OSDN Git Service

drm/i915: Refactor common ringbuffer allocation code
[android-x86/kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203
204 enum {
205         ADVANCED_CONTEXT = 0,
206         LEGACY_32B_CONTEXT,
207         ADVANCED_AD_CONTEXT,
208         LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
212                 LEGACY_64B_CONTEXT :\
213                 LEGACY_32B_CONTEXT)
214 enum {
215         FAULT_AND_HANG = 0,
216         FAULT_AND_HALT, /* Debug only */
217         FAULT_AND_STREAM,
218         FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
222
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224
225 /**
226  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
227  * @dev: DRM device.
228  * @enable_execlists: value of i915.enable_execlists module parameter.
229  *
230  * Only certain platforms support Execlists (the prerequisites being
231  * support for Logical Ring Contexts and Aliasing PPGTT or better).
232  *
233  * Return: 1 if Execlists is supported and has to be enabled.
234  */
235 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
236 {
237         WARN_ON(i915.enable_ppgtt == -1);
238
239         /* On platforms with execlist available, vGPU will only
240          * support execlist mode, no ring buffer mode.
241          */
242         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
243                 return 1;
244
245         if (INTEL_INFO(dev)->gen >= 9)
246                 return 1;
247
248         if (enable_execlists == 0)
249                 return 0;
250
251         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
252             i915.use_mmio_flip >= 0)
253                 return 1;
254
255         return 0;
256 }
257
258 /**
259  * intel_execlists_ctx_id() - get the Execlists Context ID
260  * @ctx_obj: Logical Ring Context backing object.
261  *
262  * Do not confuse with ctx->id! Unfortunately we have a name overload
263  * here: the old context ID we pass to userspace as a handler so that
264  * they can refer to a context, and the new context ID we pass to the
265  * ELSP so that the GPU can inform us of the context status via
266  * interrupts.
267  *
268  * Return: 20-bits globally unique context ID.
269  */
270 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
271 {
272         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
273                         LRC_PPHWSP_PN * PAGE_SIZE;
274
275         /* LRCA is required to be 4K aligned so the more significant 20 bits
276          * are globally unique */
277         return lrca >> 12;
278 }
279
280 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
281                                      struct intel_engine_cs *ring)
282 {
283         struct drm_device *dev = ring->dev;
284         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
285         uint64_t desc;
286         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
287                         LRC_PPHWSP_PN * PAGE_SIZE;
288
289         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
290
291         desc = GEN8_CTX_VALID;
292         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
293         if (IS_GEN8(ctx_obj->base.dev))
294                 desc |= GEN8_CTX_L3LLC_COHERENT;
295         desc |= GEN8_CTX_PRIVILEGE;
296         desc |= lrca;
297         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
298
299         /* TODO: WaDisableLiteRestore when we start using semaphore
300          * signalling between Command Streamers */
301         /* desc |= GEN8_CTX_FORCE_RESTORE; */
302
303         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
304         if (IS_GEN9(dev) &&
305             INTEL_REVID(dev) <= SKL_REVID_B0 &&
306             (ring->id == BCS || ring->id == VCS ||
307             ring->id == VECS || ring->id == VCS2))
308                 desc |= GEN8_CTX_FORCE_RESTORE;
309
310         return desc;
311 }
312
313 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
314                                  struct drm_i915_gem_request *rq1)
315 {
316
317         struct intel_engine_cs *ring = rq0->ring;
318         struct drm_device *dev = ring->dev;
319         struct drm_i915_private *dev_priv = dev->dev_private;
320         uint64_t desc[2];
321
322         if (rq1) {
323                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
324                 rq1->elsp_submitted++;
325         } else {
326                 desc[1] = 0;
327         }
328
329         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
330         rq0->elsp_submitted++;
331
332         /* You must always write both descriptors in the order below. */
333         spin_lock(&dev_priv->uncore.lock);
334         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
335         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
336         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
337
338         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
339         /* The context is automatically loaded after the following */
340         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
341
342         /* ELSP is a wo register, use another nearby reg for posting */
343         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
344         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
345         spin_unlock(&dev_priv->uncore.lock);
346 }
347
348 static int execlists_update_context(struct drm_i915_gem_request *rq)
349 {
350         struct intel_engine_cs *ring = rq->ring;
351         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
352         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
353         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
354         struct page *page;
355         uint32_t *reg_state;
356
357         BUG_ON(!ctx_obj);
358         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
359         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
360
361         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
362         reg_state = kmap_atomic(page);
363
364         reg_state[CTX_RING_TAIL+1] = rq->tail;
365         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
366
367         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
368                 /* True 32b PPGTT with dynamic page allocation: update PDP
369                  * registers and point the unallocated PDPs to scratch page.
370                  * PML4 is allocated during ppgtt init, so this is not needed
371                  * in 48-bit mode.
372                  */
373                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377         }
378
379         kunmap_atomic(reg_state);
380
381         return 0;
382 }
383
384 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
385                                       struct drm_i915_gem_request *rq1)
386 {
387         execlists_update_context(rq0);
388
389         if (rq1)
390                 execlists_update_context(rq1);
391
392         execlists_elsp_write(rq0, rq1);
393 }
394
395 static void execlists_context_unqueue(struct intel_engine_cs *ring)
396 {
397         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
398         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
399
400         assert_spin_locked(&ring->execlist_lock);
401
402         /*
403          * If irqs are not active generate a warning as batches that finish
404          * without the irqs may get lost and a GPU Hang may occur.
405          */
406         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
407
408         if (list_empty(&ring->execlist_queue))
409                 return;
410
411         /* Try to read in pairs */
412         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
413                                  execlist_link) {
414                 if (!req0) {
415                         req0 = cursor;
416                 } else if (req0->ctx == cursor->ctx) {
417                         /* Same ctx: ignore first request, as second request
418                          * will update tail past first request's workload */
419                         cursor->elsp_submitted = req0->elsp_submitted;
420                         list_del(&req0->execlist_link);
421                         list_add_tail(&req0->execlist_link,
422                                 &ring->execlist_retired_req_list);
423                         req0 = cursor;
424                 } else {
425                         req1 = cursor;
426                         break;
427                 }
428         }
429
430         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
431                 /*
432                  * WaIdleLiteRestore: make sure we never cause a lite
433                  * restore with HEAD==TAIL
434                  */
435                 if (req0->elsp_submitted) {
436                         /*
437                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
438                          * as we resubmit the request. See gen8_emit_request()
439                          * for where we prepare the padding after the end of the
440                          * request.
441                          */
442                         struct intel_ringbuffer *ringbuf;
443
444                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
445                         req0->tail += 8;
446                         req0->tail &= ringbuf->size - 1;
447                 }
448         }
449
450         WARN_ON(req1 && req1->elsp_submitted);
451
452         execlists_submit_requests(req0, req1);
453 }
454
455 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
456                                            u32 request_id)
457 {
458         struct drm_i915_gem_request *head_req;
459
460         assert_spin_locked(&ring->execlist_lock);
461
462         head_req = list_first_entry_or_null(&ring->execlist_queue,
463                                             struct drm_i915_gem_request,
464                                             execlist_link);
465
466         if (head_req != NULL) {
467                 struct drm_i915_gem_object *ctx_obj =
468                                 head_req->ctx->engine[ring->id].state;
469                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
470                         WARN(head_req->elsp_submitted == 0,
471                              "Never submitted head request\n");
472
473                         if (--head_req->elsp_submitted <= 0) {
474                                 list_del(&head_req->execlist_link);
475                                 list_add_tail(&head_req->execlist_link,
476                                         &ring->execlist_retired_req_list);
477                                 return true;
478                         }
479                 }
480         }
481
482         return false;
483 }
484
485 /**
486  * intel_lrc_irq_handler() - handle Context Switch interrupts
487  * @ring: Engine Command Streamer to handle.
488  *
489  * Check the unread Context Status Buffers and manage the submission of new
490  * contexts to the ELSP accordingly.
491  */
492 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
493 {
494         struct drm_i915_private *dev_priv = ring->dev->dev_private;
495         u32 status_pointer;
496         u8 read_pointer;
497         u8 write_pointer;
498         u32 status;
499         u32 status_id;
500         u32 submit_contexts = 0;
501
502         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
503
504         read_pointer = ring->next_context_status_buffer;
505         write_pointer = status_pointer & 0x07;
506         if (read_pointer > write_pointer)
507                 write_pointer += 6;
508
509         spin_lock(&ring->execlist_lock);
510
511         while (read_pointer < write_pointer) {
512                 read_pointer++;
513                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
514                                 (read_pointer % 6) * 8);
515                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516                                 (read_pointer % 6) * 8 + 4);
517
518                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
519                         continue;
520
521                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
522                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
523                                 if (execlists_check_remove_request(ring, status_id))
524                                         WARN(1, "Lite Restored request removed from queue\n");
525                         } else
526                                 WARN(1, "Preemption without Lite Restore\n");
527                 }
528
529                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
530                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
531                         if (execlists_check_remove_request(ring, status_id))
532                                 submit_contexts++;
533                 }
534         }
535
536         if (submit_contexts != 0)
537                 execlists_context_unqueue(ring);
538
539         spin_unlock(&ring->execlist_lock);
540
541         WARN(submit_contexts > 2, "More than two context complete events?\n");
542         ring->next_context_status_buffer = write_pointer % 6;
543
544         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
545                    _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
546 }
547
548 static int execlists_context_queue(struct drm_i915_gem_request *request)
549 {
550         struct intel_engine_cs *ring = request->ring;
551         struct drm_i915_gem_request *cursor;
552         int num_elements = 0;
553
554         if (request->ctx != ring->default_context)
555                 intel_lr_context_pin(request);
556
557         i915_gem_request_reference(request);
558
559         spin_lock_irq(&ring->execlist_lock);
560
561         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562                 if (++num_elements > 2)
563                         break;
564
565         if (num_elements > 2) {
566                 struct drm_i915_gem_request *tail_req;
567
568                 tail_req = list_last_entry(&ring->execlist_queue,
569                                            struct drm_i915_gem_request,
570                                            execlist_link);
571
572                 if (request->ctx == tail_req->ctx) {
573                         WARN(tail_req->elsp_submitted != 0,
574                                 "More than 2 already-submitted reqs queued\n");
575                         list_del(&tail_req->execlist_link);
576                         list_add_tail(&tail_req->execlist_link,
577                                 &ring->execlist_retired_req_list);
578                 }
579         }
580
581         list_add_tail(&request->execlist_link, &ring->execlist_queue);
582         if (num_elements == 0)
583                 execlists_context_unqueue(ring);
584
585         spin_unlock_irq(&ring->execlist_lock);
586
587         return 0;
588 }
589
590 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
591 {
592         struct intel_engine_cs *ring = req->ring;
593         uint32_t flush_domains;
594         int ret;
595
596         flush_domains = 0;
597         if (ring->gpu_caches_dirty)
598                 flush_domains = I915_GEM_GPU_DOMAINS;
599
600         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
601         if (ret)
602                 return ret;
603
604         ring->gpu_caches_dirty = false;
605         return 0;
606 }
607
608 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
609                                  struct list_head *vmas)
610 {
611         const unsigned other_rings = ~intel_ring_flag(req->ring);
612         struct i915_vma *vma;
613         uint32_t flush_domains = 0;
614         bool flush_chipset = false;
615         int ret;
616
617         list_for_each_entry(vma, vmas, exec_list) {
618                 struct drm_i915_gem_object *obj = vma->obj;
619
620                 if (obj->active & other_rings) {
621                         ret = i915_gem_object_sync(obj, req->ring, &req);
622                         if (ret)
623                                 return ret;
624                 }
625
626                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
627                         flush_chipset |= i915_gem_clflush_object(obj, false);
628
629                 flush_domains |= obj->base.write_domain;
630         }
631
632         if (flush_domains & I915_GEM_DOMAIN_GTT)
633                 wmb();
634
635         /* Unconditionally invalidate gpu caches and ensure that we do flush
636          * any residual writes from the previous batch.
637          */
638         return logical_ring_invalidate_all_caches(req);
639 }
640
641 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
642 {
643         int ret;
644
645         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
646
647         if (request->ctx != request->ring->default_context) {
648                 ret = intel_lr_context_pin(request);
649                 if (ret)
650                         return ret;
651         }
652
653         return 0;
654 }
655
656 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
657                                        int bytes)
658 {
659         struct intel_ringbuffer *ringbuf = req->ringbuf;
660         struct intel_engine_cs *ring = req->ring;
661         struct drm_i915_gem_request *target;
662         unsigned space;
663         int ret;
664
665         if (intel_ring_space(ringbuf) >= bytes)
666                 return 0;
667
668         /* The whole point of reserving space is to not wait! */
669         WARN_ON(ringbuf->reserved_in_use);
670
671         list_for_each_entry(target, &ring->request_list, list) {
672                 /*
673                  * The request queue is per-engine, so can contain requests
674                  * from multiple ringbuffers. Here, we must ignore any that
675                  * aren't from the ringbuffer we're considering.
676                  */
677                 if (target->ringbuf != ringbuf)
678                         continue;
679
680                 /* Would completion of this request free enough space? */
681                 space = __intel_ring_space(target->postfix, ringbuf->tail,
682                                            ringbuf->size);
683                 if (space >= bytes)
684                         break;
685         }
686
687         if (WARN_ON(&target->list == &ring->request_list))
688                 return -ENOSPC;
689
690         ret = i915_wait_request(target);
691         if (ret)
692                 return ret;
693
694         ringbuf->space = space;
695         return 0;
696 }
697
698 /*
699  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
700  * @request: Request to advance the logical ringbuffer of.
701  *
702  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
703  * really happens during submission is that the context and current tail will be placed
704  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
705  * point, the tail *inside* the context is updated and the ELSP written to.
706  */
707 static void
708 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
709 {
710         struct intel_engine_cs *ring = request->ring;
711         struct drm_i915_private *dev_priv = request->i915;
712
713         intel_logical_ring_advance(request->ringbuf);
714
715         request->tail = request->ringbuf->tail;
716
717         if (intel_ring_stopped(ring))
718                 return;
719
720         if (dev_priv->guc.execbuf_client)
721                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
722         else
723                 execlists_context_queue(request);
724 }
725
726 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
727 {
728         uint32_t __iomem *virt;
729         int rem = ringbuf->size - ringbuf->tail;
730
731         virt = ringbuf->virtual_start + ringbuf->tail;
732         rem /= 4;
733         while (rem--)
734                 iowrite32(MI_NOOP, virt++);
735
736         ringbuf->tail = 0;
737         intel_ring_update_space(ringbuf);
738 }
739
740 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
741 {
742         struct intel_ringbuffer *ringbuf = req->ringbuf;
743         int remain_usable = ringbuf->effective_size - ringbuf->tail;
744         int remain_actual = ringbuf->size - ringbuf->tail;
745         int ret, total_bytes, wait_bytes = 0;
746         bool need_wrap = false;
747
748         if (ringbuf->reserved_in_use)
749                 total_bytes = bytes;
750         else
751                 total_bytes = bytes + ringbuf->reserved_size;
752
753         if (unlikely(bytes > remain_usable)) {
754                 /*
755                  * Not enough space for the basic request. So need to flush
756                  * out the remainder and then wait for base + reserved.
757                  */
758                 wait_bytes = remain_actual + total_bytes;
759                 need_wrap = true;
760         } else {
761                 if (unlikely(total_bytes > remain_usable)) {
762                         /*
763                          * The base request will fit but the reserved space
764                          * falls off the end. So only need to to wait for the
765                          * reserved size after flushing out the remainder.
766                          */
767                         wait_bytes = remain_actual + ringbuf->reserved_size;
768                         need_wrap = true;
769                 } else if (total_bytes > ringbuf->space) {
770                         /* No wrapping required, just waiting. */
771                         wait_bytes = total_bytes;
772                 }
773         }
774
775         if (wait_bytes) {
776                 ret = logical_ring_wait_for_space(req, wait_bytes);
777                 if (unlikely(ret))
778                         return ret;
779
780                 if (need_wrap)
781                         __wrap_ring_buffer(ringbuf);
782         }
783
784         return 0;
785 }
786
787 /**
788  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
789  *
790  * @request: The request to start some new work for
791  * @ctx: Logical ring context whose ringbuffer is being prepared.
792  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
793  *
794  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
795  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
796  * and also preallocates a request (every workload submission is still mediated through
797  * requests, same as it did with legacy ringbuffer submission).
798  *
799  * Return: non-zero if the ringbuffer is not ready to be written to.
800  */
801 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
802 {
803         struct drm_i915_private *dev_priv;
804         int ret;
805
806         WARN_ON(req == NULL);
807         dev_priv = req->ring->dev->dev_private;
808
809         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
810                                    dev_priv->mm.interruptible);
811         if (ret)
812                 return ret;
813
814         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
815         if (ret)
816                 return ret;
817
818         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
819         return 0;
820 }
821
822 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
823 {
824         /*
825          * The first call merely notes the reserve request and is common for
826          * all back ends. The subsequent localised _begin() call actually
827          * ensures that the reservation is available. Without the begin, if
828          * the request creator immediately submitted the request without
829          * adding any commands to it then there might not actually be
830          * sufficient room for the submission commands.
831          */
832         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
833
834         return intel_logical_ring_begin(request, 0);
835 }
836
837 /**
838  * execlists_submission() - submit a batchbuffer for execution, Execlists style
839  * @dev: DRM device.
840  * @file: DRM file.
841  * @ring: Engine Command Streamer to submit to.
842  * @ctx: Context to employ for this submission.
843  * @args: execbuffer call arguments.
844  * @vmas: list of vmas.
845  * @batch_obj: the batchbuffer to submit.
846  * @exec_start: batchbuffer start virtual address pointer.
847  * @dispatch_flags: translated execbuffer call flags.
848  *
849  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
850  * away the submission details of the execbuffer ioctl call.
851  *
852  * Return: non-zero if the submission fails.
853  */
854 int intel_execlists_submission(struct i915_execbuffer_params *params,
855                                struct drm_i915_gem_execbuffer2 *args,
856                                struct list_head *vmas)
857 {
858         struct drm_device       *dev = params->dev;
859         struct intel_engine_cs  *ring = params->ring;
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
862         u64 exec_start;
863         int instp_mode;
864         u32 instp_mask;
865         int ret;
866
867         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
868         instp_mask = I915_EXEC_CONSTANTS_MASK;
869         switch (instp_mode) {
870         case I915_EXEC_CONSTANTS_REL_GENERAL:
871         case I915_EXEC_CONSTANTS_ABSOLUTE:
872         case I915_EXEC_CONSTANTS_REL_SURFACE:
873                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
874                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
875                         return -EINVAL;
876                 }
877
878                 if (instp_mode != dev_priv->relative_constants_mode) {
879                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
880                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
881                                 return -EINVAL;
882                         }
883
884                         /* The HW changed the meaning on this bit on gen6 */
885                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
886                 }
887                 break;
888         default:
889                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
890                 return -EINVAL;
891         }
892
893         if (args->num_cliprects != 0) {
894                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
895                 return -EINVAL;
896         } else {
897                 if (args->DR4 == 0xffffffff) {
898                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
899                         args->DR4 = 0;
900                 }
901
902                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
903                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
904                         return -EINVAL;
905                 }
906         }
907
908         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
909                 DRM_DEBUG("sol reset is gen7 only\n");
910                 return -EINVAL;
911         }
912
913         ret = execlists_move_to_gpu(params->request, vmas);
914         if (ret)
915                 return ret;
916
917         if (ring == &dev_priv->ring[RCS] &&
918             instp_mode != dev_priv->relative_constants_mode) {
919                 ret = intel_logical_ring_begin(params->request, 4);
920                 if (ret)
921                         return ret;
922
923                 intel_logical_ring_emit(ringbuf, MI_NOOP);
924                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
925                 intel_logical_ring_emit(ringbuf, INSTPM);
926                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
927                 intel_logical_ring_advance(ringbuf);
928
929                 dev_priv->relative_constants_mode = instp_mode;
930         }
931
932         exec_start = params->batch_obj_vm_offset +
933                      args->batch_start_offset;
934
935         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
936         if (ret)
937                 return ret;
938
939         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
940
941         i915_gem_execbuffer_move_to_active(vmas, params->request);
942         i915_gem_execbuffer_retire_commands(params);
943
944         return 0;
945 }
946
947 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
948 {
949         struct drm_i915_gem_request *req, *tmp;
950         struct list_head retired_list;
951
952         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
953         if (list_empty(&ring->execlist_retired_req_list))
954                 return;
955
956         INIT_LIST_HEAD(&retired_list);
957         spin_lock_irq(&ring->execlist_lock);
958         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
959         spin_unlock_irq(&ring->execlist_lock);
960
961         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
962                 struct intel_context *ctx = req->ctx;
963                 struct drm_i915_gem_object *ctx_obj =
964                                 ctx->engine[ring->id].state;
965
966                 if (ctx_obj && (ctx != ring->default_context))
967                         intel_lr_context_unpin(req);
968                 list_del(&req->execlist_link);
969                 i915_gem_request_unreference(req);
970         }
971 }
972
973 void intel_logical_ring_stop(struct intel_engine_cs *ring)
974 {
975         struct drm_i915_private *dev_priv = ring->dev->dev_private;
976         int ret;
977
978         if (!intel_ring_initialized(ring))
979                 return;
980
981         ret = intel_ring_idle(ring);
982         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
983                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
984                           ring->name, ret);
985
986         /* TODO: Is this correct with Execlists enabled? */
987         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
988         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
989                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
990                 return;
991         }
992         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
993 }
994
995 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
996 {
997         struct intel_engine_cs *ring = req->ring;
998         int ret;
999
1000         if (!ring->gpu_caches_dirty)
1001                 return 0;
1002
1003         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1004         if (ret)
1005                 return ret;
1006
1007         ring->gpu_caches_dirty = false;
1008         return 0;
1009 }
1010
1011 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1012 {
1013         struct drm_i915_private *dev_priv = rq->i915;
1014         struct intel_engine_cs *ring = rq->ring;
1015         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1016         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1017         int ret = 0;
1018
1019         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1020         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1021                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1022                                 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1023                 if (ret)
1024                         goto reset_pin_count;
1025
1026                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1027                 if (ret)
1028                         goto unpin_ctx_obj;
1029
1030                 ctx_obj->dirty = true;
1031
1032                 /* Invalidate GuC TLB. */
1033                 if (i915.enable_guc_submission)
1034                         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1035         }
1036
1037         return ret;
1038
1039 unpin_ctx_obj:
1040         i915_gem_object_ggtt_unpin(ctx_obj);
1041 reset_pin_count:
1042         rq->ctx->engine[ring->id].pin_count = 0;
1043
1044         return ret;
1045 }
1046
1047 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1048 {
1049         struct intel_engine_cs *ring = rq->ring;
1050         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1051         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1052
1053         if (ctx_obj) {
1054                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1055                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1056                         intel_unpin_ringbuffer_obj(ringbuf);
1057                         i915_gem_object_ggtt_unpin(ctx_obj);
1058                 }
1059         }
1060 }
1061
1062 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1063 {
1064         int ret, i;
1065         struct intel_engine_cs *ring = req->ring;
1066         struct intel_ringbuffer *ringbuf = req->ringbuf;
1067         struct drm_device *dev = ring->dev;
1068         struct drm_i915_private *dev_priv = dev->dev_private;
1069         struct i915_workarounds *w = &dev_priv->workarounds;
1070
1071         if (WARN_ON_ONCE(w->count == 0))
1072                 return 0;
1073
1074         ring->gpu_caches_dirty = true;
1075         ret = logical_ring_flush_all_caches(req);
1076         if (ret)
1077                 return ret;
1078
1079         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1080         if (ret)
1081                 return ret;
1082
1083         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1084         for (i = 0; i < w->count; i++) {
1085                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1086                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1087         }
1088         intel_logical_ring_emit(ringbuf, MI_NOOP);
1089
1090         intel_logical_ring_advance(ringbuf);
1091
1092         ring->gpu_caches_dirty = true;
1093         ret = logical_ring_flush_all_caches(req);
1094         if (ret)
1095                 return ret;
1096
1097         return 0;
1098 }
1099
1100 #define wa_ctx_emit(batch, index, cmd)                                  \
1101         do {                                                            \
1102                 int __index = (index)++;                                \
1103                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1104                         return -ENOSPC;                                 \
1105                 }                                                       \
1106                 batch[__index] = (cmd);                                 \
1107         } while (0)
1108
1109
1110 /*
1111  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1112  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1113  * but there is a slight complication as this is applied in WA batch where the
1114  * values are only initialized once so we cannot take register value at the
1115  * beginning and reuse it further; hence we save its value to memory, upload a
1116  * constant value with bit21 set and then we restore it back with the saved value.
1117  * To simplify the WA, a constant value is formed by using the default value
1118  * of this register. This shouldn't be a problem because we are only modifying
1119  * it for a short period and this batch in non-premptible. We can ofcourse
1120  * use additional instructions that read the actual value of the register
1121  * at that time and set our bit of interest but it makes the WA complicated.
1122  *
1123  * This WA is also required for Gen9 so extracting as a function avoids
1124  * code duplication.
1125  */
1126 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1127                                                 uint32_t *const batch,
1128                                                 uint32_t index)
1129 {
1130         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1131
1132         /*
1133          * WaDisableLSQCROPERFforOCL:skl
1134          * This WA is implemented in skl_init_clock_gating() but since
1135          * this batch updates GEN8_L3SQCREG4 with default value we need to
1136          * set this bit here to retain the WA during flush.
1137          */
1138         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1139                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1140
1141         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1142                                    MI_SRM_LRM_GLOBAL_GTT));
1143         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1144         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1145         wa_ctx_emit(batch, index, 0);
1146
1147         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1148         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1149         wa_ctx_emit(batch, index, l3sqc4_flush);
1150
1151         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1152         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1153                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1154         wa_ctx_emit(batch, index, 0);
1155         wa_ctx_emit(batch, index, 0);
1156         wa_ctx_emit(batch, index, 0);
1157         wa_ctx_emit(batch, index, 0);
1158
1159         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1160                                    MI_SRM_LRM_GLOBAL_GTT));
1161         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1162         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1163         wa_ctx_emit(batch, index, 0);
1164
1165         return index;
1166 }
1167
1168 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1169                                     uint32_t offset,
1170                                     uint32_t start_alignment)
1171 {
1172         return wa_ctx->offset = ALIGN(offset, start_alignment);
1173 }
1174
1175 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1176                              uint32_t offset,
1177                              uint32_t size_alignment)
1178 {
1179         wa_ctx->size = offset - wa_ctx->offset;
1180
1181         WARN(wa_ctx->size % size_alignment,
1182              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1183              wa_ctx->size, size_alignment);
1184         return 0;
1185 }
1186
1187 /**
1188  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1189  *
1190  * @ring: only applicable for RCS
1191  * @wa_ctx: structure representing wa_ctx
1192  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1193  *    with the offset value received as input.
1194  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1195  * @batch: page in which WA are loaded
1196  * @offset: This field specifies the start of the batch, it should be
1197  *  cache-aligned otherwise it is adjusted accordingly.
1198  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1199  *  initialized at the beginning and shared across all contexts but this field
1200  *  helps us to have multiple batches at different offsets and select them based
1201  *  on a criteria. At the moment this batch always start at the beginning of the page
1202  *  and at this point we don't have multiple wa_ctx batch buffers.
1203  *
1204  *  The number of WA applied are not known at the beginning; we use this field
1205  *  to return the no of DWORDS written.
1206  *
1207  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1208  *  so it adds NOOPs as padding to make it cacheline aligned.
1209  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1210  *  makes a complete batch buffer.
1211  *
1212  * Return: non-zero if we exceed the PAGE_SIZE limit.
1213  */
1214
1215 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1216                                     struct i915_wa_ctx_bb *wa_ctx,
1217                                     uint32_t *const batch,
1218                                     uint32_t *offset)
1219 {
1220         uint32_t scratch_addr;
1221         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1222
1223         /* WaDisableCtxRestoreArbitration:bdw,chv */
1224         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1225
1226         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1227         if (IS_BROADWELL(ring->dev)) {
1228                 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1229                 if (index < 0)
1230                         return index;
1231         }
1232
1233         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1234         /* Actual scratch location is at 128 bytes offset */
1235         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1236
1237         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1238         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1239                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1240                                    PIPE_CONTROL_CS_STALL |
1241                                    PIPE_CONTROL_QW_WRITE));
1242         wa_ctx_emit(batch, index, scratch_addr);
1243         wa_ctx_emit(batch, index, 0);
1244         wa_ctx_emit(batch, index, 0);
1245         wa_ctx_emit(batch, index, 0);
1246
1247         /* Pad to end of cacheline */
1248         while (index % CACHELINE_DWORDS)
1249                 wa_ctx_emit(batch, index, MI_NOOP);
1250
1251         /*
1252          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1253          * execution depends on the length specified in terms of cache lines
1254          * in the register CTX_RCS_INDIRECT_CTX
1255          */
1256
1257         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1258 }
1259
1260 /**
1261  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1262  *
1263  * @ring: only applicable for RCS
1264  * @wa_ctx: structure representing wa_ctx
1265  *  offset: specifies start of the batch, should be cache-aligned.
1266  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1267  * @batch: page in which WA are loaded
1268  * @offset: This field specifies the start of this batch.
1269  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1270  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1271  *
1272  *   The number of DWORDS written are returned using this field.
1273  *
1274  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1275  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1276  */
1277 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1278                                struct i915_wa_ctx_bb *wa_ctx,
1279                                uint32_t *const batch,
1280                                uint32_t *offset)
1281 {
1282         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1283
1284         /* WaDisableCtxRestoreArbitration:bdw,chv */
1285         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1286
1287         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1288
1289         return wa_ctx_end(wa_ctx, *offset = index, 1);
1290 }
1291
1292 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1293                                     struct i915_wa_ctx_bb *wa_ctx,
1294                                     uint32_t *const batch,
1295                                     uint32_t *offset)
1296 {
1297         int ret;
1298         struct drm_device *dev = ring->dev;
1299         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1300
1301         /* WaDisableCtxRestoreArbitration:skl,bxt */
1302         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1303             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1304                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1305
1306         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1307         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1308         if (ret < 0)
1309                 return ret;
1310         index = ret;
1311
1312         /* Pad to end of cacheline */
1313         while (index % CACHELINE_DWORDS)
1314                 wa_ctx_emit(batch, index, MI_NOOP);
1315
1316         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1317 }
1318
1319 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1320                                struct i915_wa_ctx_bb *wa_ctx,
1321                                uint32_t *const batch,
1322                                uint32_t *offset)
1323 {
1324         struct drm_device *dev = ring->dev;
1325         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1326
1327         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1328         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1329             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1330                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1331                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1332                 wa_ctx_emit(batch, index,
1333                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1334                 wa_ctx_emit(batch, index, MI_NOOP);
1335         }
1336
1337         /* WaDisableCtxRestoreArbitration:skl,bxt */
1338         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1339             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1340                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1341
1342         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1343
1344         return wa_ctx_end(wa_ctx, *offset = index, 1);
1345 }
1346
1347 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1348 {
1349         int ret;
1350
1351         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1352         if (!ring->wa_ctx.obj) {
1353                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1354                 return -ENOMEM;
1355         }
1356
1357         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1358         if (ret) {
1359                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1360                                  ret);
1361                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1362                 return ret;
1363         }
1364
1365         return 0;
1366 }
1367
1368 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1369 {
1370         if (ring->wa_ctx.obj) {
1371                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1372                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1373                 ring->wa_ctx.obj = NULL;
1374         }
1375 }
1376
1377 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1378 {
1379         int ret;
1380         uint32_t *batch;
1381         uint32_t offset;
1382         struct page *page;
1383         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1384
1385         WARN_ON(ring->id != RCS);
1386
1387         /* update this when WA for higher Gen are added */
1388         if (INTEL_INFO(ring->dev)->gen > 9) {
1389                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1390                           INTEL_INFO(ring->dev)->gen);
1391                 return 0;
1392         }
1393
1394         /* some WA perform writes to scratch page, ensure it is valid */
1395         if (ring->scratch.obj == NULL) {
1396                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1397                 return -EINVAL;
1398         }
1399
1400         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1401         if (ret) {
1402                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1403                 return ret;
1404         }
1405
1406         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1407         batch = kmap_atomic(page);
1408         offset = 0;
1409
1410         if (INTEL_INFO(ring->dev)->gen == 8) {
1411                 ret = gen8_init_indirectctx_bb(ring,
1412                                                &wa_ctx->indirect_ctx,
1413                                                batch,
1414                                                &offset);
1415                 if (ret)
1416                         goto out;
1417
1418                 ret = gen8_init_perctx_bb(ring,
1419                                           &wa_ctx->per_ctx,
1420                                           batch,
1421                                           &offset);
1422                 if (ret)
1423                         goto out;
1424         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1425                 ret = gen9_init_indirectctx_bb(ring,
1426                                                &wa_ctx->indirect_ctx,
1427                                                batch,
1428                                                &offset);
1429                 if (ret)
1430                         goto out;
1431
1432                 ret = gen9_init_perctx_bb(ring,
1433                                           &wa_ctx->per_ctx,
1434                                           batch,
1435                                           &offset);
1436                 if (ret)
1437                         goto out;
1438         }
1439
1440 out:
1441         kunmap_atomic(batch);
1442         if (ret)
1443                 lrc_destroy_wa_ctx_obj(ring);
1444
1445         return ret;
1446 }
1447
1448 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1449 {
1450         struct drm_device *dev = ring->dev;
1451         struct drm_i915_private *dev_priv = dev->dev_private;
1452
1453         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1454         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1455
1456         if (ring->status_page.obj) {
1457                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1458                            (u32)ring->status_page.gfx_addr);
1459                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1460         }
1461
1462         I915_WRITE(RING_MODE_GEN7(ring),
1463                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1464                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1465         POSTING_READ(RING_MODE_GEN7(ring));
1466         ring->next_context_status_buffer = 0;
1467         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1468
1469         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1470
1471         return 0;
1472 }
1473
1474 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1475 {
1476         struct drm_device *dev = ring->dev;
1477         struct drm_i915_private *dev_priv = dev->dev_private;
1478         int ret;
1479
1480         ret = gen8_init_common_ring(ring);
1481         if (ret)
1482                 return ret;
1483
1484         /* We need to disable the AsyncFlip performance optimisations in order
1485          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1486          * programmed to '1' on all products.
1487          *
1488          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1489          */
1490         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1491
1492         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1493
1494         return init_workarounds_ring(ring);
1495 }
1496
1497 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1498 {
1499         int ret;
1500
1501         ret = gen8_init_common_ring(ring);
1502         if (ret)
1503                 return ret;
1504
1505         return init_workarounds_ring(ring);
1506 }
1507
1508 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1509 {
1510         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1511         struct intel_engine_cs *ring = req->ring;
1512         struct intel_ringbuffer *ringbuf = req->ringbuf;
1513         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1514         int i, ret;
1515
1516         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1517         if (ret)
1518                 return ret;
1519
1520         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1521         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1522                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1523
1524                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1525                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1526                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1527                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1528         }
1529
1530         intel_logical_ring_emit(ringbuf, MI_NOOP);
1531         intel_logical_ring_advance(ringbuf);
1532
1533         return 0;
1534 }
1535
1536 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1537                               u64 offset, unsigned dispatch_flags)
1538 {
1539         struct intel_ringbuffer *ringbuf = req->ringbuf;
1540         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1541         int ret;
1542
1543         /* Don't rely in hw updating PDPs, specially in lite-restore.
1544          * Ideally, we should set Force PD Restore in ctx descriptor,
1545          * but we can't. Force Restore would be a second option, but
1546          * it is unsafe in case of lite-restore (because the ctx is
1547          * not idle). PML4 is allocated during ppgtt init so this is
1548          * not needed in 48-bit.*/
1549         if (req->ctx->ppgtt &&
1550             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1551                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1552                     !intel_vgpu_active(req->i915->dev)) {
1553                         ret = intel_logical_ring_emit_pdps(req);
1554                         if (ret)
1555                                 return ret;
1556                 }
1557
1558                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1559         }
1560
1561         ret = intel_logical_ring_begin(req, 4);
1562         if (ret)
1563                 return ret;
1564
1565         /* FIXME(BDW): Address space and security selectors. */
1566         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1567                                 (ppgtt<<8) |
1568                                 (dispatch_flags & I915_DISPATCH_RS ?
1569                                  MI_BATCH_RESOURCE_STREAMER : 0));
1570         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1571         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1572         intel_logical_ring_emit(ringbuf, MI_NOOP);
1573         intel_logical_ring_advance(ringbuf);
1574
1575         return 0;
1576 }
1577
1578 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1579 {
1580         struct drm_device *dev = ring->dev;
1581         struct drm_i915_private *dev_priv = dev->dev_private;
1582         unsigned long flags;
1583
1584         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1585                 return false;
1586
1587         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588         if (ring->irq_refcount++ == 0) {
1589                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1590                 POSTING_READ(RING_IMR(ring->mmio_base));
1591         }
1592         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1593
1594         return true;
1595 }
1596
1597 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1598 {
1599         struct drm_device *dev = ring->dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         unsigned long flags;
1602
1603         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1604         if (--ring->irq_refcount == 0) {
1605                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1606                 POSTING_READ(RING_IMR(ring->mmio_base));
1607         }
1608         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1609 }
1610
1611 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1612                            u32 invalidate_domains,
1613                            u32 unused)
1614 {
1615         struct intel_ringbuffer *ringbuf = request->ringbuf;
1616         struct intel_engine_cs *ring = ringbuf->ring;
1617         struct drm_device *dev = ring->dev;
1618         struct drm_i915_private *dev_priv = dev->dev_private;
1619         uint32_t cmd;
1620         int ret;
1621
1622         ret = intel_logical_ring_begin(request, 4);
1623         if (ret)
1624                 return ret;
1625
1626         cmd = MI_FLUSH_DW + 1;
1627
1628         /* We always require a command barrier so that subsequent
1629          * commands, such as breadcrumb interrupts, are strictly ordered
1630          * wrt the contents of the write cache being flushed to memory
1631          * (and thus being coherent from the CPU).
1632          */
1633         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1634
1635         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1636                 cmd |= MI_INVALIDATE_TLB;
1637                 if (ring == &dev_priv->ring[VCS])
1638                         cmd |= MI_INVALIDATE_BSD;
1639         }
1640
1641         intel_logical_ring_emit(ringbuf, cmd);
1642         intel_logical_ring_emit(ringbuf,
1643                                 I915_GEM_HWS_SCRATCH_ADDR |
1644                                 MI_FLUSH_DW_USE_GTT);
1645         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1646         intel_logical_ring_emit(ringbuf, 0); /* value */
1647         intel_logical_ring_advance(ringbuf);
1648
1649         return 0;
1650 }
1651
1652 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1653                                   u32 invalidate_domains,
1654                                   u32 flush_domains)
1655 {
1656         struct intel_ringbuffer *ringbuf = request->ringbuf;
1657         struct intel_engine_cs *ring = ringbuf->ring;
1658         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1659         bool vf_flush_wa;
1660         u32 flags = 0;
1661         int ret;
1662
1663         flags |= PIPE_CONTROL_CS_STALL;
1664
1665         if (flush_domains) {
1666                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1667                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1668         }
1669
1670         if (invalidate_domains) {
1671                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1672                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1673                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1674                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1675                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1676                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1677                 flags |= PIPE_CONTROL_QW_WRITE;
1678                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1679         }
1680
1681         /*
1682          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1683          * control.
1684          */
1685         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1686                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1687
1688         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1689         if (ret)
1690                 return ret;
1691
1692         if (vf_flush_wa) {
1693                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1694                 intel_logical_ring_emit(ringbuf, 0);
1695                 intel_logical_ring_emit(ringbuf, 0);
1696                 intel_logical_ring_emit(ringbuf, 0);
1697                 intel_logical_ring_emit(ringbuf, 0);
1698                 intel_logical_ring_emit(ringbuf, 0);
1699         }
1700
1701         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1702         intel_logical_ring_emit(ringbuf, flags);
1703         intel_logical_ring_emit(ringbuf, scratch_addr);
1704         intel_logical_ring_emit(ringbuf, 0);
1705         intel_logical_ring_emit(ringbuf, 0);
1706         intel_logical_ring_emit(ringbuf, 0);
1707         intel_logical_ring_advance(ringbuf);
1708
1709         return 0;
1710 }
1711
1712 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1713 {
1714         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1715 }
1716
1717 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1718 {
1719         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1720 }
1721
1722 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1723 {
1724
1725         /*
1726          * On BXT A steppings there is a HW coherency issue whereby the
1727          * MI_STORE_DATA_IMM storing the completed request's seqno
1728          * occasionally doesn't invalidate the CPU cache. Work around this by
1729          * clflushing the corresponding cacheline whenever the caller wants
1730          * the coherency to be guaranteed. Note that this cacheline is known
1731          * to be clean at this point, since we only write it in
1732          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1733          * this clflush in practice becomes an invalidate operation.
1734          */
1735
1736         if (!lazy_coherency)
1737                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1738
1739         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1740 }
1741
1742 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1743 {
1744         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1745
1746         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1747         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1748 }
1749
1750 static int gen8_emit_request(struct drm_i915_gem_request *request)
1751 {
1752         struct intel_ringbuffer *ringbuf = request->ringbuf;
1753         struct intel_engine_cs *ring = ringbuf->ring;
1754         u32 cmd;
1755         int ret;
1756
1757         /*
1758          * Reserve space for 2 NOOPs at the end of each request to be
1759          * used as a workaround for not being allowed to do lite
1760          * restore with HEAD==TAIL (WaIdleLiteRestore).
1761          */
1762         ret = intel_logical_ring_begin(request, 8);
1763         if (ret)
1764                 return ret;
1765
1766         cmd = MI_STORE_DWORD_IMM_GEN4;
1767         cmd |= MI_GLOBAL_GTT;
1768
1769         intel_logical_ring_emit(ringbuf, cmd);
1770         intel_logical_ring_emit(ringbuf,
1771                                 (ring->status_page.gfx_addr +
1772                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1773         intel_logical_ring_emit(ringbuf, 0);
1774         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1775         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1776         intel_logical_ring_emit(ringbuf, MI_NOOP);
1777         intel_logical_ring_advance_and_submit(request);
1778
1779         /*
1780          * Here we add two extra NOOPs as padding to avoid
1781          * lite restore of a context with HEAD==TAIL.
1782          */
1783         intel_logical_ring_emit(ringbuf, MI_NOOP);
1784         intel_logical_ring_emit(ringbuf, MI_NOOP);
1785         intel_logical_ring_advance(ringbuf);
1786
1787         return 0;
1788 }
1789
1790 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1791 {
1792         struct render_state so;
1793         int ret;
1794
1795         ret = i915_gem_render_state_prepare(req->ring, &so);
1796         if (ret)
1797                 return ret;
1798
1799         if (so.rodata == NULL)
1800                 return 0;
1801
1802         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1803                                        I915_DISPATCH_SECURE);
1804         if (ret)
1805                 goto out;
1806
1807         ret = req->ring->emit_bb_start(req,
1808                                        (so.ggtt_offset + so.aux_batch_offset),
1809                                        I915_DISPATCH_SECURE);
1810         if (ret)
1811                 goto out;
1812
1813         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1814
1815 out:
1816         i915_gem_render_state_fini(&so);
1817         return ret;
1818 }
1819
1820 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1821 {
1822         int ret;
1823
1824         ret = intel_logical_ring_workarounds_emit(req);
1825         if (ret)
1826                 return ret;
1827
1828         ret = intel_rcs_context_init_mocs(req);
1829         /*
1830          * Failing to program the MOCS is non-fatal.The system will not
1831          * run at peak performance. So generate an error and carry on.
1832          */
1833         if (ret)
1834                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1835
1836         return intel_lr_context_render_state_init(req);
1837 }
1838
1839 /**
1840  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1841  *
1842  * @ring: Engine Command Streamer.
1843  *
1844  */
1845 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1846 {
1847         struct drm_i915_private *dev_priv;
1848
1849         if (!intel_ring_initialized(ring))
1850                 return;
1851
1852         dev_priv = ring->dev->dev_private;
1853
1854         intel_logical_ring_stop(ring);
1855         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1856
1857         if (ring->cleanup)
1858                 ring->cleanup(ring);
1859
1860         i915_cmd_parser_fini_ring(ring);
1861         i915_gem_batch_pool_fini(&ring->batch_pool);
1862
1863         if (ring->status_page.obj) {
1864                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1865                 ring->status_page.obj = NULL;
1866         }
1867
1868         lrc_destroy_wa_ctx_obj(ring);
1869 }
1870
1871 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1872 {
1873         int ret;
1874
1875         /* Intentionally left blank. */
1876         ring->buffer = NULL;
1877
1878         ring->dev = dev;
1879         INIT_LIST_HEAD(&ring->active_list);
1880         INIT_LIST_HEAD(&ring->request_list);
1881         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1882         init_waitqueue_head(&ring->irq_queue);
1883
1884         INIT_LIST_HEAD(&ring->execlist_queue);
1885         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1886         spin_lock_init(&ring->execlist_lock);
1887
1888         ret = i915_cmd_parser_init_ring(ring);
1889         if (ret)
1890                 return ret;
1891
1892         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1893
1894         return ret;
1895 }
1896
1897 static int logical_render_ring_init(struct drm_device *dev)
1898 {
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1901         int ret;
1902
1903         ring->name = "render ring";
1904         ring->id = RCS;
1905         ring->mmio_base = RENDER_RING_BASE;
1906         ring->irq_enable_mask =
1907                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1908         ring->irq_keep_mask =
1909                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1910         if (HAS_L3_DPF(dev))
1911                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1912
1913         if (INTEL_INFO(dev)->gen >= 9)
1914                 ring->init_hw = gen9_init_render_ring;
1915         else
1916                 ring->init_hw = gen8_init_render_ring;
1917         ring->init_context = gen8_init_rcs_context;
1918         ring->cleanup = intel_fini_pipe_control;
1919         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1920                 ring->get_seqno = bxt_a_get_seqno;
1921                 ring->set_seqno = bxt_a_set_seqno;
1922         } else {
1923                 ring->get_seqno = gen8_get_seqno;
1924                 ring->set_seqno = gen8_set_seqno;
1925         }
1926         ring->emit_request = gen8_emit_request;
1927         ring->emit_flush = gen8_emit_flush_render;
1928         ring->irq_get = gen8_logical_ring_get_irq;
1929         ring->irq_put = gen8_logical_ring_put_irq;
1930         ring->emit_bb_start = gen8_emit_bb_start;
1931
1932         ring->dev = dev;
1933
1934         ret = intel_init_pipe_control(ring);
1935         if (ret)
1936                 return ret;
1937
1938         ret = intel_init_workaround_bb(ring);
1939         if (ret) {
1940                 /*
1941                  * We continue even if we fail to initialize WA batch
1942                  * because we only expect rare glitches but nothing
1943                  * critical to prevent us from using GPU
1944                  */
1945                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1946                           ret);
1947         }
1948
1949         ret = logical_ring_init(dev, ring);
1950         if (ret) {
1951                 lrc_destroy_wa_ctx_obj(ring);
1952         }
1953
1954         return ret;
1955 }
1956
1957 static int logical_bsd_ring_init(struct drm_device *dev)
1958 {
1959         struct drm_i915_private *dev_priv = dev->dev_private;
1960         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1961
1962         ring->name = "bsd ring";
1963         ring->id = VCS;
1964         ring->mmio_base = GEN6_BSD_RING_BASE;
1965         ring->irq_enable_mask =
1966                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1967         ring->irq_keep_mask =
1968                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1969
1970         ring->init_hw = gen8_init_common_ring;
1971         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1972                 ring->get_seqno = bxt_a_get_seqno;
1973                 ring->set_seqno = bxt_a_set_seqno;
1974         } else {
1975                 ring->get_seqno = gen8_get_seqno;
1976                 ring->set_seqno = gen8_set_seqno;
1977         }
1978         ring->emit_request = gen8_emit_request;
1979         ring->emit_flush = gen8_emit_flush;
1980         ring->irq_get = gen8_logical_ring_get_irq;
1981         ring->irq_put = gen8_logical_ring_put_irq;
1982         ring->emit_bb_start = gen8_emit_bb_start;
1983
1984         return logical_ring_init(dev, ring);
1985 }
1986
1987 static int logical_bsd2_ring_init(struct drm_device *dev)
1988 {
1989         struct drm_i915_private *dev_priv = dev->dev_private;
1990         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1991
1992         ring->name = "bds2 ring";
1993         ring->id = VCS2;
1994         ring->mmio_base = GEN8_BSD2_RING_BASE;
1995         ring->irq_enable_mask =
1996                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1997         ring->irq_keep_mask =
1998                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1999
2000         ring->init_hw = gen8_init_common_ring;
2001         ring->get_seqno = gen8_get_seqno;
2002         ring->set_seqno = gen8_set_seqno;
2003         ring->emit_request = gen8_emit_request;
2004         ring->emit_flush = gen8_emit_flush;
2005         ring->irq_get = gen8_logical_ring_get_irq;
2006         ring->irq_put = gen8_logical_ring_put_irq;
2007         ring->emit_bb_start = gen8_emit_bb_start;
2008
2009         return logical_ring_init(dev, ring);
2010 }
2011
2012 static int logical_blt_ring_init(struct drm_device *dev)
2013 {
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2016
2017         ring->name = "blitter ring";
2018         ring->id = BCS;
2019         ring->mmio_base = BLT_RING_BASE;
2020         ring->irq_enable_mask =
2021                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2022         ring->irq_keep_mask =
2023                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2024
2025         ring->init_hw = gen8_init_common_ring;
2026         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2027                 ring->get_seqno = bxt_a_get_seqno;
2028                 ring->set_seqno = bxt_a_set_seqno;
2029         } else {
2030                 ring->get_seqno = gen8_get_seqno;
2031                 ring->set_seqno = gen8_set_seqno;
2032         }
2033         ring->emit_request = gen8_emit_request;
2034         ring->emit_flush = gen8_emit_flush;
2035         ring->irq_get = gen8_logical_ring_get_irq;
2036         ring->irq_put = gen8_logical_ring_put_irq;
2037         ring->emit_bb_start = gen8_emit_bb_start;
2038
2039         return logical_ring_init(dev, ring);
2040 }
2041
2042 static int logical_vebox_ring_init(struct drm_device *dev)
2043 {
2044         struct drm_i915_private *dev_priv = dev->dev_private;
2045         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2046
2047         ring->name = "video enhancement ring";
2048         ring->id = VECS;
2049         ring->mmio_base = VEBOX_RING_BASE;
2050         ring->irq_enable_mask =
2051                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2052         ring->irq_keep_mask =
2053                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2054
2055         ring->init_hw = gen8_init_common_ring;
2056         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2057                 ring->get_seqno = bxt_a_get_seqno;
2058                 ring->set_seqno = bxt_a_set_seqno;
2059         } else {
2060                 ring->get_seqno = gen8_get_seqno;
2061                 ring->set_seqno = gen8_set_seqno;
2062         }
2063         ring->emit_request = gen8_emit_request;
2064         ring->emit_flush = gen8_emit_flush;
2065         ring->irq_get = gen8_logical_ring_get_irq;
2066         ring->irq_put = gen8_logical_ring_put_irq;
2067         ring->emit_bb_start = gen8_emit_bb_start;
2068
2069         return logical_ring_init(dev, ring);
2070 }
2071
2072 /**
2073  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2074  * @dev: DRM device.
2075  *
2076  * This function inits the engines for an Execlists submission style (the equivalent in the
2077  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2078  * those engines that are present in the hardware.
2079  *
2080  * Return: non-zero if the initialization failed.
2081  */
2082 int intel_logical_rings_init(struct drm_device *dev)
2083 {
2084         struct drm_i915_private *dev_priv = dev->dev_private;
2085         int ret;
2086
2087         ret = logical_render_ring_init(dev);
2088         if (ret)
2089                 return ret;
2090
2091         if (HAS_BSD(dev)) {
2092                 ret = logical_bsd_ring_init(dev);
2093                 if (ret)
2094                         goto cleanup_render_ring;
2095         }
2096
2097         if (HAS_BLT(dev)) {
2098                 ret = logical_blt_ring_init(dev);
2099                 if (ret)
2100                         goto cleanup_bsd_ring;
2101         }
2102
2103         if (HAS_VEBOX(dev)) {
2104                 ret = logical_vebox_ring_init(dev);
2105                 if (ret)
2106                         goto cleanup_blt_ring;
2107         }
2108
2109         if (HAS_BSD2(dev)) {
2110                 ret = logical_bsd2_ring_init(dev);
2111                 if (ret)
2112                         goto cleanup_vebox_ring;
2113         }
2114
2115         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2116         if (ret)
2117                 goto cleanup_bsd2_ring;
2118
2119         return 0;
2120
2121 cleanup_bsd2_ring:
2122         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2123 cleanup_vebox_ring:
2124         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2125 cleanup_blt_ring:
2126         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2127 cleanup_bsd_ring:
2128         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2129 cleanup_render_ring:
2130         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2131
2132         return ret;
2133 }
2134
2135 static u32
2136 make_rpcs(struct drm_device *dev)
2137 {
2138         u32 rpcs = 0;
2139
2140         /*
2141          * No explicit RPCS request is needed to ensure full
2142          * slice/subslice/EU enablement prior to Gen9.
2143         */
2144         if (INTEL_INFO(dev)->gen < 9)
2145                 return 0;
2146
2147         /*
2148          * Starting in Gen9, render power gating can leave
2149          * slice/subslice/EU in a partially enabled state. We
2150          * must make an explicit request through RPCS for full
2151          * enablement.
2152         */
2153         if (INTEL_INFO(dev)->has_slice_pg) {
2154                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2155                 rpcs |= INTEL_INFO(dev)->slice_total <<
2156                         GEN8_RPCS_S_CNT_SHIFT;
2157                 rpcs |= GEN8_RPCS_ENABLE;
2158         }
2159
2160         if (INTEL_INFO(dev)->has_subslice_pg) {
2161                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2162                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2163                         GEN8_RPCS_SS_CNT_SHIFT;
2164                 rpcs |= GEN8_RPCS_ENABLE;
2165         }
2166
2167         if (INTEL_INFO(dev)->has_eu_pg) {
2168                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2169                         GEN8_RPCS_EU_MIN_SHIFT;
2170                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2171                         GEN8_RPCS_EU_MAX_SHIFT;
2172                 rpcs |= GEN8_RPCS_ENABLE;
2173         }
2174
2175         return rpcs;
2176 }
2177
2178 static int
2179 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2180                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2181 {
2182         struct drm_device *dev = ring->dev;
2183         struct drm_i915_private *dev_priv = dev->dev_private;
2184         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2185         struct page *page;
2186         uint32_t *reg_state;
2187         int ret;
2188
2189         if (!ppgtt)
2190                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2191
2192         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2193         if (ret) {
2194                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2195                 return ret;
2196         }
2197
2198         ret = i915_gem_object_get_pages(ctx_obj);
2199         if (ret) {
2200                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2201                 return ret;
2202         }
2203
2204         i915_gem_object_pin_pages(ctx_obj);
2205
2206         /* The second page of the context object contains some fields which must
2207          * be set up prior to the first execution. */
2208         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2209         reg_state = kmap_atomic(page);
2210
2211         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2212          * commands followed by (reg, value) pairs. The values we are setting here are
2213          * only for the first context restore: on a subsequent save, the GPU will
2214          * recreate this batchbuffer with new values (including all the missing
2215          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2216         if (ring->id == RCS)
2217                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2218         else
2219                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2220         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2221         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2222         reg_state[CTX_CONTEXT_CONTROL+1] =
2223                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2224                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2225                                    CTX_CTRL_RS_CTX_ENABLE);
2226         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2227         reg_state[CTX_RING_HEAD+1] = 0;
2228         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2229         reg_state[CTX_RING_TAIL+1] = 0;
2230         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2231         /* Ring buffer start address is not known until the buffer is pinned.
2232          * It is written to the context image in execlists_update_context()
2233          */
2234         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2235         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2236                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2237         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2238         reg_state[CTX_BB_HEAD_U+1] = 0;
2239         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2240         reg_state[CTX_BB_HEAD_L+1] = 0;
2241         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2242         reg_state[CTX_BB_STATE+1] = (1<<5);
2243         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2244         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2245         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2246         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2247         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2248         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2249         if (ring->id == RCS) {
2250                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2251                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2252                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2253                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2254                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2255                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2256                 if (ring->wa_ctx.obj) {
2257                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2258                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2259
2260                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2261                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2262                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2263
2264                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2265                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2266
2267                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2268                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2269                                 0x01;
2270                 }
2271         }
2272         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2273         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2274         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2275         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2276         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2277         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2278         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2279         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2280         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2281         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2282         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2283         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2284
2285         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2286                 /* 64b PPGTT (48bit canonical)
2287                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2288                  * other PDP Descriptors are ignored.
2289                  */
2290                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2291         } else {
2292                 /* 32b PPGTT
2293                  * PDP*_DESCRIPTOR contains the base address of space supported.
2294                  * With dynamic page allocation, PDPs may not be allocated at
2295                  * this point. Point the unallocated PDPs to the scratch page
2296                  */
2297                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2298                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2299                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2300                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2301         }
2302
2303         if (ring->id == RCS) {
2304                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2305                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2306                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2307         }
2308
2309         kunmap_atomic(reg_state);
2310
2311         ctx_obj->dirty = 1;
2312         set_page_dirty(page);
2313         i915_gem_object_unpin_pages(ctx_obj);
2314
2315         return 0;
2316 }
2317
2318 /**
2319  * intel_lr_context_free() - free the LRC specific bits of a context
2320  * @ctx: the LR context to free.
2321  *
2322  * The real context freeing is done in i915_gem_context_free: this only
2323  * takes care of the bits that are LRC related: the per-engine backing
2324  * objects and the logical ringbuffer.
2325  */
2326 void intel_lr_context_free(struct intel_context *ctx)
2327 {
2328         int i;
2329
2330         for (i = 0; i < I915_NUM_RINGS; i++) {
2331                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2332
2333                 if (ctx_obj) {
2334                         struct intel_ringbuffer *ringbuf =
2335                                         ctx->engine[i].ringbuf;
2336                         struct intel_engine_cs *ring = ringbuf->ring;
2337
2338                         if (ctx == ring->default_context) {
2339                                 intel_unpin_ringbuffer_obj(ringbuf);
2340                                 i915_gem_object_ggtt_unpin(ctx_obj);
2341                         }
2342                         WARN_ON(ctx->engine[ring->id].pin_count);
2343                         intel_ringbuffer_free(ringbuf);
2344                         drm_gem_object_unreference(&ctx_obj->base);
2345                 }
2346         }
2347 }
2348
2349 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2350 {
2351         int ret = 0;
2352
2353         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2354
2355         switch (ring->id) {
2356         case RCS:
2357                 if (INTEL_INFO(ring->dev)->gen >= 9)
2358                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2359                 else
2360                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2361                 break;
2362         case VCS:
2363         case BCS:
2364         case VECS:
2365         case VCS2:
2366                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2367                 break;
2368         }
2369
2370         return ret;
2371 }
2372
2373 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2374                 struct drm_i915_gem_object *default_ctx_obj)
2375 {
2376         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2377         struct page *page;
2378
2379         /* The HWSP is part of the default context object in LRC mode. */
2380         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2381                         + LRC_PPHWSP_PN * PAGE_SIZE;
2382         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2383         ring->status_page.page_addr = kmap(page);
2384         ring->status_page.obj = default_ctx_obj;
2385
2386         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2387                         (u32)ring->status_page.gfx_addr);
2388         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2389 }
2390
2391 /**
2392  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2393  * @ctx: LR context to create.
2394  * @ring: engine to be used with the context.
2395  *
2396  * This function can be called more than once, with different engines, if we plan
2397  * to use the context with them. The context backing objects and the ringbuffers
2398  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2399  * the creation is a deferred call: it's better to make sure first that we need to use
2400  * a given ring with the context.
2401  *
2402  * Return: non-zero on error.
2403  */
2404 int intel_lr_context_deferred_create(struct intel_context *ctx,
2405                                      struct intel_engine_cs *ring)
2406 {
2407         const bool is_global_default_ctx = (ctx == ring->default_context);
2408         struct drm_device *dev = ring->dev;
2409         struct drm_i915_private *dev_priv = dev->dev_private;
2410         struct drm_i915_gem_object *ctx_obj;
2411         uint32_t context_size;
2412         struct intel_ringbuffer *ringbuf;
2413         int ret;
2414
2415         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2416         WARN_ON(ctx->engine[ring->id].state);
2417
2418         context_size = round_up(get_lr_context_size(ring), 4096);
2419
2420         /* One extra page as the sharing data between driver and GuC */
2421         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2422
2423         ctx_obj = i915_gem_alloc_object(dev, context_size);
2424         if (!ctx_obj) {
2425                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2426                 return -ENOMEM;
2427         }
2428
2429         if (is_global_default_ctx) {
2430                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
2431                                 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
2432                 if (ret) {
2433                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2434                                         ret);
2435                         drm_gem_object_unreference(&ctx_obj->base);
2436                         return ret;
2437                 }
2438
2439                 /* Invalidate GuC TLB. */
2440                 if (i915.enable_guc_submission)
2441                         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
2442         }
2443
2444         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2445         if (IS_ERR(ringbuf)) {
2446                 ret = PTR_ERR(ringbuf);
2447                 goto error_unpin_ctx;
2448         }
2449
2450         if (is_global_default_ctx) {
2451                 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2452                 if (ret) {
2453                         DRM_ERROR(
2454                                   "Failed to pin and map ringbuffer %s: %d\n",
2455                                   ring->name, ret);
2456                         goto error_ringbuf;
2457                 }
2458         }
2459
2460         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2461         if (ret) {
2462                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2463                 goto error;
2464         }
2465
2466         ctx->engine[ring->id].ringbuf = ringbuf;
2467         ctx->engine[ring->id].state = ctx_obj;
2468
2469         if (ctx == ring->default_context)
2470                 lrc_setup_hardware_status_page(ring, ctx_obj);
2471         else if (ring->id == RCS && !ctx->rcs_initialized) {
2472                 if (ring->init_context) {
2473                         struct drm_i915_gem_request *req;
2474
2475                         ret = i915_gem_request_alloc(ring, ctx, &req);
2476                         if (ret)
2477                                 return ret;
2478
2479                         ret = ring->init_context(req);
2480                         if (ret) {
2481                                 DRM_ERROR("ring init context: %d\n", ret);
2482                                 i915_gem_request_cancel(req);
2483                                 ctx->engine[ring->id].ringbuf = NULL;
2484                                 ctx->engine[ring->id].state = NULL;
2485                                 goto error;
2486                         }
2487
2488                         i915_add_request_no_flush(req);
2489                 }
2490
2491                 ctx->rcs_initialized = true;
2492         }
2493
2494         return 0;
2495
2496 error:
2497         if (is_global_default_ctx)
2498                 intel_unpin_ringbuffer_obj(ringbuf);
2499 error_ringbuf:
2500         intel_ringbuffer_free(ringbuf);
2501 error_unpin_ctx:
2502         if (is_global_default_ctx)
2503                 i915_gem_object_ggtt_unpin(ctx_obj);
2504         drm_gem_object_unreference(&ctx_obj->base);
2505         return ret;
2506 }
2507
2508 void intel_lr_context_reset(struct drm_device *dev,
2509                         struct intel_context *ctx)
2510 {
2511         struct drm_i915_private *dev_priv = dev->dev_private;
2512         struct intel_engine_cs *ring;
2513         int i;
2514
2515         for_each_ring(ring, dev_priv, i) {
2516                 struct drm_i915_gem_object *ctx_obj =
2517                                 ctx->engine[ring->id].state;
2518                 struct intel_ringbuffer *ringbuf =
2519                                 ctx->engine[ring->id].ringbuf;
2520                 uint32_t *reg_state;
2521                 struct page *page;
2522
2523                 if (!ctx_obj)
2524                         continue;
2525
2526                 if (i915_gem_object_get_pages(ctx_obj)) {
2527                         WARN(1, "Failed get_pages for context obj\n");
2528                         continue;
2529                 }
2530                 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2531                 reg_state = kmap_atomic(page);
2532
2533                 reg_state[CTX_RING_HEAD+1] = 0;
2534                 reg_state[CTX_RING_TAIL+1] = 0;
2535
2536                 kunmap_atomic(reg_state);
2537
2538                 ringbuf->head = 0;
2539                 ringbuf->tail = 0;
2540         }
2541 }