OSDN Git Service

drm/i915: enable audio codec after port
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 struct dp_link_dpll {
44         int link_bw;
45         struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49         { DP_LINK_BW_1_62,
50                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51         { DP_LINK_BW_2_7,
52                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56         { DP_LINK_BW_1_62,
57                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58         { DP_LINK_BW_2_7,
59                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63         { DP_LINK_BW_1_62,
64                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65         { DP_LINK_BW_2_7,
66                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70  * CHV supports eDP 1.4 that have  more link rates.
71  * Below only provides the fixed rate but exclude variable rate.
72  */
73 static const struct dp_link_dpll chv_dpll[] = {
74         /*
75          * CHV requires to program fractional division for m2.
76          * m2 is stored in fixed point format using formula below
77          * (m2_int << 22) | m2_fraction
78          */
79         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
80                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
82                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
84                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89  * @intel_dp: DP struct
90  *
91  * If a CPU or PCH DP output is attached to an eDP panel, this function
92  * will return true, and false otherwise.
93  */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105         return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
117 static void vlv_steal_power_sequencer(struct drm_device *dev,
118                                       enum pipe pipe);
119
120 int
121 intel_dp_max_link_bw(struct intel_dp *intel_dp)
122 {
123         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
124         struct drm_device *dev = intel_dp->attached_connector->base.dev;
125
126         switch (max_link_bw) {
127         case DP_LINK_BW_1_62:
128         case DP_LINK_BW_2_7:
129                 break;
130         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
131                 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
132                      INTEL_INFO(dev)->gen >= 8) &&
133                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
134                         max_link_bw = DP_LINK_BW_5_4;
135                 else
136                         max_link_bw = DP_LINK_BW_2_7;
137                 break;
138         default:
139                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
140                      max_link_bw);
141                 max_link_bw = DP_LINK_BW_1_62;
142                 break;
143         }
144         return max_link_bw;
145 }
146
147 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
148 {
149         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
150         struct drm_device *dev = intel_dig_port->base.base.dev;
151         u8 source_max, sink_max;
152
153         source_max = 4;
154         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
155             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
156                 source_max = 2;
157
158         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
159
160         return min(source_max, sink_max);
161 }
162
163 /*
164  * The units on the numbers in the next two are... bizarre.  Examples will
165  * make it clearer; this one parallels an example in the eDP spec.
166  *
167  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
168  *
169  *     270000 * 1 * 8 / 10 == 216000
170  *
171  * The actual data capacity of that configuration is 2.16Gbit/s, so the
172  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
173  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
174  * 119000.  At 18bpp that's 2142000 kilobits per second.
175  *
176  * Thus the strange-looking division by 10 in intel_dp_link_required, to
177  * get the result in decakilobits instead of kilobits.
178  */
179
180 static int
181 intel_dp_link_required(int pixel_clock, int bpp)
182 {
183         return (pixel_clock * bpp + 9) / 10;
184 }
185
186 static int
187 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
188 {
189         return (max_link_clock * max_lanes * 8) / 10;
190 }
191
192 static enum drm_mode_status
193 intel_dp_mode_valid(struct drm_connector *connector,
194                     struct drm_display_mode *mode)
195 {
196         struct intel_dp *intel_dp = intel_attached_dp(connector);
197         struct intel_connector *intel_connector = to_intel_connector(connector);
198         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
199         int target_clock = mode->clock;
200         int max_rate, mode_rate, max_lanes, max_link_clock;
201
202         if (is_edp(intel_dp) && fixed_mode) {
203                 if (mode->hdisplay > fixed_mode->hdisplay)
204                         return MODE_PANEL;
205
206                 if (mode->vdisplay > fixed_mode->vdisplay)
207                         return MODE_PANEL;
208
209                 target_clock = fixed_mode->clock;
210         }
211
212         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
213         max_lanes = intel_dp_max_lane_count(intel_dp);
214
215         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216         mode_rate = intel_dp_link_required(target_clock, 18);
217
218         if (mode_rate > max_rate)
219                 return MODE_CLOCK_HIGH;
220
221         if (mode->clock < 10000)
222                 return MODE_CLOCK_LOW;
223
224         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
225                 return MODE_H_ILLEGAL;
226
227         return MODE_OK;
228 }
229
230 static uint32_t
231 pack_aux(const uint8_t *src, int src_bytes)
232 {
233         int     i;
234         uint32_t v = 0;
235
236         if (src_bytes > 4)
237                 src_bytes = 4;
238         for (i = 0; i < src_bytes; i++)
239                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
240         return v;
241 }
242
243 static void
244 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246         int i;
247         if (dst_bytes > 4)
248                 dst_bytes = 4;
249         for (i = 0; i < dst_bytes; i++)
250                 dst[i] = src >> ((3-i) * 8);
251 }
252
253 /* hrawclock is 1/4 the FSB frequency */
254 static int
255 intel_hrawclk(struct drm_device *dev)
256 {
257         struct drm_i915_private *dev_priv = dev->dev_private;
258         uint32_t clkcfg;
259
260         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
261         if (IS_VALLEYVIEW(dev))
262                 return 200;
263
264         clkcfg = I915_READ(CLKCFG);
265         switch (clkcfg & CLKCFG_FSB_MASK) {
266         case CLKCFG_FSB_400:
267                 return 100;
268         case CLKCFG_FSB_533:
269                 return 133;
270         case CLKCFG_FSB_667:
271                 return 166;
272         case CLKCFG_FSB_800:
273                 return 200;
274         case CLKCFG_FSB_1067:
275                 return 266;
276         case CLKCFG_FSB_1333:
277                 return 333;
278         /* these two are just a guess; one of them might be right */
279         case CLKCFG_FSB_1600:
280         case CLKCFG_FSB_1600_ALT:
281                 return 400;
282         default:
283                 return 133;
284         }
285 }
286
287 static void
288 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
289                                     struct intel_dp *intel_dp);
290 static void
291 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
292                                               struct intel_dp *intel_dp);
293
294 static void pps_lock(struct intel_dp *intel_dp)
295 {
296         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297         struct intel_encoder *encoder = &intel_dig_port->base;
298         struct drm_device *dev = encoder->base.dev;
299         struct drm_i915_private *dev_priv = dev->dev_private;
300         enum intel_display_power_domain power_domain;
301
302         /*
303          * See vlv_power_sequencer_reset() why we need
304          * a power domain reference here.
305          */
306         power_domain = intel_display_port_power_domain(encoder);
307         intel_display_power_get(dev_priv, power_domain);
308
309         mutex_lock(&dev_priv->pps_mutex);
310 }
311
312 static void pps_unlock(struct intel_dp *intel_dp)
313 {
314         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
315         struct intel_encoder *encoder = &intel_dig_port->base;
316         struct drm_device *dev = encoder->base.dev;
317         struct drm_i915_private *dev_priv = dev->dev_private;
318         enum intel_display_power_domain power_domain;
319
320         mutex_unlock(&dev_priv->pps_mutex);
321
322         power_domain = intel_display_port_power_domain(encoder);
323         intel_display_power_put(dev_priv, power_domain);
324 }
325
326 static void
327 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
328 {
329         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
330         struct drm_device *dev = intel_dig_port->base.base.dev;
331         struct drm_i915_private *dev_priv = dev->dev_private;
332         enum pipe pipe = intel_dp->pps_pipe;
333         bool pll_enabled;
334         uint32_t DP;
335
336         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
337                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
338                  pipe_name(pipe), port_name(intel_dig_port->port)))
339                 return;
340
341         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
342                       pipe_name(pipe), port_name(intel_dig_port->port));
343
344         /* Preserve the BIOS-computed detected bit. This is
345          * supposed to be read-only.
346          */
347         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
348         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
349         DP |= DP_PORT_WIDTH(1);
350         DP |= DP_LINK_TRAIN_PAT_1;
351
352         if (IS_CHERRYVIEW(dev))
353                 DP |= DP_PIPE_SELECT_CHV(pipe);
354         else if (pipe == PIPE_B)
355                 DP |= DP_PIPEB_SELECT;
356
357         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
358
359         /*
360          * The DPLL for the pipe must be enabled for this to work.
361          * So enable temporarily it if it's not already enabled.
362          */
363         if (!pll_enabled)
364                 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
365                                  &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
366
367         /*
368          * Similar magic as in intel_dp_enable_port().
369          * We _must_ do this port enable + disable trick
370          * to make this power seqeuencer lock onto the port.
371          * Otherwise even VDD force bit won't work.
372          */
373         I915_WRITE(intel_dp->output_reg, DP);
374         POSTING_READ(intel_dp->output_reg);
375
376         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
377         POSTING_READ(intel_dp->output_reg);
378
379         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
380         POSTING_READ(intel_dp->output_reg);
381
382         if (!pll_enabled)
383                 vlv_force_pll_off(dev, pipe);
384 }
385
386 static enum pipe
387 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
388 {
389         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
390         struct drm_device *dev = intel_dig_port->base.base.dev;
391         struct drm_i915_private *dev_priv = dev->dev_private;
392         struct intel_encoder *encoder;
393         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
394         enum pipe pipe;
395
396         lockdep_assert_held(&dev_priv->pps_mutex);
397
398         /* We should never land here with regular DP ports */
399         WARN_ON(!is_edp(intel_dp));
400
401         if (intel_dp->pps_pipe != INVALID_PIPE)
402                 return intel_dp->pps_pipe;
403
404         /*
405          * We don't have power sequencer currently.
406          * Pick one that's not used by other ports.
407          */
408         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
409                             base.head) {
410                 struct intel_dp *tmp;
411
412                 if (encoder->type != INTEL_OUTPUT_EDP)
413                         continue;
414
415                 tmp = enc_to_intel_dp(&encoder->base);
416
417                 if (tmp->pps_pipe != INVALID_PIPE)
418                         pipes &= ~(1 << tmp->pps_pipe);
419         }
420
421         /*
422          * Didn't find one. This should not happen since there
423          * are two power sequencers and up to two eDP ports.
424          */
425         if (WARN_ON(pipes == 0))
426                 pipe = PIPE_A;
427         else
428                 pipe = ffs(pipes) - 1;
429
430         vlv_steal_power_sequencer(dev, pipe);
431         intel_dp->pps_pipe = pipe;
432
433         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
434                       pipe_name(intel_dp->pps_pipe),
435                       port_name(intel_dig_port->port));
436
437         /* init power sequencer on this pipe and port */
438         intel_dp_init_panel_power_sequencer(dev, intel_dp);
439         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
440
441         /*
442          * Even vdd force doesn't work until we've made
443          * the power sequencer lock in on the port.
444          */
445         vlv_power_sequencer_kick(intel_dp);
446
447         return intel_dp->pps_pipe;
448 }
449
450 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
451                                enum pipe pipe);
452
453 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
454                                enum pipe pipe)
455 {
456         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
457 }
458
459 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
460                                 enum pipe pipe)
461 {
462         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
463 }
464
465 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
466                          enum pipe pipe)
467 {
468         return true;
469 }
470
471 static enum pipe
472 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
473                      enum port port,
474                      vlv_pipe_check pipe_check)
475 {
476         enum pipe pipe;
477
478         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
479                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
480                         PANEL_PORT_SELECT_MASK;
481
482                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
483                         continue;
484
485                 if (!pipe_check(dev_priv, pipe))
486                         continue;
487
488                 return pipe;
489         }
490
491         return INVALID_PIPE;
492 }
493
494 static void
495 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
496 {
497         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
498         struct drm_device *dev = intel_dig_port->base.base.dev;
499         struct drm_i915_private *dev_priv = dev->dev_private;
500         enum port port = intel_dig_port->port;
501
502         lockdep_assert_held(&dev_priv->pps_mutex);
503
504         /* try to find a pipe with this port selected */
505         /* first pick one where the panel is on */
506         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
507                                                   vlv_pipe_has_pp_on);
508         /* didn't find one? pick one where vdd is on */
509         if (intel_dp->pps_pipe == INVALID_PIPE)
510                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
511                                                           vlv_pipe_has_vdd_on);
512         /* didn't find one? pick one with just the correct port */
513         if (intel_dp->pps_pipe == INVALID_PIPE)
514                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
515                                                           vlv_pipe_any);
516
517         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
518         if (intel_dp->pps_pipe == INVALID_PIPE) {
519                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
520                               port_name(port));
521                 return;
522         }
523
524         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
525                       port_name(port), pipe_name(intel_dp->pps_pipe));
526
527         intel_dp_init_panel_power_sequencer(dev, intel_dp);
528         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
529 }
530
531 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
532 {
533         struct drm_device *dev = dev_priv->dev;
534         struct intel_encoder *encoder;
535
536         if (WARN_ON(!IS_VALLEYVIEW(dev)))
537                 return;
538
539         /*
540          * We can't grab pps_mutex here due to deadlock with power_domain
541          * mutex when power_domain functions are called while holding pps_mutex.
542          * That also means that in order to use pps_pipe the code needs to
543          * hold both a power domain reference and pps_mutex, and the power domain
544          * reference get/put must be done while _not_ holding pps_mutex.
545          * pps_{lock,unlock}() do these steps in the correct order, so one
546          * should use them always.
547          */
548
549         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
550                 struct intel_dp *intel_dp;
551
552                 if (encoder->type != INTEL_OUTPUT_EDP)
553                         continue;
554
555                 intel_dp = enc_to_intel_dp(&encoder->base);
556                 intel_dp->pps_pipe = INVALID_PIPE;
557         }
558 }
559
560 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
561 {
562         struct drm_device *dev = intel_dp_to_dev(intel_dp);
563
564         if (HAS_PCH_SPLIT(dev))
565                 return PCH_PP_CONTROL;
566         else
567                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
568 }
569
570 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
571 {
572         struct drm_device *dev = intel_dp_to_dev(intel_dp);
573
574         if (HAS_PCH_SPLIT(dev))
575                 return PCH_PP_STATUS;
576         else
577                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
578 }
579
580 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
581    This function only applicable when panel PM state is not to be tracked */
582 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
583                               void *unused)
584 {
585         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
586                                                  edp_notifier);
587         struct drm_device *dev = intel_dp_to_dev(intel_dp);
588         struct drm_i915_private *dev_priv = dev->dev_private;
589         u32 pp_div;
590         u32 pp_ctrl_reg, pp_div_reg;
591
592         if (!is_edp(intel_dp) || code != SYS_RESTART)
593                 return 0;
594
595         pps_lock(intel_dp);
596
597         if (IS_VALLEYVIEW(dev)) {
598                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
599
600                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
601                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
602                 pp_div = I915_READ(pp_div_reg);
603                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
604
605                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
606                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
607                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
608                 msleep(intel_dp->panel_power_cycle_delay);
609         }
610
611         pps_unlock(intel_dp);
612
613         return 0;
614 }
615
616 static bool edp_have_panel_power(struct intel_dp *intel_dp)
617 {
618         struct drm_device *dev = intel_dp_to_dev(intel_dp);
619         struct drm_i915_private *dev_priv = dev->dev_private;
620
621         lockdep_assert_held(&dev_priv->pps_mutex);
622
623         if (IS_VALLEYVIEW(dev) &&
624             intel_dp->pps_pipe == INVALID_PIPE)
625                 return false;
626
627         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
628 }
629
630 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
631 {
632         struct drm_device *dev = intel_dp_to_dev(intel_dp);
633         struct drm_i915_private *dev_priv = dev->dev_private;
634
635         lockdep_assert_held(&dev_priv->pps_mutex);
636
637         if (IS_VALLEYVIEW(dev) &&
638             intel_dp->pps_pipe == INVALID_PIPE)
639                 return false;
640
641         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
642 }
643
644 static void
645 intel_dp_check_edp(struct intel_dp *intel_dp)
646 {
647         struct drm_device *dev = intel_dp_to_dev(intel_dp);
648         struct drm_i915_private *dev_priv = dev->dev_private;
649
650         if (!is_edp(intel_dp))
651                 return;
652
653         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
654                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
655                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
656                               I915_READ(_pp_stat_reg(intel_dp)),
657                               I915_READ(_pp_ctrl_reg(intel_dp)));
658         }
659 }
660
661 static uint32_t
662 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
663 {
664         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
665         struct drm_device *dev = intel_dig_port->base.base.dev;
666         struct drm_i915_private *dev_priv = dev->dev_private;
667         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
668         uint32_t status;
669         bool done;
670
671 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
672         if (has_aux_irq)
673                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
674                                           msecs_to_jiffies_timeout(10));
675         else
676                 done = wait_for_atomic(C, 10) == 0;
677         if (!done)
678                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
679                           has_aux_irq);
680 #undef C
681
682         return status;
683 }
684
685 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688         struct drm_device *dev = intel_dig_port->base.base.dev;
689
690         /*
691          * The clock divider is based off the hrawclk, and would like to run at
692          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
693          */
694         return index ? 0 : intel_hrawclk(dev) / 2;
695 }
696
697 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
698 {
699         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
700         struct drm_device *dev = intel_dig_port->base.base.dev;
701
702         if (index)
703                 return 0;
704
705         if (intel_dig_port->port == PORT_A) {
706                 if (IS_GEN6(dev) || IS_GEN7(dev))
707                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
708                 else
709                         return 225; /* eDP input clock at 450Mhz */
710         } else {
711                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
712         }
713 }
714
715 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
716 {
717         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
718         struct drm_device *dev = intel_dig_port->base.base.dev;
719         struct drm_i915_private *dev_priv = dev->dev_private;
720
721         if (intel_dig_port->port == PORT_A) {
722                 if (index)
723                         return 0;
724                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
725         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
726                 /* Workaround for non-ULT HSW */
727                 switch (index) {
728                 case 0: return 63;
729                 case 1: return 72;
730                 default: return 0;
731                 }
732         } else  {
733                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
734         }
735 }
736
737 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
738 {
739         return index ? 0 : 100;
740 }
741
742 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
743 {
744         /*
745          * SKL doesn't need us to program the AUX clock divider (Hardware will
746          * derive the clock from CDCLK automatically). We still implement the
747          * get_aux_clock_divider vfunc to plug-in into the existing code.
748          */
749         return index ? 0 : 1;
750 }
751
752 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
753                                       bool has_aux_irq,
754                                       int send_bytes,
755                                       uint32_t aux_clock_divider)
756 {
757         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
758         struct drm_device *dev = intel_dig_port->base.base.dev;
759         uint32_t precharge, timeout;
760
761         if (IS_GEN6(dev))
762                 precharge = 3;
763         else
764                 precharge = 5;
765
766         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
767                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
768         else
769                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
770
771         return DP_AUX_CH_CTL_SEND_BUSY |
772                DP_AUX_CH_CTL_DONE |
773                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
774                DP_AUX_CH_CTL_TIME_OUT_ERROR |
775                timeout |
776                DP_AUX_CH_CTL_RECEIVE_ERROR |
777                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
778                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
779                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
780 }
781
782 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
783                                       bool has_aux_irq,
784                                       int send_bytes,
785                                       uint32_t unused)
786 {
787         return DP_AUX_CH_CTL_SEND_BUSY |
788                DP_AUX_CH_CTL_DONE |
789                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
790                DP_AUX_CH_CTL_TIME_OUT_ERROR |
791                DP_AUX_CH_CTL_TIME_OUT_1600us |
792                DP_AUX_CH_CTL_RECEIVE_ERROR |
793                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
794                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
795 }
796
797 static int
798 intel_dp_aux_ch(struct intel_dp *intel_dp,
799                 const uint8_t *send, int send_bytes,
800                 uint8_t *recv, int recv_size)
801 {
802         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
803         struct drm_device *dev = intel_dig_port->base.base.dev;
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
806         uint32_t ch_data = ch_ctl + 4;
807         uint32_t aux_clock_divider;
808         int i, ret, recv_bytes;
809         uint32_t status;
810         int try, clock = 0;
811         bool has_aux_irq = HAS_AUX_IRQ(dev);
812         bool vdd;
813
814         pps_lock(intel_dp);
815
816         /*
817          * We will be called with VDD already enabled for dpcd/edid/oui reads.
818          * In such cases we want to leave VDD enabled and it's up to upper layers
819          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
820          * ourselves.
821          */
822         vdd = edp_panel_vdd_on(intel_dp);
823
824         /* dp aux is extremely sensitive to irq latency, hence request the
825          * lowest possible wakeup latency and so prevent the cpu from going into
826          * deep sleep states.
827          */
828         pm_qos_update_request(&dev_priv->pm_qos, 0);
829
830         intel_dp_check_edp(intel_dp);
831
832         intel_aux_display_runtime_get(dev_priv);
833
834         /* Try to wait for any previous AUX channel activity */
835         for (try = 0; try < 3; try++) {
836                 status = I915_READ_NOTRACE(ch_ctl);
837                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
838                         break;
839                 msleep(1);
840         }
841
842         if (try == 3) {
843                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
844                      I915_READ(ch_ctl));
845                 ret = -EBUSY;
846                 goto out;
847         }
848
849         /* Only 5 data registers! */
850         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
851                 ret = -E2BIG;
852                 goto out;
853         }
854
855         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
856                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
857                                                           has_aux_irq,
858                                                           send_bytes,
859                                                           aux_clock_divider);
860
861                 /* Must try at least 3 times according to DP spec */
862                 for (try = 0; try < 5; try++) {
863                         /* Load the send data into the aux channel data registers */
864                         for (i = 0; i < send_bytes; i += 4)
865                                 I915_WRITE(ch_data + i,
866                                            pack_aux(send + i, send_bytes - i));
867
868                         /* Send the command and wait for it to complete */
869                         I915_WRITE(ch_ctl, send_ctl);
870
871                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
872
873                         /* Clear done status and any errors */
874                         I915_WRITE(ch_ctl,
875                                    status |
876                                    DP_AUX_CH_CTL_DONE |
877                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
878                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
879
880                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
881                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
882                                 continue;
883                         if (status & DP_AUX_CH_CTL_DONE)
884                                 break;
885                 }
886                 if (status & DP_AUX_CH_CTL_DONE)
887                         break;
888         }
889
890         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
891                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
892                 ret = -EBUSY;
893                 goto out;
894         }
895
896         /* Check for timeout or receive error.
897          * Timeouts occur when the sink is not connected
898          */
899         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
900                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
901                 ret = -EIO;
902                 goto out;
903         }
904
905         /* Timeouts occur when the device isn't connected, so they're
906          * "normal" -- don't fill the kernel log with these */
907         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
908                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
909                 ret = -ETIMEDOUT;
910                 goto out;
911         }
912
913         /* Unload any bytes sent back from the other side */
914         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
915                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
916         if (recv_bytes > recv_size)
917                 recv_bytes = recv_size;
918
919         for (i = 0; i < recv_bytes; i += 4)
920                 unpack_aux(I915_READ(ch_data + i),
921                            recv + i, recv_bytes - i);
922
923         ret = recv_bytes;
924 out:
925         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
926         intel_aux_display_runtime_put(dev_priv);
927
928         if (vdd)
929                 edp_panel_vdd_off(intel_dp, false);
930
931         pps_unlock(intel_dp);
932
933         return ret;
934 }
935
936 #define BARE_ADDRESS_SIZE       3
937 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
938 static ssize_t
939 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
940 {
941         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
942         uint8_t txbuf[20], rxbuf[20];
943         size_t txsize, rxsize;
944         int ret;
945
946         txbuf[0] = msg->request << 4;
947         txbuf[1] = msg->address >> 8;
948         txbuf[2] = msg->address & 0xff;
949         txbuf[3] = msg->size - 1;
950
951         switch (msg->request & ~DP_AUX_I2C_MOT) {
952         case DP_AUX_NATIVE_WRITE:
953         case DP_AUX_I2C_WRITE:
954                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
955                 rxsize = 1;
956
957                 if (WARN_ON(txsize > 20))
958                         return -E2BIG;
959
960                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
961
962                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
963                 if (ret > 0) {
964                         msg->reply = rxbuf[0] >> 4;
965
966                         /* Return payload size. */
967                         ret = msg->size;
968                 }
969                 break;
970
971         case DP_AUX_NATIVE_READ:
972         case DP_AUX_I2C_READ:
973                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
974                 rxsize = msg->size + 1;
975
976                 if (WARN_ON(rxsize > 20))
977                         return -E2BIG;
978
979                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
980                 if (ret > 0) {
981                         msg->reply = rxbuf[0] >> 4;
982                         /*
983                          * Assume happy day, and copy the data. The caller is
984                          * expected to check msg->reply before touching it.
985                          *
986                          * Return payload size.
987                          */
988                         ret--;
989                         memcpy(msg->buffer, rxbuf + 1, ret);
990                 }
991                 break;
992
993         default:
994                 ret = -EINVAL;
995                 break;
996         }
997
998         return ret;
999 }
1000
1001 static void
1002 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1003 {
1004         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1005         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1006         enum port port = intel_dig_port->port;
1007         const char *name = NULL;
1008         int ret;
1009
1010         switch (port) {
1011         case PORT_A:
1012                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1013                 name = "DPDDC-A";
1014                 break;
1015         case PORT_B:
1016                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1017                 name = "DPDDC-B";
1018                 break;
1019         case PORT_C:
1020                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1021                 name = "DPDDC-C";
1022                 break;
1023         case PORT_D:
1024                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1025                 name = "DPDDC-D";
1026                 break;
1027         default:
1028                 BUG();
1029         }
1030
1031         /*
1032          * The AUX_CTL register is usually DP_CTL + 0x10.
1033          *
1034          * On Haswell and Broadwell though:
1035          *   - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1036          *   - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1037          *
1038          * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1039          */
1040         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1041                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1042
1043         intel_dp->aux.name = name;
1044         intel_dp->aux.dev = dev->dev;
1045         intel_dp->aux.transfer = intel_dp_aux_transfer;
1046
1047         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1048                       connector->base.kdev->kobj.name);
1049
1050         ret = drm_dp_aux_register(&intel_dp->aux);
1051         if (ret < 0) {
1052                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1053                           name, ret);
1054                 return;
1055         }
1056
1057         ret = sysfs_create_link(&connector->base.kdev->kobj,
1058                                 &intel_dp->aux.ddc.dev.kobj,
1059                                 intel_dp->aux.ddc.dev.kobj.name);
1060         if (ret < 0) {
1061                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1062                 drm_dp_aux_unregister(&intel_dp->aux);
1063         }
1064 }
1065
1066 static void
1067 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1068 {
1069         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1070
1071         if (!intel_connector->mst_port)
1072                 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1073                                   intel_dp->aux.ddc.dev.kobj.name);
1074         intel_connector_unregister(intel_connector);
1075 }
1076
1077 static void
1078 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
1079 {
1080         switch (link_bw) {
1081         case DP_LINK_BW_1_62:
1082                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1083                 break;
1084         case DP_LINK_BW_2_7:
1085                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1086                 break;
1087         case DP_LINK_BW_5_4:
1088                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1089                 break;
1090         }
1091 }
1092
1093 static void
1094 intel_dp_set_clock(struct intel_encoder *encoder,
1095                    struct intel_crtc_config *pipe_config, int link_bw)
1096 {
1097         struct drm_device *dev = encoder->base.dev;
1098         const struct dp_link_dpll *divisor = NULL;
1099         int i, count = 0;
1100
1101         if (IS_G4X(dev)) {
1102                 divisor = gen4_dpll;
1103                 count = ARRAY_SIZE(gen4_dpll);
1104         } else if (HAS_PCH_SPLIT(dev)) {
1105                 divisor = pch_dpll;
1106                 count = ARRAY_SIZE(pch_dpll);
1107         } else if (IS_CHERRYVIEW(dev)) {
1108                 divisor = chv_dpll;
1109                 count = ARRAY_SIZE(chv_dpll);
1110         } else if (IS_VALLEYVIEW(dev)) {
1111                 divisor = vlv_dpll;
1112                 count = ARRAY_SIZE(vlv_dpll);
1113         }
1114
1115         if (divisor && count) {
1116                 for (i = 0; i < count; i++) {
1117                         if (link_bw == divisor[i].link_bw) {
1118                                 pipe_config->dpll = divisor[i].dpll;
1119                                 pipe_config->clock_set = true;
1120                                 break;
1121                         }
1122                 }
1123         }
1124 }
1125
1126 bool
1127 intel_dp_compute_config(struct intel_encoder *encoder,
1128                         struct intel_crtc_config *pipe_config)
1129 {
1130         struct drm_device *dev = encoder->base.dev;
1131         struct drm_i915_private *dev_priv = dev->dev_private;
1132         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1133         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1134         enum port port = dp_to_dig_port(intel_dp)->port;
1135         struct intel_crtc *intel_crtc = encoder->new_crtc;
1136         struct intel_connector *intel_connector = intel_dp->attached_connector;
1137         int lane_count, clock;
1138         int min_lane_count = 1;
1139         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1140         /* Conveniently, the link BW constants become indices with a shift...*/
1141         int min_clock = 0;
1142         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1143         int bpp, mode_rate;
1144         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1145         int link_avail, link_clock;
1146
1147         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1148                 pipe_config->has_pch_encoder = true;
1149
1150         pipe_config->has_dp_encoder = true;
1151         pipe_config->has_drrs = false;
1152         pipe_config->has_audio = intel_dp->has_audio;
1153
1154         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1155                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1156                                        adjusted_mode);
1157                 if (!HAS_PCH_SPLIT(dev))
1158                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1159                                                  intel_connector->panel.fitting_mode);
1160                 else
1161                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1162                                                 intel_connector->panel.fitting_mode);
1163         }
1164
1165         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1166                 return false;
1167
1168         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1169                       "max bw %02x pixel clock %iKHz\n",
1170                       max_lane_count, bws[max_clock],
1171                       adjusted_mode->crtc_clock);
1172
1173         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1174          * bpc in between. */
1175         bpp = pipe_config->pipe_bpp;
1176         if (is_edp(intel_dp)) {
1177                 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1178                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1179                                       dev_priv->vbt.edp_bpp);
1180                         bpp = dev_priv->vbt.edp_bpp;
1181                 }
1182
1183                 /*
1184                  * Use the maximum clock and number of lanes the eDP panel
1185                  * advertizes being capable of. The panels are generally
1186                  * designed to support only a single clock and lane
1187                  * configuration, and typically these values correspond to the
1188                  * native resolution of the panel.
1189                  */
1190                 min_lane_count = max_lane_count;
1191                 min_clock = max_clock;
1192         }
1193
1194         for (; bpp >= 6*3; bpp -= 2*3) {
1195                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1196                                                    bpp);
1197
1198                 for (clock = min_clock; clock <= max_clock; clock++) {
1199                         for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1200                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1201                                 link_avail = intel_dp_max_data_rate(link_clock,
1202                                                                     lane_count);
1203
1204                                 if (mode_rate <= link_avail) {
1205                                         goto found;
1206                                 }
1207                         }
1208                 }
1209         }
1210
1211         return false;
1212
1213 found:
1214         if (intel_dp->color_range_auto) {
1215                 /*
1216                  * See:
1217                  * CEA-861-E - 5.1 Default Encoding Parameters
1218                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1219                  */
1220                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1221                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
1222                 else
1223                         intel_dp->color_range = 0;
1224         }
1225
1226         if (intel_dp->color_range)
1227                 pipe_config->limited_color_range = true;
1228
1229         intel_dp->link_bw = bws[clock];
1230         intel_dp->lane_count = lane_count;
1231         pipe_config->pipe_bpp = bpp;
1232         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1233
1234         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1235                       intel_dp->link_bw, intel_dp->lane_count,
1236                       pipe_config->port_clock, bpp);
1237         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1238                       mode_rate, link_avail);
1239
1240         intel_link_compute_m_n(bpp, lane_count,
1241                                adjusted_mode->crtc_clock,
1242                                pipe_config->port_clock,
1243                                &pipe_config->dp_m_n);
1244
1245         if (intel_connector->panel.downclock_mode != NULL &&
1246                 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1247                         pipe_config->has_drrs = true;
1248                         intel_link_compute_m_n(bpp, lane_count,
1249                                 intel_connector->panel.downclock_mode->clock,
1250                                 pipe_config->port_clock,
1251                                 &pipe_config->dp_m2_n2);
1252         }
1253
1254         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1255                 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1256         else
1257                 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1258
1259         return true;
1260 }
1261
1262 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1263 {
1264         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1265         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1266         struct drm_device *dev = crtc->base.dev;
1267         struct drm_i915_private *dev_priv = dev->dev_private;
1268         u32 dpa_ctl;
1269
1270         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1271         dpa_ctl = I915_READ(DP_A);
1272         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1273
1274         if (crtc->config.port_clock == 162000) {
1275                 /* For a long time we've carried around a ILK-DevA w/a for the
1276                  * 160MHz clock. If we're really unlucky, it's still required.
1277                  */
1278                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1279                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1280                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1281         } else {
1282                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1283                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1284         }
1285
1286         I915_WRITE(DP_A, dpa_ctl);
1287
1288         POSTING_READ(DP_A);
1289         udelay(500);
1290 }
1291
1292 static void intel_dp_prepare(struct intel_encoder *encoder)
1293 {
1294         struct drm_device *dev = encoder->base.dev;
1295         struct drm_i915_private *dev_priv = dev->dev_private;
1296         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1297         enum port port = dp_to_dig_port(intel_dp)->port;
1298         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1299         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1300
1301         /*
1302          * There are four kinds of DP registers:
1303          *
1304          *      IBX PCH
1305          *      SNB CPU
1306          *      IVB CPU
1307          *      CPT PCH
1308          *
1309          * IBX PCH and CPU are the same for almost everything,
1310          * except that the CPU DP PLL is configured in this
1311          * register
1312          *
1313          * CPT PCH is quite different, having many bits moved
1314          * to the TRANS_DP_CTL register instead. That
1315          * configuration happens (oddly) in ironlake_pch_enable
1316          */
1317
1318         /* Preserve the BIOS-computed detected bit. This is
1319          * supposed to be read-only.
1320          */
1321         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1322
1323         /* Handle DP bits in common between all three register formats */
1324         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1325         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1326
1327         if (crtc->config.has_audio)
1328                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1329
1330         /* Split out the IBX/CPU vs CPT settings */
1331
1332         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1333                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1334                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1335                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1336                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1337                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1338
1339                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1340                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1341
1342                 intel_dp->DP |= crtc->pipe << 29;
1343         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1344                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1345                         intel_dp->DP |= intel_dp->color_range;
1346
1347                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1348                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1349                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1350                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1351                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1352
1353                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1354                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1355
1356                 if (!IS_CHERRYVIEW(dev)) {
1357                         if (crtc->pipe == 1)
1358                                 intel_dp->DP |= DP_PIPEB_SELECT;
1359                 } else {
1360                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1361                 }
1362         } else {
1363                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1364         }
1365 }
1366
1367 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1368 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1369
1370 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1371 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1372
1373 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1374 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1375
1376 static void wait_panel_status(struct intel_dp *intel_dp,
1377                                        u32 mask,
1378                                        u32 value)
1379 {
1380         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1381         struct drm_i915_private *dev_priv = dev->dev_private;
1382         u32 pp_stat_reg, pp_ctrl_reg;
1383
1384         lockdep_assert_held(&dev_priv->pps_mutex);
1385
1386         pp_stat_reg = _pp_stat_reg(intel_dp);
1387         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1390                         mask, value,
1391                         I915_READ(pp_stat_reg),
1392                         I915_READ(pp_ctrl_reg));
1393
1394         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1395                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1396                                 I915_READ(pp_stat_reg),
1397                                 I915_READ(pp_ctrl_reg));
1398         }
1399
1400         DRM_DEBUG_KMS("Wait complete\n");
1401 }
1402
1403 static void wait_panel_on(struct intel_dp *intel_dp)
1404 {
1405         DRM_DEBUG_KMS("Wait for panel power on\n");
1406         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1407 }
1408
1409 static void wait_panel_off(struct intel_dp *intel_dp)
1410 {
1411         DRM_DEBUG_KMS("Wait for panel power off time\n");
1412         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1413 }
1414
1415 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1416 {
1417         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1418
1419         /* When we disable the VDD override bit last we have to do the manual
1420          * wait. */
1421         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1422                                        intel_dp->panel_power_cycle_delay);
1423
1424         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1425 }
1426
1427 static void wait_backlight_on(struct intel_dp *intel_dp)
1428 {
1429         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1430                                        intel_dp->backlight_on_delay);
1431 }
1432
1433 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1434 {
1435         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1436                                        intel_dp->backlight_off_delay);
1437 }
1438
1439 /* Read the current pp_control value, unlocking the register if it
1440  * is locked
1441  */
1442
1443 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1444 {
1445         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1446         struct drm_i915_private *dev_priv = dev->dev_private;
1447         u32 control;
1448
1449         lockdep_assert_held(&dev_priv->pps_mutex);
1450
1451         control = I915_READ(_pp_ctrl_reg(intel_dp));
1452         control &= ~PANEL_UNLOCK_MASK;
1453         control |= PANEL_UNLOCK_REGS;
1454         return control;
1455 }
1456
1457 /*
1458  * Must be paired with edp_panel_vdd_off().
1459  * Must hold pps_mutex around the whole on/off sequence.
1460  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1461  */
1462 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1463 {
1464         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1465         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1466         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468         enum intel_display_power_domain power_domain;
1469         u32 pp;
1470         u32 pp_stat_reg, pp_ctrl_reg;
1471         bool need_to_disable = !intel_dp->want_panel_vdd;
1472
1473         lockdep_assert_held(&dev_priv->pps_mutex);
1474
1475         if (!is_edp(intel_dp))
1476                 return false;
1477
1478         intel_dp->want_panel_vdd = true;
1479
1480         if (edp_have_panel_vdd(intel_dp))
1481                 return need_to_disable;
1482
1483         power_domain = intel_display_port_power_domain(intel_encoder);
1484         intel_display_power_get(dev_priv, power_domain);
1485
1486         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1487                       port_name(intel_dig_port->port));
1488
1489         if (!edp_have_panel_power(intel_dp))
1490                 wait_panel_power_cycle(intel_dp);
1491
1492         pp = ironlake_get_pp_control(intel_dp);
1493         pp |= EDP_FORCE_VDD;
1494
1495         pp_stat_reg = _pp_stat_reg(intel_dp);
1496         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1497
1498         I915_WRITE(pp_ctrl_reg, pp);
1499         POSTING_READ(pp_ctrl_reg);
1500         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1501                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1502         /*
1503          * If the panel wasn't on, delay before accessing aux channel
1504          */
1505         if (!edp_have_panel_power(intel_dp)) {
1506                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1507                               port_name(intel_dig_port->port));
1508                 msleep(intel_dp->panel_power_up_delay);
1509         }
1510
1511         return need_to_disable;
1512 }
1513
1514 /*
1515  * Must be paired with intel_edp_panel_vdd_off() or
1516  * intel_edp_panel_off().
1517  * Nested calls to these functions are not allowed since
1518  * we drop the lock. Caller must use some higher level
1519  * locking to prevent nested calls from other threads.
1520  */
1521 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1522 {
1523         bool vdd;
1524
1525         if (!is_edp(intel_dp))
1526                 return;
1527
1528         pps_lock(intel_dp);
1529         vdd = edp_panel_vdd_on(intel_dp);
1530         pps_unlock(intel_dp);
1531
1532         WARN(!vdd, "eDP port %c VDD already requested on\n",
1533              port_name(dp_to_dig_port(intel_dp)->port));
1534 }
1535
1536 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1537 {
1538         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         struct intel_digital_port *intel_dig_port =
1541                 dp_to_dig_port(intel_dp);
1542         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1543         enum intel_display_power_domain power_domain;
1544         u32 pp;
1545         u32 pp_stat_reg, pp_ctrl_reg;
1546
1547         lockdep_assert_held(&dev_priv->pps_mutex);
1548
1549         WARN_ON(intel_dp->want_panel_vdd);
1550
1551         if (!edp_have_panel_vdd(intel_dp))
1552                 return;
1553
1554         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1555                       port_name(intel_dig_port->port));
1556
1557         pp = ironlake_get_pp_control(intel_dp);
1558         pp &= ~EDP_FORCE_VDD;
1559
1560         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1561         pp_stat_reg = _pp_stat_reg(intel_dp);
1562
1563         I915_WRITE(pp_ctrl_reg, pp);
1564         POSTING_READ(pp_ctrl_reg);
1565
1566         /* Make sure sequencer is idle before allowing subsequent activity */
1567         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1568         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1569
1570         if ((pp & POWER_TARGET_ON) == 0)
1571                 intel_dp->last_power_cycle = jiffies;
1572
1573         power_domain = intel_display_port_power_domain(intel_encoder);
1574         intel_display_power_put(dev_priv, power_domain);
1575 }
1576
1577 static void edp_panel_vdd_work(struct work_struct *__work)
1578 {
1579         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1580                                                  struct intel_dp, panel_vdd_work);
1581
1582         pps_lock(intel_dp);
1583         if (!intel_dp->want_panel_vdd)
1584                 edp_panel_vdd_off_sync(intel_dp);
1585         pps_unlock(intel_dp);
1586 }
1587
1588 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1589 {
1590         unsigned long delay;
1591
1592         /*
1593          * Queue the timer to fire a long time from now (relative to the power
1594          * down delay) to keep the panel power up across a sequence of
1595          * operations.
1596          */
1597         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1598         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1599 }
1600
1601 /*
1602  * Must be paired with edp_panel_vdd_on().
1603  * Must hold pps_mutex around the whole on/off sequence.
1604  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1605  */
1606 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1607 {
1608         struct drm_i915_private *dev_priv =
1609                 intel_dp_to_dev(intel_dp)->dev_private;
1610
1611         lockdep_assert_held(&dev_priv->pps_mutex);
1612
1613         if (!is_edp(intel_dp))
1614                 return;
1615
1616         WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1617              port_name(dp_to_dig_port(intel_dp)->port));
1618
1619         intel_dp->want_panel_vdd = false;
1620
1621         if (sync)
1622                 edp_panel_vdd_off_sync(intel_dp);
1623         else
1624                 edp_panel_vdd_schedule_off(intel_dp);
1625 }
1626
1627 static void edp_panel_on(struct intel_dp *intel_dp)
1628 {
1629         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         u32 pp;
1632         u32 pp_ctrl_reg;
1633
1634         lockdep_assert_held(&dev_priv->pps_mutex);
1635
1636         if (!is_edp(intel_dp))
1637                 return;
1638
1639         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1640                       port_name(dp_to_dig_port(intel_dp)->port));
1641
1642         if (WARN(edp_have_panel_power(intel_dp),
1643                  "eDP port %c panel power already on\n",
1644                  port_name(dp_to_dig_port(intel_dp)->port)))
1645                 return;
1646
1647         wait_panel_power_cycle(intel_dp);
1648
1649         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1650         pp = ironlake_get_pp_control(intel_dp);
1651         if (IS_GEN5(dev)) {
1652                 /* ILK workaround: disable reset around power sequence */
1653                 pp &= ~PANEL_POWER_RESET;
1654                 I915_WRITE(pp_ctrl_reg, pp);
1655                 POSTING_READ(pp_ctrl_reg);
1656         }
1657
1658         pp |= POWER_TARGET_ON;
1659         if (!IS_GEN5(dev))
1660                 pp |= PANEL_POWER_RESET;
1661
1662         I915_WRITE(pp_ctrl_reg, pp);
1663         POSTING_READ(pp_ctrl_reg);
1664
1665         wait_panel_on(intel_dp);
1666         intel_dp->last_power_on = jiffies;
1667
1668         if (IS_GEN5(dev)) {
1669                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1670                 I915_WRITE(pp_ctrl_reg, pp);
1671                 POSTING_READ(pp_ctrl_reg);
1672         }
1673 }
1674
1675 void intel_edp_panel_on(struct intel_dp *intel_dp)
1676 {
1677         if (!is_edp(intel_dp))
1678                 return;
1679
1680         pps_lock(intel_dp);
1681         edp_panel_on(intel_dp);
1682         pps_unlock(intel_dp);
1683 }
1684
1685
1686 static void edp_panel_off(struct intel_dp *intel_dp)
1687 {
1688         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1689         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1690         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1691         struct drm_i915_private *dev_priv = dev->dev_private;
1692         enum intel_display_power_domain power_domain;
1693         u32 pp;
1694         u32 pp_ctrl_reg;
1695
1696         lockdep_assert_held(&dev_priv->pps_mutex);
1697
1698         if (!is_edp(intel_dp))
1699                 return;
1700
1701         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1702                       port_name(dp_to_dig_port(intel_dp)->port));
1703
1704         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1705              port_name(dp_to_dig_port(intel_dp)->port));
1706
1707         pp = ironlake_get_pp_control(intel_dp);
1708         /* We need to switch off panel power _and_ force vdd, for otherwise some
1709          * panels get very unhappy and cease to work. */
1710         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1711                 EDP_BLC_ENABLE);
1712
1713         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1714
1715         intel_dp->want_panel_vdd = false;
1716
1717         I915_WRITE(pp_ctrl_reg, pp);
1718         POSTING_READ(pp_ctrl_reg);
1719
1720         intel_dp->last_power_cycle = jiffies;
1721         wait_panel_off(intel_dp);
1722
1723         /* We got a reference when we enabled the VDD. */
1724         power_domain = intel_display_port_power_domain(intel_encoder);
1725         intel_display_power_put(dev_priv, power_domain);
1726 }
1727
1728 void intel_edp_panel_off(struct intel_dp *intel_dp)
1729 {
1730         if (!is_edp(intel_dp))
1731                 return;
1732
1733         pps_lock(intel_dp);
1734         edp_panel_off(intel_dp);
1735         pps_unlock(intel_dp);
1736 }
1737
1738 /* Enable backlight in the panel power control. */
1739 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1740 {
1741         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1742         struct drm_device *dev = intel_dig_port->base.base.dev;
1743         struct drm_i915_private *dev_priv = dev->dev_private;
1744         u32 pp;
1745         u32 pp_ctrl_reg;
1746
1747         /*
1748          * If we enable the backlight right away following a panel power
1749          * on, we may see slight flicker as the panel syncs with the eDP
1750          * link.  So delay a bit to make sure the image is solid before
1751          * allowing it to appear.
1752          */
1753         wait_backlight_on(intel_dp);
1754
1755         pps_lock(intel_dp);
1756
1757         pp = ironlake_get_pp_control(intel_dp);
1758         pp |= EDP_BLC_ENABLE;
1759
1760         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1761
1762         I915_WRITE(pp_ctrl_reg, pp);
1763         POSTING_READ(pp_ctrl_reg);
1764
1765         pps_unlock(intel_dp);
1766 }
1767
1768 /* Enable backlight PWM and backlight PP control. */
1769 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1770 {
1771         if (!is_edp(intel_dp))
1772                 return;
1773
1774         DRM_DEBUG_KMS("\n");
1775
1776         intel_panel_enable_backlight(intel_dp->attached_connector);
1777         _intel_edp_backlight_on(intel_dp);
1778 }
1779
1780 /* Disable backlight in the panel power control. */
1781 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1782 {
1783         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785         u32 pp;
1786         u32 pp_ctrl_reg;
1787
1788         if (!is_edp(intel_dp))
1789                 return;
1790
1791         pps_lock(intel_dp);
1792
1793         pp = ironlake_get_pp_control(intel_dp);
1794         pp &= ~EDP_BLC_ENABLE;
1795
1796         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1797
1798         I915_WRITE(pp_ctrl_reg, pp);
1799         POSTING_READ(pp_ctrl_reg);
1800
1801         pps_unlock(intel_dp);
1802
1803         intel_dp->last_backlight_off = jiffies;
1804         edp_wait_backlight_off(intel_dp);
1805 }
1806
1807 /* Disable backlight PP control and backlight PWM. */
1808 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1809 {
1810         if (!is_edp(intel_dp))
1811                 return;
1812
1813         DRM_DEBUG_KMS("\n");
1814
1815         _intel_edp_backlight_off(intel_dp);
1816         intel_panel_disable_backlight(intel_dp->attached_connector);
1817 }
1818
1819 /*
1820  * Hook for controlling the panel power control backlight through the bl_power
1821  * sysfs attribute. Take care to handle multiple calls.
1822  */
1823 static void intel_edp_backlight_power(struct intel_connector *connector,
1824                                       bool enable)
1825 {
1826         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1827         bool is_enabled;
1828
1829         pps_lock(intel_dp);
1830         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1831         pps_unlock(intel_dp);
1832
1833         if (is_enabled == enable)
1834                 return;
1835
1836         DRM_DEBUG_KMS("panel power control backlight %s\n",
1837                       enable ? "enable" : "disable");
1838
1839         if (enable)
1840                 _intel_edp_backlight_on(intel_dp);
1841         else
1842                 _intel_edp_backlight_off(intel_dp);
1843 }
1844
1845 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1846 {
1847         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1848         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1849         struct drm_device *dev = crtc->dev;
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         u32 dpa_ctl;
1852
1853         assert_pipe_disabled(dev_priv,
1854                              to_intel_crtc(crtc)->pipe);
1855
1856         DRM_DEBUG_KMS("\n");
1857         dpa_ctl = I915_READ(DP_A);
1858         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1859         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1860
1861         /* We don't adjust intel_dp->DP while tearing down the link, to
1862          * facilitate link retraining (e.g. after hotplug). Hence clear all
1863          * enable bits here to ensure that we don't enable too much. */
1864         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1865         intel_dp->DP |= DP_PLL_ENABLE;
1866         I915_WRITE(DP_A, intel_dp->DP);
1867         POSTING_READ(DP_A);
1868         udelay(200);
1869 }
1870
1871 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1872 {
1873         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1874         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1875         struct drm_device *dev = crtc->dev;
1876         struct drm_i915_private *dev_priv = dev->dev_private;
1877         u32 dpa_ctl;
1878
1879         assert_pipe_disabled(dev_priv,
1880                              to_intel_crtc(crtc)->pipe);
1881
1882         dpa_ctl = I915_READ(DP_A);
1883         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1884              "dp pll off, should be on\n");
1885         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1886
1887         /* We can't rely on the value tracked for the DP register in
1888          * intel_dp->DP because link_down must not change that (otherwise link
1889          * re-training will fail. */
1890         dpa_ctl &= ~DP_PLL_ENABLE;
1891         I915_WRITE(DP_A, dpa_ctl);
1892         POSTING_READ(DP_A);
1893         udelay(200);
1894 }
1895
1896 /* If the sink supports it, try to set the power state appropriately */
1897 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1898 {
1899         int ret, i;
1900
1901         /* Should have a valid DPCD by this point */
1902         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1903                 return;
1904
1905         if (mode != DRM_MODE_DPMS_ON) {
1906                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1907                                          DP_SET_POWER_D3);
1908         } else {
1909                 /*
1910                  * When turning on, we need to retry for 1ms to give the sink
1911                  * time to wake up.
1912                  */
1913                 for (i = 0; i < 3; i++) {
1914                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1915                                                  DP_SET_POWER_D0);
1916                         if (ret == 1)
1917                                 break;
1918                         msleep(1);
1919                 }
1920         }
1921
1922         if (ret != 1)
1923                 DRM_DEBUG_KMS("failed to %s sink power state\n",
1924                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1925 }
1926
1927 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1928                                   enum pipe *pipe)
1929 {
1930         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1931         enum port port = dp_to_dig_port(intel_dp)->port;
1932         struct drm_device *dev = encoder->base.dev;
1933         struct drm_i915_private *dev_priv = dev->dev_private;
1934         enum intel_display_power_domain power_domain;
1935         u32 tmp;
1936
1937         power_domain = intel_display_port_power_domain(encoder);
1938         if (!intel_display_power_is_enabled(dev_priv, power_domain))
1939                 return false;
1940
1941         tmp = I915_READ(intel_dp->output_reg);
1942
1943         if (!(tmp & DP_PORT_EN))
1944                 return false;
1945
1946         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1947                 *pipe = PORT_TO_PIPE_CPT(tmp);
1948         } else if (IS_CHERRYVIEW(dev)) {
1949                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1950         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1951                 *pipe = PORT_TO_PIPE(tmp);
1952         } else {
1953                 u32 trans_sel;
1954                 u32 trans_dp;
1955                 int i;
1956
1957                 switch (intel_dp->output_reg) {
1958                 case PCH_DP_B:
1959                         trans_sel = TRANS_DP_PORT_SEL_B;
1960                         break;
1961                 case PCH_DP_C:
1962                         trans_sel = TRANS_DP_PORT_SEL_C;
1963                         break;
1964                 case PCH_DP_D:
1965                         trans_sel = TRANS_DP_PORT_SEL_D;
1966                         break;
1967                 default:
1968                         return true;
1969                 }
1970
1971                 for_each_pipe(dev_priv, i) {
1972                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1973                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1974                                 *pipe = i;
1975                                 return true;
1976                         }
1977                 }
1978
1979                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1980                               intel_dp->output_reg);
1981         }
1982
1983         return true;
1984 }
1985
1986 static void intel_dp_get_config(struct intel_encoder *encoder,
1987                                 struct intel_crtc_config *pipe_config)
1988 {
1989         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1990         u32 tmp, flags = 0;
1991         struct drm_device *dev = encoder->base.dev;
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         enum port port = dp_to_dig_port(intel_dp)->port;
1994         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1995         int dotclock;
1996
1997         tmp = I915_READ(intel_dp->output_reg);
1998         if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1999                 pipe_config->has_audio = true;
2000
2001         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2002                 if (tmp & DP_SYNC_HS_HIGH)
2003                         flags |= DRM_MODE_FLAG_PHSYNC;
2004                 else
2005                         flags |= DRM_MODE_FLAG_NHSYNC;
2006
2007                 if (tmp & DP_SYNC_VS_HIGH)
2008                         flags |= DRM_MODE_FLAG_PVSYNC;
2009                 else
2010                         flags |= DRM_MODE_FLAG_NVSYNC;
2011         } else {
2012                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2013                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2014                         flags |= DRM_MODE_FLAG_PHSYNC;
2015                 else
2016                         flags |= DRM_MODE_FLAG_NHSYNC;
2017
2018                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2019                         flags |= DRM_MODE_FLAG_PVSYNC;
2020                 else
2021                         flags |= DRM_MODE_FLAG_NVSYNC;
2022         }
2023
2024         pipe_config->adjusted_mode.flags |= flags;
2025
2026         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2027             tmp & DP_COLOR_RANGE_16_235)
2028                 pipe_config->limited_color_range = true;
2029
2030         pipe_config->has_dp_encoder = true;
2031
2032         intel_dp_get_m_n(crtc, pipe_config);
2033
2034         if (port == PORT_A) {
2035                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2036                         pipe_config->port_clock = 162000;
2037                 else
2038                         pipe_config->port_clock = 270000;
2039         }
2040
2041         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2042                                             &pipe_config->dp_m_n);
2043
2044         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2045                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2046
2047         pipe_config->adjusted_mode.crtc_clock = dotclock;
2048
2049         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2050             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2051                 /*
2052                  * This is a big fat ugly hack.
2053                  *
2054                  * Some machines in UEFI boot mode provide us a VBT that has 18
2055                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2056                  * unknown we fail to light up. Yet the same BIOS boots up with
2057                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2058                  * max, not what it tells us to use.
2059                  *
2060                  * Note: This will still be broken if the eDP panel is not lit
2061                  * up by the BIOS, and thus we can't get the mode at module
2062                  * load.
2063                  */
2064                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2065                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2066                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2067         }
2068 }
2069
2070 static bool is_edp_psr(struct intel_dp *intel_dp)
2071 {
2072         return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
2073 }
2074
2075 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
2076 {
2077         struct drm_i915_private *dev_priv = dev->dev_private;
2078
2079         if (!HAS_PSR(dev))
2080                 return false;
2081
2082         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2083 }
2084
2085 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
2086                                     struct edp_vsc_psr *vsc_psr)
2087 {
2088         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2089         struct drm_device *dev = dig_port->base.base.dev;
2090         struct drm_i915_private *dev_priv = dev->dev_private;
2091         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
2092         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
2093         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
2094         uint32_t *data = (uint32_t *) vsc_psr;
2095         unsigned int i;
2096
2097         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
2098            the video DIP being updated before program video DIP data buffer
2099            registers for DIP being updated. */
2100         I915_WRITE(ctl_reg, 0);
2101         POSTING_READ(ctl_reg);
2102
2103         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
2104                 if (i < sizeof(struct edp_vsc_psr))
2105                         I915_WRITE(data_reg + i, *data++);
2106                 else
2107                         I915_WRITE(data_reg + i, 0);
2108         }
2109
2110         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
2111         POSTING_READ(ctl_reg);
2112 }
2113
2114 static void intel_edp_psr_setup_vsc(struct intel_dp *intel_dp)
2115 {
2116         struct edp_vsc_psr psr_vsc;
2117
2118         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2119         memset(&psr_vsc, 0, sizeof(psr_vsc));
2120         psr_vsc.sdp_header.HB0 = 0;
2121         psr_vsc.sdp_header.HB1 = 0x7;
2122         psr_vsc.sdp_header.HB2 = 0x2;
2123         psr_vsc.sdp_header.HB3 = 0x8;
2124         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2125 }
2126
2127 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2128 {
2129         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2130         struct drm_device *dev = dig_port->base.base.dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         uint32_t aux_clock_divider;
2133         int precharge = 0x3;
2134         bool only_standby = false;
2135         static const uint8_t aux_msg[] = {
2136                 [0] = DP_AUX_NATIVE_WRITE << 4,
2137                 [1] = DP_SET_POWER >> 8,
2138                 [2] = DP_SET_POWER & 0xff,
2139                 [3] = 1 - 1,
2140                 [4] = DP_SET_POWER_D0,
2141         };
2142         int i;
2143
2144         BUILD_BUG_ON(sizeof(aux_msg) > 20);
2145
2146         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2147
2148         if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2149                 only_standby = true;
2150
2151         /* Enable PSR in sink */
2152         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2153                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2154                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2155         else
2156                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2157                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2158
2159         /* Setup AUX registers */
2160         for (i = 0; i < sizeof(aux_msg); i += 4)
2161                 I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i,
2162                            pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
2163
2164         I915_WRITE(EDP_PSR_AUX_CTL(dev),
2165                    DP_AUX_CH_CTL_TIME_OUT_400us |
2166                    (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2167                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2168                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2169 }
2170
2171 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2172 {
2173         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2174         struct drm_device *dev = dig_port->base.base.dev;
2175         struct drm_i915_private *dev_priv = dev->dev_private;
2176         uint32_t max_sleep_time = 0x1f;
2177         uint32_t idle_frames = 1;
2178         uint32_t val = 0x0;
2179         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2180         bool only_standby = false;
2181
2182         if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2183                 only_standby = true;
2184
2185         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2186                 val |= EDP_PSR_LINK_STANDBY;
2187                 val |= EDP_PSR_TP2_TP3_TIME_0us;
2188                 val |= EDP_PSR_TP1_TIME_0us;
2189                 val |= EDP_PSR_SKIP_AUX_EXIT;
2190                 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2191         } else
2192                 val |= EDP_PSR_LINK_DISABLE;
2193
2194         I915_WRITE(EDP_PSR_CTL(dev), val |
2195                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2196                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2197                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2198                    EDP_PSR_ENABLE);
2199 }
2200
2201 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2202 {
2203         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2204         struct drm_device *dev = dig_port->base.base.dev;
2205         struct drm_i915_private *dev_priv = dev->dev_private;
2206         struct drm_crtc *crtc = dig_port->base.base.crtc;
2207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2208
2209         lockdep_assert_held(&dev_priv->psr.lock);
2210         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2211         WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2212
2213         dev_priv->psr.source_ok = false;
2214
2215         if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2216                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2217                 return false;
2218         }
2219
2220         if (!i915.enable_psr) {
2221                 DRM_DEBUG_KMS("PSR disable by flag\n");
2222                 return false;
2223         }
2224
2225         /* Below limitations aren't valid for Broadwell */
2226         if (IS_BROADWELL(dev))
2227                 goto out;
2228
2229         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2230             S3D_ENABLE) {
2231                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2232                 return false;
2233         }
2234
2235         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2236                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2237                 return false;
2238         }
2239
2240  out:
2241         dev_priv->psr.source_ok = true;
2242         return true;
2243 }
2244
2245 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2246 {
2247         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2248         struct drm_device *dev = intel_dig_port->base.base.dev;
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250
2251         WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2252         WARN_ON(dev_priv->psr.active);
2253         lockdep_assert_held(&dev_priv->psr.lock);
2254
2255         /* Enable/Re-enable PSR on the host */
2256         intel_edp_psr_enable_source(intel_dp);
2257
2258         dev_priv->psr.active = true;
2259 }
2260
2261 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2262 {
2263         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2264         struct drm_i915_private *dev_priv = dev->dev_private;
2265
2266         if (!HAS_PSR(dev)) {
2267                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2268                 return;
2269         }
2270
2271         if (!is_edp_psr(intel_dp)) {
2272                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2273                 return;
2274         }
2275
2276         mutex_lock(&dev_priv->psr.lock);
2277         if (dev_priv->psr.enabled) {
2278                 DRM_DEBUG_KMS("PSR already in use\n");
2279                 goto unlock;
2280         }
2281
2282         if (!intel_edp_psr_match_conditions(intel_dp))
2283                 goto unlock;
2284
2285         dev_priv->psr.busy_frontbuffer_bits = 0;
2286
2287         intel_edp_psr_setup_vsc(intel_dp);
2288
2289         /* Avoid continuous PSR exit by masking memup and hpd */
2290         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2291                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2292
2293         /* Enable PSR on the panel */
2294         intel_edp_psr_enable_sink(intel_dp);
2295
2296         dev_priv->psr.enabled = intel_dp;
2297 unlock:
2298         mutex_unlock(&dev_priv->psr.lock);
2299 }
2300
2301 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2302 {
2303         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2304         struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306         mutex_lock(&dev_priv->psr.lock);
2307         if (!dev_priv->psr.enabled) {
2308                 mutex_unlock(&dev_priv->psr.lock);
2309                 return;
2310         }
2311
2312         if (dev_priv->psr.active) {
2313                 I915_WRITE(EDP_PSR_CTL(dev),
2314                            I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2315
2316                 /* Wait till PSR is idle */
2317                 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2318                                EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2319                         DRM_ERROR("Timed out waiting for PSR Idle State\n");
2320
2321                 dev_priv->psr.active = false;
2322         } else {
2323                 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2324         }
2325
2326         dev_priv->psr.enabled = NULL;
2327         mutex_unlock(&dev_priv->psr.lock);
2328
2329         cancel_delayed_work_sync(&dev_priv->psr.work);
2330 }
2331
2332 static void intel_edp_psr_work(struct work_struct *work)
2333 {
2334         struct drm_i915_private *dev_priv =
2335                 container_of(work, typeof(*dev_priv), psr.work.work);
2336         struct intel_dp *intel_dp = dev_priv->psr.enabled;
2337
2338         /* We have to make sure PSR is ready for re-enable
2339          * otherwise it keeps disabled until next full enable/disable cycle.
2340          * PSR might take some time to get fully disabled
2341          * and be ready for re-enable.
2342          */
2343         if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
2344                       EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
2345                 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
2346                 return;
2347         }
2348
2349         mutex_lock(&dev_priv->psr.lock);
2350         intel_dp = dev_priv->psr.enabled;
2351
2352         if (!intel_dp)
2353                 goto unlock;
2354
2355         /*
2356          * The delayed work can race with an invalidate hence we need to
2357          * recheck. Since psr_flush first clears this and then reschedules we
2358          * won't ever miss a flush when bailing out here.
2359          */
2360         if (dev_priv->psr.busy_frontbuffer_bits)
2361                 goto unlock;
2362
2363         intel_edp_psr_do_enable(intel_dp);
2364 unlock:
2365         mutex_unlock(&dev_priv->psr.lock);
2366 }
2367
2368 static void intel_edp_psr_do_exit(struct drm_device *dev)
2369 {
2370         struct drm_i915_private *dev_priv = dev->dev_private;
2371
2372         if (dev_priv->psr.active) {
2373                 u32 val = I915_READ(EDP_PSR_CTL(dev));
2374
2375                 WARN_ON(!(val & EDP_PSR_ENABLE));
2376
2377                 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2378
2379                 dev_priv->psr.active = false;
2380         }
2381
2382 }
2383
2384 void intel_edp_psr_invalidate(struct drm_device *dev,
2385                               unsigned frontbuffer_bits)
2386 {
2387         struct drm_i915_private *dev_priv = dev->dev_private;
2388         struct drm_crtc *crtc;
2389         enum pipe pipe;
2390
2391         mutex_lock(&dev_priv->psr.lock);
2392         if (!dev_priv->psr.enabled) {
2393                 mutex_unlock(&dev_priv->psr.lock);
2394                 return;
2395         }
2396
2397         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2398         pipe = to_intel_crtc(crtc)->pipe;
2399
2400         intel_edp_psr_do_exit(dev);
2401
2402         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2403
2404         dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2405         mutex_unlock(&dev_priv->psr.lock);
2406 }
2407
2408 void intel_edp_psr_flush(struct drm_device *dev,
2409                          unsigned frontbuffer_bits)
2410 {
2411         struct drm_i915_private *dev_priv = dev->dev_private;
2412         struct drm_crtc *crtc;
2413         enum pipe pipe;
2414
2415         mutex_lock(&dev_priv->psr.lock);
2416         if (!dev_priv->psr.enabled) {
2417                 mutex_unlock(&dev_priv->psr.lock);
2418                 return;
2419         }
2420
2421         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2422         pipe = to_intel_crtc(crtc)->pipe;
2423         dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2424
2425         /*
2426          * On Haswell sprite plane updates don't result in a psr invalidating
2427          * signal in the hardware. Which means we need to manually fake this in
2428          * software for all flushes, not just when we've seen a preceding
2429          * invalidation through frontbuffer rendering.
2430          */
2431         if (IS_HASWELL(dev) &&
2432             (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2433                 intel_edp_psr_do_exit(dev);
2434
2435         if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2436                 schedule_delayed_work(&dev_priv->psr.work,
2437                                       msecs_to_jiffies(100));
2438         mutex_unlock(&dev_priv->psr.lock);
2439 }
2440
2441 void intel_edp_psr_init(struct drm_device *dev)
2442 {
2443         struct drm_i915_private *dev_priv = dev->dev_private;
2444
2445         INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2446         mutex_init(&dev_priv->psr.lock);
2447 }
2448
2449 static void intel_disable_dp(struct intel_encoder *encoder)
2450 {
2451         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2452         struct drm_device *dev = encoder->base.dev;
2453         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2454
2455         if (crtc->config.has_audio)
2456                 intel_audio_codec_disable(encoder);
2457
2458         /* Make sure the panel is off before trying to change the mode. But also
2459          * ensure that we have vdd while we switch off the panel. */
2460         intel_edp_panel_vdd_on(intel_dp);
2461         intel_edp_backlight_off(intel_dp);
2462         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2463         intel_edp_panel_off(intel_dp);
2464
2465         /* disable the port before the pipe on g4x */
2466         if (INTEL_INFO(dev)->gen < 5)
2467                 intel_dp_link_down(intel_dp);
2468 }
2469
2470 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2471 {
2472         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2473         enum port port = dp_to_dig_port(intel_dp)->port;
2474
2475         intel_dp_link_down(intel_dp);
2476         if (port == PORT_A)
2477                 ironlake_edp_pll_off(intel_dp);
2478 }
2479
2480 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2481 {
2482         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2483
2484         intel_dp_link_down(intel_dp);
2485 }
2486
2487 static void chv_post_disable_dp(struct intel_encoder *encoder)
2488 {
2489         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2490         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2491         struct drm_device *dev = encoder->base.dev;
2492         struct drm_i915_private *dev_priv = dev->dev_private;
2493         struct intel_crtc *intel_crtc =
2494                 to_intel_crtc(encoder->base.crtc);
2495         enum dpio_channel ch = vlv_dport_to_channel(dport);
2496         enum pipe pipe = intel_crtc->pipe;
2497         u32 val;
2498
2499         intel_dp_link_down(intel_dp);
2500
2501         mutex_lock(&dev_priv->dpio_lock);
2502
2503         /* Propagate soft reset to data lane reset */
2504         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2505         val |= CHV_PCS_REQ_SOFTRESET_EN;
2506         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2507
2508         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2509         val |= CHV_PCS_REQ_SOFTRESET_EN;
2510         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2511
2512         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2513         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2514         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2515
2516         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2517         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2518         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2519
2520         mutex_unlock(&dev_priv->dpio_lock);
2521 }
2522
2523 static void
2524 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2525                          uint32_t *DP,
2526                          uint8_t dp_train_pat)
2527 {
2528         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529         struct drm_device *dev = intel_dig_port->base.base.dev;
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         enum port port = intel_dig_port->port;
2532
2533         if (HAS_DDI(dev)) {
2534                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2535
2536                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2537                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2538                 else
2539                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2540
2541                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2542                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2543                 case DP_TRAINING_PATTERN_DISABLE:
2544                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2545
2546                         break;
2547                 case DP_TRAINING_PATTERN_1:
2548                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2549                         break;
2550                 case DP_TRAINING_PATTERN_2:
2551                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2552                         break;
2553                 case DP_TRAINING_PATTERN_3:
2554                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2555                         break;
2556                 }
2557                 I915_WRITE(DP_TP_CTL(port), temp);
2558
2559         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2560                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2561
2562                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2563                 case DP_TRAINING_PATTERN_DISABLE:
2564                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2565                         break;
2566                 case DP_TRAINING_PATTERN_1:
2567                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2568                         break;
2569                 case DP_TRAINING_PATTERN_2:
2570                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2571                         break;
2572                 case DP_TRAINING_PATTERN_3:
2573                         DRM_ERROR("DP training pattern 3 not supported\n");
2574                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2575                         break;
2576                 }
2577
2578         } else {
2579                 if (IS_CHERRYVIEW(dev))
2580                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2581                 else
2582                         *DP &= ~DP_LINK_TRAIN_MASK;
2583
2584                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2585                 case DP_TRAINING_PATTERN_DISABLE:
2586                         *DP |= DP_LINK_TRAIN_OFF;
2587                         break;
2588                 case DP_TRAINING_PATTERN_1:
2589                         *DP |= DP_LINK_TRAIN_PAT_1;
2590                         break;
2591                 case DP_TRAINING_PATTERN_2:
2592                         *DP |= DP_LINK_TRAIN_PAT_2;
2593                         break;
2594                 case DP_TRAINING_PATTERN_3:
2595                         if (IS_CHERRYVIEW(dev)) {
2596                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2597                         } else {
2598                                 DRM_ERROR("DP training pattern 3 not supported\n");
2599                                 *DP |= DP_LINK_TRAIN_PAT_2;
2600                         }
2601                         break;
2602                 }
2603         }
2604 }
2605
2606 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2607 {
2608         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2609         struct drm_i915_private *dev_priv = dev->dev_private;
2610
2611         /* enable with pattern 1 (as per spec) */
2612         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2613                                  DP_TRAINING_PATTERN_1);
2614
2615         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2616         POSTING_READ(intel_dp->output_reg);
2617
2618         /*
2619          * Magic for VLV/CHV. We _must_ first set up the register
2620          * without actually enabling the port, and then do another
2621          * write to enable the port. Otherwise link training will
2622          * fail when the power sequencer is freshly used for this port.
2623          */
2624         intel_dp->DP |= DP_PORT_EN;
2625
2626         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2627         POSTING_READ(intel_dp->output_reg);
2628 }
2629
2630 static void intel_enable_dp(struct intel_encoder *encoder)
2631 {
2632         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2633         struct drm_device *dev = encoder->base.dev;
2634         struct drm_i915_private *dev_priv = dev->dev_private;
2635         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2636         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2637
2638         if (WARN_ON(dp_reg & DP_PORT_EN))
2639                 return;
2640
2641         pps_lock(intel_dp);
2642
2643         if (IS_VALLEYVIEW(dev))
2644                 vlv_init_panel_power_sequencer(intel_dp);
2645
2646         intel_dp_enable_port(intel_dp);
2647
2648         edp_panel_vdd_on(intel_dp);
2649         edp_panel_on(intel_dp);
2650         edp_panel_vdd_off(intel_dp, true);
2651
2652         pps_unlock(intel_dp);
2653
2654         if (IS_VALLEYVIEW(dev))
2655                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2656
2657         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2658         intel_dp_start_link_train(intel_dp);
2659         intel_dp_complete_link_train(intel_dp);
2660         intel_dp_stop_link_train(intel_dp);
2661
2662         if (crtc->config.has_audio) {
2663                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2664                                  pipe_name(crtc->pipe));
2665                 intel_audio_codec_enable(encoder);
2666         }
2667 }
2668
2669 static void g4x_enable_dp(struct intel_encoder *encoder)
2670 {
2671         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2672
2673         intel_enable_dp(encoder);
2674         intel_edp_backlight_on(intel_dp);
2675 }
2676
2677 static void vlv_enable_dp(struct intel_encoder *encoder)
2678 {
2679         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2680
2681         intel_edp_backlight_on(intel_dp);
2682 }
2683
2684 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2685 {
2686         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2687         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2688
2689         intel_dp_prepare(encoder);
2690
2691         /* Only ilk+ has port A */
2692         if (dport->port == PORT_A) {
2693                 ironlake_set_pll_cpu_edp(intel_dp);
2694                 ironlake_edp_pll_on(intel_dp);
2695         }
2696 }
2697
2698 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2699 {
2700         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2701         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2702         enum pipe pipe = intel_dp->pps_pipe;
2703         int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2704
2705         edp_panel_vdd_off_sync(intel_dp);
2706
2707         /*
2708          * VLV seems to get confused when multiple power seqeuencers
2709          * have the same port selected (even if only one has power/vdd
2710          * enabled). The failure manifests as vlv_wait_port_ready() failing
2711          * CHV on the other hand doesn't seem to mind having the same port
2712          * selected in multiple power seqeuencers, but let's clear the
2713          * port select always when logically disconnecting a power sequencer
2714          * from a port.
2715          */
2716         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2717                       pipe_name(pipe), port_name(intel_dig_port->port));
2718         I915_WRITE(pp_on_reg, 0);
2719         POSTING_READ(pp_on_reg);
2720
2721         intel_dp->pps_pipe = INVALID_PIPE;
2722 }
2723
2724 static void vlv_steal_power_sequencer(struct drm_device *dev,
2725                                       enum pipe pipe)
2726 {
2727         struct drm_i915_private *dev_priv = dev->dev_private;
2728         struct intel_encoder *encoder;
2729
2730         lockdep_assert_held(&dev_priv->pps_mutex);
2731
2732         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2733                 return;
2734
2735         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2736                             base.head) {
2737                 struct intel_dp *intel_dp;
2738                 enum port port;
2739
2740                 if (encoder->type != INTEL_OUTPUT_EDP)
2741                         continue;
2742
2743                 intel_dp = enc_to_intel_dp(&encoder->base);
2744                 port = dp_to_dig_port(intel_dp)->port;
2745
2746                 if (intel_dp->pps_pipe != pipe)
2747                         continue;
2748
2749                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2750                               pipe_name(pipe), port_name(port));
2751
2752                 WARN(encoder->connectors_active,
2753                      "stealing pipe %c power sequencer from active eDP port %c\n",
2754                      pipe_name(pipe), port_name(port));
2755
2756                 /* make sure vdd is off before we steal it */
2757                 vlv_detach_power_sequencer(intel_dp);
2758         }
2759 }
2760
2761 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2762 {
2763         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2764         struct intel_encoder *encoder = &intel_dig_port->base;
2765         struct drm_device *dev = encoder->base.dev;
2766         struct drm_i915_private *dev_priv = dev->dev_private;
2767         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2768
2769         lockdep_assert_held(&dev_priv->pps_mutex);
2770
2771         if (!is_edp(intel_dp))
2772                 return;
2773
2774         if (intel_dp->pps_pipe == crtc->pipe)
2775                 return;
2776
2777         /*
2778          * If another power sequencer was being used on this
2779          * port previously make sure to turn off vdd there while
2780          * we still have control of it.
2781          */
2782         if (intel_dp->pps_pipe != INVALID_PIPE)
2783                 vlv_detach_power_sequencer(intel_dp);
2784
2785         /*
2786          * We may be stealing the power
2787          * sequencer from another port.
2788          */
2789         vlv_steal_power_sequencer(dev, crtc->pipe);
2790
2791         /* now it's all ours */
2792         intel_dp->pps_pipe = crtc->pipe;
2793
2794         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2795                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2796
2797         /* init power sequencer on this pipe and port */
2798         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2799         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2800 }
2801
2802 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2803 {
2804         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2805         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2806         struct drm_device *dev = encoder->base.dev;
2807         struct drm_i915_private *dev_priv = dev->dev_private;
2808         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2809         enum dpio_channel port = vlv_dport_to_channel(dport);
2810         int pipe = intel_crtc->pipe;
2811         u32 val;
2812
2813         mutex_lock(&dev_priv->dpio_lock);
2814
2815         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2816         val = 0;
2817         if (pipe)
2818                 val |= (1<<21);
2819         else
2820                 val &= ~(1<<21);
2821         val |= 0x001000c4;
2822         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2823         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2824         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2825
2826         mutex_unlock(&dev_priv->dpio_lock);
2827
2828         intel_enable_dp(encoder);
2829 }
2830
2831 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2832 {
2833         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2834         struct drm_device *dev = encoder->base.dev;
2835         struct drm_i915_private *dev_priv = dev->dev_private;
2836         struct intel_crtc *intel_crtc =
2837                 to_intel_crtc(encoder->base.crtc);
2838         enum dpio_channel port = vlv_dport_to_channel(dport);
2839         int pipe = intel_crtc->pipe;
2840
2841         intel_dp_prepare(encoder);
2842
2843         /* Program Tx lane resets to default */
2844         mutex_lock(&dev_priv->dpio_lock);
2845         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2846                          DPIO_PCS_TX_LANE2_RESET |
2847                          DPIO_PCS_TX_LANE1_RESET);
2848         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2849                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2850                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2851                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2852                                  DPIO_PCS_CLK_SOFT_RESET);
2853
2854         /* Fix up inter-pair skew failure */
2855         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2856         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2857         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2858         mutex_unlock(&dev_priv->dpio_lock);
2859 }
2860
2861 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2862 {
2863         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2864         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2865         struct drm_device *dev = encoder->base.dev;
2866         struct drm_i915_private *dev_priv = dev->dev_private;
2867         struct intel_crtc *intel_crtc =
2868                 to_intel_crtc(encoder->base.crtc);
2869         enum dpio_channel ch = vlv_dport_to_channel(dport);
2870         int pipe = intel_crtc->pipe;
2871         int data, i;
2872         u32 val;
2873
2874         mutex_lock(&dev_priv->dpio_lock);
2875
2876         /* allow hardware to manage TX FIFO reset source */
2877         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2878         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2879         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2880
2881         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2882         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2883         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2884
2885         /* Deassert soft data lane reset*/
2886         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2887         val |= CHV_PCS_REQ_SOFTRESET_EN;
2888         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2889
2890         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2891         val |= CHV_PCS_REQ_SOFTRESET_EN;
2892         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2893
2894         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2895         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2896         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2897
2898         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2899         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2900         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2901
2902         /* Program Tx lane latency optimal setting*/
2903         for (i = 0; i < 4; i++) {
2904                 /* Set the latency optimal bit */
2905                 data = (i == 1) ? 0x0 : 0x6;
2906                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2907                                 data << DPIO_FRC_LATENCY_SHFIT);
2908
2909                 /* Set the upar bit */
2910                 data = (i == 1) ? 0x0 : 0x1;
2911                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2912                                 data << DPIO_UPAR_SHIFT);
2913         }
2914
2915         /* Data lane stagger programming */
2916         /* FIXME: Fix up value only after power analysis */
2917
2918         mutex_unlock(&dev_priv->dpio_lock);
2919
2920         intel_enable_dp(encoder);
2921 }
2922
2923 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2924 {
2925         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2926         struct drm_device *dev = encoder->base.dev;
2927         struct drm_i915_private *dev_priv = dev->dev_private;
2928         struct intel_crtc *intel_crtc =
2929                 to_intel_crtc(encoder->base.crtc);
2930         enum dpio_channel ch = vlv_dport_to_channel(dport);
2931         enum pipe pipe = intel_crtc->pipe;
2932         u32 val;
2933
2934         intel_dp_prepare(encoder);
2935
2936         mutex_lock(&dev_priv->dpio_lock);
2937
2938         /* program left/right clock distribution */
2939         if (pipe != PIPE_B) {
2940                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2941                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2942                 if (ch == DPIO_CH0)
2943                         val |= CHV_BUFLEFTENA1_FORCE;
2944                 if (ch == DPIO_CH1)
2945                         val |= CHV_BUFRIGHTENA1_FORCE;
2946                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2947         } else {
2948                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2949                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2950                 if (ch == DPIO_CH0)
2951                         val |= CHV_BUFLEFTENA2_FORCE;
2952                 if (ch == DPIO_CH1)
2953                         val |= CHV_BUFRIGHTENA2_FORCE;
2954                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2955         }
2956
2957         /* program clock channel usage */
2958         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2959         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2960         if (pipe != PIPE_B)
2961                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2962         else
2963                 val |= CHV_PCS_USEDCLKCHANNEL;
2964         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2965
2966         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2967         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2968         if (pipe != PIPE_B)
2969                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2970         else
2971                 val |= CHV_PCS_USEDCLKCHANNEL;
2972         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2973
2974         /*
2975          * This a a bit weird since generally CL
2976          * matches the pipe, but here we need to
2977          * pick the CL based on the port.
2978          */
2979         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2980         if (pipe != PIPE_B)
2981                 val &= ~CHV_CMN_USEDCLKCHANNEL;
2982         else
2983                 val |= CHV_CMN_USEDCLKCHANNEL;
2984         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2985
2986         mutex_unlock(&dev_priv->dpio_lock);
2987 }
2988
2989 /*
2990  * Native read with retry for link status and receiver capability reads for
2991  * cases where the sink may still be asleep.
2992  *
2993  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2994  * supposed to retry 3 times per the spec.
2995  */
2996 static ssize_t
2997 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2998                         void *buffer, size_t size)
2999 {
3000         ssize_t ret;
3001         int i;
3002
3003         for (i = 0; i < 3; i++) {
3004                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3005                 if (ret == size)
3006                         return ret;
3007                 msleep(1);
3008         }
3009
3010         return ret;
3011 }
3012
3013 /*
3014  * Fetch AUX CH registers 0x202 - 0x207 which contain
3015  * link status information
3016  */
3017 static bool
3018 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3019 {
3020         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3021                                        DP_LANE0_1_STATUS,
3022                                        link_status,
3023                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3024 }
3025
3026 /* These are source-specific values. */
3027 static uint8_t
3028 intel_dp_voltage_max(struct intel_dp *intel_dp)
3029 {
3030         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3031         enum port port = dp_to_dig_port(intel_dp)->port;
3032
3033         if (INTEL_INFO(dev)->gen >= 9)
3034                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3035         else if (IS_VALLEYVIEW(dev))
3036                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3037         else if (IS_GEN7(dev) && port == PORT_A)
3038                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3039         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3040                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3041         else
3042                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3043 }
3044
3045 static uint8_t
3046 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3047 {
3048         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3049         enum port port = dp_to_dig_port(intel_dp)->port;
3050
3051         if (INTEL_INFO(dev)->gen >= 9) {
3052                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3053                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3054                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3055                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3056                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3057                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3058                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3059                 default:
3060                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3061                 }
3062         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3063                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3064                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3065                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3066                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3067                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3068                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3069                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3070                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3071                 default:
3072                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3073                 }
3074         } else if (IS_VALLEYVIEW(dev)) {
3075                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3076                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3077                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3078                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3079                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3080                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3081                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3082                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3083                 default:
3084                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3085                 }
3086         } else if (IS_GEN7(dev) && port == PORT_A) {
3087                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3088                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3089                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3090                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3091                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3092                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3093                 default:
3094                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3095                 }
3096         } else {
3097                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3098                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3099                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3100                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3101                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3102                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3103                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3104                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3105                 default:
3106                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3107                 }
3108         }
3109 }
3110
3111 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
3112 {
3113         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3116         struct intel_crtc *intel_crtc =
3117                 to_intel_crtc(dport->base.base.crtc);
3118         unsigned long demph_reg_value, preemph_reg_value,
3119                 uniqtranscale_reg_value;
3120         uint8_t train_set = intel_dp->train_set[0];
3121         enum dpio_channel port = vlv_dport_to_channel(dport);
3122         int pipe = intel_crtc->pipe;
3123
3124         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3125         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3126                 preemph_reg_value = 0x0004000;
3127                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3128                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3129                         demph_reg_value = 0x2B405555;
3130                         uniqtranscale_reg_value = 0x552AB83A;
3131                         break;
3132                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3133                         demph_reg_value = 0x2B404040;
3134                         uniqtranscale_reg_value = 0x5548B83A;
3135                         break;
3136                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3137                         demph_reg_value = 0x2B245555;
3138                         uniqtranscale_reg_value = 0x5560B83A;
3139                         break;
3140                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3141                         demph_reg_value = 0x2B405555;
3142                         uniqtranscale_reg_value = 0x5598DA3A;
3143                         break;
3144                 default:
3145                         return 0;
3146                 }
3147                 break;
3148         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3149                 preemph_reg_value = 0x0002000;
3150                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3151                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3152                         demph_reg_value = 0x2B404040;
3153                         uniqtranscale_reg_value = 0x5552B83A;
3154                         break;
3155                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3156                         demph_reg_value = 0x2B404848;
3157                         uniqtranscale_reg_value = 0x5580B83A;
3158                         break;
3159                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3160                         demph_reg_value = 0x2B404040;
3161                         uniqtranscale_reg_value = 0x55ADDA3A;
3162                         break;
3163                 default:
3164                         return 0;
3165                 }
3166                 break;
3167         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3168                 preemph_reg_value = 0x0000000;
3169                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3170                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3171                         demph_reg_value = 0x2B305555;
3172                         uniqtranscale_reg_value = 0x5570B83A;
3173                         break;
3174                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3175                         demph_reg_value = 0x2B2B4040;
3176                         uniqtranscale_reg_value = 0x55ADDA3A;
3177                         break;
3178                 default:
3179                         return 0;
3180                 }
3181                 break;
3182         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3183                 preemph_reg_value = 0x0006000;
3184                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3185                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3186                         demph_reg_value = 0x1B405555;
3187                         uniqtranscale_reg_value = 0x55ADDA3A;
3188                         break;
3189                 default:
3190                         return 0;
3191                 }
3192                 break;
3193         default:
3194                 return 0;
3195         }
3196
3197         mutex_lock(&dev_priv->dpio_lock);
3198         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3199         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3200         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3201                          uniqtranscale_reg_value);
3202         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3203         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3204         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3205         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3206         mutex_unlock(&dev_priv->dpio_lock);
3207
3208         return 0;
3209 }
3210
3211 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3212 {
3213         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3214         struct drm_i915_private *dev_priv = dev->dev_private;
3215         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3216         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3217         u32 deemph_reg_value, margin_reg_value, val;
3218         uint8_t train_set = intel_dp->train_set[0];
3219         enum dpio_channel ch = vlv_dport_to_channel(dport);
3220         enum pipe pipe = intel_crtc->pipe;
3221         int i;
3222
3223         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3224         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3225                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3226                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3227                         deemph_reg_value = 128;
3228                         margin_reg_value = 52;
3229                         break;
3230                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3231                         deemph_reg_value = 128;
3232                         margin_reg_value = 77;
3233                         break;
3234                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3235                         deemph_reg_value = 128;
3236                         margin_reg_value = 102;
3237                         break;
3238                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3239                         deemph_reg_value = 128;
3240                         margin_reg_value = 154;
3241                         /* FIXME extra to set for 1200 */
3242                         break;
3243                 default:
3244                         return 0;
3245                 }
3246                 break;
3247         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3248                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3249                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3250                         deemph_reg_value = 85;
3251                         margin_reg_value = 78;
3252                         break;
3253                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3254                         deemph_reg_value = 85;
3255                         margin_reg_value = 116;
3256                         break;
3257                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3258                         deemph_reg_value = 85;
3259                         margin_reg_value = 154;
3260                         break;
3261                 default:
3262                         return 0;
3263                 }
3264                 break;
3265         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3266                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3267                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3268                         deemph_reg_value = 64;
3269                         margin_reg_value = 104;
3270                         break;
3271                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3272                         deemph_reg_value = 64;
3273                         margin_reg_value = 154;
3274                         break;
3275                 default:
3276                         return 0;
3277                 }
3278                 break;
3279         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3280                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3281                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3282                         deemph_reg_value = 43;
3283                         margin_reg_value = 154;
3284                         break;
3285                 default:
3286                         return 0;
3287                 }
3288                 break;
3289         default:
3290                 return 0;
3291         }
3292
3293         mutex_lock(&dev_priv->dpio_lock);
3294
3295         /* Clear calc init */
3296         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3297         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3298         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3299         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3300         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3301
3302         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3303         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3304         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3305         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3306         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3307
3308         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3309         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3310         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3311         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3312
3313         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3314         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3315         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3316         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3317
3318         /* Program swing deemph */
3319         for (i = 0; i < 4; i++) {
3320                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3321                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3322                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3323                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3324         }
3325
3326         /* Program swing margin */
3327         for (i = 0; i < 4; i++) {
3328                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3329                 val &= ~DPIO_SWING_MARGIN000_MASK;
3330                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3331                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3332         }
3333
3334         /* Disable unique transition scale */
3335         for (i = 0; i < 4; i++) {
3336                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3337                 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3338                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3339         }
3340
3341         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3342                         == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3343                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3344                         == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3345
3346                 /*
3347                  * The document said it needs to set bit 27 for ch0 and bit 26
3348                  * for ch1. Might be a typo in the doc.
3349                  * For now, for this unique transition scale selection, set bit
3350                  * 27 for ch0 and ch1.
3351                  */
3352                 for (i = 0; i < 4; i++) {
3353                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3354                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3355                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3356                 }
3357
3358                 for (i = 0; i < 4; i++) {
3359                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3360                         val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3361                         val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3362                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3363                 }
3364         }
3365
3366         /* Start swing calculation */
3367         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3368         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3369         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3370
3371         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3372         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3373         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3374
3375         /* LRC Bypass */
3376         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3377         val |= DPIO_LRC_BYPASS;
3378         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3379
3380         mutex_unlock(&dev_priv->dpio_lock);
3381
3382         return 0;
3383 }
3384
3385 static void
3386 intel_get_adjust_train(struct intel_dp *intel_dp,
3387                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
3388 {
3389         uint8_t v = 0;
3390         uint8_t p = 0;
3391         int lane;
3392         uint8_t voltage_max;
3393         uint8_t preemph_max;
3394
3395         for (lane = 0; lane < intel_dp->lane_count; lane++) {
3396                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3397                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3398
3399                 if (this_v > v)
3400                         v = this_v;
3401                 if (this_p > p)
3402                         p = this_p;
3403         }
3404
3405         voltage_max = intel_dp_voltage_max(intel_dp);
3406         if (v >= voltage_max)
3407                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3408
3409         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3410         if (p >= preemph_max)
3411                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3412
3413         for (lane = 0; lane < 4; lane++)
3414                 intel_dp->train_set[lane] = v | p;
3415 }
3416
3417 static uint32_t
3418 intel_gen4_signal_levels(uint8_t train_set)
3419 {
3420         uint32_t        signal_levels = 0;
3421
3422         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3423         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3424         default:
3425                 signal_levels |= DP_VOLTAGE_0_4;
3426                 break;
3427         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3428                 signal_levels |= DP_VOLTAGE_0_6;
3429                 break;
3430         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3431                 signal_levels |= DP_VOLTAGE_0_8;
3432                 break;
3433         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3434                 signal_levels |= DP_VOLTAGE_1_2;
3435                 break;
3436         }
3437         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3438         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3439         default:
3440                 signal_levels |= DP_PRE_EMPHASIS_0;
3441                 break;
3442         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3443                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3444                 break;
3445         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3446                 signal_levels |= DP_PRE_EMPHASIS_6;
3447                 break;
3448         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3449                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3450                 break;
3451         }
3452         return signal_levels;
3453 }
3454
3455 /* Gen6's DP voltage swing and pre-emphasis control */
3456 static uint32_t
3457 intel_gen6_edp_signal_levels(uint8_t train_set)
3458 {
3459         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3460                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3461         switch (signal_levels) {
3462         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3463         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3464                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3465         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3466                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3467         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3468         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3469                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3470         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3471         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3472                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3473         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3474         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3475                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3476         default:
3477                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3478                               "0x%x\n", signal_levels);
3479                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3480         }
3481 }
3482
3483 /* Gen7's DP voltage swing and pre-emphasis control */
3484 static uint32_t
3485 intel_gen7_edp_signal_levels(uint8_t train_set)
3486 {
3487         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3488                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3489         switch (signal_levels) {
3490         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3491                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3492         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3493                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3494         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3495                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3496
3497         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3498                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3499         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3500                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3501
3502         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3503                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3504         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3505                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3506
3507         default:
3508                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3509                               "0x%x\n", signal_levels);
3510                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3511         }
3512 }
3513
3514 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3515 static uint32_t
3516 intel_hsw_signal_levels(uint8_t train_set)
3517 {
3518         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3519                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3520         switch (signal_levels) {
3521         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3522                 return DDI_BUF_TRANS_SELECT(0);
3523         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3524                 return DDI_BUF_TRANS_SELECT(1);
3525         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3526                 return DDI_BUF_TRANS_SELECT(2);
3527         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3528                 return DDI_BUF_TRANS_SELECT(3);
3529
3530         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3531                 return DDI_BUF_TRANS_SELECT(4);
3532         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3533                 return DDI_BUF_TRANS_SELECT(5);
3534         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3535                 return DDI_BUF_TRANS_SELECT(6);
3536
3537         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3538                 return DDI_BUF_TRANS_SELECT(7);
3539         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3540                 return DDI_BUF_TRANS_SELECT(8);
3541         default:
3542                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3543                               "0x%x\n", signal_levels);
3544                 return DDI_BUF_TRANS_SELECT(0);
3545         }
3546 }
3547
3548 /* Properly updates "DP" with the correct signal levels. */
3549 static void
3550 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3551 {
3552         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3553         enum port port = intel_dig_port->port;
3554         struct drm_device *dev = intel_dig_port->base.base.dev;
3555         uint32_t signal_levels, mask;
3556         uint8_t train_set = intel_dp->train_set[0];
3557
3558         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3559                 signal_levels = intel_hsw_signal_levels(train_set);
3560                 mask = DDI_BUF_EMP_MASK;
3561         } else if (IS_CHERRYVIEW(dev)) {
3562                 signal_levels = intel_chv_signal_levels(intel_dp);
3563                 mask = 0;
3564         } else if (IS_VALLEYVIEW(dev)) {
3565                 signal_levels = intel_vlv_signal_levels(intel_dp);
3566                 mask = 0;
3567         } else if (IS_GEN7(dev) && port == PORT_A) {
3568                 signal_levels = intel_gen7_edp_signal_levels(train_set);
3569                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3570         } else if (IS_GEN6(dev) && port == PORT_A) {
3571                 signal_levels = intel_gen6_edp_signal_levels(train_set);
3572                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3573         } else {
3574                 signal_levels = intel_gen4_signal_levels(train_set);
3575                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3576         }
3577
3578         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3579
3580         *DP = (*DP & ~mask) | signal_levels;
3581 }
3582
3583 static bool
3584 intel_dp_set_link_train(struct intel_dp *intel_dp,
3585                         uint32_t *DP,
3586                         uint8_t dp_train_pat)
3587 {
3588         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3589         struct drm_device *dev = intel_dig_port->base.base.dev;
3590         struct drm_i915_private *dev_priv = dev->dev_private;
3591         uint8_t buf[sizeof(intel_dp->train_set) + 1];
3592         int ret, len;
3593
3594         _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3595
3596         I915_WRITE(intel_dp->output_reg, *DP);
3597         POSTING_READ(intel_dp->output_reg);
3598
3599         buf[0] = dp_train_pat;
3600         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3601             DP_TRAINING_PATTERN_DISABLE) {
3602                 /* don't write DP_TRAINING_LANEx_SET on disable */
3603                 len = 1;
3604         } else {
3605                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3606                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3607                 len = intel_dp->lane_count + 1;
3608         }
3609
3610         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3611                                 buf, len);
3612
3613         return ret == len;
3614 }
3615
3616 static bool
3617 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3618                         uint8_t dp_train_pat)
3619 {
3620         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3621         intel_dp_set_signal_levels(intel_dp, DP);
3622         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3623 }
3624
3625 static bool
3626 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3627                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
3628 {
3629         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3630         struct drm_device *dev = intel_dig_port->base.base.dev;
3631         struct drm_i915_private *dev_priv = dev->dev_private;
3632         int ret;
3633
3634         intel_get_adjust_train(intel_dp, link_status);
3635         intel_dp_set_signal_levels(intel_dp, DP);
3636
3637         I915_WRITE(intel_dp->output_reg, *DP);
3638         POSTING_READ(intel_dp->output_reg);
3639
3640         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3641                                 intel_dp->train_set, intel_dp->lane_count);
3642
3643         return ret == intel_dp->lane_count;
3644 }
3645
3646 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3647 {
3648         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3649         struct drm_device *dev = intel_dig_port->base.base.dev;
3650         struct drm_i915_private *dev_priv = dev->dev_private;
3651         enum port port = intel_dig_port->port;
3652         uint32_t val;
3653
3654         if (!HAS_DDI(dev))
3655                 return;
3656
3657         val = I915_READ(DP_TP_CTL(port));
3658         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3659         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3660         I915_WRITE(DP_TP_CTL(port), val);
3661
3662         /*
3663          * On PORT_A we can have only eDP in SST mode. There the only reason
3664          * we need to set idle transmission mode is to work around a HW issue
3665          * where we enable the pipe while not in idle link-training mode.
3666          * In this case there is requirement to wait for a minimum number of
3667          * idle patterns to be sent.
3668          */
3669         if (port == PORT_A)
3670                 return;
3671
3672         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3673                      1))
3674                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3675 }
3676
3677 /* Enable corresponding port and start training pattern 1 */
3678 void
3679 intel_dp_start_link_train(struct intel_dp *intel_dp)
3680 {
3681         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3682         struct drm_device *dev = encoder->dev;
3683         int i;
3684         uint8_t voltage;
3685         int voltage_tries, loop_tries;
3686         uint32_t DP = intel_dp->DP;
3687         uint8_t link_config[2];
3688
3689         if (HAS_DDI(dev))
3690                 intel_ddi_prepare_link_retrain(encoder);
3691
3692         /* Write the link configuration data */
3693         link_config[0] = intel_dp->link_bw;
3694         link_config[1] = intel_dp->lane_count;
3695         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3696                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3697         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3698
3699         link_config[0] = 0;
3700         link_config[1] = DP_SET_ANSI_8B10B;
3701         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3702
3703         DP |= DP_PORT_EN;
3704
3705         /* clock recovery */
3706         if (!intel_dp_reset_link_train(intel_dp, &DP,
3707                                        DP_TRAINING_PATTERN_1 |
3708                                        DP_LINK_SCRAMBLING_DISABLE)) {
3709                 DRM_ERROR("failed to enable link training\n");
3710                 return;
3711         }
3712
3713         voltage = 0xff;
3714         voltage_tries = 0;
3715         loop_tries = 0;
3716         for (;;) {
3717                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3718
3719                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3720                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3721                         DRM_ERROR("failed to get link status\n");
3722                         break;
3723                 }
3724
3725                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3726                         DRM_DEBUG_KMS("clock recovery OK\n");
3727                         break;
3728                 }
3729
3730                 /* Check to see if we've tried the max voltage */
3731                 for (i = 0; i < intel_dp->lane_count; i++)
3732                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3733                                 break;
3734                 if (i == intel_dp->lane_count) {
3735                         ++loop_tries;
3736                         if (loop_tries == 5) {
3737                                 DRM_ERROR("too many full retries, give up\n");
3738                                 break;
3739                         }
3740                         intel_dp_reset_link_train(intel_dp, &DP,
3741                                                   DP_TRAINING_PATTERN_1 |
3742                                                   DP_LINK_SCRAMBLING_DISABLE);
3743                         voltage_tries = 0;
3744                         continue;
3745                 }
3746
3747                 /* Check to see if we've tried the same voltage 5 times */
3748                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3749                         ++voltage_tries;
3750                         if (voltage_tries == 5) {
3751                                 DRM_ERROR("too many voltage retries, give up\n");
3752                                 break;
3753                         }
3754                 } else
3755                         voltage_tries = 0;
3756                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3757
3758                 /* Update training set as requested by target */
3759                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3760                         DRM_ERROR("failed to update link training\n");
3761                         break;
3762                 }
3763         }
3764
3765         intel_dp->DP = DP;
3766 }
3767
3768 void
3769 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3770 {
3771         bool channel_eq = false;
3772         int tries, cr_tries;
3773         uint32_t DP = intel_dp->DP;
3774         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3775
3776         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3777         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3778                 training_pattern = DP_TRAINING_PATTERN_3;
3779
3780         /* channel equalization */
3781         if (!intel_dp_set_link_train(intel_dp, &DP,
3782                                      training_pattern |
3783                                      DP_LINK_SCRAMBLING_DISABLE)) {
3784                 DRM_ERROR("failed to start channel equalization\n");
3785                 return;
3786         }
3787
3788         tries = 0;
3789         cr_tries = 0;
3790         channel_eq = false;
3791         for (;;) {
3792                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3793
3794                 if (cr_tries > 5) {
3795                         DRM_ERROR("failed to train DP, aborting\n");
3796                         break;
3797                 }
3798
3799                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3800                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3801                         DRM_ERROR("failed to get link status\n");
3802                         break;
3803                 }
3804
3805                 /* Make sure clock is still ok */
3806                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3807                         intel_dp_start_link_train(intel_dp);
3808                         intel_dp_set_link_train(intel_dp, &DP,
3809                                                 training_pattern |
3810                                                 DP_LINK_SCRAMBLING_DISABLE);
3811                         cr_tries++;
3812                         continue;
3813                 }
3814
3815                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3816                         channel_eq = true;
3817                         break;
3818                 }
3819
3820                 /* Try 5 times, then try clock recovery if that fails */
3821                 if (tries > 5) {
3822                         intel_dp_start_link_train(intel_dp);
3823                         intel_dp_set_link_train(intel_dp, &DP,
3824                                                 training_pattern |
3825                                                 DP_LINK_SCRAMBLING_DISABLE);
3826                         tries = 0;
3827                         cr_tries++;
3828                         continue;
3829                 }
3830
3831                 /* Update training set as requested by target */
3832                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3833                         DRM_ERROR("failed to update link training\n");
3834                         break;
3835                 }
3836                 ++tries;
3837         }
3838
3839         intel_dp_set_idle_link_train(intel_dp);
3840
3841         intel_dp->DP = DP;
3842
3843         if (channel_eq)
3844                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3845
3846 }
3847
3848 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3849 {
3850         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3851                                 DP_TRAINING_PATTERN_DISABLE);
3852 }
3853
3854 static void
3855 intel_dp_link_down(struct intel_dp *intel_dp)
3856 {
3857         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3858         enum port port = intel_dig_port->port;
3859         struct drm_device *dev = intel_dig_port->base.base.dev;
3860         struct drm_i915_private *dev_priv = dev->dev_private;
3861         struct intel_crtc *intel_crtc =
3862                 to_intel_crtc(intel_dig_port->base.base.crtc);
3863         uint32_t DP = intel_dp->DP;
3864
3865         if (WARN_ON(HAS_DDI(dev)))
3866                 return;
3867
3868         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3869                 return;
3870
3871         DRM_DEBUG_KMS("\n");
3872
3873         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3874                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3875                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3876         } else {
3877                 if (IS_CHERRYVIEW(dev))
3878                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3879                 else
3880                         DP &= ~DP_LINK_TRAIN_MASK;
3881                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3882         }
3883         POSTING_READ(intel_dp->output_reg);
3884
3885         if (HAS_PCH_IBX(dev) &&
3886             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3887                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3888
3889                 /* Hardware workaround: leaving our transcoder select
3890                  * set to transcoder B while it's off will prevent the
3891                  * corresponding HDMI output on transcoder A.
3892                  *
3893                  * Combine this with another hardware workaround:
3894                  * transcoder select bit can only be cleared while the
3895                  * port is enabled.
3896                  */
3897                 DP &= ~DP_PIPEB_SELECT;
3898                 I915_WRITE(intel_dp->output_reg, DP);
3899
3900                 /* Changes to enable or select take place the vblank
3901                  * after being written.
3902                  */
3903                 if (WARN_ON(crtc == NULL)) {
3904                         /* We should never try to disable a port without a crtc
3905                          * attached. For paranoia keep the code around for a
3906                          * bit. */
3907                         POSTING_READ(intel_dp->output_reg);
3908                         msleep(50);
3909                 } else
3910                         intel_wait_for_vblank(dev, intel_crtc->pipe);
3911         }
3912
3913         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3914         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3915         POSTING_READ(intel_dp->output_reg);
3916         msleep(intel_dp->panel_power_down_delay);
3917 }
3918
3919 static bool
3920 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3921 {
3922         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3923         struct drm_device *dev = dig_port->base.base.dev;
3924         struct drm_i915_private *dev_priv = dev->dev_private;
3925
3926         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3927                                     sizeof(intel_dp->dpcd)) < 0)
3928                 return false; /* aux transfer failed */
3929
3930         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3931
3932         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3933                 return false; /* DPCD not present */
3934
3935         /* Check if the panel supports PSR */
3936         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3937         if (is_edp(intel_dp)) {
3938                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3939                                         intel_dp->psr_dpcd,
3940                                         sizeof(intel_dp->psr_dpcd));
3941                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3942                         dev_priv->psr.sink_support = true;
3943                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3944                 }
3945         }
3946
3947         /* Training Pattern 3 support */
3948         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3949             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3950                 intel_dp->use_tps3 = true;
3951                 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3952         } else
3953                 intel_dp->use_tps3 = false;
3954
3955         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3956               DP_DWN_STRM_PORT_PRESENT))
3957                 return true; /* native DP sink */
3958
3959         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3960                 return true; /* no per-port downstream info */
3961
3962         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3963                                     intel_dp->downstream_ports,
3964                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3965                 return false; /* downstream port status fetch failed */
3966
3967         return true;
3968 }
3969
3970 static void
3971 intel_dp_probe_oui(struct intel_dp *intel_dp)
3972 {
3973         u8 buf[3];
3974
3975         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3976                 return;
3977
3978         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3979                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3980                               buf[0], buf[1], buf[2]);
3981
3982         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3983                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3984                               buf[0], buf[1], buf[2]);
3985 }
3986
3987 static bool
3988 intel_dp_probe_mst(struct intel_dp *intel_dp)
3989 {
3990         u8 buf[1];
3991
3992         if (!intel_dp->can_mst)
3993                 return false;
3994
3995         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3996                 return false;
3997
3998         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3999                 if (buf[0] & DP_MST_CAP) {
4000                         DRM_DEBUG_KMS("Sink is MST capable\n");
4001                         intel_dp->is_mst = true;
4002                 } else {
4003                         DRM_DEBUG_KMS("Sink is not MST capable\n");
4004                         intel_dp->is_mst = false;
4005                 }
4006         }
4007
4008         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4009         return intel_dp->is_mst;
4010 }
4011
4012 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4013 {
4014         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4015         struct drm_device *dev = intel_dig_port->base.base.dev;
4016         struct intel_crtc *intel_crtc =
4017                 to_intel_crtc(intel_dig_port->base.base.crtc);
4018         u8 buf;
4019         int test_crc_count;
4020         int attempts = 6;
4021
4022         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4023                 return -EIO;
4024
4025         if (!(buf & DP_TEST_CRC_SUPPORTED))
4026                 return -ENOTTY;
4027
4028         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4029                 return -EIO;
4030
4031         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4032                                 buf | DP_TEST_SINK_START) < 0)
4033                 return -EIO;
4034
4035         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4036                 return -EIO;
4037         test_crc_count = buf & DP_TEST_COUNT_MASK;
4038
4039         do {
4040                 if (drm_dp_dpcd_readb(&intel_dp->aux,
4041                                       DP_TEST_SINK_MISC, &buf) < 0)
4042                         return -EIO;
4043                 intel_wait_for_vblank(dev, intel_crtc->pipe);
4044         } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4045
4046         if (attempts == 0) {
4047                 DRM_ERROR("Panel is unable to calculate CRC after 6 vblanks\n");
4048                 return -EIO;
4049         }
4050
4051         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
4052                 return -EIO;
4053
4054         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4055                 return -EIO;
4056         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4057                                buf & ~DP_TEST_SINK_START) < 0)
4058                 return -EIO;
4059
4060         return 0;
4061 }
4062
4063 static bool
4064 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4065 {
4066         return intel_dp_dpcd_read_wake(&intel_dp->aux,
4067                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
4068                                        sink_irq_vector, 1) == 1;
4069 }
4070
4071 static bool
4072 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4073 {
4074         int ret;
4075
4076         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4077                                              DP_SINK_COUNT_ESI,
4078                                              sink_irq_vector, 14);
4079         if (ret != 14)
4080                 return false;
4081
4082         return true;
4083 }
4084
4085 static void
4086 intel_dp_handle_test_request(struct intel_dp *intel_dp)
4087 {
4088         /* NAK by default */
4089         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
4090 }
4091
4092 static int
4093 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4094 {
4095         bool bret;
4096
4097         if (intel_dp->is_mst) {
4098                 u8 esi[16] = { 0 };
4099                 int ret = 0;
4100                 int retry;
4101                 bool handled;
4102                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4103 go_again:
4104                 if (bret == true) {
4105
4106                         /* check link status - esi[10] = 0x200c */
4107                         if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4108                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4109                                 intel_dp_start_link_train(intel_dp);
4110                                 intel_dp_complete_link_train(intel_dp);
4111                                 intel_dp_stop_link_train(intel_dp);
4112                         }
4113
4114                         DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
4115                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4116
4117                         if (handled) {
4118                                 for (retry = 0; retry < 3; retry++) {
4119                                         int wret;
4120                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4121                                                                  DP_SINK_COUNT_ESI+1,
4122                                                                  &esi[1], 3);
4123                                         if (wret == 3) {
4124                                                 break;
4125                                         }
4126                                 }
4127
4128                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4129                                 if (bret == true) {
4130                                         DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
4131                                         goto go_again;
4132                                 }
4133                         } else
4134                                 ret = 0;
4135
4136                         return ret;
4137                 } else {
4138                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4139                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4140                         intel_dp->is_mst = false;
4141                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4142                         /* send a hotplug event */
4143                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4144                 }
4145         }
4146         return -EINVAL;
4147 }
4148
4149 /*
4150  * According to DP spec
4151  * 5.1.2:
4152  *  1. Read DPCD
4153  *  2. Configure link according to Receiver Capabilities
4154  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4155  *  4. Check link status on receipt of hot-plug interrupt
4156  */
4157 void
4158 intel_dp_check_link_status(struct intel_dp *intel_dp)
4159 {
4160         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4161         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4162         u8 sink_irq_vector;
4163         u8 link_status[DP_LINK_STATUS_SIZE];
4164
4165         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4166
4167         if (!intel_encoder->connectors_active)
4168                 return;
4169
4170         if (WARN_ON(!intel_encoder->base.crtc))
4171                 return;
4172
4173         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4174                 return;
4175
4176         /* Try to read receiver status if the link appears to be up */
4177         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4178                 return;
4179         }
4180
4181         /* Now read the DPCD to see if it's actually running */
4182         if (!intel_dp_get_dpcd(intel_dp)) {
4183                 return;
4184         }
4185
4186         /* Try to read the source of the interrupt */
4187         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4188             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4189                 /* Clear interrupt source */
4190                 drm_dp_dpcd_writeb(&intel_dp->aux,
4191                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4192                                    sink_irq_vector);
4193
4194                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4195                         intel_dp_handle_test_request(intel_dp);
4196                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4197                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4198         }
4199
4200         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4201                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4202                               intel_encoder->base.name);
4203                 intel_dp_start_link_train(intel_dp);
4204                 intel_dp_complete_link_train(intel_dp);
4205                 intel_dp_stop_link_train(intel_dp);
4206         }
4207 }
4208
4209 /* XXX this is probably wrong for multiple downstream ports */
4210 static enum drm_connector_status
4211 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4212 {
4213         uint8_t *dpcd = intel_dp->dpcd;
4214         uint8_t type;
4215
4216         if (!intel_dp_get_dpcd(intel_dp))
4217                 return connector_status_disconnected;
4218
4219         /* if there's no downstream port, we're done */
4220         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4221                 return connector_status_connected;
4222
4223         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4224         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4225             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4226                 uint8_t reg;
4227
4228                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4229                                             &reg, 1) < 0)
4230                         return connector_status_unknown;
4231
4232                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4233                                               : connector_status_disconnected;
4234         }
4235
4236         /* If no HPD, poke DDC gently */
4237         if (drm_probe_ddc(&intel_dp->aux.ddc))
4238                 return connector_status_connected;
4239
4240         /* Well we tried, say unknown for unreliable port types */
4241         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4242                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4243                 if (type == DP_DS_PORT_TYPE_VGA ||
4244                     type == DP_DS_PORT_TYPE_NON_EDID)
4245                         return connector_status_unknown;
4246         } else {
4247                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4248                         DP_DWN_STRM_PORT_TYPE_MASK;
4249                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4250                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4251                         return connector_status_unknown;
4252         }
4253
4254         /* Anything else is out of spec, warn and ignore */
4255         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4256         return connector_status_disconnected;
4257 }
4258
4259 static enum drm_connector_status
4260 edp_detect(struct intel_dp *intel_dp)
4261 {
4262         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4263         enum drm_connector_status status;
4264
4265         status = intel_panel_detect(dev);
4266         if (status == connector_status_unknown)
4267                 status = connector_status_connected;
4268
4269         return status;
4270 }
4271
4272 static enum drm_connector_status
4273 ironlake_dp_detect(struct intel_dp *intel_dp)
4274 {
4275         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4276         struct drm_i915_private *dev_priv = dev->dev_private;
4277         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4278
4279         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4280                 return connector_status_disconnected;
4281
4282         return intel_dp_detect_dpcd(intel_dp);
4283 }
4284
4285 static int g4x_digital_port_connected(struct drm_device *dev,
4286                                        struct intel_digital_port *intel_dig_port)
4287 {
4288         struct drm_i915_private *dev_priv = dev->dev_private;
4289         uint32_t bit;
4290
4291         if (IS_VALLEYVIEW(dev)) {
4292                 switch (intel_dig_port->port) {
4293                 case PORT_B:
4294                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4295                         break;
4296                 case PORT_C:
4297                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4298                         break;
4299                 case PORT_D:
4300                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4301                         break;
4302                 default:
4303                         return -EINVAL;
4304                 }
4305         } else {
4306                 switch (intel_dig_port->port) {
4307                 case PORT_B:
4308                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4309                         break;
4310                 case PORT_C:
4311                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4312                         break;
4313                 case PORT_D:
4314                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4315                         break;
4316                 default:
4317                         return -EINVAL;
4318                 }
4319         }
4320
4321         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4322                 return 0;
4323         return 1;
4324 }
4325
4326 static enum drm_connector_status
4327 g4x_dp_detect(struct intel_dp *intel_dp)
4328 {
4329         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4330         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4331         int ret;
4332
4333         /* Can't disconnect eDP, but you can close the lid... */
4334         if (is_edp(intel_dp)) {
4335                 enum drm_connector_status status;
4336
4337                 status = intel_panel_detect(dev);
4338                 if (status == connector_status_unknown)
4339                         status = connector_status_connected;
4340                 return status;
4341         }
4342
4343         ret = g4x_digital_port_connected(dev, intel_dig_port);
4344         if (ret == -EINVAL)
4345                 return connector_status_unknown;
4346         else if (ret == 0)
4347                 return connector_status_disconnected;
4348
4349         return intel_dp_detect_dpcd(intel_dp);
4350 }
4351
4352 static struct edid *
4353 intel_dp_get_edid(struct intel_dp *intel_dp)
4354 {
4355         struct intel_connector *intel_connector = intel_dp->attached_connector;
4356
4357         /* use cached edid if we have one */
4358         if (intel_connector->edid) {
4359                 /* invalid edid */
4360                 if (IS_ERR(intel_connector->edid))
4361                         return NULL;
4362
4363                 return drm_edid_duplicate(intel_connector->edid);
4364         } else
4365                 return drm_get_edid(&intel_connector->base,
4366                                     &intel_dp->aux.ddc);
4367 }
4368
4369 static void
4370 intel_dp_set_edid(struct intel_dp *intel_dp)
4371 {
4372         struct intel_connector *intel_connector = intel_dp->attached_connector;
4373         struct edid *edid;
4374
4375         edid = intel_dp_get_edid(intel_dp);
4376         intel_connector->detect_edid = edid;
4377
4378         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4379                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4380         else
4381                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4382 }
4383
4384 static void
4385 intel_dp_unset_edid(struct intel_dp *intel_dp)
4386 {
4387         struct intel_connector *intel_connector = intel_dp->attached_connector;
4388
4389         kfree(intel_connector->detect_edid);
4390         intel_connector->detect_edid = NULL;
4391
4392         intel_dp->has_audio = false;
4393 }
4394
4395 static enum intel_display_power_domain
4396 intel_dp_power_get(struct intel_dp *dp)
4397 {
4398         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4399         enum intel_display_power_domain power_domain;
4400
4401         power_domain = intel_display_port_power_domain(encoder);
4402         intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4403
4404         return power_domain;
4405 }
4406
4407 static void
4408 intel_dp_power_put(struct intel_dp *dp,
4409                    enum intel_display_power_domain power_domain)
4410 {
4411         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4412         intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4413 }
4414
4415 static enum drm_connector_status
4416 intel_dp_detect(struct drm_connector *connector, bool force)
4417 {
4418         struct intel_dp *intel_dp = intel_attached_dp(connector);
4419         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4420         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4421         struct drm_device *dev = connector->dev;
4422         enum drm_connector_status status;
4423         enum intel_display_power_domain power_domain;
4424         bool ret;
4425
4426         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4427                       connector->base.id, connector->name);
4428         intel_dp_unset_edid(intel_dp);
4429
4430         if (intel_dp->is_mst) {
4431                 /* MST devices are disconnected from a monitor POV */
4432                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4433                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4434                 return connector_status_disconnected;
4435         }
4436
4437         power_domain = intel_dp_power_get(intel_dp);
4438
4439         /* Can't disconnect eDP, but you can close the lid... */
4440         if (is_edp(intel_dp))
4441                 status = edp_detect(intel_dp);
4442         else if (HAS_PCH_SPLIT(dev))
4443                 status = ironlake_dp_detect(intel_dp);
4444         else
4445                 status = g4x_dp_detect(intel_dp);
4446         if (status != connector_status_connected)
4447                 goto out;
4448
4449         intel_dp_probe_oui(intel_dp);
4450
4451         ret = intel_dp_probe_mst(intel_dp);
4452         if (ret) {
4453                 /* if we are in MST mode then this connector
4454                    won't appear connected or have anything with EDID on it */
4455                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4456                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4457                 status = connector_status_disconnected;
4458                 goto out;
4459         }
4460
4461         intel_dp_set_edid(intel_dp);
4462
4463         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4464                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4465         status = connector_status_connected;
4466
4467 out:
4468         intel_dp_power_put(intel_dp, power_domain);
4469         return status;
4470 }
4471
4472 static void
4473 intel_dp_force(struct drm_connector *connector)
4474 {
4475         struct intel_dp *intel_dp = intel_attached_dp(connector);
4476         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4477         enum intel_display_power_domain power_domain;
4478
4479         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4480                       connector->base.id, connector->name);
4481         intel_dp_unset_edid(intel_dp);
4482
4483         if (connector->status != connector_status_connected)
4484                 return;
4485
4486         power_domain = intel_dp_power_get(intel_dp);
4487
4488         intel_dp_set_edid(intel_dp);
4489
4490         intel_dp_power_put(intel_dp, power_domain);
4491
4492         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4493                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4494 }
4495
4496 static int intel_dp_get_modes(struct drm_connector *connector)
4497 {
4498         struct intel_connector *intel_connector = to_intel_connector(connector);
4499         struct edid *edid;
4500
4501         edid = intel_connector->detect_edid;
4502         if (edid) {
4503                 int ret = intel_connector_update_modes(connector, edid);
4504                 if (ret)
4505                         return ret;
4506         }
4507
4508         /* if eDP has no EDID, fall back to fixed mode */
4509         if (is_edp(intel_attached_dp(connector)) &&
4510             intel_connector->panel.fixed_mode) {
4511                 struct drm_display_mode *mode;
4512
4513                 mode = drm_mode_duplicate(connector->dev,
4514                                           intel_connector->panel.fixed_mode);
4515                 if (mode) {
4516                         drm_mode_probed_add(connector, mode);
4517                         return 1;
4518                 }
4519         }
4520
4521         return 0;
4522 }
4523
4524 static bool
4525 intel_dp_detect_audio(struct drm_connector *connector)
4526 {
4527         bool has_audio = false;
4528         struct edid *edid;
4529
4530         edid = to_intel_connector(connector)->detect_edid;
4531         if (edid)
4532                 has_audio = drm_detect_monitor_audio(edid);
4533
4534         return has_audio;
4535 }
4536
4537 static int
4538 intel_dp_set_property(struct drm_connector *connector,
4539                       struct drm_property *property,
4540                       uint64_t val)
4541 {
4542         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4543         struct intel_connector *intel_connector = to_intel_connector(connector);
4544         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4545         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4546         int ret;
4547
4548         ret = drm_object_property_set_value(&connector->base, property, val);
4549         if (ret)
4550                 return ret;
4551
4552         if (property == dev_priv->force_audio_property) {
4553                 int i = val;
4554                 bool has_audio;
4555
4556                 if (i == intel_dp->force_audio)
4557                         return 0;
4558
4559                 intel_dp->force_audio = i;
4560
4561                 if (i == HDMI_AUDIO_AUTO)
4562                         has_audio = intel_dp_detect_audio(connector);
4563                 else
4564                         has_audio = (i == HDMI_AUDIO_ON);
4565
4566                 if (has_audio == intel_dp->has_audio)
4567                         return 0;
4568
4569                 intel_dp->has_audio = has_audio;
4570                 goto done;
4571         }
4572
4573         if (property == dev_priv->broadcast_rgb_property) {
4574                 bool old_auto = intel_dp->color_range_auto;
4575                 uint32_t old_range = intel_dp->color_range;
4576
4577                 switch (val) {
4578                 case INTEL_BROADCAST_RGB_AUTO:
4579                         intel_dp->color_range_auto = true;
4580                         break;
4581                 case INTEL_BROADCAST_RGB_FULL:
4582                         intel_dp->color_range_auto = false;
4583                         intel_dp->color_range = 0;
4584                         break;
4585                 case INTEL_BROADCAST_RGB_LIMITED:
4586                         intel_dp->color_range_auto = false;
4587                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
4588                         break;
4589                 default:
4590                         return -EINVAL;
4591                 }
4592
4593                 if (old_auto == intel_dp->color_range_auto &&
4594                     old_range == intel_dp->color_range)
4595                         return 0;
4596
4597                 goto done;
4598         }
4599
4600         if (is_edp(intel_dp) &&
4601             property == connector->dev->mode_config.scaling_mode_property) {
4602                 if (val == DRM_MODE_SCALE_NONE) {
4603                         DRM_DEBUG_KMS("no scaling not supported\n");
4604                         return -EINVAL;
4605                 }
4606
4607                 if (intel_connector->panel.fitting_mode == val) {
4608                         /* the eDP scaling property is not changed */
4609                         return 0;
4610                 }
4611                 intel_connector->panel.fitting_mode = val;
4612
4613                 goto done;
4614         }
4615
4616         return -EINVAL;
4617
4618 done:
4619         if (intel_encoder->base.crtc)
4620                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4621
4622         return 0;
4623 }
4624
4625 static void
4626 intel_dp_connector_destroy(struct drm_connector *connector)
4627 {
4628         struct intel_connector *intel_connector = to_intel_connector(connector);
4629
4630         kfree(intel_connector->detect_edid);
4631
4632         if (!IS_ERR_OR_NULL(intel_connector->edid))
4633                 kfree(intel_connector->edid);
4634
4635         /* Can't call is_edp() since the encoder may have been destroyed
4636          * already. */
4637         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4638                 intel_panel_fini(&intel_connector->panel);
4639
4640         drm_connector_cleanup(connector);
4641         kfree(connector);
4642 }
4643
4644 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4645 {
4646         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4647         struct intel_dp *intel_dp = &intel_dig_port->dp;
4648
4649         drm_dp_aux_unregister(&intel_dp->aux);
4650         intel_dp_mst_encoder_cleanup(intel_dig_port);
4651         drm_encoder_cleanup(encoder);
4652         if (is_edp(intel_dp)) {
4653                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4654                 /*
4655                  * vdd might still be enabled do to the delayed vdd off.
4656                  * Make sure vdd is actually turned off here.
4657                  */
4658                 pps_lock(intel_dp);
4659                 edp_panel_vdd_off_sync(intel_dp);
4660                 pps_unlock(intel_dp);
4661
4662                 if (intel_dp->edp_notifier.notifier_call) {
4663                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4664                         intel_dp->edp_notifier.notifier_call = NULL;
4665                 }
4666         }
4667         kfree(intel_dig_port);
4668 }
4669
4670 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4671 {
4672         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4673
4674         if (!is_edp(intel_dp))
4675                 return;
4676
4677         /*
4678          * vdd might still be enabled do to the delayed vdd off.
4679          * Make sure vdd is actually turned off here.
4680          */
4681         pps_lock(intel_dp);
4682         edp_panel_vdd_off_sync(intel_dp);
4683         pps_unlock(intel_dp);
4684 }
4685
4686 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4687 {
4688         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4689         struct drm_device *dev = intel_dig_port->base.base.dev;
4690         struct drm_i915_private *dev_priv = dev->dev_private;
4691         enum intel_display_power_domain power_domain;
4692
4693         lockdep_assert_held(&dev_priv->pps_mutex);
4694
4695         if (!edp_have_panel_vdd(intel_dp))
4696                 return;
4697
4698         /*
4699          * The VDD bit needs a power domain reference, so if the bit is
4700          * already enabled when we boot or resume, grab this reference and
4701          * schedule a vdd off, so we don't hold on to the reference
4702          * indefinitely.
4703          */
4704         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4705         power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4706         intel_display_power_get(dev_priv, power_domain);
4707
4708         edp_panel_vdd_schedule_off(intel_dp);
4709 }
4710
4711 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4712 {
4713         struct intel_dp *intel_dp;
4714
4715         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4716                 return;
4717
4718         intel_dp = enc_to_intel_dp(encoder);
4719
4720         pps_lock(intel_dp);
4721
4722         /*
4723          * Read out the current power sequencer assignment,
4724          * in case the BIOS did something with it.
4725          */
4726         if (IS_VALLEYVIEW(encoder->dev))
4727                 vlv_initial_power_sequencer_setup(intel_dp);
4728
4729         intel_edp_panel_vdd_sanitize(intel_dp);
4730
4731         pps_unlock(intel_dp);
4732 }
4733
4734 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4735         .dpms = intel_connector_dpms,
4736         .detect = intel_dp_detect,
4737         .force = intel_dp_force,
4738         .fill_modes = drm_helper_probe_single_connector_modes,
4739         .set_property = intel_dp_set_property,
4740         .destroy = intel_dp_connector_destroy,
4741 };
4742
4743 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4744         .get_modes = intel_dp_get_modes,
4745         .mode_valid = intel_dp_mode_valid,
4746         .best_encoder = intel_best_encoder,
4747 };
4748
4749 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4750         .reset = intel_dp_encoder_reset,
4751         .destroy = intel_dp_encoder_destroy,
4752 };
4753
4754 void
4755 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4756 {
4757         return;
4758 }
4759
4760 bool
4761 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4762 {
4763         struct intel_dp *intel_dp = &intel_dig_port->dp;
4764         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4765         struct drm_device *dev = intel_dig_port->base.base.dev;
4766         struct drm_i915_private *dev_priv = dev->dev_private;
4767         enum intel_display_power_domain power_domain;
4768         bool ret = true;
4769
4770         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4771                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4772
4773         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4774                       port_name(intel_dig_port->port),
4775                       long_hpd ? "long" : "short");
4776
4777         power_domain = intel_display_port_power_domain(intel_encoder);
4778         intel_display_power_get(dev_priv, power_domain);
4779
4780         if (long_hpd) {
4781
4782                 if (HAS_PCH_SPLIT(dev)) {
4783                         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4784                                 goto mst_fail;
4785                 } else {
4786                         if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4787                                 goto mst_fail;
4788                 }
4789
4790                 if (!intel_dp_get_dpcd(intel_dp)) {
4791                         goto mst_fail;
4792                 }
4793
4794                 intel_dp_probe_oui(intel_dp);
4795
4796                 if (!intel_dp_probe_mst(intel_dp))
4797                         goto mst_fail;
4798
4799         } else {
4800                 if (intel_dp->is_mst) {
4801                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4802                                 goto mst_fail;
4803                 }
4804
4805                 if (!intel_dp->is_mst) {
4806                         /*
4807                          * we'll check the link status via the normal hot plug path later -
4808                          * but for short hpds we should check it now
4809                          */
4810                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4811                         intel_dp_check_link_status(intel_dp);
4812                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4813                 }
4814         }
4815         ret = false;
4816         goto put_power;
4817 mst_fail:
4818         /* if we were in MST mode, and device is not there get out of MST mode */
4819         if (intel_dp->is_mst) {
4820                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4821                 intel_dp->is_mst = false;
4822                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4823         }
4824 put_power:
4825         intel_display_power_put(dev_priv, power_domain);
4826
4827         return ret;
4828 }
4829
4830 /* Return which DP Port should be selected for Transcoder DP control */
4831 int
4832 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4833 {
4834         struct drm_device *dev = crtc->dev;
4835         struct intel_encoder *intel_encoder;
4836         struct intel_dp *intel_dp;
4837
4838         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4839                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4840
4841                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4842                     intel_encoder->type == INTEL_OUTPUT_EDP)
4843                         return intel_dp->output_reg;
4844         }
4845
4846         return -1;
4847 }
4848
4849 /* check the VBT to see whether the eDP is on DP-D port */
4850 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4851 {
4852         struct drm_i915_private *dev_priv = dev->dev_private;
4853         union child_device_config *p_child;
4854         int i;
4855         static const short port_mapping[] = {
4856                 [PORT_B] = PORT_IDPB,
4857                 [PORT_C] = PORT_IDPC,
4858                 [PORT_D] = PORT_IDPD,
4859         };
4860
4861         if (port == PORT_A)
4862                 return true;
4863
4864         if (!dev_priv->vbt.child_dev_num)
4865                 return false;
4866
4867         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4868                 p_child = dev_priv->vbt.child_dev + i;
4869
4870                 if (p_child->common.dvo_port == port_mapping[port] &&
4871                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4872                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4873                         return true;
4874         }
4875         return false;
4876 }
4877
4878 void
4879 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4880 {
4881         struct intel_connector *intel_connector = to_intel_connector(connector);
4882
4883         intel_attach_force_audio_property(connector);
4884         intel_attach_broadcast_rgb_property(connector);
4885         intel_dp->color_range_auto = true;
4886
4887         if (is_edp(intel_dp)) {
4888                 drm_mode_create_scaling_mode_property(connector->dev);
4889                 drm_object_attach_property(
4890                         &connector->base,
4891                         connector->dev->mode_config.scaling_mode_property,
4892                         DRM_MODE_SCALE_ASPECT);
4893                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4894         }
4895 }
4896
4897 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4898 {
4899         intel_dp->last_power_cycle = jiffies;
4900         intel_dp->last_power_on = jiffies;
4901         intel_dp->last_backlight_off = jiffies;
4902 }
4903
4904 static void
4905 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4906                                     struct intel_dp *intel_dp)
4907 {
4908         struct drm_i915_private *dev_priv = dev->dev_private;
4909         struct edp_power_seq cur, vbt, spec,
4910                 *final = &intel_dp->pps_delays;
4911         u32 pp_on, pp_off, pp_div, pp;
4912         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4913
4914         lockdep_assert_held(&dev_priv->pps_mutex);
4915
4916         /* already initialized? */
4917         if (final->t11_t12 != 0)
4918                 return;
4919
4920         if (HAS_PCH_SPLIT(dev)) {
4921                 pp_ctrl_reg = PCH_PP_CONTROL;
4922                 pp_on_reg = PCH_PP_ON_DELAYS;
4923                 pp_off_reg = PCH_PP_OFF_DELAYS;
4924                 pp_div_reg = PCH_PP_DIVISOR;
4925         } else {
4926                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4927
4928                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4929                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4930                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4931                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4932         }
4933
4934         /* Workaround: Need to write PP_CONTROL with the unlock key as
4935          * the very first thing. */
4936         pp = ironlake_get_pp_control(intel_dp);
4937         I915_WRITE(pp_ctrl_reg, pp);
4938
4939         pp_on = I915_READ(pp_on_reg);
4940         pp_off = I915_READ(pp_off_reg);
4941         pp_div = I915_READ(pp_div_reg);
4942
4943         /* Pull timing values out of registers */
4944         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4945                 PANEL_POWER_UP_DELAY_SHIFT;
4946
4947         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4948                 PANEL_LIGHT_ON_DELAY_SHIFT;
4949
4950         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4951                 PANEL_LIGHT_OFF_DELAY_SHIFT;
4952
4953         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4954                 PANEL_POWER_DOWN_DELAY_SHIFT;
4955
4956         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4957                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4958
4959         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4960                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4961
4962         vbt = dev_priv->vbt.edp_pps;
4963
4964         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4965          * our hw here, which are all in 100usec. */
4966         spec.t1_t3 = 210 * 10;
4967         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4968         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4969         spec.t10 = 500 * 10;
4970         /* This one is special and actually in units of 100ms, but zero
4971          * based in the hw (so we need to add 100 ms). But the sw vbt
4972          * table multiplies it with 1000 to make it in units of 100usec,
4973          * too. */
4974         spec.t11_t12 = (510 + 100) * 10;
4975
4976         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4977                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4978
4979         /* Use the max of the register settings and vbt. If both are
4980          * unset, fall back to the spec limits. */
4981 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
4982                                        spec.field : \
4983                                        max(cur.field, vbt.field))
4984         assign_final(t1_t3);
4985         assign_final(t8);
4986         assign_final(t9);
4987         assign_final(t10);
4988         assign_final(t11_t12);
4989 #undef assign_final
4990
4991 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
4992         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4993         intel_dp->backlight_on_delay = get_delay(t8);
4994         intel_dp->backlight_off_delay = get_delay(t9);
4995         intel_dp->panel_power_down_delay = get_delay(t10);
4996         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4997 #undef get_delay
4998
4999         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5000                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5001                       intel_dp->panel_power_cycle_delay);
5002
5003         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5004                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5005 }
5006
5007 static void
5008 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5009                                               struct intel_dp *intel_dp)
5010 {
5011         struct drm_i915_private *dev_priv = dev->dev_private;
5012         u32 pp_on, pp_off, pp_div, port_sel = 0;
5013         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5014         int pp_on_reg, pp_off_reg, pp_div_reg;
5015         enum port port = dp_to_dig_port(intel_dp)->port;
5016         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5017
5018         lockdep_assert_held(&dev_priv->pps_mutex);
5019
5020         if (HAS_PCH_SPLIT(dev)) {
5021                 pp_on_reg = PCH_PP_ON_DELAYS;
5022                 pp_off_reg = PCH_PP_OFF_DELAYS;
5023                 pp_div_reg = PCH_PP_DIVISOR;
5024         } else {
5025                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5026
5027                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5028                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5029                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5030         }
5031
5032         /*
5033          * And finally store the new values in the power sequencer. The
5034          * backlight delays are set to 1 because we do manual waits on them. For
5035          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5036          * we'll end up waiting for the backlight off delay twice: once when we
5037          * do the manual sleep, and once when we disable the panel and wait for
5038          * the PP_STATUS bit to become zero.
5039          */
5040         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5041                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5042         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5043                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5044         /* Compute the divisor for the pp clock, simply match the Bspec
5045          * formula. */
5046         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5047         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5048                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
5049
5050         /* Haswell doesn't have any port selection bits for the panel
5051          * power sequencer any more. */
5052         if (IS_VALLEYVIEW(dev)) {
5053                 port_sel = PANEL_PORT_SELECT_VLV(port);
5054         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5055                 if (port == PORT_A)
5056                         port_sel = PANEL_PORT_SELECT_DPA;
5057                 else
5058                         port_sel = PANEL_PORT_SELECT_DPD;
5059         }
5060
5061         pp_on |= port_sel;
5062
5063         I915_WRITE(pp_on_reg, pp_on);
5064         I915_WRITE(pp_off_reg, pp_off);
5065         I915_WRITE(pp_div_reg, pp_div);
5066
5067         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5068                       I915_READ(pp_on_reg),
5069                       I915_READ(pp_off_reg),
5070                       I915_READ(pp_div_reg));
5071 }
5072
5073 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5074 {
5075         struct drm_i915_private *dev_priv = dev->dev_private;
5076         struct intel_encoder *encoder;
5077         struct intel_dp *intel_dp = NULL;
5078         struct intel_crtc_config *config = NULL;
5079         struct intel_crtc *intel_crtc = NULL;
5080         struct intel_connector *intel_connector = dev_priv->drrs.connector;
5081         u32 reg, val;
5082         enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
5083
5084         if (refresh_rate <= 0) {
5085                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5086                 return;
5087         }
5088
5089         if (intel_connector == NULL) {
5090                 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
5091                 return;
5092         }
5093
5094         /*
5095          * FIXME: This needs proper synchronization with psr state. But really
5096          * hard to tell without seeing the user of this function of this code.
5097          * Check locking and ordering once that lands.
5098          */
5099         if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
5100                 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
5101                 return;
5102         }
5103
5104         encoder = intel_attached_encoder(&intel_connector->base);
5105         intel_dp = enc_to_intel_dp(&encoder->base);
5106         intel_crtc = encoder->new_crtc;
5107
5108         if (!intel_crtc) {
5109                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5110                 return;
5111         }
5112
5113         config = &intel_crtc->config;
5114
5115         if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
5116                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5117                 return;
5118         }
5119
5120         if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
5121                 index = DRRS_LOW_RR;
5122
5123         if (index == intel_dp->drrs_state.refresh_rate_type) {
5124                 DRM_DEBUG_KMS(
5125                         "DRRS requested for previously set RR...ignoring\n");
5126                 return;
5127         }
5128
5129         if (!intel_crtc->active) {
5130                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5131                 return;
5132         }
5133
5134         if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
5135                 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
5136                 val = I915_READ(reg);
5137                 if (index > DRRS_HIGH_RR) {
5138                         val |= PIPECONF_EDP_RR_MODE_SWITCH;
5139                         intel_dp_set_m_n(intel_crtc);
5140                 } else {
5141                         val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5142                 }
5143                 I915_WRITE(reg, val);
5144         }
5145
5146         /*
5147          * mutex taken to ensure that there is no race between differnt
5148          * drrs calls trying to update refresh rate. This scenario may occur
5149          * in future when idleness detection based DRRS in kernel and
5150          * possible calls from user space to set differnt RR are made.
5151          */
5152
5153         mutex_lock(&intel_dp->drrs_state.mutex);
5154
5155         intel_dp->drrs_state.refresh_rate_type = index;
5156
5157         mutex_unlock(&intel_dp->drrs_state.mutex);
5158
5159         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5160 }
5161
5162 static struct drm_display_mode *
5163 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
5164                         struct intel_connector *intel_connector,
5165                         struct drm_display_mode *fixed_mode)
5166 {
5167         struct drm_connector *connector = &intel_connector->base;
5168         struct intel_dp *intel_dp = &intel_dig_port->dp;
5169         struct drm_device *dev = intel_dig_port->base.base.dev;
5170         struct drm_i915_private *dev_priv = dev->dev_private;
5171         struct drm_display_mode *downclock_mode = NULL;
5172
5173         if (INTEL_INFO(dev)->gen <= 6) {
5174                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5175                 return NULL;
5176         }
5177
5178         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5179                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5180                 return NULL;
5181         }
5182
5183         downclock_mode = intel_find_panel_downclock
5184                                         (dev, fixed_mode, connector);
5185
5186         if (!downclock_mode) {
5187                 DRM_DEBUG_KMS("DRRS not supported\n");
5188                 return NULL;
5189         }
5190
5191         dev_priv->drrs.connector = intel_connector;
5192
5193         mutex_init(&intel_dp->drrs_state.mutex);
5194
5195         intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
5196
5197         intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
5198         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5199         return downclock_mode;
5200 }
5201
5202 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5203                                      struct intel_connector *intel_connector)
5204 {
5205         struct drm_connector *connector = &intel_connector->base;
5206         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5207         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5208         struct drm_device *dev = intel_encoder->base.dev;
5209         struct drm_i915_private *dev_priv = dev->dev_private;
5210         struct drm_display_mode *fixed_mode = NULL;
5211         struct drm_display_mode *downclock_mode = NULL;
5212         bool has_dpcd;
5213         struct drm_display_mode *scan;
5214         struct edid *edid;
5215
5216         intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
5217
5218         if (!is_edp(intel_dp))
5219                 return true;
5220
5221         pps_lock(intel_dp);
5222         intel_edp_panel_vdd_sanitize(intel_dp);
5223         pps_unlock(intel_dp);
5224
5225         /* Cache DPCD and EDID for edp. */
5226         has_dpcd = intel_dp_get_dpcd(intel_dp);
5227
5228         if (has_dpcd) {
5229                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5230                         dev_priv->no_aux_handshake =
5231                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5232                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5233         } else {
5234                 /* if this fails, presume the device is a ghost */
5235                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5236                 return false;
5237         }
5238
5239         /* We now know it's not a ghost, init power sequence regs. */
5240         pps_lock(intel_dp);
5241         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5242         pps_unlock(intel_dp);
5243
5244         mutex_lock(&dev->mode_config.mutex);
5245         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5246         if (edid) {
5247                 if (drm_add_edid_modes(connector, edid)) {
5248                         drm_mode_connector_update_edid_property(connector,
5249                                                                 edid);
5250                         drm_edid_to_eld(connector, edid);
5251                 } else {
5252                         kfree(edid);
5253                         edid = ERR_PTR(-EINVAL);
5254                 }
5255         } else {
5256                 edid = ERR_PTR(-ENOENT);
5257         }
5258         intel_connector->edid = edid;
5259
5260         /* prefer fixed mode from EDID if available */
5261         list_for_each_entry(scan, &connector->probed_modes, head) {
5262                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5263                         fixed_mode = drm_mode_duplicate(dev, scan);
5264                         downclock_mode = intel_dp_drrs_init(
5265                                                 intel_dig_port,
5266                                                 intel_connector, fixed_mode);
5267                         break;
5268                 }
5269         }
5270
5271         /* fallback to VBT if available for eDP */
5272         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5273                 fixed_mode = drm_mode_duplicate(dev,
5274                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5275                 if (fixed_mode)
5276                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5277         }
5278         mutex_unlock(&dev->mode_config.mutex);
5279
5280         if (IS_VALLEYVIEW(dev)) {
5281                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5282                 register_reboot_notifier(&intel_dp->edp_notifier);
5283         }
5284
5285         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5286         intel_connector->panel.backlight_power = intel_edp_backlight_power;
5287         intel_panel_setup_backlight(connector);
5288
5289         return true;
5290 }
5291
5292 bool
5293 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5294                         struct intel_connector *intel_connector)
5295 {
5296         struct drm_connector *connector = &intel_connector->base;
5297         struct intel_dp *intel_dp = &intel_dig_port->dp;
5298         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5299         struct drm_device *dev = intel_encoder->base.dev;
5300         struct drm_i915_private *dev_priv = dev->dev_private;
5301         enum port port = intel_dig_port->port;
5302         int type;
5303
5304         intel_dp->pps_pipe = INVALID_PIPE;
5305
5306         /* intel_dp vfuncs */
5307         if (INTEL_INFO(dev)->gen >= 9)
5308                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5309         else if (IS_VALLEYVIEW(dev))
5310                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5311         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5312                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5313         else if (HAS_PCH_SPLIT(dev))
5314                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5315         else
5316                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5317
5318         if (INTEL_INFO(dev)->gen >= 9)
5319                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5320         else
5321                 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5322
5323         /* Preserve the current hw state. */
5324         intel_dp->DP = I915_READ(intel_dp->output_reg);
5325         intel_dp->attached_connector = intel_connector;
5326
5327         if (intel_dp_is_edp(dev, port))
5328                 type = DRM_MODE_CONNECTOR_eDP;
5329         else
5330                 type = DRM_MODE_CONNECTOR_DisplayPort;
5331
5332         /*
5333          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5334          * for DP the encoder type can be set by the caller to
5335          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5336          */
5337         if (type == DRM_MODE_CONNECTOR_eDP)
5338                 intel_encoder->type = INTEL_OUTPUT_EDP;
5339
5340         /* eDP only on port B and/or C on vlv/chv */
5341         if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5342                     port != PORT_B && port != PORT_C))
5343                 return false;
5344
5345         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5346                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5347                         port_name(port));
5348
5349         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5350         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5351
5352         connector->interlace_allowed = true;
5353         connector->doublescan_allowed = 0;
5354
5355         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5356                           edp_panel_vdd_work);
5357
5358         intel_connector_attach_encoder(intel_connector, intel_encoder);
5359         drm_connector_register(connector);
5360
5361         if (HAS_DDI(dev))
5362                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5363         else
5364                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5365         intel_connector->unregister = intel_dp_connector_unregister;
5366
5367         /* Set up the hotplug pin. */
5368         switch (port) {
5369         case PORT_A:
5370                 intel_encoder->hpd_pin = HPD_PORT_A;
5371                 break;
5372         case PORT_B:
5373                 intel_encoder->hpd_pin = HPD_PORT_B;
5374                 break;
5375         case PORT_C:
5376                 intel_encoder->hpd_pin = HPD_PORT_C;
5377                 break;
5378         case PORT_D:
5379                 intel_encoder->hpd_pin = HPD_PORT_D;
5380                 break;
5381         default:
5382                 BUG();
5383         }
5384
5385         if (is_edp(intel_dp)) {
5386                 pps_lock(intel_dp);
5387                 intel_dp_init_panel_power_timestamps(intel_dp);
5388                 if (IS_VALLEYVIEW(dev))
5389                         vlv_initial_power_sequencer_setup(intel_dp);
5390                 else
5391                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
5392                 pps_unlock(intel_dp);
5393         }
5394
5395         intel_dp_aux_init(intel_dp, intel_connector);
5396
5397         /* init MST on ports that can support it */
5398         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5399                 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5400                         intel_dp_mst_encoder_init(intel_dig_port,
5401                                                   intel_connector->base.base.id);
5402                 }
5403         }
5404
5405         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5406                 drm_dp_aux_unregister(&intel_dp->aux);
5407                 if (is_edp(intel_dp)) {
5408                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5409                         /*
5410                          * vdd might still be enabled do to the delayed vdd off.
5411                          * Make sure vdd is actually turned off here.
5412                          */
5413                         pps_lock(intel_dp);
5414                         edp_panel_vdd_off_sync(intel_dp);
5415                         pps_unlock(intel_dp);
5416                 }
5417                 drm_connector_unregister(connector);
5418                 drm_connector_cleanup(connector);
5419                 return false;
5420         }
5421
5422         intel_dp_add_properties(intel_dp, connector);
5423
5424         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5425          * 0xd.  Failure to do so will result in spurious interrupts being
5426          * generated on the port when a cable is not attached.
5427          */
5428         if (IS_G4X(dev) && !IS_GM45(dev)) {
5429                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5430                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5431         }
5432
5433         return true;
5434 }
5435
5436 void
5437 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5438 {
5439         struct drm_i915_private *dev_priv = dev->dev_private;
5440         struct intel_digital_port *intel_dig_port;
5441         struct intel_encoder *intel_encoder;
5442         struct drm_encoder *encoder;
5443         struct intel_connector *intel_connector;
5444
5445         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5446         if (!intel_dig_port)
5447                 return;
5448
5449         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5450         if (!intel_connector) {
5451                 kfree(intel_dig_port);
5452                 return;
5453         }
5454
5455         intel_encoder = &intel_dig_port->base;
5456         encoder = &intel_encoder->base;
5457
5458         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5459                          DRM_MODE_ENCODER_TMDS);
5460
5461         intel_encoder->compute_config = intel_dp_compute_config;
5462         intel_encoder->disable = intel_disable_dp;
5463         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5464         intel_encoder->get_config = intel_dp_get_config;
5465         intel_encoder->suspend = intel_dp_encoder_suspend;
5466         if (IS_CHERRYVIEW(dev)) {
5467                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5468                 intel_encoder->pre_enable = chv_pre_enable_dp;
5469                 intel_encoder->enable = vlv_enable_dp;
5470                 intel_encoder->post_disable = chv_post_disable_dp;
5471         } else if (IS_VALLEYVIEW(dev)) {
5472                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5473                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5474                 intel_encoder->enable = vlv_enable_dp;
5475                 intel_encoder->post_disable = vlv_post_disable_dp;
5476         } else {
5477                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5478                 intel_encoder->enable = g4x_enable_dp;
5479                 if (INTEL_INFO(dev)->gen >= 5)
5480                         intel_encoder->post_disable = ilk_post_disable_dp;
5481         }
5482
5483         intel_dig_port->port = port;
5484         intel_dig_port->dp.output_reg = output_reg;
5485
5486         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5487         if (IS_CHERRYVIEW(dev)) {
5488                 if (port == PORT_D)
5489                         intel_encoder->crtc_mask = 1 << 2;
5490                 else
5491                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5492         } else {
5493                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5494         }
5495         intel_encoder->cloneable = 0;
5496         intel_encoder->hot_plug = intel_dp_hot_plug;
5497
5498         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5499         dev_priv->hpd_irq_port[port] = intel_dig_port;
5500
5501         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5502                 drm_encoder_cleanup(encoder);
5503                 kfree(intel_dig_port);
5504                 kfree(intel_connector);
5505         }
5506 }
5507
5508 void intel_dp_mst_suspend(struct drm_device *dev)
5509 {
5510         struct drm_i915_private *dev_priv = dev->dev_private;
5511         int i;
5512
5513         /* disable MST */
5514         for (i = 0; i < I915_MAX_PORTS; i++) {
5515                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5516                 if (!intel_dig_port)
5517                         continue;
5518
5519                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5520                         if (!intel_dig_port->dp.can_mst)
5521                                 continue;
5522                         if (intel_dig_port->dp.is_mst)
5523                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5524                 }
5525         }
5526 }
5527
5528 void intel_dp_mst_resume(struct drm_device *dev)
5529 {
5530         struct drm_i915_private *dev_priv = dev->dev_private;
5531         int i;
5532
5533         for (i = 0; i < I915_MAX_PORTS; i++) {
5534                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5535                 if (!intel_dig_port)
5536                         continue;
5537                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5538                         int ret;
5539
5540                         if (!intel_dig_port->dp.can_mst)
5541                                 continue;
5542
5543                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5544                         if (ret != 0) {
5545                                 intel_dp_check_mst_status(&intel_dig_port->dp);
5546                         }
5547                 }
5548         }
5549 }