OSDN Git Service

Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193         const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194                 ppgtt->pdp.page_directory[n]->daddr : \
195                 ppgtt->scratch_pd->daddr; \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201         ADVANCED_CONTEXT = 0,
202         LEGACY_CONTEXT,
203         ADVANCED_AD_CONTEXT,
204         LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208         FAULT_AND_HANG = 0,
209         FAULT_AND_HALT, /* Debug only */
210         FAULT_AND_STREAM,
211         FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214
215 static int intel_lr_context_pin(struct intel_engine_cs *ring,
216                 struct intel_context *ctx);
217
218 /**
219  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220  * @dev: DRM device.
221  * @enable_execlists: value of i915.enable_execlists module parameter.
222  *
223  * Only certain platforms support Execlists (the prerequisites being
224  * support for Logical Ring Contexts and Aliasing PPGTT or better).
225  *
226  * Return: 1 if Execlists is supported and has to be enabled.
227  */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230         WARN_ON(i915.enable_ppgtt == -1);
231
232         if (INTEL_INFO(dev)->gen >= 9)
233                 return 1;
234
235         if (enable_execlists == 0)
236                 return 0;
237
238         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239             i915.use_mmio_flip >= 0)
240                 return 1;
241
242         return 0;
243 }
244
245 /**
246  * intel_execlists_ctx_id() - get the Execlists Context ID
247  * @ctx_obj: Logical Ring Context backing object.
248  *
249  * Do not confuse with ctx->id! Unfortunately we have a name overload
250  * here: the old context ID we pass to userspace as a handler so that
251  * they can refer to a context, and the new context ID we pass to the
252  * ELSP so that the GPU can inform us of the context status via
253  * interrupts.
254  *
255  * Return: 20-bits globally unique context ID.
256  */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261         /* LRCA is required to be 4K aligned so the more significant 20 bits
262          * are globally unique */
263         return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267                                          struct drm_i915_gem_object *ctx_obj)
268 {
269         struct drm_device *dev = ring->dev;
270         uint64_t desc;
271         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275         desc = GEN8_CTX_VALID;
276         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277         if (IS_GEN8(ctx_obj->base.dev))
278                 desc |= GEN8_CTX_L3LLC_COHERENT;
279         desc |= GEN8_CTX_PRIVILEGE;
280         desc |= lrca;
281         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283         /* TODO: WaDisableLiteRestore when we start using semaphore
284          * signalling between Command Streamers */
285         /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288         if (IS_GEN9(dev) &&
289             INTEL_REVID(dev) <= SKL_REVID_B0 &&
290             (ring->id == BCS || ring->id == VCS ||
291             ring->id == VECS || ring->id == VCS2))
292                 desc |= GEN8_CTX_FORCE_RESTORE;
293
294         return desc;
295 }
296
297 static void execlists_elsp_write(struct intel_engine_cs *ring,
298                                  struct drm_i915_gem_object *ctx_obj0,
299                                  struct drm_i915_gem_object *ctx_obj1)
300 {
301         struct drm_device *dev = ring->dev;
302         struct drm_i915_private *dev_priv = dev->dev_private;
303         uint64_t temp = 0;
304         uint32_t desc[4];
305
306         /* XXX: You must always write both descriptors in the order below. */
307         if (ctx_obj1)
308                 temp = execlists_ctx_descriptor(ring, ctx_obj1);
309         else
310                 temp = 0;
311         desc[1] = (u32)(temp >> 32);
312         desc[0] = (u32)temp;
313
314         temp = execlists_ctx_descriptor(ring, ctx_obj0);
315         desc[3] = (u32)(temp >> 32);
316         desc[2] = (u32)temp;
317
318         spin_lock(&dev_priv->uncore.lock);
319         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320         I915_WRITE_FW(RING_ELSP(ring), desc[1]);
321         I915_WRITE_FW(RING_ELSP(ring), desc[0]);
322         I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323
324         /* The context is automatically loaded after the following */
325         I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326
327         /* ELSP is a wo register, so use another nearby reg for posting instead */
328         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330         spin_unlock(&dev_priv->uncore.lock);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
334                                     struct drm_i915_gem_object *ring_obj,
335                                     struct i915_hw_ppgtt *ppgtt,
336                                     u32 tail)
337 {
338         struct page *page;
339         uint32_t *reg_state;
340
341         page = i915_gem_object_get_page(ctx_obj, 1);
342         reg_state = kmap_atomic(page);
343
344         reg_state[CTX_RING_TAIL+1] = tail;
345         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346
347         /* True PPGTT with dynamic page allocation: update PDP registers and
348          * point the unallocated PDPs to the scratch page
349          */
350         if (ppgtt) {
351                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355         }
356
357         kunmap_atomic(reg_state);
358
359         return 0;
360 }
361
362 static void execlists_submit_contexts(struct intel_engine_cs *ring,
363                                       struct intel_context *to0, u32 tail0,
364                                       struct intel_context *to1, u32 tail1)
365 {
366         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
367         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368         struct drm_i915_gem_object *ctx_obj1 = NULL;
369         struct intel_ringbuffer *ringbuf1 = NULL;
370
371         BUG_ON(!ctx_obj0);
372         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374
375         execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376
377         if (to1) {
378                 ringbuf1 = to1->engine[ring->id].ringbuf;
379                 ctx_obj1 = to1->engine[ring->id].state;
380                 BUG_ON(!ctx_obj1);
381                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383
384                 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385         }
386
387         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
388 }
389
390 static void execlists_context_unqueue(struct intel_engine_cs *ring)
391 {
392         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
393         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394
395         assert_spin_locked(&ring->execlist_lock);
396
397         /*
398          * If irqs are not active generate a warning as batches that finish
399          * without the irqs may get lost and a GPU Hang may occur.
400          */
401         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
402
403         if (list_empty(&ring->execlist_queue))
404                 return;
405
406         /* Try to read in pairs */
407         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
408                                  execlist_link) {
409                 if (!req0) {
410                         req0 = cursor;
411                 } else if (req0->ctx == cursor->ctx) {
412                         /* Same ctx: ignore first request, as second request
413                          * will update tail past first request's workload */
414                         cursor->elsp_submitted = req0->elsp_submitted;
415                         list_del(&req0->execlist_link);
416                         list_add_tail(&req0->execlist_link,
417                                 &ring->execlist_retired_req_list);
418                         req0 = cursor;
419                 } else {
420                         req1 = cursor;
421                         break;
422                 }
423         }
424
425         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
426                 /*
427                  * WaIdleLiteRestore: make sure we never cause a lite
428                  * restore with HEAD==TAIL
429                  */
430                 if (req0->elsp_submitted) {
431                         /*
432                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
433                          * as we resubmit the request. See gen8_emit_request()
434                          * for where we prepare the padding after the end of the
435                          * request.
436                          */
437                         struct intel_ringbuffer *ringbuf;
438
439                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
440                         req0->tail += 8;
441                         req0->tail &= ringbuf->size - 1;
442                 }
443         }
444
445         WARN_ON(req1 && req1->elsp_submitted);
446
447         execlists_submit_contexts(ring, req0->ctx, req0->tail,
448                                   req1 ? req1->ctx : NULL,
449                                   req1 ? req1->tail : 0);
450
451         req0->elsp_submitted++;
452         if (req1)
453                 req1->elsp_submitted++;
454 }
455
456 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
457                                            u32 request_id)
458 {
459         struct drm_i915_gem_request *head_req;
460
461         assert_spin_locked(&ring->execlist_lock);
462
463         head_req = list_first_entry_or_null(&ring->execlist_queue,
464                                             struct drm_i915_gem_request,
465                                             execlist_link);
466
467         if (head_req != NULL) {
468                 struct drm_i915_gem_object *ctx_obj =
469                                 head_req->ctx->engine[ring->id].state;
470                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
471                         WARN(head_req->elsp_submitted == 0,
472                              "Never submitted head request\n");
473
474                         if (--head_req->elsp_submitted <= 0) {
475                                 list_del(&head_req->execlist_link);
476                                 list_add_tail(&head_req->execlist_link,
477                                         &ring->execlist_retired_req_list);
478                                 return true;
479                         }
480                 }
481         }
482
483         return false;
484 }
485
486 /**
487  * intel_lrc_irq_handler() - handle Context Switch interrupts
488  * @ring: Engine Command Streamer to handle.
489  *
490  * Check the unread Context Status Buffers and manage the submission of new
491  * contexts to the ELSP accordingly.
492  */
493 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
494 {
495         struct drm_i915_private *dev_priv = ring->dev->dev_private;
496         u32 status_pointer;
497         u8 read_pointer;
498         u8 write_pointer;
499         u32 status;
500         u32 status_id;
501         u32 submit_contexts = 0;
502
503         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
504
505         read_pointer = ring->next_context_status_buffer;
506         write_pointer = status_pointer & 0x07;
507         if (read_pointer > write_pointer)
508                 write_pointer += 6;
509
510         spin_lock(&ring->execlist_lock);
511
512         while (read_pointer < write_pointer) {
513                 read_pointer++;
514                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
515                                 (read_pointer % 6) * 8);
516                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
517                                 (read_pointer % 6) * 8 + 4);
518
519                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
520                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
521                                 if (execlists_check_remove_request(ring, status_id))
522                                         WARN(1, "Lite Restored request removed from queue\n");
523                         } else
524                                 WARN(1, "Preemption without Lite Restore\n");
525                 }
526
527                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
528                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
529                         if (execlists_check_remove_request(ring, status_id))
530                                 submit_contexts++;
531                 }
532         }
533
534         if (submit_contexts != 0)
535                 execlists_context_unqueue(ring);
536
537         spin_unlock(&ring->execlist_lock);
538
539         WARN(submit_contexts > 2, "More than two context complete events?\n");
540         ring->next_context_status_buffer = write_pointer % 6;
541
542         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
543                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
544 }
545
546 static int execlists_context_queue(struct intel_engine_cs *ring,
547                                    struct intel_context *to,
548                                    u32 tail,
549                                    struct drm_i915_gem_request *request)
550 {
551         struct drm_i915_gem_request *cursor;
552         int num_elements = 0;
553
554         if (to != ring->default_context)
555                 intel_lr_context_pin(ring, to);
556
557         if (!request) {
558                 /*
559                  * If there isn't a request associated with this submission,
560                  * create one as a temporary holder.
561                  */
562                 request = kzalloc(sizeof(*request), GFP_KERNEL);
563                 if (request == NULL)
564                         return -ENOMEM;
565                 request->ring = ring;
566                 request->ctx = to;
567                 kref_init(&request->ref);
568                 i915_gem_context_reference(request->ctx);
569         } else {
570                 i915_gem_request_reference(request);
571                 WARN_ON(to != request->ctx);
572         }
573         request->tail = tail;
574
575         spin_lock_irq(&ring->execlist_lock);
576
577         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
578                 if (++num_elements > 2)
579                         break;
580
581         if (num_elements > 2) {
582                 struct drm_i915_gem_request *tail_req;
583
584                 tail_req = list_last_entry(&ring->execlist_queue,
585                                            struct drm_i915_gem_request,
586                                            execlist_link);
587
588                 if (to == tail_req->ctx) {
589                         WARN(tail_req->elsp_submitted != 0,
590                                 "More than 2 already-submitted reqs queued\n");
591                         list_del(&tail_req->execlist_link);
592                         list_add_tail(&tail_req->execlist_link,
593                                 &ring->execlist_retired_req_list);
594                 }
595         }
596
597         list_add_tail(&request->execlist_link, &ring->execlist_queue);
598         if (num_elements == 0)
599                 execlists_context_unqueue(ring);
600
601         spin_unlock_irq(&ring->execlist_lock);
602
603         return 0;
604 }
605
606 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
607                                               struct intel_context *ctx)
608 {
609         struct intel_engine_cs *ring = ringbuf->ring;
610         uint32_t flush_domains;
611         int ret;
612
613         flush_domains = 0;
614         if (ring->gpu_caches_dirty)
615                 flush_domains = I915_GEM_GPU_DOMAINS;
616
617         ret = ring->emit_flush(ringbuf, ctx,
618                                I915_GEM_GPU_DOMAINS, flush_domains);
619         if (ret)
620                 return ret;
621
622         ring->gpu_caches_dirty = false;
623         return 0;
624 }
625
626 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
627                                  struct intel_context *ctx,
628                                  struct list_head *vmas)
629 {
630         struct intel_engine_cs *ring = ringbuf->ring;
631         const unsigned other_rings = ~intel_ring_flag(ring);
632         struct i915_vma *vma;
633         uint32_t flush_domains = 0;
634         bool flush_chipset = false;
635         int ret;
636
637         list_for_each_entry(vma, vmas, exec_list) {
638                 struct drm_i915_gem_object *obj = vma->obj;
639
640                 if (obj->active & other_rings) {
641                         ret = i915_gem_object_sync(obj, ring);
642                         if (ret)
643                                 return ret;
644                 }
645
646                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
647                         flush_chipset |= i915_gem_clflush_object(obj, false);
648
649                 flush_domains |= obj->base.write_domain;
650         }
651
652         if (flush_domains & I915_GEM_DOMAIN_GTT)
653                 wmb();
654
655         /* Unconditionally invalidate gpu caches and ensure that we do flush
656          * any residual writes from the previous batch.
657          */
658         return logical_ring_invalidate_all_caches(ringbuf, ctx);
659 }
660
661 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
662                                             struct intel_context *ctx)
663 {
664         int ret;
665
666         if (ctx != request->ring->default_context) {
667                 ret = intel_lr_context_pin(request->ring, ctx);
668                 if (ret)
669                         return ret;
670         }
671
672         request->ringbuf = ctx->engine[request->ring->id].ringbuf;
673         request->ctx     = ctx;
674         i915_gem_context_reference(request->ctx);
675
676         return 0;
677 }
678
679 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
680                                        struct intel_context *ctx,
681                                        int bytes)
682 {
683         struct intel_engine_cs *ring = ringbuf->ring;
684         struct drm_i915_gem_request *request;
685         unsigned space;
686         int ret;
687
688         if (intel_ring_space(ringbuf) >= bytes)
689                 return 0;
690
691         list_for_each_entry(request, &ring->request_list, list) {
692                 /*
693                  * The request queue is per-engine, so can contain requests
694                  * from multiple ringbuffers. Here, we must ignore any that
695                  * aren't from the ringbuffer we're considering.
696                  */
697                 if (request->ringbuf != ringbuf)
698                         continue;
699
700                 /* Would completion of this request free enough space? */
701                 space = __intel_ring_space(request->postfix, ringbuf->tail,
702                                            ringbuf->size);
703                 if (space >= bytes)
704                         break;
705         }
706
707         if (WARN_ON(&request->list == &ring->request_list))
708                 return -ENOSPC;
709
710         ret = i915_wait_request(request);
711         if (ret)
712                 return ret;
713
714         ringbuf->space = space;
715         return 0;
716 }
717
718 /*
719  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
720  * @ringbuf: Logical Ringbuffer to advance.
721  *
722  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
723  * really happens during submission is that the context and current tail will be placed
724  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
725  * point, the tail *inside* the context is updated and the ELSP written to.
726  */
727 static void
728 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
729                                       struct intel_context *ctx,
730                                       struct drm_i915_gem_request *request)
731 {
732         struct intel_engine_cs *ring = ringbuf->ring;
733
734         intel_logical_ring_advance(ringbuf);
735
736         if (intel_ring_stopped(ring))
737                 return;
738
739         execlists_context_queue(ring, ctx, ringbuf->tail, request);
740 }
741
742 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
743                                     struct intel_context *ctx)
744 {
745         uint32_t __iomem *virt;
746         int rem = ringbuf->size - ringbuf->tail;
747
748         if (ringbuf->space < rem) {
749                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
750
751                 if (ret)
752                         return ret;
753         }
754
755         virt = ringbuf->virtual_start + ringbuf->tail;
756         rem /= 4;
757         while (rem--)
758                 iowrite32(MI_NOOP, virt++);
759
760         ringbuf->tail = 0;
761         intel_ring_update_space(ringbuf);
762
763         return 0;
764 }
765
766 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
767                                 struct intel_context *ctx, int bytes)
768 {
769         int ret;
770
771         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
772                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
773                 if (unlikely(ret))
774                         return ret;
775         }
776
777         if (unlikely(ringbuf->space < bytes)) {
778                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
779                 if (unlikely(ret))
780                         return ret;
781         }
782
783         return 0;
784 }
785
786 /**
787  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
788  *
789  * @ringbuf: Logical ringbuffer.
790  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
791  *
792  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
793  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
794  * and also preallocates a request (every workload submission is still mediated through
795  * requests, same as it did with legacy ringbuffer submission).
796  *
797  * Return: non-zero if the ringbuffer is not ready to be written to.
798  */
799 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
800                                     struct intel_context *ctx, int num_dwords)
801 {
802         struct intel_engine_cs *ring = ringbuf->ring;
803         struct drm_device *dev = ring->dev;
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         int ret;
806
807         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
808                                    dev_priv->mm.interruptible);
809         if (ret)
810                 return ret;
811
812         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
813         if (ret)
814                 return ret;
815
816         /* Preallocate the olr before touching the ring */
817         ret = i915_gem_request_alloc(ring, ctx);
818         if (ret)
819                 return ret;
820
821         ringbuf->space -= num_dwords * sizeof(uint32_t);
822         return 0;
823 }
824
825 /**
826  * execlists_submission() - submit a batchbuffer for execution, Execlists style
827  * @dev: DRM device.
828  * @file: DRM file.
829  * @ring: Engine Command Streamer to submit to.
830  * @ctx: Context to employ for this submission.
831  * @args: execbuffer call arguments.
832  * @vmas: list of vmas.
833  * @batch_obj: the batchbuffer to submit.
834  * @exec_start: batchbuffer start virtual address pointer.
835  * @dispatch_flags: translated execbuffer call flags.
836  *
837  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
838  * away the submission details of the execbuffer ioctl call.
839  *
840  * Return: non-zero if the submission fails.
841  */
842 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
843                                struct intel_engine_cs *ring,
844                                struct intel_context *ctx,
845                                struct drm_i915_gem_execbuffer2 *args,
846                                struct list_head *vmas,
847                                struct drm_i915_gem_object *batch_obj,
848                                u64 exec_start, u32 dispatch_flags)
849 {
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
852         int instp_mode;
853         u32 instp_mask;
854         int ret;
855
856         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
857         instp_mask = I915_EXEC_CONSTANTS_MASK;
858         switch (instp_mode) {
859         case I915_EXEC_CONSTANTS_REL_GENERAL:
860         case I915_EXEC_CONSTANTS_ABSOLUTE:
861         case I915_EXEC_CONSTANTS_REL_SURFACE:
862                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
863                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
864                         return -EINVAL;
865                 }
866
867                 if (instp_mode != dev_priv->relative_constants_mode) {
868                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
869                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
870                                 return -EINVAL;
871                         }
872
873                         /* The HW changed the meaning on this bit on gen6 */
874                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
875                 }
876                 break;
877         default:
878                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
879                 return -EINVAL;
880         }
881
882         if (args->num_cliprects != 0) {
883                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
884                 return -EINVAL;
885         } else {
886                 if (args->DR4 == 0xffffffff) {
887                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
888                         args->DR4 = 0;
889                 }
890
891                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
892                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
893                         return -EINVAL;
894                 }
895         }
896
897         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
898                 DRM_DEBUG("sol reset is gen7 only\n");
899                 return -EINVAL;
900         }
901
902         ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
903         if (ret)
904                 return ret;
905
906         if (ring == &dev_priv->ring[RCS] &&
907             instp_mode != dev_priv->relative_constants_mode) {
908                 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
909                 if (ret)
910                         return ret;
911
912                 intel_logical_ring_emit(ringbuf, MI_NOOP);
913                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
914                 intel_logical_ring_emit(ringbuf, INSTPM);
915                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
916                 intel_logical_ring_advance(ringbuf);
917
918                 dev_priv->relative_constants_mode = instp_mode;
919         }
920
921         ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
922         if (ret)
923                 return ret;
924
925         trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
926
927         i915_gem_execbuffer_move_to_active(vmas, ring);
928         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
929
930         return 0;
931 }
932
933 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
934 {
935         struct drm_i915_gem_request *req, *tmp;
936         struct list_head retired_list;
937
938         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
939         if (list_empty(&ring->execlist_retired_req_list))
940                 return;
941
942         INIT_LIST_HEAD(&retired_list);
943         spin_lock_irq(&ring->execlist_lock);
944         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
945         spin_unlock_irq(&ring->execlist_lock);
946
947         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
948                 struct intel_context *ctx = req->ctx;
949                 struct drm_i915_gem_object *ctx_obj =
950                                 ctx->engine[ring->id].state;
951
952                 if (ctx_obj && (ctx != ring->default_context))
953                         intel_lr_context_unpin(ring, ctx);
954                 list_del(&req->execlist_link);
955                 i915_gem_request_unreference(req);
956         }
957 }
958
959 void intel_logical_ring_stop(struct intel_engine_cs *ring)
960 {
961         struct drm_i915_private *dev_priv = ring->dev->dev_private;
962         int ret;
963
964         if (!intel_ring_initialized(ring))
965                 return;
966
967         ret = intel_ring_idle(ring);
968         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
969                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
970                           ring->name, ret);
971
972         /* TODO: Is this correct with Execlists enabled? */
973         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
974         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
975                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
976                 return;
977         }
978         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
979 }
980
981 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
982                                   struct intel_context *ctx)
983 {
984         struct intel_engine_cs *ring = ringbuf->ring;
985         int ret;
986
987         if (!ring->gpu_caches_dirty)
988                 return 0;
989
990         ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
991         if (ret)
992                 return ret;
993
994         ring->gpu_caches_dirty = false;
995         return 0;
996 }
997
998 static int intel_lr_context_pin(struct intel_engine_cs *ring,
999                 struct intel_context *ctx)
1000 {
1001         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1002         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1003         int ret = 0;
1004
1005         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1006         if (ctx->engine[ring->id].pin_count++ == 0) {
1007                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1008                                 GEN8_LR_CONTEXT_ALIGN, 0);
1009                 if (ret)
1010                         goto reset_pin_count;
1011
1012                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1013                 if (ret)
1014                         goto unpin_ctx_obj;
1015
1016                 ctx_obj->dirty = true;
1017         }
1018
1019         return ret;
1020
1021 unpin_ctx_obj:
1022         i915_gem_object_ggtt_unpin(ctx_obj);
1023 reset_pin_count:
1024         ctx->engine[ring->id].pin_count = 0;
1025
1026         return ret;
1027 }
1028
1029 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1030                 struct intel_context *ctx)
1031 {
1032         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1033         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1034
1035         if (ctx_obj) {
1036                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1037                 if (--ctx->engine[ring->id].pin_count == 0) {
1038                         intel_unpin_ringbuffer_obj(ringbuf);
1039                         i915_gem_object_ggtt_unpin(ctx_obj);
1040                 }
1041         }
1042 }
1043
1044 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1045                                                struct intel_context *ctx)
1046 {
1047         int ret, i;
1048         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1049         struct drm_device *dev = ring->dev;
1050         struct drm_i915_private *dev_priv = dev->dev_private;
1051         struct i915_workarounds *w = &dev_priv->workarounds;
1052
1053         if (WARN_ON_ONCE(w->count == 0))
1054                 return 0;
1055
1056         ring->gpu_caches_dirty = true;
1057         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1058         if (ret)
1059                 return ret;
1060
1061         ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1062         if (ret)
1063                 return ret;
1064
1065         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1066         for (i = 0; i < w->count; i++) {
1067                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1068                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1069         }
1070         intel_logical_ring_emit(ringbuf, MI_NOOP);
1071
1072         intel_logical_ring_advance(ringbuf);
1073
1074         ring->gpu_caches_dirty = true;
1075         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1076         if (ret)
1077                 return ret;
1078
1079         return 0;
1080 }
1081
1082 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1083 {
1084         struct drm_device *dev = ring->dev;
1085         struct drm_i915_private *dev_priv = dev->dev_private;
1086
1087         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1088         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1089
1090         if (ring->status_page.obj) {
1091                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1092                            (u32)ring->status_page.gfx_addr);
1093                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1094         }
1095
1096         I915_WRITE(RING_MODE_GEN7(ring),
1097                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1098                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1099         POSTING_READ(RING_MODE_GEN7(ring));
1100         ring->next_context_status_buffer = 0;
1101         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1102
1103         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1104
1105         return 0;
1106 }
1107
1108 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1109 {
1110         struct drm_device *dev = ring->dev;
1111         struct drm_i915_private *dev_priv = dev->dev_private;
1112         int ret;
1113
1114         ret = gen8_init_common_ring(ring);
1115         if (ret)
1116                 return ret;
1117
1118         /* We need to disable the AsyncFlip performance optimisations in order
1119          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1120          * programmed to '1' on all products.
1121          *
1122          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1123          */
1124         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1125
1126         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1127
1128         return init_workarounds_ring(ring);
1129 }
1130
1131 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1132 {
1133         int ret;
1134
1135         ret = gen8_init_common_ring(ring);
1136         if (ret)
1137                 return ret;
1138
1139         return init_workarounds_ring(ring);
1140 }
1141
1142 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1143                               struct intel_context *ctx,
1144                               u64 offset, unsigned dispatch_flags)
1145 {
1146         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1147         int ret;
1148
1149         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1150         if (ret)
1151                 return ret;
1152
1153         /* FIXME(BDW): Address space and security selectors. */
1154         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1155         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1156         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1157         intel_logical_ring_emit(ringbuf, MI_NOOP);
1158         intel_logical_ring_advance(ringbuf);
1159
1160         return 0;
1161 }
1162
1163 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1164 {
1165         struct drm_device *dev = ring->dev;
1166         struct drm_i915_private *dev_priv = dev->dev_private;
1167         unsigned long flags;
1168
1169         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1170                 return false;
1171
1172         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1173         if (ring->irq_refcount++ == 0) {
1174                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1175                 POSTING_READ(RING_IMR(ring->mmio_base));
1176         }
1177         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1178
1179         return true;
1180 }
1181
1182 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1183 {
1184         struct drm_device *dev = ring->dev;
1185         struct drm_i915_private *dev_priv = dev->dev_private;
1186         unsigned long flags;
1187
1188         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1189         if (--ring->irq_refcount == 0) {
1190                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1191                 POSTING_READ(RING_IMR(ring->mmio_base));
1192         }
1193         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1194 }
1195
1196 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1197                            struct intel_context *ctx,
1198                            u32 invalidate_domains,
1199                            u32 unused)
1200 {
1201         struct intel_engine_cs *ring = ringbuf->ring;
1202         struct drm_device *dev = ring->dev;
1203         struct drm_i915_private *dev_priv = dev->dev_private;
1204         uint32_t cmd;
1205         int ret;
1206
1207         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1208         if (ret)
1209                 return ret;
1210
1211         cmd = MI_FLUSH_DW + 1;
1212
1213         /* We always require a command barrier so that subsequent
1214          * commands, such as breadcrumb interrupts, are strictly ordered
1215          * wrt the contents of the write cache being flushed to memory
1216          * (and thus being coherent from the CPU).
1217          */
1218         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1219
1220         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1221                 cmd |= MI_INVALIDATE_TLB;
1222                 if (ring == &dev_priv->ring[VCS])
1223                         cmd |= MI_INVALIDATE_BSD;
1224         }
1225
1226         intel_logical_ring_emit(ringbuf, cmd);
1227         intel_logical_ring_emit(ringbuf,
1228                                 I915_GEM_HWS_SCRATCH_ADDR |
1229                                 MI_FLUSH_DW_USE_GTT);
1230         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1231         intel_logical_ring_emit(ringbuf, 0); /* value */
1232         intel_logical_ring_advance(ringbuf);
1233
1234         return 0;
1235 }
1236
1237 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1238                                   struct intel_context *ctx,
1239                                   u32 invalidate_domains,
1240                                   u32 flush_domains)
1241 {
1242         struct intel_engine_cs *ring = ringbuf->ring;
1243         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1244         bool vf_flush_wa;
1245         u32 flags = 0;
1246         int ret;
1247
1248         flags |= PIPE_CONTROL_CS_STALL;
1249
1250         if (flush_domains) {
1251                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1252                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1253         }
1254
1255         if (invalidate_domains) {
1256                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1257                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1258                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1259                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1260                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1261                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1262                 flags |= PIPE_CONTROL_QW_WRITE;
1263                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1264         }
1265
1266         /*
1267          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1268          * control.
1269          */
1270         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1271                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1272
1273         ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1274         if (ret)
1275                 return ret;
1276
1277         if (vf_flush_wa) {
1278                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1279                 intel_logical_ring_emit(ringbuf, 0);
1280                 intel_logical_ring_emit(ringbuf, 0);
1281                 intel_logical_ring_emit(ringbuf, 0);
1282                 intel_logical_ring_emit(ringbuf, 0);
1283                 intel_logical_ring_emit(ringbuf, 0);
1284         }
1285
1286         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1287         intel_logical_ring_emit(ringbuf, flags);
1288         intel_logical_ring_emit(ringbuf, scratch_addr);
1289         intel_logical_ring_emit(ringbuf, 0);
1290         intel_logical_ring_emit(ringbuf, 0);
1291         intel_logical_ring_emit(ringbuf, 0);
1292         intel_logical_ring_advance(ringbuf);
1293
1294         return 0;
1295 }
1296
1297 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1298 {
1299         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1300 }
1301
1302 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1303 {
1304         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1305 }
1306
1307 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1308                              struct drm_i915_gem_request *request)
1309 {
1310         struct intel_engine_cs *ring = ringbuf->ring;
1311         u32 cmd;
1312         int ret;
1313
1314         /*
1315          * Reserve space for 2 NOOPs at the end of each request to be
1316          * used as a workaround for not being allowed to do lite
1317          * restore with HEAD==TAIL (WaIdleLiteRestore).
1318          */
1319         ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1320         if (ret)
1321                 return ret;
1322
1323         cmd = MI_STORE_DWORD_IMM_GEN4;
1324         cmd |= MI_GLOBAL_GTT;
1325
1326         intel_logical_ring_emit(ringbuf, cmd);
1327         intel_logical_ring_emit(ringbuf,
1328                                 (ring->status_page.gfx_addr +
1329                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1330         intel_logical_ring_emit(ringbuf, 0);
1331         intel_logical_ring_emit(ringbuf,
1332                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1333         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1334         intel_logical_ring_emit(ringbuf, MI_NOOP);
1335         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1336
1337         /*
1338          * Here we add two extra NOOPs as padding to avoid
1339          * lite restore of a context with HEAD==TAIL.
1340          */
1341         intel_logical_ring_emit(ringbuf, MI_NOOP);
1342         intel_logical_ring_emit(ringbuf, MI_NOOP);
1343         intel_logical_ring_advance(ringbuf);
1344
1345         return 0;
1346 }
1347
1348 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1349                                               struct intel_context *ctx)
1350 {
1351         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1352         struct render_state so;
1353         struct drm_i915_file_private *file_priv = ctx->file_priv;
1354         struct drm_file *file = file_priv ? file_priv->file : NULL;
1355         int ret;
1356
1357         ret = i915_gem_render_state_prepare(ring, &so);
1358         if (ret)
1359                 return ret;
1360
1361         if (so.rodata == NULL)
1362                 return 0;
1363
1364         ret = ring->emit_bb_start(ringbuf,
1365                         ctx,
1366                         so.ggtt_offset,
1367                         I915_DISPATCH_SECURE);
1368         if (ret)
1369                 goto out;
1370
1371         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1372
1373         ret = __i915_add_request(ring, file, so.obj);
1374         /* intel_logical_ring_add_request moves object to inactive if it
1375          * fails */
1376 out:
1377         i915_gem_render_state_fini(&so);
1378         return ret;
1379 }
1380
1381 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1382                        struct intel_context *ctx)
1383 {
1384         int ret;
1385
1386         ret = intel_logical_ring_workarounds_emit(ring, ctx);
1387         if (ret)
1388                 return ret;
1389
1390         return intel_lr_context_render_state_init(ring, ctx);
1391 }
1392
1393 /**
1394  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1395  *
1396  * @ring: Engine Command Streamer.
1397  *
1398  */
1399 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1400 {
1401         struct drm_i915_private *dev_priv;
1402
1403         if (!intel_ring_initialized(ring))
1404                 return;
1405
1406         dev_priv = ring->dev->dev_private;
1407
1408         intel_logical_ring_stop(ring);
1409         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1410         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1411
1412         if (ring->cleanup)
1413                 ring->cleanup(ring);
1414
1415         i915_cmd_parser_fini_ring(ring);
1416         i915_gem_batch_pool_fini(&ring->batch_pool);
1417
1418         if (ring->status_page.obj) {
1419                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1420                 ring->status_page.obj = NULL;
1421         }
1422 }
1423
1424 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1425 {
1426         int ret;
1427
1428         /* Intentionally left blank. */
1429         ring->buffer = NULL;
1430
1431         ring->dev = dev;
1432         INIT_LIST_HEAD(&ring->active_list);
1433         INIT_LIST_HEAD(&ring->request_list);
1434         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1435         init_waitqueue_head(&ring->irq_queue);
1436
1437         INIT_LIST_HEAD(&ring->execlist_queue);
1438         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1439         spin_lock_init(&ring->execlist_lock);
1440
1441         ret = i915_cmd_parser_init_ring(ring);
1442         if (ret)
1443                 return ret;
1444
1445         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1446
1447         return ret;
1448 }
1449
1450 static int logical_render_ring_init(struct drm_device *dev)
1451 {
1452         struct drm_i915_private *dev_priv = dev->dev_private;
1453         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1454         int ret;
1455
1456         ring->name = "render ring";
1457         ring->id = RCS;
1458         ring->mmio_base = RENDER_RING_BASE;
1459         ring->irq_enable_mask =
1460                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1461         ring->irq_keep_mask =
1462                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1463         if (HAS_L3_DPF(dev))
1464                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1465
1466         if (INTEL_INFO(dev)->gen >= 9)
1467                 ring->init_hw = gen9_init_render_ring;
1468         else
1469                 ring->init_hw = gen8_init_render_ring;
1470         ring->init_context = gen8_init_rcs_context;
1471         ring->cleanup = intel_fini_pipe_control;
1472         ring->get_seqno = gen8_get_seqno;
1473         ring->set_seqno = gen8_set_seqno;
1474         ring->emit_request = gen8_emit_request;
1475         ring->emit_flush = gen8_emit_flush_render;
1476         ring->irq_get = gen8_logical_ring_get_irq;
1477         ring->irq_put = gen8_logical_ring_put_irq;
1478         ring->emit_bb_start = gen8_emit_bb_start;
1479
1480         ring->dev = dev;
1481         ret = logical_ring_init(dev, ring);
1482         if (ret)
1483                 return ret;
1484
1485         return intel_init_pipe_control(ring);
1486 }
1487
1488 static int logical_bsd_ring_init(struct drm_device *dev)
1489 {
1490         struct drm_i915_private *dev_priv = dev->dev_private;
1491         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1492
1493         ring->name = "bsd ring";
1494         ring->id = VCS;
1495         ring->mmio_base = GEN6_BSD_RING_BASE;
1496         ring->irq_enable_mask =
1497                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1498         ring->irq_keep_mask =
1499                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1500
1501         ring->init_hw = gen8_init_common_ring;
1502         ring->get_seqno = gen8_get_seqno;
1503         ring->set_seqno = gen8_set_seqno;
1504         ring->emit_request = gen8_emit_request;
1505         ring->emit_flush = gen8_emit_flush;
1506         ring->irq_get = gen8_logical_ring_get_irq;
1507         ring->irq_put = gen8_logical_ring_put_irq;
1508         ring->emit_bb_start = gen8_emit_bb_start;
1509
1510         return logical_ring_init(dev, ring);
1511 }
1512
1513 static int logical_bsd2_ring_init(struct drm_device *dev)
1514 {
1515         struct drm_i915_private *dev_priv = dev->dev_private;
1516         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1517
1518         ring->name = "bds2 ring";
1519         ring->id = VCS2;
1520         ring->mmio_base = GEN8_BSD2_RING_BASE;
1521         ring->irq_enable_mask =
1522                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1523         ring->irq_keep_mask =
1524                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1525
1526         ring->init_hw = gen8_init_common_ring;
1527         ring->get_seqno = gen8_get_seqno;
1528         ring->set_seqno = gen8_set_seqno;
1529         ring->emit_request = gen8_emit_request;
1530         ring->emit_flush = gen8_emit_flush;
1531         ring->irq_get = gen8_logical_ring_get_irq;
1532         ring->irq_put = gen8_logical_ring_put_irq;
1533         ring->emit_bb_start = gen8_emit_bb_start;
1534
1535         return logical_ring_init(dev, ring);
1536 }
1537
1538 static int logical_blt_ring_init(struct drm_device *dev)
1539 {
1540         struct drm_i915_private *dev_priv = dev->dev_private;
1541         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1542
1543         ring->name = "blitter ring";
1544         ring->id = BCS;
1545         ring->mmio_base = BLT_RING_BASE;
1546         ring->irq_enable_mask =
1547                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1548         ring->irq_keep_mask =
1549                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1550
1551         ring->init_hw = gen8_init_common_ring;
1552         ring->get_seqno = gen8_get_seqno;
1553         ring->set_seqno = gen8_set_seqno;
1554         ring->emit_request = gen8_emit_request;
1555         ring->emit_flush = gen8_emit_flush;
1556         ring->irq_get = gen8_logical_ring_get_irq;
1557         ring->irq_put = gen8_logical_ring_put_irq;
1558         ring->emit_bb_start = gen8_emit_bb_start;
1559
1560         return logical_ring_init(dev, ring);
1561 }
1562
1563 static int logical_vebox_ring_init(struct drm_device *dev)
1564 {
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1567
1568         ring->name = "video enhancement ring";
1569         ring->id = VECS;
1570         ring->mmio_base = VEBOX_RING_BASE;
1571         ring->irq_enable_mask =
1572                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1573         ring->irq_keep_mask =
1574                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1575
1576         ring->init_hw = gen8_init_common_ring;
1577         ring->get_seqno = gen8_get_seqno;
1578         ring->set_seqno = gen8_set_seqno;
1579         ring->emit_request = gen8_emit_request;
1580         ring->emit_flush = gen8_emit_flush;
1581         ring->irq_get = gen8_logical_ring_get_irq;
1582         ring->irq_put = gen8_logical_ring_put_irq;
1583         ring->emit_bb_start = gen8_emit_bb_start;
1584
1585         return logical_ring_init(dev, ring);
1586 }
1587
1588 /**
1589  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1590  * @dev: DRM device.
1591  *
1592  * This function inits the engines for an Execlists submission style (the equivalent in the
1593  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1594  * those engines that are present in the hardware.
1595  *
1596  * Return: non-zero if the initialization failed.
1597  */
1598 int intel_logical_rings_init(struct drm_device *dev)
1599 {
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int ret;
1602
1603         ret = logical_render_ring_init(dev);
1604         if (ret)
1605                 return ret;
1606
1607         if (HAS_BSD(dev)) {
1608                 ret = logical_bsd_ring_init(dev);
1609                 if (ret)
1610                         goto cleanup_render_ring;
1611         }
1612
1613         if (HAS_BLT(dev)) {
1614                 ret = logical_blt_ring_init(dev);
1615                 if (ret)
1616                         goto cleanup_bsd_ring;
1617         }
1618
1619         if (HAS_VEBOX(dev)) {
1620                 ret = logical_vebox_ring_init(dev);
1621                 if (ret)
1622                         goto cleanup_blt_ring;
1623         }
1624
1625         if (HAS_BSD2(dev)) {
1626                 ret = logical_bsd2_ring_init(dev);
1627                 if (ret)
1628                         goto cleanup_vebox_ring;
1629         }
1630
1631         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1632         if (ret)
1633                 goto cleanup_bsd2_ring;
1634
1635         return 0;
1636
1637 cleanup_bsd2_ring:
1638         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1639 cleanup_vebox_ring:
1640         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1641 cleanup_blt_ring:
1642         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1643 cleanup_bsd_ring:
1644         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1645 cleanup_render_ring:
1646         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1647
1648         return ret;
1649 }
1650
1651 static u32
1652 make_rpcs(struct drm_device *dev)
1653 {
1654         u32 rpcs = 0;
1655
1656         /*
1657          * No explicit RPCS request is needed to ensure full
1658          * slice/subslice/EU enablement prior to Gen9.
1659         */
1660         if (INTEL_INFO(dev)->gen < 9)
1661                 return 0;
1662
1663         /*
1664          * Starting in Gen9, render power gating can leave
1665          * slice/subslice/EU in a partially enabled state. We
1666          * must make an explicit request through RPCS for full
1667          * enablement.
1668         */
1669         if (INTEL_INFO(dev)->has_slice_pg) {
1670                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1671                 rpcs |= INTEL_INFO(dev)->slice_total <<
1672                         GEN8_RPCS_S_CNT_SHIFT;
1673                 rpcs |= GEN8_RPCS_ENABLE;
1674         }
1675
1676         if (INTEL_INFO(dev)->has_subslice_pg) {
1677                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1678                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1679                         GEN8_RPCS_SS_CNT_SHIFT;
1680                 rpcs |= GEN8_RPCS_ENABLE;
1681         }
1682
1683         if (INTEL_INFO(dev)->has_eu_pg) {
1684                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1685                         GEN8_RPCS_EU_MIN_SHIFT;
1686                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1687                         GEN8_RPCS_EU_MAX_SHIFT;
1688                 rpcs |= GEN8_RPCS_ENABLE;
1689         }
1690
1691         return rpcs;
1692 }
1693
1694 static int
1695 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1696                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1697 {
1698         struct drm_device *dev = ring->dev;
1699         struct drm_i915_private *dev_priv = dev->dev_private;
1700         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1701         struct page *page;
1702         uint32_t *reg_state;
1703         int ret;
1704
1705         if (!ppgtt)
1706                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1707
1708         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1709         if (ret) {
1710                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1711                 return ret;
1712         }
1713
1714         ret = i915_gem_object_get_pages(ctx_obj);
1715         if (ret) {
1716                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1717                 return ret;
1718         }
1719
1720         i915_gem_object_pin_pages(ctx_obj);
1721
1722         /* The second page of the context object contains some fields which must
1723          * be set up prior to the first execution. */
1724         page = i915_gem_object_get_page(ctx_obj, 1);
1725         reg_state = kmap_atomic(page);
1726
1727         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1728          * commands followed by (reg, value) pairs. The values we are setting here are
1729          * only for the first context restore: on a subsequent save, the GPU will
1730          * recreate this batchbuffer with new values (including all the missing
1731          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1732         if (ring->id == RCS)
1733                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1734         else
1735                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1736         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1737         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1738         reg_state[CTX_CONTEXT_CONTROL+1] =
1739                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1740                                 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1741         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1742         reg_state[CTX_RING_HEAD+1] = 0;
1743         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1744         reg_state[CTX_RING_TAIL+1] = 0;
1745         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1746         /* Ring buffer start address is not known until the buffer is pinned.
1747          * It is written to the context image in execlists_update_context()
1748          */
1749         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1750         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1751                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1752         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1753         reg_state[CTX_BB_HEAD_U+1] = 0;
1754         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1755         reg_state[CTX_BB_HEAD_L+1] = 0;
1756         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1757         reg_state[CTX_BB_STATE+1] = (1<<5);
1758         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1759         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1760         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1761         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1762         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1763         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1764         if (ring->id == RCS) {
1765                 /* TODO: according to BSpec, the register state context
1766                  * for CHV does not have these. OTOH, these registers do
1767                  * exist in CHV. I'm waiting for a clarification */
1768                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1769                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1770                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1771                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1772                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1773                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1774         }
1775         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1776         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1777         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1778         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1779         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1780         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1781         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1782         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1783         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1784         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1785         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1786         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1787
1788         /* With dynamic page allocation, PDPs may not be allocated at this point,
1789          * Point the unallocated PDPs to the scratch page
1790          */
1791         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1792         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1793         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1794         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1795         if (ring->id == RCS) {
1796                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1797                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1798                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1799         }
1800
1801         kunmap_atomic(reg_state);
1802
1803         ctx_obj->dirty = 1;
1804         set_page_dirty(page);
1805         i915_gem_object_unpin_pages(ctx_obj);
1806
1807         return 0;
1808 }
1809
1810 /**
1811  * intel_lr_context_free() - free the LRC specific bits of a context
1812  * @ctx: the LR context to free.
1813  *
1814  * The real context freeing is done in i915_gem_context_free: this only
1815  * takes care of the bits that are LRC related: the per-engine backing
1816  * objects and the logical ringbuffer.
1817  */
1818 void intel_lr_context_free(struct intel_context *ctx)
1819 {
1820         int i;
1821
1822         for (i = 0; i < I915_NUM_RINGS; i++) {
1823                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1824
1825                 if (ctx_obj) {
1826                         struct intel_ringbuffer *ringbuf =
1827                                         ctx->engine[i].ringbuf;
1828                         struct intel_engine_cs *ring = ringbuf->ring;
1829
1830                         if (ctx == ring->default_context) {
1831                                 intel_unpin_ringbuffer_obj(ringbuf);
1832                                 i915_gem_object_ggtt_unpin(ctx_obj);
1833                         }
1834                         WARN_ON(ctx->engine[ring->id].pin_count);
1835                         intel_destroy_ringbuffer_obj(ringbuf);
1836                         kfree(ringbuf);
1837                         drm_gem_object_unreference(&ctx_obj->base);
1838                 }
1839         }
1840 }
1841
1842 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1843 {
1844         int ret = 0;
1845
1846         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1847
1848         switch (ring->id) {
1849         case RCS:
1850                 if (INTEL_INFO(ring->dev)->gen >= 9)
1851                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1852                 else
1853                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1854                 break;
1855         case VCS:
1856         case BCS:
1857         case VECS:
1858         case VCS2:
1859                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1860                 break;
1861         }
1862
1863         return ret;
1864 }
1865
1866 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1867                 struct drm_i915_gem_object *default_ctx_obj)
1868 {
1869         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1870
1871         /* The status page is offset 0 from the default context object
1872          * in LRC mode. */
1873         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1874         ring->status_page.page_addr =
1875                         kmap(sg_page(default_ctx_obj->pages->sgl));
1876         ring->status_page.obj = default_ctx_obj;
1877
1878         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1879                         (u32)ring->status_page.gfx_addr);
1880         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1881 }
1882
1883 /**
1884  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1885  * @ctx: LR context to create.
1886  * @ring: engine to be used with the context.
1887  *
1888  * This function can be called more than once, with different engines, if we plan
1889  * to use the context with them. The context backing objects and the ringbuffers
1890  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1891  * the creation is a deferred call: it's better to make sure first that we need to use
1892  * a given ring with the context.
1893  *
1894  * Return: non-zero on error.
1895  */
1896 int intel_lr_context_deferred_create(struct intel_context *ctx,
1897                                      struct intel_engine_cs *ring)
1898 {
1899         const bool is_global_default_ctx = (ctx == ring->default_context);
1900         struct drm_device *dev = ring->dev;
1901         struct drm_i915_gem_object *ctx_obj;
1902         uint32_t context_size;
1903         struct intel_ringbuffer *ringbuf;
1904         int ret;
1905
1906         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1907         WARN_ON(ctx->engine[ring->id].state);
1908
1909         context_size = round_up(get_lr_context_size(ring), 4096);
1910
1911         ctx_obj = i915_gem_alloc_object(dev, context_size);
1912         if (!ctx_obj) {
1913                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1914                 return -ENOMEM;
1915         }
1916
1917         if (is_global_default_ctx) {
1918                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1919                 if (ret) {
1920                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1921                                         ret);
1922                         drm_gem_object_unreference(&ctx_obj->base);
1923                         return ret;
1924                 }
1925         }
1926
1927         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1928         if (!ringbuf) {
1929                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1930                                 ring->name);
1931                 ret = -ENOMEM;
1932                 goto error_unpin_ctx;
1933         }
1934
1935         ringbuf->ring = ring;
1936
1937         ringbuf->size = 32 * PAGE_SIZE;
1938         ringbuf->effective_size = ringbuf->size;
1939         ringbuf->head = 0;
1940         ringbuf->tail = 0;
1941         ringbuf->last_retired_head = -1;
1942         intel_ring_update_space(ringbuf);
1943
1944         if (ringbuf->obj == NULL) {
1945                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1946                 if (ret) {
1947                         DRM_DEBUG_DRIVER(
1948                                 "Failed to allocate ringbuffer obj %s: %d\n",
1949                                 ring->name, ret);
1950                         goto error_free_rbuf;
1951                 }
1952
1953                 if (is_global_default_ctx) {
1954                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1955                         if (ret) {
1956                                 DRM_ERROR(
1957                                         "Failed to pin and map ringbuffer %s: %d\n",
1958                                         ring->name, ret);
1959                                 goto error_destroy_rbuf;
1960                         }
1961                 }
1962
1963         }
1964
1965         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1966         if (ret) {
1967                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1968                 goto error;
1969         }
1970
1971         ctx->engine[ring->id].ringbuf = ringbuf;
1972         ctx->engine[ring->id].state = ctx_obj;
1973
1974         if (ctx == ring->default_context)
1975                 lrc_setup_hardware_status_page(ring, ctx_obj);
1976         else if (ring->id == RCS && !ctx->rcs_initialized) {
1977                 if (ring->init_context) {
1978                         ret = ring->init_context(ring, ctx);
1979                         if (ret) {
1980                                 DRM_ERROR("ring init context: %d\n", ret);
1981                                 ctx->engine[ring->id].ringbuf = NULL;
1982                                 ctx->engine[ring->id].state = NULL;
1983                                 goto error;
1984                         }
1985                 }
1986
1987                 ctx->rcs_initialized = true;
1988         }
1989
1990         return 0;
1991
1992 error:
1993         if (is_global_default_ctx)
1994                 intel_unpin_ringbuffer_obj(ringbuf);
1995 error_destroy_rbuf:
1996         intel_destroy_ringbuffer_obj(ringbuf);
1997 error_free_rbuf:
1998         kfree(ringbuf);
1999 error_unpin_ctx:
2000         if (is_global_default_ctx)
2001                 i915_gem_object_ggtt_unpin(ctx_obj);
2002         drm_gem_object_unreference(&ctx_obj->base);
2003         return ret;
2004 }
2005
2006 void intel_lr_context_reset(struct drm_device *dev,
2007                         struct intel_context *ctx)
2008 {
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         struct intel_engine_cs *ring;
2011         int i;
2012
2013         for_each_ring(ring, dev_priv, i) {
2014                 struct drm_i915_gem_object *ctx_obj =
2015                                 ctx->engine[ring->id].state;
2016                 struct intel_ringbuffer *ringbuf =
2017                                 ctx->engine[ring->id].ringbuf;
2018                 uint32_t *reg_state;
2019                 struct page *page;
2020
2021                 if (!ctx_obj)
2022                         continue;
2023
2024                 if (i915_gem_object_get_pages(ctx_obj)) {
2025                         WARN(1, "Failed get_pages for context obj\n");
2026                         continue;
2027                 }
2028                 page = i915_gem_object_get_page(ctx_obj, 1);
2029                 reg_state = kmap_atomic(page);
2030
2031                 reg_state[CTX_RING_HEAD+1] = 0;
2032                 reg_state[CTX_RING_TAIL+1] = 0;
2033
2034                 kunmap_atomic(reg_state);
2035
2036                 ringbuf->head = 0;
2037                 ringbuf->tail = 0;
2038         }
2039 }