396 static void
12397 intel_commit_cursor_plane(struct drm_plane *plane,
12398                           struct intel_plane_state *state)
12399 {
12400         struct drm_crtc *crtc = state->base.crtc;
12401         struct drm_device *dev = plane->dev;
12402         struct intel_crtc *intel_crtc;
12403         struct intel_plane *intel_plane = to_intel_plane(plane);
12404         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12405         uint32_t addr;
12406
12407         crtc = crtc ? crtc : plane->crtc;
12408         intel_crtc = to_intel_crtc(crtc);
12409
12410         plane->fb = state->base.fb;
12411         crtc->cursor_x = state->base.crtc_x;
12412         crtc->cursor_y = state->base.crtc_y;
12413
12414         intel_plane->obj = obj;
12415
12416         if (intel_crtc->cursor_bo == obj)
12417                 goto update;
12418
12419         if (!obj)
12420                 addr = 0;
12421         else if (!INTEL_INFO(dev)->cursor_needs_physical)
12422                 addr = i915_gem_obj_ggtt_offset(obj);
12423         else
12424                 addr = obj->phys_handle->busaddr;
12425
12426         intel_crtc->cursor_addr = addr;
12427         intel_crtc->cursor_bo = obj;
12428 update:
12429
12430         if (intel_crtc->active)
12431                 intel_crtc_update_cursor(crtc, state->visible);
12432 }
12433
12434 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12435                                                    int pipe)
12436 {
12437         struct intel_plane *cursor;
12438         struct intel_plane_state *state;
12439
12440         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12441         if (cursor == NULL)
12442                 return NULL;
12443
12444         state = intel_create_plane_state(&cursor->base);
12445         if (!state) {
12446                 kfree(cursor);
12447                 return NULL;
12448         }
12449         cursor->base.state = &state->base;
12450
12451         cursor->can_scale = false;
12452         cursor->max_downscale = 1;
12453         cursor->pipe = pipe;
12454         cursor->plane = pipe;
12455         cursor->check_plane = intel_check_cursor_plane;
12456         cursor->commit_plane = intel_commit_cursor_plane;
12457
12458         drm_universal_plane_init(dev, &cursor->base, 0,
12459                                  &intel_plane_funcs,
12460                                  intel_cursor_formats,
12461                                  ARRAY_SIZE(intel_cursor_formats),
12462                                  DRM_PLANE_TYPE_CURSOR);
12463
12464         if (INTEL_INFO(dev)->gen >= 4) {
12465                 if (!dev->mode_config.rotation_property)
12466                         dev->mode_config.rotation_property =
12467                                 drm_mode_create_rotation_property(dev,
12468                                                         BIT(DRM_ROTATE_0) |
12469                                                         BIT(DRM_ROTATE_180));
12470                 if (dev->mode_config.rotation_property)
12471                         drm_object_attach_property(&cursor->base.base,
12472                                 dev->mode_config.rotation_property,
12473                                 state->base.rotation);
12474         }
12475
12476         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12477
12478         return &cursor->base;
12479 }
12480
12481 static void intel_crtc_init(struct drm_device *dev, int pipe)
12482 {
12483         struct drm_i915_private *dev_priv = dev->dev_private;
12484         struct intel_crtc *intel_crtc;
12485         struct intel_crtc_state *crtc_state = NULL;
12486         struct drm_plane *primary = NULL;
12487         struct drm_plane *cursor = NULL;
12488         int i, ret;
12489
12490         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12491         if (intel_crtc == NULL)
12492                 return;
12493
12494         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12495         if (!crtc_state)
12496                 goto fail;
12497         intel_crtc_set_state(intel_crtc, crtc_state);
12498         crtc_state->base.crtc = &intel_crtc->base;
12499
12500         primary = intel_primary_plane_create(dev, pipe);
12501         if (!primary)
12502                 goto fail;
12503
12504         cursor = intel_cursor_plane_create(dev, pipe);
12505         if (!cursor)
12506                 goto fail;
12507
12508         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12509                                         cursor, &intel_crtc_funcs);
12510         if (ret)
12511                 goto fail;
12512
12513         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12514         for (i = 0; i < 256; i++) {
12515                 intel_crtc->lut_r[i] = i;
12516                 intel_crtc->lut_g[i] = i;
12517                 intel_crtc->lut_b[i] = i;
12518         }
12519
12520         /*
12521          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12522          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12523          */
12524         intel_crtc->pipe = pipe;
12525         intel_crtc->plane = pipe;
12526         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12527                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12528                 intel_crtc->plane = !pipe;
12529         }
12530
12531         intel_crtc->cursor_base = ~0;
12532         intel_crtc->cursor_cntl = ~0;
12533         intel_crtc->cursor_size = ~0;
12534
12535         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12536                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12537         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12538         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12539
12540         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12541
12542         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12543
12544         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12545         return;
12546
12547 fail:
12548         if (primary)
12549                 drm_plane_cleanup(primary);
12550         if (cursor)
12551                 drm_plane_cleanup(cursor);
12552         kfree(crtc_state);
12553         kfree(intel_crtc);
12554 }
12555
12556 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12557 {
12558         struct drm_encoder *encoder = connector->base.encoder;
12559         struct drm_device *dev = connector->base.dev;
12560
12561         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12562
12563         if (!encoder || WARN_ON(!encoder->crtc))
12564                 return INVALID_PIPE;
12565
12566         return to_intel_crtc(encoder->crtc)->pipe;
12567 }
12568
12569 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12570                                 struct drm_file *file)
12571 {
12572         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12573         struct drm_crtc *drmmode_crtc;
12574         struct intel_crtc *crtc;
12575
12576         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12577
12578         if (!drmmode_crtc) {
12579                 DRM_ERROR("no such CRTC id\n");
12580                 return -ENOENT;
12581         }
12582
12583         crtc = to_intel_crtc(drmmode_crtc);
12584         pipe_from_crtc_id->pipe = crtc->pipe;
12585
12586         return 0;
12587 }
12588
12589 static int intel_encoder_clones(struct intel_encoder *encoder)
12590 {
12591         struct drm_device *dev = encoder->base.dev;
12592         struct intel_encoder *source_encoder;
12593         int index_mask = 0;
12594         int entry = 0;
12595
12596         for_each_intel_encoder(dev, source_encoder) {
12597                 if (encoders_cloneable(encoder, source_encoder))
12598                         index_mask |= (1 << entry);
12599
12600                 entry++;
12601         }
12602
12603         return index_mask;
12604 }
12605
12606 static bool has_edp_a(struct drm_device *dev)
12607 {
12608         struct drm_i915_private *dev_priv = dev->dev_private;
12609
12610         if (!IS_MOBILE(dev))
12611                 return false;
12612
12613         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12614                 return false;
12615
12616         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12617                 return false;
12618
12619         return true;
12620 }
12621
12622 static bool intel_crt_present(struct drm_device *dev)
12623 {
12624         struct drm_i915_private *dev_priv = dev->dev_private;
12625
12626         if (INTEL_INFO(dev)->gen >= 9)
12627                 return false;
12628
12629         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12630                 return false;
12631
12632         if (IS_CHERRYVIEW(dev))
12633                 return false;
12634
12635         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12636                 return false;
12637
12638         return true;
12639 }
12640
12641 static void intel_setup_outputs(struct drm_device *dev)
12642 {
12643         struct drm_i915_private *dev_priv = dev->dev_private;
12644         struct intel_encoder *encoder;
12645         struct drm_connector *connector;
12646         bool dpd_is_edp = false;
12647
12648         intel_lvds_init(dev);
12649
12650         if (intel_crt_present(dev))
12651                 intel_crt_init(dev);
12652
12653         if (HAS_DDI(dev)) {
12654                 int found;
12655
12656                 /*
12657                  * Haswell uses DDI functions to detect digital outputs.
12658                  * On SKL pre-D0 the strap isn't connected, so we assume
12659                  * it's there.
12660                  */
12661                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12662                 /* WaIgnoreDDIAStrap: skl */
12663                 if (found ||
12664                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
12665                         intel_ddi_init(dev, PORT_A);
12666
12667                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12668                  * register */
12669                 found = I915_READ(SFUSE_STRAP);
12670
12671                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12672                         intel_ddi_init(dev, PORT_B);
12673                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12674                         intel_ddi_init(dev, PORT_C);
12675                 if (found & SFUSE_STRAP_DDID_DETECTED)
12676                         intel_ddi_init(dev, PORT_D);
12677         } else if (HAS_PCH_SPLIT(dev)) {
12678                 int found;
12679                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12680
12681                 if (has_edp_a(dev))
12682                         intel_dp_init(dev, DP_A, PORT_A);
12683
12684                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12685                         /* PCH SDVOB multiplex with HDMIB */
12686                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12687                         if (!found)
12688                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12689                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12690                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12691                 }
12692
12693                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12694                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12695
12696                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12697                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12698
12699                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12700                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12701
12702                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12703                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12704         } else if (IS_VALLEYVIEW(dev)) {
12705                 /*
12706                  * The DP_DETECTED bit is the latched state of the DDC
12707                  * SDA pin at boot. However since eDP doesn't require DDC
12708                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12709                  * eDP ports may have been muxed to an alternate function.
12710                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12711                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12712                  * detect eDP ports.
12713                  */
12714                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12715                     !intel_dp_is_edp(dev, PORT_B))
12716                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12717                                         PORT_B);
12718                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12719                     intel_dp_is_edp(dev, PORT_B))
12720                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12721
12722                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12723                     !intel_dp_is_edp(dev, PORT_C))
12724                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12725                                         PORT_C);
12726                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12727                     intel_dp_is_edp(dev, PORT_C))
12728                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12729
12730                 if (IS_CHERRYVIEW(dev)) {
12731                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12732                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12733                                                 PORT_D);
12734                         /* eDP not supported on port D, so don't check VBT */
12735                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12736                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12737                 }
12738
12739                 intel_dsi_init(dev);
12740         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12741                 bool found = false;
12742
12743                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12744                         DRM_DEBUG_KMS("probing SDVOB\n");
12745                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12746                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12747                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12748                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12749                         }
12750
12751                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12752                                 intel_dp_init(dev, DP_B, PORT_B);
12753                 }
12754
12755                 /* Before G4X SDVOC doesn't have its own detect register */
12756
12757                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12758                         DRM_DEBUG_KMS("probing SDVOC\n");
12759                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12760                 }
12761
12762                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12763
12764                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12765                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12766                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12767                         }
12768                         if (SUPPORTS_INTEGRATED_DP(dev))
12769                                 intel_dp_init(dev, DP_C, PORT_C);
12770                 }
12771
12772                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12773                     (I915_READ(DP_D) & DP_DETECTED))
12774                         intel_dp_init(dev, DP_D, PORT_D);
12775         } else if (IS_GEN2(dev))
12776                 intel_dvo_init(dev);
12777
12778         if (SUPPORTS_TV(dev))
12779                 intel_tv_init(dev);
12780
12781         /*
12782          * FIXME:  We don't have full atomic support yet, but we want to be
12783          * able to enable/test plane updates via the atomic interface in the
12784          * meantime.  However as soon as we flip DRIVER_ATOMIC on, the DRM core
12785          * will take some atomic codepaths to lookup properties during
12786          * drmModeGetConnector() that unconditionally dereference
12787          * connector->state.
12788          *
12789          * We create a dummy connector state here for each connector to ensure
12790          * the DRM core doesn't try to dereference a NULL connector->state.
12791          * The actual connector properties will never be updated or contain
12792          * useful information, but since we're doing this specifically for
12793          * testing/debug of the plane operations (and only when a specific
12794          * kernel module option is given), that shouldn't really matter.
12795          *
12796          * Once atomic support for crtc's + connectors lands, this loop should
12797          * be removed since we'll be setting up real connector state, which
12798          * will contain Intel-specific properties.
12799          */
12800         if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12801                 list_for_each_entry(connector,
12802                                     &dev->mode_config.connector_list,
12803                                     head) {
12804                         if (!WARN_ON(connector->state)) {
12805                                 connector->state =
12806                                         kzalloc(sizeof(*connector->state),
12807                                                 GFP_KERNEL);
12808                         }
12809                 }
12810         }
12811
12812         intel_psr_init(dev);
12813
12814         for_each_intel_encoder(dev, encoder) {
12815                 encoder->base.possible_crtcs = encoder->crtc_mask;
12816                 encoder->base.possible_clones =
12817                         intel_encoder_clones(encoder);
12818         }
12819
12820         intel_init_pch_refclk(dev);
12821
12822         drm_helper_move_panel_connectors_to_head(dev);
12823 }
12824
12825 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12826 {
12827         struct drm_device *dev = fb->dev;
12828         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12829
12830         drm_framebuffer_cleanup(fb);
12831         mutex_lock(&dev->struct_mutex);
12832         WARN_ON(!intel_fb->obj->framebuffer_references--);
12833         drm_gem_object_unreference(&intel_fb->obj->base);
12834         mutex_unlock(&dev->struct_mutex);
12835         kfree(intel_fb);
12836 }
12837
12838 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12839                                                 struct drm_file *file,
12840                                                 unsigned int *handle)
12841 {
12842         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12843         struct drm_i915_gem_object *obj = intel_fb->obj;
12844
12845         return drm_gem_handle_create(file, &obj->base, handle);
12846 }
12847
12848 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12849         .destroy = intel_user_framebuffer_destroy,
12850         .create_handle = intel_user_framebuffer_create_handle,
12851 };
12852
12853 static
12854 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
12855                          uint32_t pixel_format)
12856 {
12857         u32 gen = INTEL_INFO(dev)->gen;
12858
12859         if (gen >= 9) {
12860                 /* "The stride in bytes must not exceed the of the size of 8K
12861                  *  pixels and 32K bytes."
12862                  */
12863                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
12864         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
12865                 return 32*1024;
12866         } else if (gen >= 4) {
12867                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12868                         return 16*1024;
12869                 else
12870                         return 32*1024;
12871         } else if (gen >= 3) {
12872                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12873                         return 8*1024;
12874                 else
12875                         return 16*1024;
12876         } else {
12877                 /* XXX DSPC is limited to 4k tiled */
12878                 return 8*1024;
12879         }
12880 }
12881
12882 static int intel_framebuffer_init(struct drm_device *dev,
12883                                   struct intel_framebuffer *intel_fb,
12884                                   struct drm_mode_fb_cmd2 *mode_cmd,
12885                                   struct drm_i915_gem_object *obj)
12886 {
12887         int aligned_height;
12888         int ret;
12889         u32 pitch_limit, stride_alignment;
12890
12891         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12892
12893         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
12894                 /* Enforce that fb modifier and tiling mode match, but only for
12895                  * X-tiled. This is needed for FBC. */
12896                 if (!!(obj->tiling_mode == I915_TILING_X) !=
12897                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
12898                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
12899                         return -EINVAL;
12900                 }
12901         } else {
12902                 if (obj->tiling_mode == I915_TILING_X)
12903                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
12904                 else if (obj->tiling_mode == I915_TILING_Y) {
12905                         DRM_DEBUG("No Y tiling for legacy addfb\n");
12906                         return -EINVAL;
12907                 }
12908         }
12909
12910         /* Passed in modifier sanity checking. */
12911         switch (mode_cmd->modifier[0]) {
12912         case I915_FORMAT_MOD_Y_TILED:
12913         case I915_FORMAT_MOD_Yf_TILED:
12914                 if (INTEL_INFO(dev)->gen < 9) {
12915                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
12916                                   mode_cmd->modifier[0]);
12917                         return -EINVAL;
12918                 }
12919         case DRM_FORMAT_MOD_NONE:
12920         case I915_FORMAT_MOD_X_TILED:
12921                 break;
12922         default:
12923                 DRM_ERROR("Unsupported fb modifier 0x%llx!\n",
12924                                 mode_cmd->modifier[0]);
12925                 return -EINVAL;
12926         }
12927
12928         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
12929                                                      mode_cmd->pixel_format);
12930         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
12931                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
12932                           mode_cmd->pitches[0], stride_alignment);
12933                 return -EINVAL;
12934         }
12935
12936         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
12937                                            mode_cmd->pixel_format);
12938         if (mode_cmd->pitches[0] > pitch_limit) {
12939                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
12940                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
12941                           "tiled" : "linear",
12942                           mode_cmd->pitches[0], pitch_limit);
12943                 return -EINVAL;
12944         }
12945
12946         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
12947             mode_cmd->pitches[0] != obj->stride) {
12948                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12949                           mode_cmd->pitches[0], obj->stride);
12950                 return -EINVAL;
12951         }
12952
12953         /* Reject formats not supported by any plane early. */
12954         switch (mode_cmd->pixel_format) {
12955         case DRM_FORMAT_C8:
12956         case DRM_FORMAT_RGB565:
12957         case DRM_FORMAT_XRGB8888:
12958         case DRM_FORMAT_ARGB8888:
12959                 break;
12960         case DRM_FORMAT_XRGB1555:
12961         case DRM_FORMAT_ARGB1555:
12962                 if (INTEL_INFO(dev)->gen > 3) {
12963                         DRM_DEBUG("unsupported pixel format: %s\n",
12964                                   drm_get_format_name(mode_cmd->pixel_format));
12965                         return -EINVAL;
12966                 }
12967                 break;
12968         case DRM_FORMAT_XBGR8888:
12969         case DRM_FORMAT_ABGR8888:
12970         case DRM_FORMAT_XRGB2101010:
12971         case DRM_FORMAT_ARGB2101010:
12972         case DRM_FORMAT_XBGR2101010:
12973         case DRM_FORMAT_ABGR2101010:
12974                 if (INTEL_INFO(dev)->gen < 4) {
12975                         DRM_DEBUG("unsupported pixel format: %s\n",
12976                                   drm_get_format_name(mode_cmd->pixel_format));
12977                         return -EINVAL;
12978                 }
12979                 break;
12980         case DRM_FORMAT_YUYV:
12981         case DRM_FORMAT_UYVY:
12982         case DRM_FORMAT_YVYU:
12983         case DRM_FORMAT_VYUY:
12984                 if (INTEL_INFO(dev)->gen < 5) {
12985                         DRM_DEBUG("unsupported pixel format: %s\n",
12986                                   drm_get_format_name(mode_cmd->pixel_format));
12987                         return -EINVAL;
12988                 }
12989                 break;
12990         default:
12991                 DRM_DEBUG("unsupported pixel format: %s\n",
12992                           drm_get_format_name(mode_cmd->pixel_format));
12993                 return -EINVAL;
12994         }
12995
12996         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12997         if (mode_cmd->offsets[0] != 0)
12998                 return -EINVAL;
12999
13000         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13001                                                mode_cmd->pixel_format,
13002                                                mode_cmd->modifier[0]);
13003         /* FIXME drm helper for size checks (especially planar formats)? */
13004         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13005                 return -EINVAL;
13006
13007         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13008         intel_fb->obj = obj;
13009         intel_fb->obj->framebuffer_references++;
13010
13011         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13012         if (ret) {
13013                 DRM_ERROR("framebuffer init failed %d\n", ret);
13014                 return ret;
13015         }
13016
13017         return 0;
13018 }
13019
13020 static struct drm_framebuffer *
13021 intel_user_framebuffer_create(struct drm_device *dev,
13022                               struct drm_file *filp,
13023                               struct drm_mode_fb_cmd2 *mode_cmd)
13024 {
13025         struct drm_i915_gem_object *obj;
13026
13027         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13028                                                 mode_cmd->handles[0]));
13029         if (&obj->base == NULL)
13030                 return ERR_PTR(-ENOENT);
13031
13032         return intel_framebuffer_create(dev, mode_cmd, obj);
13033 }
13034
13035 #ifndef CONFIG_DRM_I915_FBDEV
13036 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13037 {
13038 }
13039 #endif
13040
13041 static const struct drm_mode_config_funcs intel_mode_funcs = {
13042         .fb_create = intel_user_framebuffer_create,
13043         .output_poll_changed = intel_fbdev_output_poll_changed,
13044         .atomic_check = intel_atomic_check,
13045         .atomic_commit = intel_atomic_commit,
13046 };
13047
13048 /* Set up chip specific display functions */
13049 static void intel_init_display(struct drm_device *dev)
13050 {
13051         struct drm_i915_private *dev_priv = dev->dev_private;
13052
13053         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13054                 dev_priv->display.find_dpll = g4x_find_best_dpll;
13055         else if (IS_CHERRYVIEW(dev))
13056                 dev_priv->display.find_dpll = chv_find_best_dpll;
13057         else if (IS_VALLEYVIEW(dev))
13058                 dev_priv->display.find_dpll = vlv_find_best_dpll;
13059         else if (IS_PINEVIEW(dev))
13060                 dev_priv->display.find_dpll = pnv_find_best_dpll;
13061         else
13062                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13063
13064         if (INTEL_INFO(dev)->gen >= 9) {
13065                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13066                 dev_priv->display.get_initial_plane_config =
13067                         skylake_get_initial_plane_config;
13068                 dev_priv->display.crtc_compute_clock =
13069                         haswell_crtc_compute_clock;
13070                 dev_priv->display.crtc_enable = haswell_crtc_enable;
13071                 dev_priv->display.crtc_disable = haswell_crtc_disable;
13072                 dev_priv->display.off = ironlake_crtc_off;
13073                 dev_priv->display.update_primary_plane =
13074                         skylake_update_primary_plane;
13075         } else if (HAS_DDI(dev)) {
13076                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13077                 dev_priv->display.get_initial_plane_config =
13078                         ironlake_get_initial_plane_config;
13079                 dev_priv->display.crtc_compute_clock =
13080                         haswell_crtc_compute_clock;
13081                 dev_priv->display.crtc_enable = haswell_crtc_enable;
13082                 dev_priv->display.crtc_disable = haswell_crtc_disable;
13083                 dev_priv->display.off = ironlake_crtc_off;
13084                 dev_priv->display.update_primary_plane =
13085                         ironlake_update_primary_plane;
13086         } else if (HAS_PCH_SPLIT(dev)) {
13087                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13088                 dev_priv->display.get_initial_plane_config =
13089                         ironlake_get_initial_plane_config;
13090                 dev_priv->display.crtc_compute_clock =
13091                         ironlake_crtc_compute_clock;
13092                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13093                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13094                 dev_priv->display.off = ironlake_crtc_off;
13095                 dev_priv->display.update_primary_plane =
13096                         ironlake_update_primary_plane;
13097         } else if (IS_VALLEYVIEW(dev)) {
13098                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13099                 dev_priv->display.get_initial_plane_config =
13100                         i9xx_get_initial_plane_config;
13101                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13102                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13103                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13104                 dev_priv->display.off = i9xx_crtc_off;
13105                 dev_priv->display.update_primary_plane =
13106                         i9xx_update_primary_plane;
13107         } else {
13108                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13109                 dev_priv->display.get_initial_plane_config =
13110                         i9xx_get_initial_plane_config;
13111                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13112                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13113                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13114                 dev_priv->display.off = i9xx_crtc_off;
13115                 dev_priv->display.update_primary_plane =
13116                         i9xx_update_primary_plane;
13117         }
13118
13119         /* Returns the core display clock speed */
13120         if (IS_VALLEYVIEW(dev))
13121                 dev_priv->display.get_display_clock_speed =
13122                         valleyview_get_display_clock_speed;
13123         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13124                 dev_priv->display.get_display_clock_speed =
13125                         i945_get_display_clock_speed;
13126         else if (IS_I915G(dev))
13127                 dev_priv->display.get_display_clock_speed =
13128                         i915_get_display_clock_speed;
13129         else if (IS_I945GM(dev) || IS_845G(dev))
13130                 dev_priv->display.get_display_clock_speed =
13131                         i9xx_misc_get_display_clock_speed;
13132         else if (IS_PINEVIEW(dev))
13133                 dev_priv->display.get_display_clock_speed =
13134                         pnv_get_display_clock_speed;
13135         else if (IS_I915GM(dev))
13136                 dev_priv->display.get_display_clock_speed =
13137                         i915gm_get_display_clock_speed;
13138         else if (IS_I865G(dev))
13139                 dev_priv->display.get_display_clock_speed =
13140                         i865_get_display_clock_speed;
13141         else if (IS_I85X(dev))
13142                 dev_priv->display.get_display_clock_speed =
13143                         i855_get_display_clock_speed;
13144         else /* 852, 830 */
13145                 dev_priv->display.get_display_clock_speed =
13146                         i830_get_display_clock_speed;
13147
13148         if (IS_GEN5(dev)) {
13149                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13150         } else if (IS_GEN6(dev)) {
13151                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13152         } else if (IS_IVYBRIDGE(dev)) {
13153                 /* FIXME: detect B0+ stepping and use auto training */
13154                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13155                 dev_priv->display.modeset_global_resources =
13156                         ivb_modeset_global_resources;
13157         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13158                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13159         } else if (IS_VALLEYVIEW(dev)) {
13160                 dev_priv->display.modeset_global_resources =
13161                         valleyview_modeset_global_resources;
13162         }
13163
13164         switch (INTEL_INFO(dev)->gen) {
13165         case 2:
13166                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13167                 break;
13168
13169         case 3:
13170                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13171                 break;
13172
13173         case 4:
13174         case 5:
13175                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13176                 break;
13177
13178         case 6:
13179                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13180                 break;
13181         case 7:
13182         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13183                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13184                 break;
13185         case 9:
13186                 /* Drop through - unsupported since execlist only. */
13187         default:
13188                 /* Default just returns -ENODEV to indicate unsupported */
13189                 dev_priv->display.queue_flip = intel_default_queue_flip;
13190         }
13191
13192         intel_panel_init_backlight_funcs(dev);
13193
13194         mutex_init(&dev_priv->pps_mutex);
13195 }
13196
13197 /*
13198  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13199  * resume, or other times.  This quirk makes sure that's the case for
13200  * affected systems.
13201  */
13202 static void quirk_pipea_force(struct drm_device *dev)
13203 {
13204         struct drm_i915_private *dev_priv = dev->dev_private;
13205
13206         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13207         DRM_INFO("applying pipe a force quirk\n");
13208 }
13209
13210 static void quirk_pipeb_force(struct drm_device *dev)
13211 {
13212         struct drm_i915_private *dev_priv = dev->dev_private;
13213
13214         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13215         DRM_INFO("applying pipe b force quirk\n");
13216 }
13217
13218 /*
13219  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13220  */
13221 static void quirk_ssc_force_disable(struct drm_device *dev)
13222 {
13223         struct drm_i915_private *dev_priv = dev->dev_private;
13224         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13225         DRM_INFO("applying lvds SSC disable quirk\n");
13226 }
13227
13228 /*
13229  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13230  * brightness value
13231  */
13232 static void quirk_invert_brightness(struct drm_device *dev)
13233 {
13234         struct drm_i915_private *dev_priv = dev->dev_private;
13235         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13236         DRM_INFO("applying inverted panel brightness quirk\n");
13237 }
13238
13239 /* Some VBT's incorrectly indicate no backlight is present */
13240 static void quirk_backlight_present(struct drm_device *dev)
13241 {
13242         struct drm_i915_private *dev_priv = dev->dev_private;
13243         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13244         DRM_INFO("applying backlight present quirk\n");
13245 }
13246
13247 struct intel_quirk {
13248         int device;
13249         int subsystem_vendor;
13250         int subsystem_device;
13251         void (*hook)(struct drm_device *dev);
13252 };
13253
13254 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13255 struct intel_dmi_quirk {
13256         void (*hook)(struct drm_device *dev);
13257         const struct dmi_system_id (*dmi_id_list)[];
13258 };
13259
13260 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13261 {
13262         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13263         return 1;
13264 }
13265
13266 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13267         {
13268                 .dmi_id_list = &(const struct dmi_system_id[]) {
13269                         {
13270                                 .callback = intel_dmi_reverse_brightness,
13271                                 .ident = "NCR Corporation",
13272                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13273                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
13274                                 },
13275                         },
13276                         { }  /* terminating entry */
13277                 },
13278                 .hook = quirk_invert_brightness,
13279         },
13280 };
13281
13282 static struct intel_quirk intel_quirks[] = {
13283         /* HP Mini needs pipe A force quirk (LP: #322104) */
13284         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13285
13286         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13287         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13288
13289         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13290         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13291
13292         /* 830 needs to leave pipe A & dpll A up */
13293         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13294
13295         /* 830 needs to leave pipe B & dpll B up */
13296         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13297
13298         /* Lenovo U160 cannot use SSC on LVDS */
13299         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13300
13301         /* Sony Vaio Y cannot use SSC on LVDS */
13302         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13303
13304         /* Acer Aspire 5734Z must invert backlight brightness */
13305         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13306
13307         /* Acer/eMachines G725 */
13308         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13309
13310         /* Acer/eMachines e725 */
13311         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13312
13313         /* Acer/Packard Bell NCL20 */
13314         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13315
13316         /* Acer Aspire 4736Z */
13317         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13318
13319         /* Acer Aspire 5336 */
13320         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13321
13322         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13323         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13324
13325         /* Acer C720 Chromebook (Core i3 4005U) */
13326         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13327
13328         /* Apple Macbook 2,1 (Core 2 T7400) */
13329         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13330
13331         /* Toshiba CB35 Chromebook (Celeron 2955U) */
13332         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13333
13334         /* HP Chromebook 14 (Celeron 2955U) */
13335         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13336
13337         /* Dell Chromebook 11 */
13338         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13339 };
13340
13341 static void intel_init_quirks(struct drm_device *dev)
13342 {
13343         struct pci_dev *d = dev->pdev;
13344         int i;
13345
13346         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13347                 struct intel_quirk *q = &intel_quirks[i];
13348
13349                 if (d->device == q->device &&
13350                     (d->subsystem_vendor == q->subsystem_vendor ||
13351                      q->subsystem_vendor == PCI_ANY_ID) &&
13352                     (d->subsystem_device == q->subsystem_device ||
13353                      q->subsystem_device == PCI_ANY_ID))
13354                         q->hook(dev);
13355         }
13356         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13357                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13358                         intel_dmi_quirks[i].hook(dev);
13359         }
13360 }
13361
13362 /* Disable the VGA plane that we never use */
13363 static void i915_disable_vga(struct drm_device *dev)
13364 {
13365         struct drm_i915_private *dev_priv = dev->dev_private;
13366         u8 sr1;
13367         u32 vga_reg = i915_vgacntrl_reg(dev);
13368
13369         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13370         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13371         outb(SR01, VGA_SR_INDEX);
13372         sr1 = inb(VGA_SR_DATA);
13373         outb(sr1 | 1<<5, VGA_SR_DATA);
13374         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13375         udelay(300);
13376
13377         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13378         POSTING_READ(vga_reg);
13379 }
13380
13381 void intel_modeset_init_hw(struct drm_device *dev)
13382 {
13383         intel_prepare_ddi(dev);
13384
13385         if (IS_VALLEYVIEW(dev))
13386                 vlv_update_cdclk(dev);
13387
13388         intel_init_clock_gating(dev);
13389
13390         intel_enable_gt_powersave(dev);
13391 }
13392
13393 void intel_modeset_init(struct drm_device *dev)
13394 {
13395         struct drm_i915_private *dev_priv = dev->dev_private;
13396         int sprite, ret;
13397         enum pipe pipe;
13398         struct intel_crtc *crtc;
13399
13400         drm_mode_config_init(dev);
13401
13402         dev->mode_config.min_width = 0;
13403         dev->mode_config.min_height = 0;
13404
13405         dev->mode_config.preferred_depth = 24;
13406         dev->mode_config.prefer_shadow = 1;
13407
13408         dev->mode_config.allow_fb_modifiers = true;
13409
13410         dev->mode_config.funcs = &intel_mode_funcs;
13411
13412         intel_init_quirks(dev);
13413
13414         intel_init_pm(dev);
13415
13416         if (INTEL_INFO(dev)->num_pipes == 0)
13417                 return;
13418
13419         intel_init_display(dev);
13420         intel_init_audio(dev);
13421
13422         if (IS_GEN2(dev)) {
13423                 dev->mode_config.max_width = 2048;
13424                 dev->mode_config.max_height = 2048;
13425         } else if (IS_GEN3(dev)) {
13426                 dev->mode_config.max_width = 4096;
13427                 dev->mode_config.max_height = 4096;
13428         } else {
13429                 dev->mode_config.max_width = 8192;
13430                 dev->mode_config.max_height = 8192;
13431         }
13432
13433         if (IS_845G(dev) || IS_I865G(dev)) {
13434                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13435                 dev->mode_config.cursor_height = 1023;
13436         } else if (IS_GEN2(dev)) {
13437                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13438                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13439         } else {
13440                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13441                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13442         }
13443
13444         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13445
13446         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13447                       INTEL_INFO(dev)->num_pipes,
13448                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13449
13450         for_each_pipe(dev_priv, pipe) {
13451                 intel_crtc_init(dev, pipe);
13452                 for_each_sprite(dev_priv, pipe, sprite) {
13453                         ret = intel_plane_init(dev, pipe, sprite);
13454                         if (ret)
13455                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13456                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13457                 }
13458         }
13459
13460         intel_init_dpio(dev);
13461
13462         intel_shared_dpll_init(dev);
13463
13464         /* Just disable it once at startup */
13465         i915_disable_vga(dev);
13466         intel_setup_outputs(dev);
13467
13468         /* Just in case the BIOS is doing something questionable. */
13469         intel_fbc_disable(dev);
13470
13471         drm_modeset_lock_all(dev);
13472         intel_modeset_setup_hw_state(dev, false);
13473         drm_modeset_unlock_all(dev);
13474
13475         for_each_intel_crtc(dev, crtc) {
13476                 if (!crtc->active)
13477                         continue;
13478
13479                 /*
13480                  * Note that reserving the BIOS fb up front prevents us
13481                  * from stuffing other stolen allocations like the ring
13482                  * on top.  This prevents some ugliness at boot time, and
13483                  * can even allow for smooth boot transitions if the BIOS
13484                  * fb is large enough for the active pipe configuration.
13485                  */
13486                 if (dev_priv->display.get_initial_plane_config) {
13487                         dev_priv->display.get_initial_plane_config(crtc,
13488                                                            &crtc->plane_config);
13489                         /*
13490                          * If the fb is shared between multiple heads, we'll
13491                          * just get the first one.
13492                          */
13493                         intel_find_plane_obj(crtc, &crtc->plane_config);
13494                 }
13495         }
13496 }
13497
13498 static void intel_enable_pipe_a(struct drm_device *dev)
13499 {
13500         struct intel_connector *connector;
13501         struct drm_connector *crt = NULL;
13502         struct intel_load_detect_pipe load_detect_temp;
13503         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13504
13505         /* We can't just switch on the pipe A, we need to set things up with a
13506          * proper mode and output configuration. As a gross hack, enable pipe A
13507          * by enabling the load detect pipe once. */
13508         for_each_intel_connector(dev, connector) {
13509                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13510                         crt = &connector->base;
13511                         break;
13512                 }
13513         }
13514
13515         if (!crt)
13516                 return;
13517
13518         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13519                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13520 }
13521
13522 static bool
13523 intel_check_plane_mapping(struct intel_crtc *crtc)
13524 {
13525         struct drm_device *dev = crtc->base.dev;
13526         struct drm_i915_private *dev_priv = dev->dev_private;
13527         u32 reg, val;
13528
13529         if (INTEL_INFO(dev)->num_pipes == 1)
13530                 return true;
13531
13532         reg = DSPCNTR(!crtc->plane);
13533         val = I915_READ(reg);
13534
13535         if ((val & DISPLAY_PLANE_ENABLE) &&
13536             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13537                 return false;
13538
13539         return true;
13540 }
13541
13542 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13543 {
13544         struct drm_device *dev = crtc->base.dev;
13545         struct drm_i915_private *dev_priv = dev->dev_private;
13546         u32 reg;
13547
13548         /* Clear any frame start delays used for debugging left by the BIOS */
13549         reg = PIPECONF(crtc->config->cpu_transcoder);
13550         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13551
13552         /* restore vblank interrupts to correct state */
13553         drm_crtc_vblank_reset(&crtc->base);
13554         if (crtc->active) {
13555                 update_scanline_offset(crtc);
13556                 drm_crtc_vblank_on(&crtc->base);
13557         }
13558
13559         /* We need to sanitize the plane -> pipe mapping first because this will
13560          * disable the crtc (and hence change the state) if it is wrong. Note
13561          * that gen4+ has a fixed plane -> pipe mapping.  */
13562         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13563                 struct intel_connector *connector;
13564                 bool plane;
13565
13566                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13567                               crtc->base.base.id);
13568
13569                 /* Pipe has the wrong plane attached and the plane is active.
13570                  * Temporarily change the plane mapping and disable everything
13571                  * ...  */
13572                 plane = crtc->plane;
13573                 crtc->plane = !plane;
13574                 crtc->primary_enabled = true;
13575                 dev_priv->display.crtc_disable(&crtc->base);
13576                 crtc->plane = plane;
13577
13578                 /* ... and break all links. */
13579                 for_each_intel_connector(dev, connector) {
13580                         if (connector->encoder->base.crtc != &crtc->base)
13581                                 continue;
13582
13583                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13584                         connector->base.encoder = NULL;
13585                 }
13586                 /* multiple connectors may have the same encoder:
13587                  *  handle them and break crtc link separately */
13588                 for_each_intel_connector(dev, connector)
13589                         if (connector->encoder->base.crtc == &crtc->base) {
13590                                 connector->encoder->base.crtc = NULL;
13591                                 connector->encoder->connectors_active = false;
13592                         }
13593
13594                 WARN_ON(crtc->active);
13595                 crtc->base.state->enable = false;
13596                 crtc->base.enabled = false;
13597         }
13598
13599         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13600             crtc->pipe == PIPE_A && !crtc->active) {
13601                 /* BIOS forgot to enable pipe A, this mostly happens after
13602                  * resume. Force-enable the pipe to fix this, the update_dpms
13603                  * call below we restore the pipe to the right state, but leave
13604                  * the required bits on. */
13605                 intel_enable_pipe_a(dev);
13606         }
13607
13608         /* Adjust the state of the output pipe according to whether we
13609          * have active connectors/encoders. */
13610         intel_crtc_update_dpms(&crtc->base);
13611
13612         if (crtc->active != crtc->base.state->enable) {
13613                 struct intel_encoder *encoder;
13614
13615                 /* This can happen either due to bugs in the get_hw_state
13616                  * functions or because the pipe is force-enabled due to the
13617                  * pipe A quirk. */
13618                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13619                               crtc->base.base.id,
13620                               crtc->base.state->enable ? "enabled" : "disabled",
13621                               crtc->active ? "enabled" : "disabled");
13622
13623                 crtc->base.state->enable = crtc->active;
13624                 crtc->base.enabled = crtc->active;
13625
13626                 /* Because we only establish the connector -> encoder ->
13627                  * crtc links if something is active, this means the
13628                  * crtc is now deactivated. Break the links. connector
13629                  * -> encoder links are only establish when things are
13630                  *  actually up, hence no need to break them. */
13631                 WARN_ON(crtc->active);
13632
13633                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13634                         WARN_ON(encoder->connectors_active);
13635                         encoder->base.crtc = NULL;
13636                 }
13637         }
13638
13639         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13640                 /*
13641                  * We start out with underrun reporting disabled to avoid races.
13642                  * For correct bookkeeping mark this on active crtcs.
13643                  *
13644                  * Also on gmch platforms we dont have any hardware bits to
13645                  * disable the underrun reporting. Which means we need to start
13646                  * out with underrun reporting disabled also on inactive pipes,
13647                  * since otherwise we'll complain about the garbage we read when
13648                  * e.g. coming up after runtime pm.
13649                  *
13650                  * No protection against concurrent access is required - at
13651                  * worst a fifo underrun happens which also sets this to false.
13652                  */
13653                 crtc->cpu_fifo_underrun_disabled = true;
13654                 crtc->pch_fifo_underrun_disabled = true;
13655         }
13656 }
13657
13658 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13659 {
13660         struct intel_connector *connector;
13661         struct drm_device *dev = encoder->base.dev;
13662
13663         /* We need to check both for a crtc link (meaning that the
13664          * encoder is active and trying to read from a pipe) and the
13665          * pipe itself being active. */
13666         bool has_active_crtc = encoder->base.crtc &&
13667                 to_intel_crtc(encoder->base.crtc)->active;
13668
13669         if (encoder->connectors_active && !has_active_crtc) {
13670                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13671                               encoder->base.base.id,
13672                               encoder->base.name);
13673
13674                 /* Connector is active, but has no active pipe. This is
13675                  * fallout from our resume register restoring. Disable
13676                  * the encoder manually again. */
13677                 if (encoder->base.crtc) {
13678                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13679                                       encoder->base.base.id,
13680                                       encoder->base.name);
13681                         encoder->disable(encoder);
13682                         if (encoder->post_disable)
13683                                 encoder->post_disable(encoder);
13684                 }
13685                 encoder->base.crtc = NULL;
13686                 encoder->connectors_active = false;
13687
13688                 /* Inconsistent output/port/pipe state happens presumably due to
13689                  * a bug in one of the get_hw_state functions. Or someplace else
13690                  * in our code, like the register restore mess on resume. Clamp
13691                  * things to off as a safer default. */
13692                 for_each_intel_connector(dev, connector) {
13693                         if (connector->encoder != encoder)
13694                                 continue;
13695                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13696                         connector->base.encoder = NULL;
13697                 }
13698         }
13699         /* Enabled encoders without active connectors will be fixed in
13700          * the crtc fixup. */
13701 }
13702
13703 void i915_redisable_vga_power_on(struct drm_device *dev)
13704 {
13705         struct drm_i915_private *dev_priv = dev->dev_private;
13706         u32 vga_reg = i915_vgacntrl_reg(dev);
13707
13708         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13709                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13710                 i915_disable_vga(dev);
13711         }
13712 }
13713
13714 void i915_redisable_vga(struct drm_device *dev)
13715 {
13716         struct drm_i915_private *dev_priv = dev->dev_private;
13717
13718         /* This function can be called both from intel_modeset_setup_hw_state or
13719          * at a very early point in our resume sequence, where the power well
13720          * structures are not yet restored. Since this function is at a very
13721          * paranoid "someone might have enabled VGA while we were not looking"
13722          * level, just check if the power well is enabled instead of trying to
13723          * follow the "don't touch the power well if we don't need it" policy
13724          * the rest of the driver uses. */
13725         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13726                 return;
13727
13728         i915_redisable_vga_power_on(dev);
13729 }
13730
13731 static bool primary_get_hw_state(struct intel_crtc *crtc)
13732 {
13733         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13734
13735         if (!crtc->active)
13736                 return false;
13737
13738         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13739 }
13740
13741 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13742 {
13743         struct drm_i915_private *dev_priv = dev->dev_private;
13744         enum pipe pipe;
13745         struct intel_crtc *crtc;
13746         struct intel_encoder *encoder;
13747         struct intel_connector *connector;
13748         int i;
13749
13750         for_each_intel_crtc(dev, crtc) {
13751                 memset(crtc->config, 0, sizeof(*crtc->config));
13752
13753                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13754
13755                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13756                                                                  crtc->config);
13757
13758                 crtc->base.state->enable = crtc->active;
13759                 crtc->base.enabled = crtc->active;
13760                 crtc->primary_enabled = primary_get_hw_state(crtc);
13761
13762                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13763                               crtc->base.base.id,
13764                               crtc->active ? "enabled" : "disabled");
13765         }
13766
13767         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13768                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13769
13770                 pll->on = pll->get_hw_state(dev_priv, pll,
13771                                             &pll->config.hw_state);
13772                 pll->active = 0;
13773                 pll->config.crtc_mask = 0;
13774                 for_each_intel_crtc(dev, crtc) {
13775                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13776                                 pll->active++;
13777                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13778                         }
13779                 }
13780
13781                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13782                               pll->name, pll->config.crtc_mask, pll->on);
13783
13784                 if (pll->config.crtc_mask)
13785                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13786         }
13787
13788         for_each_intel_encoder(dev, encoder) {
13789                 pipe = 0;
13790
13791                 if (encoder->get_hw_state(encoder, &pipe)) {
13792                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13793                         encoder->base.crtc = &crtc->base;
13794                         encoder->get_config(encoder, crtc->config);
13795                 } else {
13796                         encoder->base.crtc = NULL;
13797                 }
13798
13799                 encoder->connectors_active = false;
13800                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13801                               encoder->base.base.id,
13802                               encoder->base.name,
13803                               encoder->base.crtc ? "enabled" : "disabled",
13804                               pipe_name(pipe));
13805         }
13806
13807         for_each_intel_connector(dev, connector) {
13808                 if (connector->get_hw_state(connector)) {
13809                         connector->base.dpms = DRM_MODE_DPMS_ON;
13810                         connector->encoder->connectors_active = true;
13811                         connector->base.encoder = &connector->encoder->base;
13812                 } else {
13813                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13814                         connector->base.encoder = NULL;
13815                 }
13816                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13817                               connector->base.base.id,
13818                               connector->base.name,
13819                               connector->base.encoder ? "enabled" : "disabled");
13820         }
13821 }
13822
13823 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13824  * and i915 state tracking structures. */
13825 void intel_modeset_setup_hw_state(struct drm_device *dev,
13826                                   bool force_restore)
13827 {
13828         struct drm_i915_private *dev_priv = dev->dev_private;
13829         enum pipe pipe;
13830         struct intel_crtc *crtc;
13831         struct intel_encoder *encoder;
13832         int i;
13833
13834         intel_modeset_readout_hw_state(dev);
13835
13836         /*
13837          * Now that we have the config, copy it to each CRTC struct
13838          * Note that this could go away if we move to using crtc_config
13839          * checking everywhere.
13840          */
13841         for_each_intel_crtc(dev, crtc) {
13842                 if (crtc->active && i915.fastboot) {
13843                         intel_mode_from_pipe_config(&crtc->base.mode,
13844                                                     crtc->config);
13845                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13846                                       crtc->base.base.id);
13847                         drm_mode_debug_printmodeline(&crtc->base.mode);
13848                 }
13849         }
13850
13851         /* HW state is read out, now we need to sanitize this mess. */
13852         for_each_intel_encoder(dev, encoder) {
13853                 intel_sanitize_encoder(encoder);
13854         }
13855
13856         for_each_pipe(dev_priv, pipe) {
13857                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13858                 intel_sanitize_crtc(crtc);
13859                 intel_dump_pipe_config(crtc, crtc->config,
13860                                        "[setup_hw_state]");
13861         }
13862
13863         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13864                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13865
13866                 if (!pll->on || pll->active)
13867                         continue;
13868
13869                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13870
13871                 pll->disable(dev_priv, pll);
13872                 pll->on = false;
13873         }
13874
13875         if (IS_GEN9(dev))
13876                 skl_wm_get_hw_state(dev);
13877         else if (HAS_PCH_SPLIT(dev))
13878                 ilk_wm_get_hw_state(dev);
13879
13880         if (force_restore) {
13881                 i915_redisable_vga(dev);
13882
13883                 /*
13884                  * We need to use raw interfaces for restoring state to avoid
13885                  * checking (bogus) intermediate states.
13886                  */
13887                 for_each_pipe(dev_priv, pipe) {
13888                         struct drm_crtc *crtc =
13889                                 dev_priv->pipe_to_crtc_mapping[pipe];
13890
13891                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13892                                        crtc->primary->fb);
13893                 }
13894         } else {
13895                 intel_modeset_update_staged_output_state(dev);
13896         }
13897
13898         intel_modeset_check_state(dev);
13899 }
13900
13901 void intel_modeset_gem_init(struct drm_device *dev)
13902 {
13903         struct drm_i915_private *dev_priv = dev->dev_private;
13904         struct drm_crtc *c;
13905         struct drm_i915_gem_object *obj;
13906
13907         mutex_lock(&dev->struct_mutex);
13908         intel_init_gt_powersave(dev);
13909         mutex_unlock(&dev->struct_mutex);
13910
13911         /*
13912          * There may be no VBT; and if the BIOS enabled SSC we can
13913          * just keep using it to avoid unnecessary flicker.  Whereas if the
13914          * BIOS isn't using it, don't assume it will work even if the VBT
13915          * indicates as much.
13916          */
13917         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13918                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13919                                                 DREF_SSC1_ENABLE);
13920
13921         intel_modeset_init_hw(dev);
13922
13923         intel_setup_overlay(dev);
13924
13925         /*
13926          * Make sure any fbs we allocated at startup are properly
13927          * pinned & fenced.  When we do the allocation it's too early
13928          * for this.
13929          */
13930         mutex_lock(&dev->struct_mutex);
13931         for_each_crtc(dev, c) {
13932                 obj = intel_fb_obj(c->primary->fb);
13933                 if (obj == NULL)
13934                         continue;
13935
13936                 if (intel_pin_and_fence_fb_obj(c->primary,
13937                                                c->primary->fb,
13938                                                NULL)) {
13939                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13940                                   to_intel_crtc(c)->pipe);
13941                         drm_framebuffer_unreference(c->primary->fb);
13942                         c->primary->fb = NULL;
13943                         update_state_fb(c->primary);
13944                 }
13945         }
13946         mutex_unlock(&dev->struct_mutex);
13947
13948         intel_backlight_register(dev);
13949 }
13950
13951 void intel_connector_unregister(struct intel_connector *intel_connector)
13952 {
13953         struct drm_connector *connector = &intel_connector->base;
13954
13955         intel_panel_destroy_backlight(connector);
13956         drm_connector_unregister(connector);
13957 }
13958
13959 void intel_modeset_cleanup(struct drm_device *dev)
13960 {
13961         struct drm_i915_private *dev_priv = dev->dev_private;
13962         struct drm_connector *connector;
13963
13964         intel_disable_gt_powersave(dev);
13965
13966         intel_backlight_unregister(dev);
13967
13968         /*
13969          * Interrupts and polling as the first thing to avoid creating havoc.
13970          * Too much stuff here (turning of connectors, ...) would
13971          * experience fancy races otherwise.
13972          */
13973         intel_irq_uninstall(dev_priv);
13974
13975         /*
13976          * Due to the hpd irq storm handling the hotplug work can re-arm the
13977          * poll handlers. Hence disable polling after hpd handling is shut down.
13978          */
13979         drm_kms_helper_poll_fini(dev);
13980
13981         mutex_lock(&dev->struct_mutex);
13982
13983         intel_unregister_dsm_handler();
13984
13985         intel_fbc_disable(dev);
13986
13987         mutex_unlock(&dev->struct_mutex);
13988
13989         /* flush any delayed tasks or pending work */
13990         flush_scheduled_work();
13991
13992         /* destroy the backlight and sysfs files before encoders/connectors */
13993         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13994                 struct intel_connector *intel_connector;
13995
13996                 intel_connector = to_intel_connector(connector);
13997                 intel_connector->unregister(intel_connector);
13998         }
13999
14000         drm_mode_config_cleanup(dev);
14001
14002         intel_cleanup_overlay(dev);
14003
14004         mutex_lock(&dev->struct_mutex);
14005         intel_cleanup_gt_powersave(dev);
14006         mutex_unlock(&dev->struct_mutex);
14007 }
14008
14009 /*
14010  * Return which encoder is currently attached for connector.
14011  */
14012 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14013 {
14014         return &intel_attached_encoder(connector)->base;
14015 }
14016
14017 void intel_connector_attach_encoder(struct intel_connector *connector,
14018                                     struct intel_encoder *encoder)
14019 {
14020         connector->encoder = encoder;
14021         drm_mode_connector_attach_encoder(&connector->base,
14022                                           &encoder->base);
14023 }
14024
14025 /*
14026  * set vga decode state - true == enable VGA decode
14027  */
14028 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14029 {
14030         struct drm_i915_private *dev_priv = dev->dev_private;
14031         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14032         u16 gmch_ctrl;
14033
14034         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14035                 DRM_ERROR("failed to read control word\n");
14036                 return -EIO;
14037         }
14038
14039         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14040                 return 0;
14041
14042         if (state)
14043                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14044         else
14045                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14046
14047         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14048                 DRM_ERROR("failed to write control word\n");
14049                 return -EIO;
14050         }
14051
14052         return 0;
14053 }
14054
14055 struct intel_display_error_state {
14056
14057         u32 power_well_driver;
14058
14059         int num_transcoders;
14060
14061         struct intel_cursor_error_state {
14062                 u32 control;
14063                 u32 position;
14064                 u32 base;
14065                 u32 size;
14066         } cursor[I915_MAX_PIPES];
14067
14068         struct intel_pipe_error_state {
14069                 bool power_domain_on;
14070                 u32 source;
14071                 u32 stat;
14072         } pipe[I915_MAX_PIPES];
14073
14074         struct intel_plane_error_state {
14075                 u32 control;
14076                 u32 stride;
14077                 u32 size;
14078                 u32 pos;
14079                 u32 addr;
14080                 u32 surface;
14081                 u32 tile_offset;
14082         } plane[I915_MAX_PIPES];
14083
14084         struct intel_transcoder_error_state {
14085                 bool power_domain_on;
14086                 enum transcoder cpu_transcoder;
14087
14088                 u32 conf;
14089
14090                 u32 htotal;
14091                 u32 hblank;
14092                 u32 hsync;
14093                 u32 vtotal;
14094                 u32 vblank;
14095                 u32 vsync;
14096         } transcoder[4];
14097 };
14098
14099 struct intel_display_error_state *
14100 intel_display_capture_error_state(struct drm_device *dev)
14101 {
14102         struct drm_i915_private *dev_priv = dev->dev_private;
14103         struct intel_display_error_state *error;
14104         int transcoders[] = {
14105                 TRANSCODER_A,
14106                 TRANSCODER_B,
14107                 TRANSCODER_C,
14108                 TRANSCODER_EDP,
14109         };
14110         int i;
14111
14112         if (INTEL_INFO(dev)->num_pipes == 0)
14113                 return NULL;
14114
14115         error = kzalloc(sizeof(*error), GFP_ATOMIC);
14116         if (error == NULL)
14117                 return NULL;
14118
14119         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14120                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14121
14122         for_each_pipe(dev_priv, i) {
14123                 error->pipe[i].power_domain_on =
14124                         __intel_display_power_is_enabled(dev_priv,
14125                                                          POWER_DOMAIN_PIPE(i));
14126                 if (!error->pipe[i].power_domain_on)
14127                         continue;
14128
14129                 error->cursor[i].control = I915_READ(CURCNTR(i));
14130                 error->cursor[i].position = I915_READ(CURPOS(i));
14131                 error->cursor[i].base = I915_READ(CURBASE(i));
14132
14133                 error->plane[i].control = I915_READ(DSPCNTR(i));
14134                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14135                 if (INTEL_INFO(dev)->gen <= 3) {
14136                         error->plane[i].size = I915_READ(DSPSIZE(i));
14137                         error->plane[i].pos = I915_READ(DSPPOS(i));
14138                 }
14139                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14140                         error->plane[i].addr = I915_READ(DSPADDR(i));
14141                 if (INTEL_INFO(dev)->gen >= 4) {
14142                         error->plane[i].surface = I915_READ(DSPSURF(i));
14143                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14144                 }
14145
14146                 error->pipe[i].source = I915_READ(PIPESRC(i));
14147
14148                 if (HAS_GMCH_DISPLAY(dev))
14149                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
14150         }
14151
14152         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14153         if (HAS_DDI(dev_priv->dev))
14154                 error->num_transcoders++; /* Account for eDP. */
14155
14156         for (i = 0; i < error->num_transcoders; i++) {
14157                 enum transcoder cpu_transcoder = transcoders[i];
14158
14159                 error->transcoder[i].power_domain_on =
14160                         __intel_display_power_is_enabled(dev_priv,
14161                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14162                 if (!error->transcoder[i].power_domain_on)
14163                         continue;
14164
14165                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14166
14167                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14168                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14169                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14170                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14171                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14172                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14173                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14174         }
14175
14176         return error;
14177 }
14178
14179 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14180
14181 void
14182 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14183                                 struct drm_device *dev,
14184                                 struct intel_display_error_state *error)
14185 {
14186         struct drm_i915_private *dev_priv = dev->dev_private;
14187         int i;
14188
14189         if (!error)
14190                 return;
14191
14192         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14193         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14194                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14195                            error->power_well_driver);
14196         for_each_pipe(dev_priv, i) {
14197                 err_printf(m, "Pipe [%d]:\n", i);
14198                 err_printf(m, "  Power: %s\n",
14199                            error->pipe[i].power_domain_on ? "on" : "off");
14200                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
14201                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
14202
14203                 err_printf(m, "Plane [%d]:\n", i);
14204                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
14205                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
14206                 if (INTEL_INFO(dev)->gen <= 3) {
14207                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
14208                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
14209                 }
14210                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14211                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
14212                 if (INTEL_INFO(dev)->gen >= 4) {
14213                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
14214                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
14215                 }
14216
14217                 err_printf(m, "Cursor [%d]:\n", i);
14218                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
14219                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
14220                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
14221         }
14222
14223         for (i = 0; i < error->num_transcoders; i++) {
14224                 err_printf(m, "CPU transcoder: %c\n",
14225                            transcoder_name(error->transcoder[i].cpu_transcoder));
14226                 err_printf(m, "  Power: %s\n",
14227                            error->transcoder[i].power_domain_on ? "on" : "off");
14228                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
14229                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
14230                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
14231                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
14232                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
14233                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
14234                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
14235         }
14236 }
14237
14238 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14239 {
14240         struct intel_crtc *crtc;
14241
14242         for_each_intel_crtc(dev, crtc) {
14243                 struct intel_unpin_work *work;
14244
14245                 spin_lock_irq(&dev->event_lock);
14246
14247                 work = crtc->unpin_work;
14248
14249                 if (work && work->event &&
14250                     work->event->base.file_priv == file) {
14251                         kfree(work->event);
14252                         work->event = NULL;
14253                 }
14254
14255                 spin_unlock_irq(&dev->event_lock);
14256         }
14257 }