OSDN Git Service

drm/i915/execlists: Apply a full mb before execution for Braswell
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168                                             struct intel_engine_cs *engine,
169                                             struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171                                      struct i915_gem_context *ctx,
172                                      struct intel_engine_cs *engine,
173                                      struct intel_ring *ring);
174
175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177         return rb_entry(rb, struct i915_priolist, node);
178 }
179
180 static inline int rq_prio(const struct i915_request *rq)
181 {
182         return rq->sched.attr.priority;
183 }
184
185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186                                 const struct i915_request *last,
187                                 int prio)
188 {
189         return (intel_engine_has_preemption(engine) &&
190                 __execlists_need_preempt(prio, rq_prio(last)) &&
191                 !i915_request_completed(last));
192 }
193
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine,
223                                    struct intel_context *ce)
224 {
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         /*
238          * The following 32bits are copied into the OA reports (dword 2).
239          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240          * anything below.
241          */
242         if (INTEL_GEN(ctx->i915) >= 11) {
243                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245                                                                 /* bits 37-47 */
246
247                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248                                                                 /* bits 48-53 */
249
250                 /* TODO: decide what to do with SW counter (bits 55-60) */
251
252                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253                                                                 /* bits 61-63 */
254         } else {
255                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
257         }
258
259         ce->lrc_desc = desc;
260 }
261
262 static void unwind_wa_tail(struct i915_request *rq)
263 {
264         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
265         assert_ring_tail_valid(rq->ring, rq->tail);
266 }
267
268 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
269 {
270         struct i915_request *rq, *rn, *active = NULL;
271         struct list_head *uninitialized_var(pl);
272         int prio = I915_PRIORITY_INVALID | I915_PRIORITY_NEWCLIENT;
273
274         lockdep_assert_held(&engine->timeline.lock);
275
276         list_for_each_entry_safe_reverse(rq, rn,
277                                          &engine->timeline.requests,
278                                          link) {
279                 if (i915_request_completed(rq))
280                         break;
281
282                 __i915_request_unsubmit(rq);
283                 unwind_wa_tail(rq);
284
285                 GEM_BUG_ON(rq->hw_context->active);
286
287                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
288                 if (rq_prio(rq) != prio) {
289                         prio = rq_prio(rq);
290                         pl = i915_sched_lookup_priolist(engine, prio);
291                 }
292                 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
293
294                 list_add(&rq->sched.link, pl);
295
296                 active = rq;
297         }
298
299         /*
300          * The active request is now effectively the start of a new client
301          * stream, so give it the equivalent small priority bump to prevent
302          * it being gazumped a second time by another peer.
303          */
304         if (!(prio & I915_PRIORITY_NEWCLIENT)) {
305                 prio |= I915_PRIORITY_NEWCLIENT;
306                 list_move_tail(&active->sched.link,
307                                i915_sched_lookup_priolist(engine, prio));
308         }
309 }
310
311 void
312 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
313 {
314         struct intel_engine_cs *engine =
315                 container_of(execlists, typeof(*engine), execlists);
316
317         __unwind_incomplete_requests(engine);
318 }
319
320 static inline void
321 execlists_context_status_change(struct i915_request *rq, unsigned long status)
322 {
323         /*
324          * Only used when GVT-g is enabled now. When GVT-g is disabled,
325          * The compiler should eliminate this function as dead-code.
326          */
327         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
328                 return;
329
330         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
331                                    status, rq);
332 }
333
334 inline void
335 execlists_user_begin(struct intel_engine_execlists *execlists,
336                      const struct execlist_port *port)
337 {
338         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
339 }
340
341 inline void
342 execlists_user_end(struct intel_engine_execlists *execlists)
343 {
344         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
345 }
346
347 static inline void
348 execlists_context_schedule_in(struct i915_request *rq)
349 {
350         GEM_BUG_ON(rq->hw_context->active);
351
352         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
353         intel_engine_context_in(rq->engine);
354         rq->hw_context->active = rq->engine;
355 }
356
357 static inline void
358 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
359 {
360         rq->hw_context->active = NULL;
361         intel_engine_context_out(rq->engine);
362         execlists_context_status_change(rq, status);
363         trace_i915_request_out(rq);
364 }
365
366 static void
367 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
368 {
369         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
370         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
371         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
372         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
373 }
374
375 static u64 execlists_update_context(struct i915_request *rq)
376 {
377         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
378         struct intel_context *ce = rq->hw_context;
379         u32 *reg_state = ce->lrc_reg_state;
380
381         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
382
383         /*
384          * True 32b PPGTT with dynamic page allocation: update PDP
385          * registers and point the unallocated PDPs to scratch page.
386          * PML4 is allocated during ppgtt init, so this is not needed
387          * in 48-bit mode.
388          */
389         if (!i915_vm_is_48bit(&ppgtt->vm))
390                 execlists_update_context_pdps(ppgtt, reg_state);
391
392         /*
393          * Make sure the context image is complete before we submit it to HW.
394          *
395          * Ostensibly, writes (including the WCB) should be flushed prior to
396          * an uncached write such as our mmio register access, the empirical
397          * evidence (esp. on Braswell) suggests that the WC write into memory
398          * may not be visible to the HW prior to the completion of the UC
399          * register write and that we may begin execution from the context
400          * before its image is complete leading to invalid PD chasing.
401          *
402          * Furthermore, Braswell, at least, wants a full mb to be sure that
403          * the writes are coherent in memory (visible to the GPU) prior to
404          * execution, and not just visible to other CPUs (as is the result of
405          * wmb).
406          */
407         mb();
408         return ce->lrc_desc;
409 }
410
411 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
412 {
413         if (execlists->ctrl_reg) {
414                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
415                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
416         } else {
417                 writel(upper_32_bits(desc), execlists->submit_reg);
418                 writel(lower_32_bits(desc), execlists->submit_reg);
419         }
420 }
421
422 static void execlists_submit_ports(struct intel_engine_cs *engine)
423 {
424         struct intel_engine_execlists *execlists = &engine->execlists;
425         struct execlist_port *port = execlists->port;
426         unsigned int n;
427
428         /*
429          * We can skip acquiring intel_runtime_pm_get() here as it was taken
430          * on our behalf by the request (see i915_gem_mark_busy()) and it will
431          * not be relinquished until the device is idle (see
432          * i915_gem_idle_work_handler()). As a precaution, we make sure
433          * that all ELSP are drained i.e. we have processed the CSB,
434          * before allowing ourselves to idle and calling intel_runtime_pm_put().
435          */
436         GEM_BUG_ON(!engine->i915->gt.awake);
437
438         /*
439          * ELSQ note: the submit queue is not cleared after being submitted
440          * to the HW so we need to make sure we always clean it up. This is
441          * currently ensured by the fact that we always write the same number
442          * of elsq entries, keep this in mind before changing the loop below.
443          */
444         for (n = execlists_num_ports(execlists); n--; ) {
445                 struct i915_request *rq;
446                 unsigned int count;
447                 u64 desc;
448
449                 rq = port_unpack(&port[n], &count);
450                 if (rq) {
451                         GEM_BUG_ON(count > !n);
452                         if (!count++)
453                                 execlists_context_schedule_in(rq);
454                         port_set(&port[n], port_pack(rq, count));
455                         desc = execlists_update_context(rq);
456                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
457
458                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
459                                   engine->name, n,
460                                   port[n].context_id, count,
461                                   rq->global_seqno,
462                                   rq->fence.context, rq->fence.seqno,
463                                   intel_engine_get_seqno(engine),
464                                   rq_prio(rq));
465                 } else {
466                         GEM_BUG_ON(!n);
467                         desc = 0;
468                 }
469
470                 write_desc(execlists, desc, n);
471         }
472
473         /* we need to manually load the submit queue */
474         if (execlists->ctrl_reg)
475                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
476
477         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
478 }
479
480 static bool ctx_single_port_submission(const struct intel_context *ce)
481 {
482         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
483                 i915_gem_context_force_single_submission(ce->gem_context));
484 }
485
486 static bool can_merge_ctx(const struct intel_context *prev,
487                           const struct intel_context *next)
488 {
489         if (prev != next)
490                 return false;
491
492         if (ctx_single_port_submission(prev))
493                 return false;
494
495         return true;
496 }
497
498 static void port_assign(struct execlist_port *port, struct i915_request *rq)
499 {
500         GEM_BUG_ON(rq == port_request(port));
501
502         if (port_isset(port))
503                 i915_request_put(port_request(port));
504
505         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
506 }
507
508 static void inject_preempt_context(struct intel_engine_cs *engine)
509 {
510         struct intel_engine_execlists *execlists = &engine->execlists;
511         struct intel_context *ce =
512                 to_intel_context(engine->i915->preempt_context, engine);
513         unsigned int n;
514
515         GEM_BUG_ON(execlists->preempt_complete_status !=
516                    upper_32_bits(ce->lrc_desc));
517
518         /*
519          * Switch to our empty preempt context so
520          * the state of the GPU is known (idle).
521          */
522         GEM_TRACE("%s\n", engine->name);
523         for (n = execlists_num_ports(execlists); --n; )
524                 write_desc(execlists, 0, n);
525
526         write_desc(execlists, ce->lrc_desc, n);
527
528         /* we need to manually load the submit queue */
529         if (execlists->ctrl_reg)
530                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
531
532         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
533         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
534 }
535
536 static void complete_preempt_context(struct intel_engine_execlists *execlists)
537 {
538         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
539
540         if (inject_preempt_hang(execlists))
541                 return;
542
543         execlists_cancel_port_requests(execlists);
544         __unwind_incomplete_requests(container_of(execlists,
545                                                   struct intel_engine_cs,
546                                                   execlists));
547 }
548
549 static void execlists_dequeue(struct intel_engine_cs *engine)
550 {
551         struct intel_engine_execlists * const execlists = &engine->execlists;
552         struct execlist_port *port = execlists->port;
553         const struct execlist_port * const last_port =
554                 &execlists->port[execlists->port_mask];
555         struct i915_request *last = port_request(port);
556         struct rb_node *rb;
557         bool submit = false;
558
559         /*
560          * Hardware submission is through 2 ports. Conceptually each port
561          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
562          * static for a context, and unique to each, so we only execute
563          * requests belonging to a single context from each ring. RING_HEAD
564          * is maintained by the CS in the context image, it marks the place
565          * where it got up to last time, and through RING_TAIL we tell the CS
566          * where we want to execute up to this time.
567          *
568          * In this list the requests are in order of execution. Consecutive
569          * requests from the same context are adjacent in the ringbuffer. We
570          * can combine these requests into a single RING_TAIL update:
571          *
572          *              RING_HEAD...req1...req2
573          *                                    ^- RING_TAIL
574          * since to execute req2 the CS must first execute req1.
575          *
576          * Our goal then is to point each port to the end of a consecutive
577          * sequence of requests as being the most optimal (fewest wake ups
578          * and context switches) submission.
579          */
580
581         if (last) {
582                 /*
583                  * Don't resubmit or switch until all outstanding
584                  * preemptions (lite-restore) are seen. Then we
585                  * know the next preemption status we see corresponds
586                  * to this ELSP update.
587                  */
588                 GEM_BUG_ON(!execlists_is_active(execlists,
589                                                 EXECLISTS_ACTIVE_USER));
590                 GEM_BUG_ON(!port_count(&port[0]));
591
592                 /*
593                  * If we write to ELSP a second time before the HW has had
594                  * a chance to respond to the previous write, we can confuse
595                  * the HW and hit "undefined behaviour". After writing to ELSP,
596                  * we must then wait until we see a context-switch event from
597                  * the HW to indicate that it has had a chance to respond.
598                  */
599                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
600                         return;
601
602                 if (need_preempt(engine, last, execlists->queue_priority)) {
603                         inject_preempt_context(engine);
604                         return;
605                 }
606
607                 /*
608                  * In theory, we could coalesce more requests onto
609                  * the second port (the first port is active, with
610                  * no preemptions pending). However, that means we
611                  * then have to deal with the possible lite-restore
612                  * of the second port (as we submit the ELSP, there
613                  * may be a context-switch) but also we may complete
614                  * the resubmission before the context-switch. Ergo,
615                  * coalescing onto the second port will cause a
616                  * preemption event, but we cannot predict whether
617                  * that will affect port[0] or port[1].
618                  *
619                  * If the second port is already active, we can wait
620                  * until the next context-switch before contemplating
621                  * new requests. The GPU will be busy and we should be
622                  * able to resubmit the new ELSP before it idles,
623                  * avoiding pipeline bubbles (momentary pauses where
624                  * the driver is unable to keep up the supply of new
625                  * work). However, we have to double check that the
626                  * priorities of the ports haven't been switch.
627                  */
628                 if (port_count(&port[1]))
629                         return;
630
631                 /*
632                  * WaIdleLiteRestore:bdw,skl
633                  * Apply the wa NOOPs to prevent
634                  * ring:HEAD == rq:TAIL as we resubmit the
635                  * request. See gen8_emit_breadcrumb() for
636                  * where we prepare the padding after the
637                  * end of the request.
638                  */
639                 last->tail = last->wa_tail;
640         }
641
642         while ((rb = rb_first_cached(&execlists->queue))) {
643                 struct i915_priolist *p = to_priolist(rb);
644                 struct i915_request *rq, *rn;
645                 int i;
646
647                 priolist_for_each_request_consume(rq, rn, p, i) {
648                         /*
649                          * Can we combine this request with the current port?
650                          * It has to be the same context/ringbuffer and not
651                          * have any exceptions (e.g. GVT saying never to
652                          * combine contexts).
653                          *
654                          * If we can combine the requests, we can execute both
655                          * by updating the RING_TAIL to point to the end of the
656                          * second request, and so we never need to tell the
657                          * hardware about the first.
658                          */
659                         if (last &&
660                             !can_merge_ctx(rq->hw_context, last->hw_context)) {
661                                 /*
662                                  * If we are on the second port and cannot
663                                  * combine this request with the last, then we
664                                  * are done.
665                                  */
666                                 if (port == last_port)
667                                         goto done;
668
669                                 /*
670                                  * If GVT overrides us we only ever submit
671                                  * port[0], leaving port[1] empty. Note that we
672                                  * also have to be careful that we don't queue
673                                  * the same context (even though a different
674                                  * request) to the second port.
675                                  */
676                                 if (ctx_single_port_submission(last->hw_context) ||
677                                     ctx_single_port_submission(rq->hw_context))
678                                         goto done;
679
680                                 GEM_BUG_ON(last->hw_context == rq->hw_context);
681
682                                 if (submit)
683                                         port_assign(port, last);
684                                 port++;
685
686                                 GEM_BUG_ON(port_isset(port));
687                         }
688
689                         list_del_init(&rq->sched.link);
690
691                         __i915_request_submit(rq);
692                         trace_i915_request_in(rq, port_index(port, execlists));
693
694                         last = rq;
695                         submit = true;
696                 }
697
698                 rb_erase_cached(&p->node, &execlists->queue);
699                 if (p->priority != I915_PRIORITY_NORMAL)
700                         kmem_cache_free(engine->i915->priorities, p);
701         }
702
703 done:
704         /*
705          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
706          *
707          * We choose queue_priority such that if we add a request of greater
708          * priority than this, we kick the submission tasklet to decide on
709          * the right order of submitting the requests to hardware. We must
710          * also be prepared to reorder requests as they are in-flight on the
711          * HW. We derive the queue_priority then as the first "hole" in
712          * the HW submission ports and if there are no available slots,
713          * the priority of the lowest executing request, i.e. last.
714          *
715          * When we do receive a higher priority request ready to run from the
716          * user, see queue_request(), the queue_priority is bumped to that
717          * request triggering preemption on the next dequeue (or subsequent
718          * interrupt for secondary ports).
719          */
720         execlists->queue_priority =
721                 port != execlists->port ? rq_prio(last) : INT_MIN;
722
723         if (submit) {
724                 port_assign(port, last);
725                 execlists_submit_ports(engine);
726         }
727
728         /* We must always keep the beast fed if we have work piled up */
729         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
730                    !port_isset(execlists->port));
731
732         /* Re-evaluate the executing context setup after each preemptive kick */
733         if (last)
734                 execlists_user_begin(execlists, execlists->port);
735
736         /* If the engine is now idle, so should be the flag; and vice versa. */
737         GEM_BUG_ON(execlists_is_active(&engine->execlists,
738                                        EXECLISTS_ACTIVE_USER) ==
739                    !port_isset(engine->execlists.port));
740 }
741
742 void
743 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
744 {
745         struct execlist_port *port = execlists->port;
746         unsigned int num_ports = execlists_num_ports(execlists);
747
748         while (num_ports-- && port_isset(port)) {
749                 struct i915_request *rq = port_request(port);
750
751                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
752                           rq->engine->name,
753                           (unsigned int)(port - execlists->port),
754                           rq->global_seqno,
755                           rq->fence.context, rq->fence.seqno,
756                           intel_engine_get_seqno(rq->engine));
757
758                 GEM_BUG_ON(!execlists->active);
759                 execlists_context_schedule_out(rq,
760                                                i915_request_completed(rq) ?
761                                                INTEL_CONTEXT_SCHEDULE_OUT :
762                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
763
764                 i915_request_put(rq);
765
766                 memset(port, 0, sizeof(*port));
767                 port++;
768         }
769
770         execlists_clear_all_active(execlists);
771 }
772
773 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
774 {
775         const unsigned int reset_value = GEN8_CSB_ENTRIES - 1;
776
777         /*
778          * After a reset, the HW starts writing into CSB entry [0]. We
779          * therefore have to set our HEAD pointer back one entry so that
780          * the *first* entry we check is entry 0. To complicate this further,
781          * as we don't wait for the first interrupt after reset, we have to
782          * fake the HW write to point back to the last entry so that our
783          * inline comparison of our cached head position against the last HW
784          * write works even before the first interrupt.
785          */
786         execlists->csb_head = reset_value;
787         WRITE_ONCE(*execlists->csb_write, reset_value);
788 }
789
790 static void nop_submission_tasklet(unsigned long data)
791 {
792         /* The driver is wedged; don't process any more events. */
793 }
794
795 static void execlists_cancel_requests(struct intel_engine_cs *engine)
796 {
797         struct intel_engine_execlists * const execlists = &engine->execlists;
798         struct i915_request *rq, *rn;
799         struct rb_node *rb;
800         unsigned long flags;
801
802         GEM_TRACE("%s current %d\n",
803                   engine->name, intel_engine_get_seqno(engine));
804
805         /*
806          * Before we call engine->cancel_requests(), we should have exclusive
807          * access to the submission state. This is arranged for us by the
808          * caller disabling the interrupt generation, the tasklet and other
809          * threads that may then access the same state, giving us a free hand
810          * to reset state. However, we still need to let lockdep be aware that
811          * we know this state may be accessed in hardirq context, so we
812          * disable the irq around this manipulation and we want to keep
813          * the spinlock focused on its duties and not accidentally conflate
814          * coverage to the submission's irq state. (Similarly, although we
815          * shouldn't need to disable irq around the manipulation of the
816          * submission's irq state, we also wish to remind ourselves that
817          * it is irq state.)
818          */
819         spin_lock_irqsave(&engine->timeline.lock, flags);
820
821         /* Cancel the requests on the HW and clear the ELSP tracker. */
822         execlists_cancel_port_requests(execlists);
823         execlists_user_end(execlists);
824
825         /* Mark all executing requests as skipped. */
826         list_for_each_entry(rq, &engine->timeline.requests, link) {
827                 GEM_BUG_ON(!rq->global_seqno);
828
829                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
830                         continue;
831
832                 dma_fence_set_error(&rq->fence, -EIO);
833         }
834
835         /* Flush the queued requests to the timeline list (for retiring). */
836         while ((rb = rb_first_cached(&execlists->queue))) {
837                 struct i915_priolist *p = to_priolist(rb);
838                 int i;
839
840                 priolist_for_each_request_consume(rq, rn, p, i) {
841                         list_del_init(&rq->sched.link);
842
843                         dma_fence_set_error(&rq->fence, -EIO);
844                         __i915_request_submit(rq);
845                 }
846
847                 rb_erase_cached(&p->node, &execlists->queue);
848                 if (p->priority != I915_PRIORITY_NORMAL)
849                         kmem_cache_free(engine->i915->priorities, p);
850         }
851
852         intel_write_status_page(engine,
853                                 I915_GEM_HWS_INDEX,
854                                 intel_engine_last_submit(engine));
855
856         /* Remaining _unready_ requests will be nop'ed when submitted */
857
858         execlists->queue_priority = INT_MIN;
859         execlists->queue = RB_ROOT_CACHED;
860         GEM_BUG_ON(port_isset(execlists->port));
861
862         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
863         execlists->tasklet.func = nop_submission_tasklet;
864
865         spin_unlock_irqrestore(&engine->timeline.lock, flags);
866 }
867
868 static inline bool
869 reset_in_progress(const struct intel_engine_execlists *execlists)
870 {
871         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
872 }
873
874 static void process_csb(struct intel_engine_cs *engine)
875 {
876         struct intel_engine_execlists * const execlists = &engine->execlists;
877         struct execlist_port *port = execlists->port;
878         const u32 * const buf = execlists->csb_status;
879         u8 head, tail;
880
881         /*
882          * Note that csb_write, csb_status may be either in HWSP or mmio.
883          * When reading from the csb_write mmio register, we have to be
884          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
885          * the low 4bits. As it happens we know the next 4bits are always
886          * zero and so we can simply masked off the low u8 of the register
887          * and treat it identically to reading from the HWSP (without having
888          * to use explicit shifting and masking, and probably bifurcating
889          * the code to handle the legacy mmio read).
890          */
891         head = execlists->csb_head;
892         tail = READ_ONCE(*execlists->csb_write);
893         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
894         if (unlikely(head == tail))
895                 return;
896
897         /*
898          * Hopefully paired with a wmb() in HW!
899          *
900          * We must complete the read of the write pointer before any reads
901          * from the CSB, so that we do not see stale values. Without an rmb
902          * (lfence) the HW may speculatively perform the CSB[] reads *before*
903          * we perform the READ_ONCE(*csb_write).
904          */
905         rmb();
906
907         do {
908                 struct i915_request *rq;
909                 unsigned int status;
910                 unsigned int count;
911
912                 if (++head == GEN8_CSB_ENTRIES)
913                         head = 0;
914
915                 /*
916                  * We are flying near dragons again.
917                  *
918                  * We hold a reference to the request in execlist_port[]
919                  * but no more than that. We are operating in softirq
920                  * context and so cannot hold any mutex or sleep. That
921                  * prevents us stopping the requests we are processing
922                  * in port[] from being retired simultaneously (the
923                  * breadcrumb will be complete before we see the
924                  * context-switch). As we only hold the reference to the
925                  * request, any pointer chasing underneath the request
926                  * is subject to a potential use-after-free. Thus we
927                  * store all of the bookkeeping within port[] as
928                  * required, and avoid using unguarded pointers beneath
929                  * request itself. The same applies to the atomic
930                  * status notifier.
931                  */
932
933                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
934                           engine->name, head,
935                           buf[2 * head + 0], buf[2 * head + 1],
936                           execlists->active);
937
938                 status = buf[2 * head];
939                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
940                               GEN8_CTX_STATUS_PREEMPTED))
941                         execlists_set_active(execlists,
942                                              EXECLISTS_ACTIVE_HWACK);
943                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
944                         execlists_clear_active(execlists,
945                                                EXECLISTS_ACTIVE_HWACK);
946
947                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
948                         continue;
949
950                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
951                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
952
953                 if (status & GEN8_CTX_STATUS_COMPLETE &&
954                     buf[2*head + 1] == execlists->preempt_complete_status) {
955                         GEM_TRACE("%s preempt-idle\n", engine->name);
956                         complete_preempt_context(execlists);
957                         continue;
958                 }
959
960                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
961                     execlists_is_active(execlists,
962                                         EXECLISTS_ACTIVE_PREEMPT))
963                         continue;
964
965                 GEM_BUG_ON(!execlists_is_active(execlists,
966                                                 EXECLISTS_ACTIVE_USER));
967
968                 rq = port_unpack(port, &count);
969                 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
970                           engine->name,
971                           port->context_id, count,
972                           rq ? rq->global_seqno : 0,
973                           rq ? rq->fence.context : 0,
974                           rq ? rq->fence.seqno : 0,
975                           intel_engine_get_seqno(engine),
976                           rq ? rq_prio(rq) : 0);
977
978                 /* Check the context/desc id for this event matches */
979                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
980
981                 GEM_BUG_ON(count == 0);
982                 if (--count == 0) {
983                         /*
984                          * On the final event corresponding to the
985                          * submission of this context, we expect either
986                          * an element-switch event or a completion
987                          * event (and on completion, the active-idle
988                          * marker). No more preemptions, lite-restore
989                          * or otherwise.
990                          */
991                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
992                         GEM_BUG_ON(port_isset(&port[1]) &&
993                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
994                         GEM_BUG_ON(!port_isset(&port[1]) &&
995                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
996
997                         /*
998                          * We rely on the hardware being strongly
999                          * ordered, that the breadcrumb write is
1000                          * coherent (visible from the CPU) before the
1001                          * user interrupt and CSB is processed.
1002                          */
1003                         GEM_BUG_ON(!i915_request_completed(rq));
1004
1005                         execlists_context_schedule_out(rq,
1006                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1007                         i915_request_put(rq);
1008
1009                         GEM_TRACE("%s completed ctx=%d\n",
1010                                   engine->name, port->context_id);
1011
1012                         port = execlists_port_complete(execlists, port);
1013                         if (port_isset(port))
1014                                 execlists_user_begin(execlists, port);
1015                         else
1016                                 execlists_user_end(execlists);
1017                 } else {
1018                         port_set(port, port_pack(rq, count));
1019                 }
1020         } while (head != tail);
1021
1022         execlists->csb_head = head;
1023 }
1024
1025 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1026 {
1027         lockdep_assert_held(&engine->timeline.lock);
1028
1029         process_csb(engine);
1030         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1031                 execlists_dequeue(engine);
1032 }
1033
1034 /*
1035  * Check the unread Context Status Buffers and manage the submission of new
1036  * contexts to the ELSP accordingly.
1037  */
1038 static void execlists_submission_tasklet(unsigned long data)
1039 {
1040         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1041         unsigned long flags;
1042
1043         GEM_TRACE("%s awake?=%d, active=%x\n",
1044                   engine->name,
1045                   engine->i915->gt.awake,
1046                   engine->execlists.active);
1047
1048         spin_lock_irqsave(&engine->timeline.lock, flags);
1049         __execlists_submission_tasklet(engine);
1050         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1051 }
1052
1053 static void queue_request(struct intel_engine_cs *engine,
1054                           struct i915_sched_node *node,
1055                           int prio)
1056 {
1057         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1058 }
1059
1060 static void __submit_queue_imm(struct intel_engine_cs *engine)
1061 {
1062         struct intel_engine_execlists * const execlists = &engine->execlists;
1063
1064         if (reset_in_progress(execlists))
1065                 return; /* defer until we restart the engine following reset */
1066
1067         if (execlists->tasklet.func == execlists_submission_tasklet)
1068                 __execlists_submission_tasklet(engine);
1069         else
1070                 tasklet_hi_schedule(&execlists->tasklet);
1071 }
1072
1073 static void submit_queue(struct intel_engine_cs *engine, int prio)
1074 {
1075         if (prio > engine->execlists.queue_priority) {
1076                 engine->execlists.queue_priority = prio;
1077                 __submit_queue_imm(engine);
1078         }
1079 }
1080
1081 static void execlists_submit_request(struct i915_request *request)
1082 {
1083         struct intel_engine_cs *engine = request->engine;
1084         unsigned long flags;
1085
1086         /* Will be called from irq-context when using foreign fences. */
1087         spin_lock_irqsave(&engine->timeline.lock, flags);
1088
1089         queue_request(engine, &request->sched, rq_prio(request));
1090
1091         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1092         GEM_BUG_ON(list_empty(&request->sched.link));
1093
1094         submit_queue(engine, rq_prio(request));
1095
1096         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1097 }
1098
1099 static void execlists_context_destroy(struct intel_context *ce)
1100 {
1101         GEM_BUG_ON(ce->pin_count);
1102
1103         if (!ce->state)
1104                 return;
1105
1106         intel_ring_free(ce->ring);
1107
1108         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1109         i915_gem_object_put(ce->state->obj);
1110 }
1111
1112 static void execlists_context_unpin(struct intel_context *ce)
1113 {
1114         struct intel_engine_cs *engine;
1115
1116         /*
1117          * The tasklet may still be using a pointer to our state, via an
1118          * old request. However, since we know we only unpin the context
1119          * on retirement of the following request, we know that the last
1120          * request referencing us will have had a completion CS interrupt.
1121          * If we see that it is still active, it means that the tasklet hasn't
1122          * had the chance to run yet; let it run before we teardown the
1123          * reference it may use.
1124          */
1125         engine = READ_ONCE(ce->active);
1126         if (unlikely(engine)) {
1127                 unsigned long flags;
1128
1129                 spin_lock_irqsave(&engine->timeline.lock, flags);
1130                 process_csb(engine);
1131                 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1132
1133                 GEM_BUG_ON(READ_ONCE(ce->active));
1134         }
1135
1136         i915_gem_context_unpin_hw_id(ce->gem_context);
1137
1138         intel_ring_unpin(ce->ring);
1139
1140         ce->state->obj->pin_global--;
1141         i915_gem_object_unpin_map(ce->state->obj);
1142         i915_vma_unpin(ce->state);
1143
1144         i915_gem_context_put(ce->gem_context);
1145 }
1146
1147 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1148 {
1149         unsigned int flags;
1150         int err;
1151
1152         /*
1153          * Clear this page out of any CPU caches for coherent swap-in/out.
1154          * We only want to do this on the first bind so that we do not stall
1155          * on an active context (which by nature is already on the GPU).
1156          */
1157         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1158                 err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1159                 if (err)
1160                         return err;
1161         }
1162
1163         flags = PIN_GLOBAL | PIN_HIGH;
1164         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1165
1166         return i915_vma_pin(vma, 0, 0, flags);
1167 }
1168
1169 static struct intel_context *
1170 __execlists_context_pin(struct intel_engine_cs *engine,
1171                         struct i915_gem_context *ctx,
1172                         struct intel_context *ce)
1173 {
1174         void *vaddr;
1175         int ret;
1176
1177         ret = execlists_context_deferred_alloc(ctx, engine, ce);
1178         if (ret)
1179                 goto err;
1180         GEM_BUG_ON(!ce->state);
1181
1182         ret = __context_pin(ctx, ce->state);
1183         if (ret)
1184                 goto err;
1185
1186         vaddr = i915_gem_object_pin_map(ce->state->obj,
1187                                         i915_coherent_map_type(ctx->i915) |
1188                                         I915_MAP_OVERRIDE);
1189         if (IS_ERR(vaddr)) {
1190                 ret = PTR_ERR(vaddr);
1191                 goto unpin_vma;
1192         }
1193
1194         ret = intel_ring_pin(ce->ring);
1195         if (ret)
1196                 goto unpin_map;
1197
1198         ret = i915_gem_context_pin_hw_id(ctx);
1199         if (ret)
1200                 goto unpin_ring;
1201
1202         intel_lr_context_descriptor_update(ctx, engine, ce);
1203
1204         GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1205
1206         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1207         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1208                 i915_ggtt_offset(ce->ring->vma);
1209         ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
1210         ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1211
1212         ce->state->obj->pin_global++;
1213         i915_gem_context_get(ctx);
1214         return ce;
1215
1216 unpin_ring:
1217         intel_ring_unpin(ce->ring);
1218 unpin_map:
1219         i915_gem_object_unpin_map(ce->state->obj);
1220 unpin_vma:
1221         __i915_vma_unpin(ce->state);
1222 err:
1223         ce->pin_count = 0;
1224         return ERR_PTR(ret);
1225 }
1226
1227 static const struct intel_context_ops execlists_context_ops = {
1228         .unpin = execlists_context_unpin,
1229         .destroy = execlists_context_destroy,
1230 };
1231
1232 static struct intel_context *
1233 execlists_context_pin(struct intel_engine_cs *engine,
1234                       struct i915_gem_context *ctx)
1235 {
1236         struct intel_context *ce = to_intel_context(ctx, engine);
1237
1238         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1239         GEM_BUG_ON(!ctx->ppgtt);
1240
1241         if (likely(ce->pin_count++))
1242                 return ce;
1243         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1244
1245         ce->ops = &execlists_context_ops;
1246
1247         return __execlists_context_pin(engine, ctx, ce);
1248 }
1249
1250 static int execlists_request_alloc(struct i915_request *request)
1251 {
1252         int ret;
1253
1254         GEM_BUG_ON(!request->hw_context->pin_count);
1255
1256         /* Flush enough space to reduce the likelihood of waiting after
1257          * we start building the request - in which case we will just
1258          * have to repeat work.
1259          */
1260         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1261
1262         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1263         if (ret)
1264                 return ret;
1265
1266         /* Note that after this point, we have committed to using
1267          * this request as it is being used to both track the
1268          * state of engine initialisation and liveness of the
1269          * golden renderstate above. Think twice before you try
1270          * to cancel/unwind this request now.
1271          */
1272
1273         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1274         return 0;
1275 }
1276
1277 /*
1278  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1279  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1280  * but there is a slight complication as this is applied in WA batch where the
1281  * values are only initialized once so we cannot take register value at the
1282  * beginning and reuse it further; hence we save its value to memory, upload a
1283  * constant value with bit21 set and then we restore it back with the saved value.
1284  * To simplify the WA, a constant value is formed by using the default value
1285  * of this register. This shouldn't be a problem because we are only modifying
1286  * it for a short period and this batch in non-premptible. We can ofcourse
1287  * use additional instructions that read the actual value of the register
1288  * at that time and set our bit of interest but it makes the WA complicated.
1289  *
1290  * This WA is also required for Gen9 so extracting as a function avoids
1291  * code duplication.
1292  */
1293 static u32 *
1294 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1295 {
1296         /* NB no one else is allowed to scribble over scratch + 256! */
1297         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1298         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1299         *batch++ = i915_scratch_offset(engine->i915) + 256;
1300         *batch++ = 0;
1301
1302         *batch++ = MI_LOAD_REGISTER_IMM(1);
1303         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1304         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1305
1306         batch = gen8_emit_pipe_control(batch,
1307                                        PIPE_CONTROL_CS_STALL |
1308                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1309                                        0);
1310
1311         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1312         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1313         *batch++ = i915_scratch_offset(engine->i915) + 256;
1314         *batch++ = 0;
1315
1316         return batch;
1317 }
1318
1319 /*
1320  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1321  * initialized at the beginning and shared across all contexts but this field
1322  * helps us to have multiple batches at different offsets and select them based
1323  * on a criteria. At the moment this batch always start at the beginning of the page
1324  * and at this point we don't have multiple wa_ctx batch buffers.
1325  *
1326  * The number of WA applied are not known at the beginning; we use this field
1327  * to return the no of DWORDS written.
1328  *
1329  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1330  * so it adds NOOPs as padding to make it cacheline aligned.
1331  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1332  * makes a complete batch buffer.
1333  */
1334 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1335 {
1336         /* WaDisableCtxRestoreArbitration:bdw,chv */
1337         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1338
1339         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1340         if (IS_BROADWELL(engine->i915))
1341                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1342
1343         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1344         /* Actual scratch location is at 128 bytes offset */
1345         batch = gen8_emit_pipe_control(batch,
1346                                        PIPE_CONTROL_FLUSH_L3 |
1347                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1348                                        PIPE_CONTROL_CS_STALL |
1349                                        PIPE_CONTROL_QW_WRITE,
1350                                        i915_scratch_offset(engine->i915) +
1351                                        2 * CACHELINE_BYTES);
1352
1353         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1354
1355         /* Pad to end of cacheline */
1356         while ((unsigned long)batch % CACHELINE_BYTES)
1357                 *batch++ = MI_NOOP;
1358
1359         /*
1360          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1361          * execution depends on the length specified in terms of cache lines
1362          * in the register CTX_RCS_INDIRECT_CTX
1363          */
1364
1365         return batch;
1366 }
1367
1368 struct lri {
1369         i915_reg_t reg;
1370         u32 value;
1371 };
1372
1373 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1374 {
1375         GEM_BUG_ON(!count || count > 63);
1376
1377         *batch++ = MI_LOAD_REGISTER_IMM(count);
1378         do {
1379                 *batch++ = i915_mmio_reg_offset(lri->reg);
1380                 *batch++ = lri->value;
1381         } while (lri++, --count);
1382         *batch++ = MI_NOOP;
1383
1384         return batch;
1385 }
1386
1387 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1388 {
1389         static const struct lri lri[] = {
1390                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1391                 {
1392                         COMMON_SLICE_CHICKEN2,
1393                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1394                                        0),
1395                 },
1396
1397                 /* BSpec: 11391 */
1398                 {
1399                         FF_SLICE_CHICKEN,
1400                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1401                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1402                 },
1403
1404                 /* BSpec: 11299 */
1405                 {
1406                         _3D_CHICKEN3,
1407                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1408                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1409                 }
1410         };
1411
1412         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1413
1414         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1415         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1416
1417         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1418
1419         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1420         if (HAS_POOLED_EU(engine->i915)) {
1421                 /*
1422                  * EU pool configuration is setup along with golden context
1423                  * during context initialization. This value depends on
1424                  * device type (2x6 or 3x6) and needs to be updated based
1425                  * on which subslice is disabled especially for 2x6
1426                  * devices, however it is safe to load default
1427                  * configuration of 3x6 device instead of masking off
1428                  * corresponding bits because HW ignores bits of a disabled
1429                  * subslice and drops down to appropriate config. Please
1430                  * see render_state_setup() in i915_gem_render_state.c for
1431                  * possible configurations, to avoid duplication they are
1432                  * not shown here again.
1433                  */
1434                 *batch++ = GEN9_MEDIA_POOL_STATE;
1435                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1436                 *batch++ = 0x00777000;
1437                 *batch++ = 0;
1438                 *batch++ = 0;
1439                 *batch++ = 0;
1440         }
1441
1442         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1443
1444         /* Pad to end of cacheline */
1445         while ((unsigned long)batch % CACHELINE_BYTES)
1446                 *batch++ = MI_NOOP;
1447
1448         return batch;
1449 }
1450
1451 static u32 *
1452 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1453 {
1454         int i;
1455
1456         /*
1457          * WaPipeControlBefore3DStateSamplePattern: cnl
1458          *
1459          * Ensure the engine is idle prior to programming a
1460          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1461          */
1462         batch = gen8_emit_pipe_control(batch,
1463                                        PIPE_CONTROL_CS_STALL,
1464                                        0);
1465         /*
1466          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1467          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1468          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1469          * confusing. Since gen8_emit_pipe_control() already advances the
1470          * batch by 6 dwords, we advance the other 10 here, completing a
1471          * cacheline. It's not clear if the workaround requires this padding
1472          * before other commands, or if it's just the regular padding we would
1473          * already have for the workaround bb, so leave it here for now.
1474          */
1475         for (i = 0; i < 10; i++)
1476                 *batch++ = MI_NOOP;
1477
1478         /* Pad to end of cacheline */
1479         while ((unsigned long)batch % CACHELINE_BYTES)
1480                 *batch++ = MI_NOOP;
1481
1482         return batch;
1483 }
1484
1485 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1486
1487 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1488 {
1489         struct drm_i915_gem_object *obj;
1490         struct i915_vma *vma;
1491         int err;
1492
1493         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1494         if (IS_ERR(obj))
1495                 return PTR_ERR(obj);
1496
1497         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1498         if (IS_ERR(vma)) {
1499                 err = PTR_ERR(vma);
1500                 goto err;
1501         }
1502
1503         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1504         if (err)
1505                 goto err;
1506
1507         engine->wa_ctx.vma = vma;
1508         return 0;
1509
1510 err:
1511         i915_gem_object_put(obj);
1512         return err;
1513 }
1514
1515 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1516 {
1517         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1518 }
1519
1520 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1521
1522 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1523 {
1524         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1525         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1526                                             &wa_ctx->per_ctx };
1527         wa_bb_func_t wa_bb_fn[2];
1528         struct page *page;
1529         void *batch, *batch_ptr;
1530         unsigned int i;
1531         int ret;
1532
1533         if (GEM_DEBUG_WARN_ON(engine->id != RCS))
1534                 return -EINVAL;
1535
1536         switch (INTEL_GEN(engine->i915)) {
1537         case 11:
1538                 return 0;
1539         case 10:
1540                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1541                 wa_bb_fn[1] = NULL;
1542                 break;
1543         case 9:
1544                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1545                 wa_bb_fn[1] = NULL;
1546                 break;
1547         case 8:
1548                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1549                 wa_bb_fn[1] = NULL;
1550                 break;
1551         default:
1552                 MISSING_CASE(INTEL_GEN(engine->i915));
1553                 return 0;
1554         }
1555
1556         ret = lrc_setup_wa_ctx(engine);
1557         if (ret) {
1558                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1559                 return ret;
1560         }
1561
1562         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1563         batch = batch_ptr = kmap_atomic(page);
1564
1565         /*
1566          * Emit the two workaround batch buffers, recording the offset from the
1567          * start of the workaround batch buffer object for each and their
1568          * respective sizes.
1569          */
1570         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1571                 wa_bb[i]->offset = batch_ptr - batch;
1572                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1573                                                   CACHELINE_BYTES))) {
1574                         ret = -EINVAL;
1575                         break;
1576                 }
1577                 if (wa_bb_fn[i])
1578                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1579                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1580         }
1581
1582         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1583
1584         kunmap_atomic(batch);
1585         if (ret)
1586                 lrc_destroy_wa_ctx(engine);
1587
1588         return ret;
1589 }
1590
1591 static void enable_execlists(struct intel_engine_cs *engine)
1592 {
1593         struct drm_i915_private *dev_priv = engine->i915;
1594
1595         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1596
1597         /*
1598          * Make sure we're not enabling the new 12-deep CSB
1599          * FIFO as that requires a slightly updated handling
1600          * in the ctx switch irq. Since we're currently only
1601          * using only 2 elements of the enhanced execlists the
1602          * deeper FIFO it's not needed and it's not worth adding
1603          * more statements to the irq handler to support it.
1604          */
1605         if (INTEL_GEN(dev_priv) >= 11)
1606                 I915_WRITE(RING_MODE_GEN7(engine),
1607                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1608         else
1609                 I915_WRITE(RING_MODE_GEN7(engine),
1610                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1611
1612         I915_WRITE(RING_MI_MODE(engine->mmio_base),
1613                    _MASKED_BIT_DISABLE(STOP_RING));
1614
1615         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1616                    engine->status_page.ggtt_offset);
1617         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1618 }
1619
1620 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1621 {
1622         struct drm_i915_private *dev_priv = engine->i915;
1623         bool unexpected = false;
1624
1625         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1626                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1627                 unexpected = true;
1628         }
1629
1630         return unexpected;
1631 }
1632
1633 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1634 {
1635         intel_engine_apply_workarounds(engine);
1636         intel_engine_apply_whitelist(engine);
1637
1638         intel_mocs_init_engine(engine);
1639
1640         intel_engine_reset_breadcrumbs(engine);
1641
1642         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1643                 struct drm_printer p = drm_debug_printer(__func__);
1644
1645                 intel_engine_dump(engine, &p, NULL);
1646         }
1647
1648         enable_execlists(engine);
1649
1650         return 0;
1651 }
1652
1653 static struct i915_request *
1654 execlists_reset_prepare(struct intel_engine_cs *engine)
1655 {
1656         struct intel_engine_execlists * const execlists = &engine->execlists;
1657         struct i915_request *request, *active;
1658         unsigned long flags;
1659
1660         GEM_TRACE("%s: depth<-%d\n", engine->name,
1661                   atomic_read(&execlists->tasklet.count));
1662
1663         /*
1664          * Prevent request submission to the hardware until we have
1665          * completed the reset in i915_gem_reset_finish(). If a request
1666          * is completed by one engine, it may then queue a request
1667          * to a second via its execlists->tasklet *just* as we are
1668          * calling engine->init_hw() and also writing the ELSP.
1669          * Turning off the execlists->tasklet until the reset is over
1670          * prevents the race.
1671          */
1672         __tasklet_disable_sync_once(&execlists->tasklet);
1673
1674         spin_lock_irqsave(&engine->timeline.lock, flags);
1675
1676         /*
1677          * We want to flush the pending context switches, having disabled
1678          * the tasklet above, we can assume exclusive access to the execlists.
1679          * For this allows us to catch up with an inflight preemption event,
1680          * and avoid blaming an innocent request if the stall was due to the
1681          * preemption itself.
1682          */
1683         process_csb(engine);
1684
1685         /*
1686          * The last active request can then be no later than the last request
1687          * now in ELSP[0]. So search backwards from there, so that if the GPU
1688          * has advanced beyond the last CSB update, it will be pardoned.
1689          */
1690         active = NULL;
1691         request = port_request(execlists->port);
1692         if (request) {
1693                 /*
1694                  * Prevent the breadcrumb from advancing before we decide
1695                  * which request is currently active.
1696                  */
1697                 intel_engine_stop_cs(engine);
1698
1699                 list_for_each_entry_from_reverse(request,
1700                                                  &engine->timeline.requests,
1701                                                  link) {
1702                         if (__i915_request_completed(request,
1703                                                      request->global_seqno))
1704                                 break;
1705
1706                         active = request;
1707                 }
1708         }
1709
1710         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1711
1712         return active;
1713 }
1714
1715 static void execlists_reset(struct intel_engine_cs *engine,
1716                             struct i915_request *request)
1717 {
1718         struct intel_engine_execlists * const execlists = &engine->execlists;
1719         unsigned long flags;
1720         u32 *regs;
1721
1722         GEM_TRACE("%s request global=%d, current=%d\n",
1723                   engine->name, request ? request->global_seqno : 0,
1724                   intel_engine_get_seqno(engine));
1725
1726         spin_lock_irqsave(&engine->timeline.lock, flags);
1727
1728         /*
1729          * Catch up with any missed context-switch interrupts.
1730          *
1731          * Ideally we would just read the remaining CSB entries now that we
1732          * know the gpu is idle. However, the CSB registers are sometimes^W
1733          * often trashed across a GPU reset! Instead we have to rely on
1734          * guessing the missed context-switch events by looking at what
1735          * requests were completed.
1736          */
1737         execlists_cancel_port_requests(execlists);
1738
1739         /* Push back any incomplete requests for replay after the reset. */
1740         __unwind_incomplete_requests(engine);
1741
1742         /* Following the reset, we need to reload the CSB read/write pointers */
1743         reset_csb_pointers(&engine->execlists);
1744
1745         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1746
1747         /*
1748          * If the request was innocent, we leave the request in the ELSP
1749          * and will try to replay it on restarting. The context image may
1750          * have been corrupted by the reset, in which case we may have
1751          * to service a new GPU hang, but more likely we can continue on
1752          * without impact.
1753          *
1754          * If the request was guilty, we presume the context is corrupt
1755          * and have to at least restore the RING register in the context
1756          * image back to the expected values to skip over the guilty request.
1757          */
1758         if (!request || request->fence.error != -EIO)
1759                 return;
1760
1761         /*
1762          * We want a simple context + ring to execute the breadcrumb update.
1763          * We cannot rely on the context being intact across the GPU hang,
1764          * so clear it and rebuild just what we need for the breadcrumb.
1765          * All pending requests for this context will be zapped, and any
1766          * future request will be after userspace has had the opportunity
1767          * to recreate its own state.
1768          */
1769         regs = request->hw_context->lrc_reg_state;
1770         if (engine->pinned_default_state) {
1771                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1772                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1773                        engine->context_size - PAGE_SIZE);
1774         }
1775         execlists_init_reg_state(regs,
1776                                  request->gem_context, engine, request->ring);
1777
1778         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1779         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1780
1781         request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1782         regs[CTX_RING_HEAD + 1] = request->ring->head;
1783
1784         intel_ring_update_space(request->ring);
1785
1786         /* Reset WaIdleLiteRestore:bdw,skl as well */
1787         unwind_wa_tail(request);
1788 }
1789
1790 static void execlists_reset_finish(struct intel_engine_cs *engine)
1791 {
1792         struct intel_engine_execlists * const execlists = &engine->execlists;
1793
1794         /*
1795          * After a GPU reset, we may have requests to replay. Do so now while
1796          * we still have the forcewake to be sure that the GPU is not allowed
1797          * to sleep before we restart and reload a context.
1798          *
1799          */
1800         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1801                 execlists->tasklet.func(execlists->tasklet.data);
1802
1803         tasklet_enable(&execlists->tasklet);
1804         GEM_TRACE("%s: depth->%d\n", engine->name,
1805                   atomic_read(&execlists->tasklet.count));
1806 }
1807
1808 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1809 {
1810         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1811         struct intel_engine_cs *engine = rq->engine;
1812         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1813         u32 *cs;
1814         int i;
1815
1816         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1817         if (IS_ERR(cs))
1818                 return PTR_ERR(cs);
1819
1820         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1821         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1822                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1823
1824                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1825                 *cs++ = upper_32_bits(pd_daddr);
1826                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1827                 *cs++ = lower_32_bits(pd_daddr);
1828         }
1829
1830         *cs++ = MI_NOOP;
1831         intel_ring_advance(rq, cs);
1832
1833         return 0;
1834 }
1835
1836 static int gen8_emit_bb_start(struct i915_request *rq,
1837                               u64 offset, u32 len,
1838                               const unsigned int flags)
1839 {
1840         u32 *cs;
1841         int ret;
1842
1843         /* Don't rely in hw updating PDPs, specially in lite-restore.
1844          * Ideally, we should set Force PD Restore in ctx descriptor,
1845          * but we can't. Force Restore would be a second option, but
1846          * it is unsafe in case of lite-restore (because the ctx is
1847          * not idle). PML4 is allocated during ppgtt init so this is
1848          * not needed in 48-bit.*/
1849         if ((intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
1850             !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
1851             !intel_vgpu_active(rq->i915)) {
1852                 ret = intel_logical_ring_emit_pdps(rq);
1853                 if (ret)
1854                         return ret;
1855
1856                 rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1857         }
1858
1859         cs = intel_ring_begin(rq, 6);
1860         if (IS_ERR(cs))
1861                 return PTR_ERR(cs);
1862
1863         /*
1864          * WaDisableCtxRestoreArbitration:bdw,chv
1865          *
1866          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1867          * particular all the gen that do not need the w/a at all!), if we
1868          * took care to make sure that on every switch into this context
1869          * (both ordinary and for preemption) that arbitrartion was enabled
1870          * we would be fine. However, there doesn't seem to be a downside to
1871          * being paranoid and making sure it is set before each batch and
1872          * every context-switch.
1873          *
1874          * Note that if we fail to enable arbitration before the request
1875          * is complete, then we do not see the context-switch interrupt and
1876          * the engine hangs (with RING_HEAD == RING_TAIL).
1877          *
1878          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1879          */
1880         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1881
1882         /* FIXME(BDW): Address space and security selectors. */
1883         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1884                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
1885         *cs++ = lower_32_bits(offset);
1886         *cs++ = upper_32_bits(offset);
1887
1888         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1889         *cs++ = MI_NOOP;
1890         intel_ring_advance(rq, cs);
1891
1892         return 0;
1893 }
1894
1895 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1896 {
1897         struct drm_i915_private *dev_priv = engine->i915;
1898         I915_WRITE_IMR(engine,
1899                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1900         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1901 }
1902
1903 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1904 {
1905         struct drm_i915_private *dev_priv = engine->i915;
1906         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1907 }
1908
1909 static int gen8_emit_flush(struct i915_request *request, u32 mode)
1910 {
1911         u32 cmd, *cs;
1912
1913         cs = intel_ring_begin(request, 4);
1914         if (IS_ERR(cs))
1915                 return PTR_ERR(cs);
1916
1917         cmd = MI_FLUSH_DW + 1;
1918
1919         /* We always require a command barrier so that subsequent
1920          * commands, such as breadcrumb interrupts, are strictly ordered
1921          * wrt the contents of the write cache being flushed to memory
1922          * (and thus being coherent from the CPU).
1923          */
1924         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1925
1926         if (mode & EMIT_INVALIDATE) {
1927                 cmd |= MI_INVALIDATE_TLB;
1928                 if (request->engine->class == VIDEO_DECODE_CLASS)
1929                         cmd |= MI_INVALIDATE_BSD;
1930         }
1931
1932         *cs++ = cmd;
1933         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1934         *cs++ = 0; /* upper addr */
1935         *cs++ = 0; /* value */
1936         intel_ring_advance(request, cs);
1937
1938         return 0;
1939 }
1940
1941 static int gen8_emit_flush_render(struct i915_request *request,
1942                                   u32 mode)
1943 {
1944         struct intel_engine_cs *engine = request->engine;
1945         u32 scratch_addr =
1946                 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
1947         bool vf_flush_wa = false, dc_flush_wa = false;
1948         u32 *cs, flags = 0;
1949         int len;
1950
1951         flags |= PIPE_CONTROL_CS_STALL;
1952
1953         if (mode & EMIT_FLUSH) {
1954                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1955                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1956                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1957                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1958         }
1959
1960         if (mode & EMIT_INVALIDATE) {
1961                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1962                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1963                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1964                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1965                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1966                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1967                 flags |= PIPE_CONTROL_QW_WRITE;
1968                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1969
1970                 /*
1971                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1972                  * pipe control.
1973                  */
1974                 if (IS_GEN9(request->i915))
1975                         vf_flush_wa = true;
1976
1977                 /* WaForGAMHang:kbl */
1978                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1979                         dc_flush_wa = true;
1980         }
1981
1982         len = 6;
1983
1984         if (vf_flush_wa)
1985                 len += 6;
1986
1987         if (dc_flush_wa)
1988                 len += 12;
1989
1990         cs = intel_ring_begin(request, len);
1991         if (IS_ERR(cs))
1992                 return PTR_ERR(cs);
1993
1994         if (vf_flush_wa)
1995                 cs = gen8_emit_pipe_control(cs, 0, 0);
1996
1997         if (dc_flush_wa)
1998                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1999                                             0);
2000
2001         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2002
2003         if (dc_flush_wa)
2004                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2005
2006         intel_ring_advance(request, cs);
2007
2008         return 0;
2009 }
2010
2011 /*
2012  * Reserve space for 2 NOOPs at the end of each request to be
2013  * used as a workaround for not being allowed to do lite
2014  * restore with HEAD==TAIL (WaIdleLiteRestore).
2015  */
2016 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2017 {
2018         /* Ensure there's always at least one preemption point per-request. */
2019         *cs++ = MI_ARB_CHECK;
2020         *cs++ = MI_NOOP;
2021         request->wa_tail = intel_ring_offset(request, cs);
2022 }
2023
2024 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2025 {
2026         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2027         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2028
2029         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2030                                   intel_hws_seqno_address(request->engine));
2031         *cs++ = MI_USER_INTERRUPT;
2032         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2033         request->tail = intel_ring_offset(request, cs);
2034         assert_ring_tail_valid(request->ring, request->tail);
2035
2036         gen8_emit_wa_tail(request, cs);
2037 }
2038 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2039
2040 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2041 {
2042         /* We're using qword write, seqno should be aligned to 8 bytes. */
2043         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2044
2045         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2046                                       intel_hws_seqno_address(request->engine));
2047         *cs++ = MI_USER_INTERRUPT;
2048         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2049         request->tail = intel_ring_offset(request, cs);
2050         assert_ring_tail_valid(request->ring, request->tail);
2051
2052         gen8_emit_wa_tail(request, cs);
2053 }
2054 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2055
2056 static int gen8_init_rcs_context(struct i915_request *rq)
2057 {
2058         int ret;
2059
2060         ret = intel_engine_emit_ctx_wa(rq);
2061         if (ret)
2062                 return ret;
2063
2064         ret = intel_rcs_context_init_mocs(rq);
2065         /*
2066          * Failing to program the MOCS is non-fatal.The system will not
2067          * run at peak performance. So generate an error and carry on.
2068          */
2069         if (ret)
2070                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2071
2072         return i915_gem_render_state_emit(rq);
2073 }
2074
2075 /**
2076  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2077  * @engine: Engine Command Streamer.
2078  */
2079 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2080 {
2081         struct drm_i915_private *dev_priv;
2082
2083         /*
2084          * Tasklet cannot be active at this point due intel_mark_active/idle
2085          * so this is just for documentation.
2086          */
2087         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2088                              &engine->execlists.tasklet.state)))
2089                 tasklet_kill(&engine->execlists.tasklet);
2090
2091         dev_priv = engine->i915;
2092
2093         if (engine->buffer) {
2094                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2095         }
2096
2097         if (engine->cleanup)
2098                 engine->cleanup(engine);
2099
2100         intel_engine_cleanup_common(engine);
2101
2102         lrc_destroy_wa_ctx(engine);
2103
2104         engine->i915 = NULL;
2105         dev_priv->engine[engine->id] = NULL;
2106         kfree(engine);
2107 }
2108
2109 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2110 {
2111         engine->submit_request = execlists_submit_request;
2112         engine->cancel_requests = execlists_cancel_requests;
2113         engine->schedule = i915_schedule;
2114         engine->execlists.tasklet.func = execlists_submission_tasklet;
2115
2116         engine->reset.prepare = execlists_reset_prepare;
2117
2118         engine->park = NULL;
2119         engine->unpark = NULL;
2120
2121         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2122         if (engine->i915->preempt_context)
2123                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2124
2125         engine->i915->caps.scheduler =
2126                 I915_SCHEDULER_CAP_ENABLED |
2127                 I915_SCHEDULER_CAP_PRIORITY;
2128         if (intel_engine_has_preemption(engine))
2129                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2130 }
2131
2132 static void
2133 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2134 {
2135         /* Default vfuncs which can be overriden by each engine. */
2136         engine->init_hw = gen8_init_common_ring;
2137
2138         engine->reset.prepare = execlists_reset_prepare;
2139         engine->reset.reset = execlists_reset;
2140         engine->reset.finish = execlists_reset_finish;
2141
2142         engine->context_pin = execlists_context_pin;
2143         engine->request_alloc = execlists_request_alloc;
2144
2145         engine->emit_flush = gen8_emit_flush;
2146         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2147         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2148
2149         engine->set_default_submission = intel_execlists_set_default_submission;
2150
2151         if (INTEL_GEN(engine->i915) < 11) {
2152                 engine->irq_enable = gen8_logical_ring_enable_irq;
2153                 engine->irq_disable = gen8_logical_ring_disable_irq;
2154         } else {
2155                 /*
2156                  * TODO: On Gen11 interrupt masks need to be clear
2157                  * to allow C6 entry. Keep interrupts enabled at
2158                  * and take the hit of generating extra interrupts
2159                  * until a more refined solution exists.
2160                  */
2161         }
2162         engine->emit_bb_start = gen8_emit_bb_start;
2163 }
2164
2165 static inline void
2166 logical_ring_default_irqs(struct intel_engine_cs *engine)
2167 {
2168         unsigned int shift = 0;
2169
2170         if (INTEL_GEN(engine->i915) < 11) {
2171                 const u8 irq_shifts[] = {
2172                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2173                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2174                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2175                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2176                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2177                 };
2178
2179                 shift = irq_shifts[engine->id];
2180         }
2181
2182         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2183         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2184 }
2185
2186 static void
2187 logical_ring_setup(struct intel_engine_cs *engine)
2188 {
2189         intel_engine_setup_common(engine);
2190
2191         /* Intentionally left blank. */
2192         engine->buffer = NULL;
2193
2194         tasklet_init(&engine->execlists.tasklet,
2195                      execlists_submission_tasklet, (unsigned long)engine);
2196
2197         logical_ring_default_vfuncs(engine);
2198         logical_ring_default_irqs(engine);
2199 }
2200
2201 static int logical_ring_init(struct intel_engine_cs *engine)
2202 {
2203         struct drm_i915_private *i915 = engine->i915;
2204         struct intel_engine_execlists * const execlists = &engine->execlists;
2205         int ret;
2206
2207         ret = intel_engine_init_common(engine);
2208         if (ret)
2209                 return ret;
2210
2211         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2212                 execlists->submit_reg = i915->regs +
2213                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2214                 execlists->ctrl_reg = i915->regs +
2215                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2216         } else {
2217                 execlists->submit_reg = i915->regs +
2218                         i915_mmio_reg_offset(RING_ELSP(engine));
2219         }
2220
2221         execlists->preempt_complete_status = ~0u;
2222         if (i915->preempt_context) {
2223                 struct intel_context *ce =
2224                         to_intel_context(i915->preempt_context, engine);
2225
2226                 execlists->preempt_complete_status =
2227                         upper_32_bits(ce->lrc_desc);
2228         }
2229
2230         execlists->csb_status =
2231                 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2232
2233         execlists->csb_write =
2234                 &engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2235
2236         reset_csb_pointers(execlists);
2237
2238         return 0;
2239 }
2240
2241 int logical_render_ring_init(struct intel_engine_cs *engine)
2242 {
2243         struct drm_i915_private *dev_priv = engine->i915;
2244         int ret;
2245
2246         logical_ring_setup(engine);
2247
2248         if (HAS_L3_DPF(dev_priv))
2249                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2250
2251         /* Override some for render ring. */
2252         engine->init_context = gen8_init_rcs_context;
2253         engine->emit_flush = gen8_emit_flush_render;
2254         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2255         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2256
2257         ret = logical_ring_init(engine);
2258         if (ret)
2259                 return ret;
2260
2261         ret = intel_init_workaround_bb(engine);
2262         if (ret) {
2263                 /*
2264                  * We continue even if we fail to initialize WA batch
2265                  * because we only expect rare glitches but nothing
2266                  * critical to prevent us from using GPU
2267                  */
2268                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2269                           ret);
2270         }
2271
2272         intel_engine_init_whitelist(engine);
2273         intel_engine_init_workarounds(engine);
2274
2275         return 0;
2276 }
2277
2278 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2279 {
2280         logical_ring_setup(engine);
2281
2282         return logical_ring_init(engine);
2283 }
2284
2285 static u32
2286 make_rpcs(struct drm_i915_private *dev_priv)
2287 {
2288         bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
2289         u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
2290         u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2291         u32 rpcs = 0;
2292
2293         /*
2294          * No explicit RPCS request is needed to ensure full
2295          * slice/subslice/EU enablement prior to Gen9.
2296         */
2297         if (INTEL_GEN(dev_priv) < 9)
2298                 return 0;
2299
2300         /*
2301          * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
2302          * wide and Icelake has up to eight subslices, specfial programming is
2303          * needed in order to correctly enable all subslices.
2304          *
2305          * According to documentation software must consider the configuration
2306          * as 2x4x8 and hardware will translate this to 1x8x8.
2307          *
2308          * Furthemore, even though SScount is three bits, maximum documented
2309          * value for it is four. From this some rules/restrictions follow:
2310          *
2311          * 1.
2312          * If enabled subslice count is greater than four, two whole slices must
2313          * be enabled instead.
2314          *
2315          * 2.
2316          * When more than one slice is enabled, hardware ignores the subslice
2317          * count altogether.
2318          *
2319          * From these restrictions it follows that it is not possible to enable
2320          * a count of subslices between the SScount maximum of four restriction,
2321          * and the maximum available number on a particular SKU. Either all
2322          * subslices are enabled, or a count between one and four on the first
2323          * slice.
2324          */
2325         if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
2326                 GEM_BUG_ON(subslices & 1);
2327
2328                 subslice_pg = false;
2329                 slices *= 2;
2330         }
2331
2332         /*
2333          * Starting in Gen9, render power gating can leave
2334          * slice/subslice/EU in a partially enabled state. We
2335          * must make an explicit request through RPCS for full
2336          * enablement.
2337         */
2338         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2339                 u32 mask, val = slices;
2340
2341                 if (INTEL_GEN(dev_priv) >= 11) {
2342                         mask = GEN11_RPCS_S_CNT_MASK;
2343                         val <<= GEN11_RPCS_S_CNT_SHIFT;
2344                 } else {
2345                         mask = GEN8_RPCS_S_CNT_MASK;
2346                         val <<= GEN8_RPCS_S_CNT_SHIFT;
2347                 }
2348
2349                 GEM_BUG_ON(val & ~mask);
2350                 val &= mask;
2351
2352                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2353         }
2354
2355         if (subslice_pg) {
2356                 u32 val = subslices;
2357
2358                 val <<= GEN8_RPCS_SS_CNT_SHIFT;
2359
2360                 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
2361                 val &= GEN8_RPCS_SS_CNT_MASK;
2362
2363                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2364         }
2365
2366         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2367                 u32 val;
2368
2369                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2370                       GEN8_RPCS_EU_MIN_SHIFT;
2371                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
2372                 val &= GEN8_RPCS_EU_MIN_MASK;
2373
2374                 rpcs |= val;
2375
2376                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2377                       GEN8_RPCS_EU_MAX_SHIFT;
2378                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
2379                 val &= GEN8_RPCS_EU_MAX_MASK;
2380
2381                 rpcs |= val;
2382
2383                 rpcs |= GEN8_RPCS_ENABLE;
2384         }
2385
2386         return rpcs;
2387 }
2388
2389 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2390 {
2391         u32 indirect_ctx_offset;
2392
2393         switch (INTEL_GEN(engine->i915)) {
2394         default:
2395                 MISSING_CASE(INTEL_GEN(engine->i915));
2396                 /* fall through */
2397         case 11:
2398                 indirect_ctx_offset =
2399                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2400                 break;
2401         case 10:
2402                 indirect_ctx_offset =
2403                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2404                 break;
2405         case 9:
2406                 indirect_ctx_offset =
2407                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2408                 break;
2409         case 8:
2410                 indirect_ctx_offset =
2411                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2412                 break;
2413         }
2414
2415         return indirect_ctx_offset;
2416 }
2417
2418 static void execlists_init_reg_state(u32 *regs,
2419                                      struct i915_gem_context *ctx,
2420                                      struct intel_engine_cs *engine,
2421                                      struct intel_ring *ring)
2422 {
2423         struct drm_i915_private *dev_priv = engine->i915;
2424         u32 base = engine->mmio_base;
2425         bool rcs = engine->class == RENDER_CLASS;
2426
2427         /* A context is actually a big batch buffer with several
2428          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2429          * values we are setting here are only for the first context restore:
2430          * on a subsequent save, the GPU will recreate this batchbuffer with new
2431          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2432          * we are not initializing here).
2433          */
2434         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2435                                  MI_LRI_FORCE_POSTED;
2436
2437         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2438                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2439                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2440         if (INTEL_GEN(dev_priv) < 11) {
2441                 regs[CTX_CONTEXT_CONTROL + 1] |=
2442                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2443                                             CTX_CTRL_RS_CTX_ENABLE);
2444         }
2445         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2446         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2447         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2448         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2449                 RING_CTL_SIZE(ring->size) | RING_VALID);
2450         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2451         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2452         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2453         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2454         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2455         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2456         if (rcs) {
2457                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2458
2459                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2460                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2461                         RING_INDIRECT_CTX_OFFSET(base), 0);
2462                 if (wa_ctx->indirect_ctx.size) {
2463                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2464
2465                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2466                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2467                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2468
2469                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2470                                 intel_lr_indirect_ctx_offset(engine) << 6;
2471                 }
2472
2473                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2474                 if (wa_ctx->per_ctx.size) {
2475                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2476
2477                         regs[CTX_BB_PER_CTX_PTR + 1] =
2478                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2479                 }
2480         }
2481
2482         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2483
2484         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2485         /* PDP values well be assigned later if needed */
2486         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2487         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2488         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2489         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2490         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2491         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2492         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2493         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2494
2495         if (i915_vm_is_48bit(&ctx->ppgtt->vm)) {
2496                 /* 64b PPGTT (48bit canonical)
2497                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2498                  * other PDP Descriptors are ignored.
2499                  */
2500                 ASSIGN_CTX_PML4(ctx->ppgtt, regs);
2501         }
2502
2503         if (rcs) {
2504                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2505                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2506                         make_rpcs(dev_priv));
2507
2508                 i915_oa_init_reg_state(engine, ctx, regs);
2509         }
2510
2511         regs[CTX_END] = MI_BATCH_BUFFER_END;
2512         if (INTEL_GEN(dev_priv) >= 10)
2513                 regs[CTX_END] |= BIT(0);
2514 }
2515
2516 static int
2517 populate_lr_context(struct i915_gem_context *ctx,
2518                     struct drm_i915_gem_object *ctx_obj,
2519                     struct intel_engine_cs *engine,
2520                     struct intel_ring *ring)
2521 {
2522         void *vaddr;
2523         u32 *regs;
2524         int ret;
2525
2526         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2527         if (ret) {
2528                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2529                 return ret;
2530         }
2531
2532         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2533         if (IS_ERR(vaddr)) {
2534                 ret = PTR_ERR(vaddr);
2535                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2536                 return ret;
2537         }
2538         ctx_obj->mm.dirty = true;
2539
2540         if (engine->default_state) {
2541                 /*
2542                  * We only want to copy over the template context state;
2543                  * skipping over the headers reserved for GuC communication,
2544                  * leaving those as zero.
2545                  */
2546                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2547                 void *defaults;
2548
2549                 defaults = i915_gem_object_pin_map(engine->default_state,
2550                                                    I915_MAP_WB);
2551                 if (IS_ERR(defaults)) {
2552                         ret = PTR_ERR(defaults);
2553                         goto err_unpin_ctx;
2554                 }
2555
2556                 memcpy(vaddr + start, defaults + start, engine->context_size);
2557                 i915_gem_object_unpin_map(engine->default_state);
2558         }
2559
2560         /* The second page of the context object contains some fields which must
2561          * be set up prior to the first execution. */
2562         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2563         execlists_init_reg_state(regs, ctx, engine, ring);
2564         if (!engine->default_state)
2565                 regs[CTX_CONTEXT_CONTROL + 1] |=
2566                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2567         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2568                 regs[CTX_CONTEXT_CONTROL + 1] |=
2569                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2570                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2571
2572 err_unpin_ctx:
2573         i915_gem_object_unpin_map(ctx_obj);
2574         return ret;
2575 }
2576
2577 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2578                                             struct intel_engine_cs *engine,
2579                                             struct intel_context *ce)
2580 {
2581         struct drm_i915_gem_object *ctx_obj;
2582         struct i915_vma *vma;
2583         uint32_t context_size;
2584         struct intel_ring *ring;
2585         struct i915_timeline *timeline;
2586         int ret;
2587
2588         if (ce->state)
2589                 return 0;
2590
2591         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2592
2593         /*
2594          * Before the actual start of the context image, we insert a few pages
2595          * for our own use and for sharing with the GuC.
2596          */
2597         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2598
2599         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2600         if (IS_ERR(ctx_obj))
2601                 return PTR_ERR(ctx_obj);
2602
2603         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2604         if (IS_ERR(vma)) {
2605                 ret = PTR_ERR(vma);
2606                 goto error_deref_obj;
2607         }
2608
2609         timeline = i915_timeline_create(ctx->i915, ctx->name);
2610         if (IS_ERR(timeline)) {
2611                 ret = PTR_ERR(timeline);
2612                 goto error_deref_obj;
2613         }
2614
2615         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2616         i915_timeline_put(timeline);
2617         if (IS_ERR(ring)) {
2618                 ret = PTR_ERR(ring);
2619                 goto error_deref_obj;
2620         }
2621
2622         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2623         if (ret) {
2624                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2625                 goto error_ring_free;
2626         }
2627
2628         ce->ring = ring;
2629         ce->state = vma;
2630
2631         return 0;
2632
2633 error_ring_free:
2634         intel_ring_free(ring);
2635 error_deref_obj:
2636         i915_gem_object_put(ctx_obj);
2637         return ret;
2638 }
2639
2640 void intel_lr_context_resume(struct drm_i915_private *i915)
2641 {
2642         struct intel_engine_cs *engine;
2643         struct i915_gem_context *ctx;
2644         enum intel_engine_id id;
2645
2646         /*
2647          * Because we emit WA_TAIL_DWORDS there may be a disparity
2648          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2649          * that stored in context. As we only write new commands from
2650          * ce->ring->tail onwards, everything before that is junk. If the GPU
2651          * starts reading from its RING_HEAD from the context, it may try to
2652          * execute that junk and die.
2653          *
2654          * So to avoid that we reset the context images upon resume. For
2655          * simplicity, we just zero everything out.
2656          */
2657         list_for_each_entry(ctx, &i915->contexts.list, link) {
2658                 for_each_engine(engine, i915, id) {
2659                         struct intel_context *ce =
2660                                 to_intel_context(ctx, engine);
2661
2662                         if (!ce->state)
2663                                 continue;
2664
2665                         intel_ring_reset(ce->ring, 0);
2666
2667                         if (ce->pin_count) { /* otherwise done in context_pin */
2668                                 u32 *regs = ce->lrc_reg_state;
2669
2670                                 regs[CTX_RING_HEAD + 1] = ce->ring->head;
2671                                 regs[CTX_RING_TAIL + 1] = ce->ring->tail;
2672                         }
2673                 }
2674         }
2675 }
2676
2677 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2678 #include "selftests/intel_lrc.c"
2679 #endif