OSDN Git Service

ahci: Add Intel Comet Lake PCH RAID PCI ID
[tomoyo/tomoyo-test1.git] / drivers / gpu / drm / nouveau / nvkm / engine / gr / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27
28 #include <core/client.h>
29 #include <core/firmware.h>
30 #include <core/option.h>
31 #include <subdev/acr.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/therm.h>
36 #include <subdev/timer.h>
37 #include <engine/fifo.h>
38
39 #include <nvif/class.h>
40 #include <nvif/cl9097.h>
41 #include <nvif/if900d.h>
42 #include <nvif/unpack.h>
43
44 /*******************************************************************************
45  * Zero Bandwidth Clear
46  ******************************************************************************/
47
48 static void
49 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
50 {
51         struct nvkm_device *device = gr->base.engine.subdev.device;
52         if (gr->zbc_color[zbc].format) {
53                 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
54                 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
55                 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
56                 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
57         }
58         nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
59         nvkm_wr32(device, 0x405820, zbc);
60         nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
61 }
62
63 static int
64 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
65                        const u32 ds[4], const u32 l2[4])
66 {
67         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
68         int zbc = -ENOSPC, i;
69
70         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
71                 if (gr->zbc_color[i].format) {
72                         if (gr->zbc_color[i].format != format)
73                                 continue;
74                         if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
75                                    gr->zbc_color[i].ds)))
76                                 continue;
77                         if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
78                                    gr->zbc_color[i].l2))) {
79                                 WARN_ON(1);
80                                 return -EINVAL;
81                         }
82                         return i;
83                 } else {
84                         zbc = (zbc < 0) ? i : zbc;
85                 }
86         }
87
88         if (zbc < 0)
89                 return zbc;
90
91         memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
92         memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
93         gr->zbc_color[zbc].format = format;
94         nvkm_ltc_zbc_color_get(ltc, zbc, l2);
95         gr->func->zbc->clear_color(gr, zbc);
96         return zbc;
97 }
98
99 static void
100 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
101 {
102         struct nvkm_device *device = gr->base.engine.subdev.device;
103         if (gr->zbc_depth[zbc].format)
104                 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
105         nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
106         nvkm_wr32(device, 0x405820, zbc);
107         nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
108 }
109
110 static int
111 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
112                        const u32 ds, const u32 l2)
113 {
114         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
115         int zbc = -ENOSPC, i;
116
117         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
118                 if (gr->zbc_depth[i].format) {
119                         if (gr->zbc_depth[i].format != format)
120                                 continue;
121                         if (gr->zbc_depth[i].ds != ds)
122                                 continue;
123                         if (gr->zbc_depth[i].l2 != l2) {
124                                 WARN_ON(1);
125                                 return -EINVAL;
126                         }
127                         return i;
128                 } else {
129                         zbc = (zbc < 0) ? i : zbc;
130                 }
131         }
132
133         if (zbc < 0)
134                 return zbc;
135
136         gr->zbc_depth[zbc].format = format;
137         gr->zbc_depth[zbc].ds = ds;
138         gr->zbc_depth[zbc].l2 = l2;
139         nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
140         gr->func->zbc->clear_depth(gr, zbc);
141         return zbc;
142 }
143
144 const struct gf100_gr_func_zbc
145 gf100_gr_zbc = {
146         .clear_color = gf100_gr_zbc_clear_color,
147         .clear_depth = gf100_gr_zbc_clear_depth,
148 };
149
150 /*******************************************************************************
151  * Graphics object classes
152  ******************************************************************************/
153 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
154
155 struct gf100_gr_object {
156         struct nvkm_object object;
157         struct gf100_gr_chan *chan;
158 };
159
160 static int
161 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
162 {
163         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
164         union {
165                 struct fermi_a_zbc_color_v0 v0;
166         } *args = data;
167         int ret = -ENOSYS;
168
169         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
170                 switch (args->v0.format) {
171                 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
172                 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
173                 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
174                 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
175                 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
176                 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
177                 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
178                 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
179                 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
180                 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
181                 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
182                 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
183                 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
184                 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
185                 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
186                 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
187                 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
188                 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
189                 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
190                         ret = gf100_gr_zbc_color_get(gr, args->v0.format,
191                                                            args->v0.ds,
192                                                            args->v0.l2);
193                         if (ret >= 0) {
194                                 args->v0.index = ret;
195                                 return 0;
196                         }
197                         break;
198                 default:
199                         return -EINVAL;
200                 }
201         }
202
203         return ret;
204 }
205
206 static int
207 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
208 {
209         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
210         union {
211                 struct fermi_a_zbc_depth_v0 v0;
212         } *args = data;
213         int ret = -ENOSYS;
214
215         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
216                 switch (args->v0.format) {
217                 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
218                         ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
219                                                            args->v0.ds,
220                                                            args->v0.l2);
221                         return (ret >= 0) ? 0 : -ENOSPC;
222                 default:
223                         return -EINVAL;
224                 }
225         }
226
227         return ret;
228 }
229
230 static int
231 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
232 {
233         nvif_ioctl(object, "fermi mthd %08x\n", mthd);
234         switch (mthd) {
235         case FERMI_A_ZBC_COLOR:
236                 return gf100_fermi_mthd_zbc_color(object, data, size);
237         case FERMI_A_ZBC_DEPTH:
238                 return gf100_fermi_mthd_zbc_depth(object, data, size);
239         default:
240                 break;
241         }
242         return -EINVAL;
243 }
244
245 const struct nvkm_object_func
246 gf100_fermi = {
247         .mthd = gf100_fermi_mthd,
248 };
249
250 static void
251 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
252 {
253         nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
254         nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
255 }
256
257 static bool
258 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
259 {
260         switch (class & 0x00ff) {
261         case 0x97:
262         case 0xc0:
263                 switch (mthd) {
264                 case 0x1528:
265                         gf100_gr_mthd_set_shader_exceptions(device, data);
266                         return true;
267                 default:
268                         break;
269                 }
270                 break;
271         default:
272                 break;
273         }
274         return false;
275 }
276
277 static const struct nvkm_object_func
278 gf100_gr_object_func = {
279 };
280
281 static int
282 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
283                     struct nvkm_object **pobject)
284 {
285         struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
286         struct gf100_gr_object *object;
287
288         if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
289                 return -ENOMEM;
290         *pobject = &object->object;
291
292         nvkm_object_ctor(oclass->base.func ? oclass->base.func :
293                          &gf100_gr_object_func, oclass, &object->object);
294         object->chan = chan;
295         return 0;
296 }
297
298 static int
299 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
300 {
301         struct gf100_gr *gr = gf100_gr(base);
302         int c = 0;
303
304         while (gr->func->sclass[c].oclass) {
305                 if (c++ == index) {
306                         *sclass = gr->func->sclass[index];
307                         sclass->ctor = gf100_gr_object_new;
308                         return index;
309                 }
310         }
311
312         return c;
313 }
314
315 /*******************************************************************************
316  * PGRAPH context
317  ******************************************************************************/
318
319 static int
320 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
321                    int align, struct nvkm_gpuobj **pgpuobj)
322 {
323         struct gf100_gr_chan *chan = gf100_gr_chan(object);
324         struct gf100_gr *gr = chan->gr;
325         int ret, i;
326
327         ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
328                               align, false, parent, pgpuobj);
329         if (ret)
330                 return ret;
331
332         nvkm_kmap(*pgpuobj);
333         for (i = 0; i < gr->size; i += 4)
334                 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
335
336         if (!gr->firmware) {
337                 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
338                 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
339         } else {
340                 nvkm_wo32(*pgpuobj, 0xf4, 0);
341                 nvkm_wo32(*pgpuobj, 0xf8, 0);
342                 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
343                 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
344                 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
345                 nvkm_wo32(*pgpuobj, 0x1c, 1);
346                 nvkm_wo32(*pgpuobj, 0x20, 0);
347                 nvkm_wo32(*pgpuobj, 0x28, 0);
348                 nvkm_wo32(*pgpuobj, 0x2c, 0);
349         }
350         nvkm_done(*pgpuobj);
351         return 0;
352 }
353
354 static void *
355 gf100_gr_chan_dtor(struct nvkm_object *object)
356 {
357         struct gf100_gr_chan *chan = gf100_gr_chan(object);
358         int i;
359
360         for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
361                 nvkm_vmm_put(chan->vmm, &chan->data[i].vma);
362                 nvkm_memory_unref(&chan->data[i].mem);
363         }
364
365         nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
366         nvkm_memory_unref(&chan->mmio);
367         nvkm_vmm_unref(&chan->vmm);
368         return chan;
369 }
370
371 static const struct nvkm_object_func
372 gf100_gr_chan = {
373         .dtor = gf100_gr_chan_dtor,
374         .bind = gf100_gr_chan_bind,
375 };
376
377 static int
378 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
379                   const struct nvkm_oclass *oclass,
380                   struct nvkm_object **pobject)
381 {
382         struct gf100_gr *gr = gf100_gr(base);
383         struct gf100_gr_data *data = gr->mmio_data;
384         struct gf100_gr_mmio *mmio = gr->mmio_list;
385         struct gf100_gr_chan *chan;
386         struct gf100_vmm_map_v0 args = { .priv = 1 };
387         struct nvkm_device *device = gr->base.engine.subdev.device;
388         int ret, i;
389
390         if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
391                 return -ENOMEM;
392         nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
393         chan->gr = gr;
394         chan->vmm = nvkm_vmm_ref(fifoch->vmm);
395         *pobject = &chan->object;
396
397         /* allocate memory for a "mmio list" buffer that's used by the HUB
398          * fuc to modify some per-context register settings on first load
399          * of the context.
400          */
401         ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
402                               false, &chan->mmio);
403         if (ret)
404                 return ret;
405
406         ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
407         if (ret)
408                 return ret;
409
410         ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
411                               chan->mmio_vma, &args, sizeof(args));
412         if (ret)
413                 return ret;
414
415         /* allocate buffers referenced by mmio list */
416         for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
417                 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
418                                       data->size, data->align, false,
419                                       &chan->data[i].mem);
420                 if (ret)
421                         return ret;
422
423                 ret = nvkm_vmm_get(fifoch->vmm, 12,
424                                    nvkm_memory_size(chan->data[i].mem),
425                                    &chan->data[i].vma);
426                 if (ret)
427                         return ret;
428
429                 args.priv = data->priv;
430
431                 ret = nvkm_memory_map(chan->data[i].mem, 0, chan->vmm,
432                                       chan->data[i].vma, &args, sizeof(args));
433                 if (ret)
434                         return ret;
435
436                 data++;
437         }
438
439         /* finally, fill in the mmio list and point the context at it */
440         nvkm_kmap(chan->mmio);
441         for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
442                 u32 addr = mmio->addr;
443                 u32 data = mmio->data;
444
445                 if (mmio->buffer >= 0) {
446                         u64 info = chan->data[mmio->buffer].vma->addr;
447                         data |= info >> mmio->shift;
448                 }
449
450                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
451                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
452                 mmio++;
453         }
454         nvkm_done(chan->mmio);
455         return 0;
456 }
457
458 /*******************************************************************************
459  * PGRAPH register lists
460  ******************************************************************************/
461
462 const struct gf100_gr_init
463 gf100_gr_init_main_0[] = {
464         { 0x400080,   1, 0x04, 0x003083c2 },
465         { 0x400088,   1, 0x04, 0x00006fe7 },
466         { 0x40008c,   1, 0x04, 0x00000000 },
467         { 0x400090,   1, 0x04, 0x00000030 },
468         { 0x40013c,   1, 0x04, 0x013901f7 },
469         { 0x400140,   1, 0x04, 0x00000100 },
470         { 0x400144,   1, 0x04, 0x00000000 },
471         { 0x400148,   1, 0x04, 0x00000110 },
472         { 0x400138,   1, 0x04, 0x00000000 },
473         { 0x400130,   2, 0x04, 0x00000000 },
474         { 0x400124,   1, 0x04, 0x00000002 },
475         {}
476 };
477
478 const struct gf100_gr_init
479 gf100_gr_init_fe_0[] = {
480         { 0x40415c,   1, 0x04, 0x00000000 },
481         { 0x404170,   1, 0x04, 0x00000000 },
482         {}
483 };
484
485 const struct gf100_gr_init
486 gf100_gr_init_pri_0[] = {
487         { 0x404488,   2, 0x04, 0x00000000 },
488         {}
489 };
490
491 const struct gf100_gr_init
492 gf100_gr_init_rstr2d_0[] = {
493         { 0x407808,   1, 0x04, 0x00000000 },
494         {}
495 };
496
497 const struct gf100_gr_init
498 gf100_gr_init_pd_0[] = {
499         { 0x406024,   1, 0x04, 0x00000000 },
500         {}
501 };
502
503 const struct gf100_gr_init
504 gf100_gr_init_ds_0[] = {
505         { 0x405844,   1, 0x04, 0x00ffffff },
506         { 0x405850,   1, 0x04, 0x00000000 },
507         { 0x405908,   1, 0x04, 0x00000000 },
508         {}
509 };
510
511 const struct gf100_gr_init
512 gf100_gr_init_scc_0[] = {
513         { 0x40803c,   1, 0x04, 0x00000000 },
514         {}
515 };
516
517 const struct gf100_gr_init
518 gf100_gr_init_prop_0[] = {
519         { 0x4184a0,   1, 0x04, 0x00000000 },
520         {}
521 };
522
523 const struct gf100_gr_init
524 gf100_gr_init_gpc_unk_0[] = {
525         { 0x418604,   1, 0x04, 0x00000000 },
526         { 0x418680,   1, 0x04, 0x00000000 },
527         { 0x418714,   1, 0x04, 0x80000000 },
528         { 0x418384,   1, 0x04, 0x00000000 },
529         {}
530 };
531
532 const struct gf100_gr_init
533 gf100_gr_init_setup_0[] = {
534         { 0x418814,   3, 0x04, 0x00000000 },
535         {}
536 };
537
538 const struct gf100_gr_init
539 gf100_gr_init_crstr_0[] = {
540         { 0x418b04,   1, 0x04, 0x00000000 },
541         {}
542 };
543
544 const struct gf100_gr_init
545 gf100_gr_init_setup_1[] = {
546         { 0x4188c8,   1, 0x04, 0x80000000 },
547         { 0x4188cc,   1, 0x04, 0x00000000 },
548         { 0x4188d0,   1, 0x04, 0x00010000 },
549         { 0x4188d4,   1, 0x04, 0x00000001 },
550         {}
551 };
552
553 const struct gf100_gr_init
554 gf100_gr_init_zcull_0[] = {
555         { 0x418910,   1, 0x04, 0x00010001 },
556         { 0x418914,   1, 0x04, 0x00000301 },
557         { 0x418918,   1, 0x04, 0x00800000 },
558         { 0x418980,   1, 0x04, 0x77777770 },
559         { 0x418984,   3, 0x04, 0x77777777 },
560         {}
561 };
562
563 const struct gf100_gr_init
564 gf100_gr_init_gpm_0[] = {
565         { 0x418c04,   1, 0x04, 0x00000000 },
566         { 0x418c88,   1, 0x04, 0x00000000 },
567         {}
568 };
569
570 const struct gf100_gr_init
571 gf100_gr_init_gpc_unk_1[] = {
572         { 0x418d00,   1, 0x04, 0x00000000 },
573         { 0x418f08,   1, 0x04, 0x00000000 },
574         { 0x418e00,   1, 0x04, 0x00000050 },
575         { 0x418e08,   1, 0x04, 0x00000000 },
576         {}
577 };
578
579 const struct gf100_gr_init
580 gf100_gr_init_gcc_0[] = {
581         { 0x41900c,   1, 0x04, 0x00000000 },
582         { 0x419018,   1, 0x04, 0x00000000 },
583         {}
584 };
585
586 const struct gf100_gr_init
587 gf100_gr_init_tpccs_0[] = {
588         { 0x419d08,   2, 0x04, 0x00000000 },
589         { 0x419d10,   1, 0x04, 0x00000014 },
590         {}
591 };
592
593 const struct gf100_gr_init
594 gf100_gr_init_tex_0[] = {
595         { 0x419ab0,   1, 0x04, 0x00000000 },
596         { 0x419ab8,   1, 0x04, 0x000000e7 },
597         { 0x419abc,   2, 0x04, 0x00000000 },
598         {}
599 };
600
601 const struct gf100_gr_init
602 gf100_gr_init_pe_0[] = {
603         { 0x41980c,   3, 0x04, 0x00000000 },
604         { 0x419844,   1, 0x04, 0x00000000 },
605         { 0x41984c,   1, 0x04, 0x00005bc5 },
606         { 0x419850,   4, 0x04, 0x00000000 },
607         {}
608 };
609
610 const struct gf100_gr_init
611 gf100_gr_init_l1c_0[] = {
612         { 0x419c98,   1, 0x04, 0x00000000 },
613         { 0x419ca8,   1, 0x04, 0x80000000 },
614         { 0x419cb4,   1, 0x04, 0x00000000 },
615         { 0x419cb8,   1, 0x04, 0x00008bf4 },
616         { 0x419cbc,   1, 0x04, 0x28137606 },
617         { 0x419cc0,   2, 0x04, 0x00000000 },
618         {}
619 };
620
621 const struct gf100_gr_init
622 gf100_gr_init_wwdx_0[] = {
623         { 0x419bd4,   1, 0x04, 0x00800000 },
624         { 0x419bdc,   1, 0x04, 0x00000000 },
625         {}
626 };
627
628 const struct gf100_gr_init
629 gf100_gr_init_tpccs_1[] = {
630         { 0x419d2c,   1, 0x04, 0x00000000 },
631         {}
632 };
633
634 const struct gf100_gr_init
635 gf100_gr_init_mpc_0[] = {
636         { 0x419c0c,   1, 0x04, 0x00000000 },
637         {}
638 };
639
640 static const struct gf100_gr_init
641 gf100_gr_init_sm_0[] = {
642         { 0x419e00,   1, 0x04, 0x00000000 },
643         { 0x419ea0,   1, 0x04, 0x00000000 },
644         { 0x419ea4,   1, 0x04, 0x00000100 },
645         { 0x419ea8,   1, 0x04, 0x00001100 },
646         { 0x419eac,   1, 0x04, 0x11100702 },
647         { 0x419eb0,   1, 0x04, 0x00000003 },
648         { 0x419eb4,   4, 0x04, 0x00000000 },
649         { 0x419ec8,   1, 0x04, 0x06060618 },
650         { 0x419ed0,   1, 0x04, 0x0eff0e38 },
651         { 0x419ed4,   1, 0x04, 0x011104f1 },
652         { 0x419edc,   1, 0x04, 0x00000000 },
653         { 0x419f00,   1, 0x04, 0x00000000 },
654         { 0x419f2c,   1, 0x04, 0x00000000 },
655         {}
656 };
657
658 const struct gf100_gr_init
659 gf100_gr_init_be_0[] = {
660         { 0x40880c,   1, 0x04, 0x00000000 },
661         { 0x408910,   9, 0x04, 0x00000000 },
662         { 0x408950,   1, 0x04, 0x00000000 },
663         { 0x408954,   1, 0x04, 0x0000ffff },
664         { 0x408984,   1, 0x04, 0x00000000 },
665         { 0x408988,   1, 0x04, 0x08040201 },
666         { 0x40898c,   1, 0x04, 0x80402010 },
667         {}
668 };
669
670 const struct gf100_gr_init
671 gf100_gr_init_fe_1[] = {
672         { 0x4040f0,   1, 0x04, 0x00000000 },
673         {}
674 };
675
676 const struct gf100_gr_init
677 gf100_gr_init_pe_1[] = {
678         { 0x419880,   1, 0x04, 0x00000002 },
679         {}
680 };
681
682 static const struct gf100_gr_pack
683 gf100_gr_pack_mmio[] = {
684         { gf100_gr_init_main_0 },
685         { gf100_gr_init_fe_0 },
686         { gf100_gr_init_pri_0 },
687         { gf100_gr_init_rstr2d_0 },
688         { gf100_gr_init_pd_0 },
689         { gf100_gr_init_ds_0 },
690         { gf100_gr_init_scc_0 },
691         { gf100_gr_init_prop_0 },
692         { gf100_gr_init_gpc_unk_0 },
693         { gf100_gr_init_setup_0 },
694         { gf100_gr_init_crstr_0 },
695         { gf100_gr_init_setup_1 },
696         { gf100_gr_init_zcull_0 },
697         { gf100_gr_init_gpm_0 },
698         { gf100_gr_init_gpc_unk_1 },
699         { gf100_gr_init_gcc_0 },
700         { gf100_gr_init_tpccs_0 },
701         { gf100_gr_init_tex_0 },
702         { gf100_gr_init_pe_0 },
703         { gf100_gr_init_l1c_0 },
704         { gf100_gr_init_wwdx_0 },
705         { gf100_gr_init_tpccs_1 },
706         { gf100_gr_init_mpc_0 },
707         { gf100_gr_init_sm_0 },
708         { gf100_gr_init_be_0 },
709         { gf100_gr_init_fe_1 },
710         { gf100_gr_init_pe_1 },
711         {}
712 };
713
714 /*******************************************************************************
715  * PGRAPH engine/subdev functions
716  ******************************************************************************/
717
718 static u32
719 gf100_gr_ctxsw_inst(struct nvkm_gr *gr)
720 {
721         return nvkm_rd32(gr->engine.subdev.device, 0x409b00);
722 }
723
724 static int
725 gf100_gr_fecs_ctrl_ctxsw(struct gf100_gr *gr, u32 mthd)
726 {
727         struct nvkm_device *device = gr->base.engine.subdev.device;
728
729         nvkm_wr32(device, 0x409804, 0xffffffff);
730         nvkm_wr32(device, 0x409840, 0xffffffff);
731         nvkm_wr32(device, 0x409500, 0xffffffff);
732         nvkm_wr32(device, 0x409504, mthd);
733         nvkm_msec(device, 2000,
734                 u32 stat = nvkm_rd32(device, 0x409804);
735                 if (stat == 0x00000002)
736                         return -EIO;
737                 if (stat == 0x00000001)
738                         return 0;
739         );
740
741         return -ETIMEDOUT;
742 }
743
744 int
745 gf100_gr_fecs_start_ctxsw(struct nvkm_gr *base)
746 {
747         struct gf100_gr *gr = gf100_gr(base);
748         int ret = 0;
749
750         mutex_lock(&gr->fecs.mutex);
751         if (!--gr->fecs.disable) {
752                 if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x39)))
753                         gr->fecs.disable++;
754         }
755         mutex_unlock(&gr->fecs.mutex);
756         return ret;
757 }
758
759 int
760 gf100_gr_fecs_stop_ctxsw(struct nvkm_gr *base)
761 {
762         struct gf100_gr *gr = gf100_gr(base);
763         int ret = 0;
764
765         mutex_lock(&gr->fecs.mutex);
766         if (!gr->fecs.disable++) {
767                 if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x38)))
768                         gr->fecs.disable--;
769         }
770         mutex_unlock(&gr->fecs.mutex);
771         return ret;
772 }
773
774 int
775 gf100_gr_fecs_bind_pointer(struct gf100_gr *gr, u32 inst)
776 {
777         struct nvkm_device *device = gr->base.engine.subdev.device;
778
779         nvkm_wr32(device, 0x409840, 0x00000030);
780         nvkm_wr32(device, 0x409500, inst);
781         nvkm_wr32(device, 0x409504, 0x00000003);
782         nvkm_msec(device, 2000,
783                 u32 stat = nvkm_rd32(device, 0x409800);
784                 if (stat & 0x00000020)
785                         return -EIO;
786                 if (stat & 0x00000010)
787                         return 0;
788         );
789
790         return -ETIMEDOUT;
791 }
792
793 static int
794 gf100_gr_fecs_set_reglist_virtual_address(struct gf100_gr *gr, u64 addr)
795 {
796         struct nvkm_device *device = gr->base.engine.subdev.device;
797
798         nvkm_wr32(device, 0x409810, addr >> 8);
799         nvkm_wr32(device, 0x409800, 0x00000000);
800         nvkm_wr32(device, 0x409500, 0x00000001);
801         nvkm_wr32(device, 0x409504, 0x00000032);
802         nvkm_msec(device, 2000,
803                 if (nvkm_rd32(device, 0x409800) == 0x00000001)
804                         return 0;
805         );
806
807         return -ETIMEDOUT;
808 }
809
810 static int
811 gf100_gr_fecs_set_reglist_bind_instance(struct gf100_gr *gr, u32 inst)
812 {
813         struct nvkm_device *device = gr->base.engine.subdev.device;
814
815         nvkm_wr32(device, 0x409810, inst);
816         nvkm_wr32(device, 0x409800, 0x00000000);
817         nvkm_wr32(device, 0x409500, 0x00000001);
818         nvkm_wr32(device, 0x409504, 0x00000031);
819         nvkm_msec(device, 2000,
820                 if (nvkm_rd32(device, 0x409800) == 0x00000001)
821                         return 0;
822         );
823
824         return -ETIMEDOUT;
825 }
826
827 static int
828 gf100_gr_fecs_discover_reglist_image_size(struct gf100_gr *gr, u32 *psize)
829 {
830         struct nvkm_device *device = gr->base.engine.subdev.device;
831
832         nvkm_wr32(device, 0x409800, 0x00000000);
833         nvkm_wr32(device, 0x409500, 0x00000001);
834         nvkm_wr32(device, 0x409504, 0x00000030);
835         nvkm_msec(device, 2000,
836                 if ((*psize = nvkm_rd32(device, 0x409800)))
837                         return 0;
838         );
839
840         return -ETIMEDOUT;
841 }
842
843 static int
844 gf100_gr_fecs_elpg_bind(struct gf100_gr *gr)
845 {
846         u32 size;
847         int ret;
848
849         ret = gf100_gr_fecs_discover_reglist_image_size(gr, &size);
850         if (ret)
851                 return ret;
852
853         /*XXX: We need to allocate + map the above into PMU's inst block,
854          *     which which means we probably need a proper PMU before we
855          *     even bother.
856          */
857
858         ret = gf100_gr_fecs_set_reglist_bind_instance(gr, 0);
859         if (ret)
860                 return ret;
861
862         return gf100_gr_fecs_set_reglist_virtual_address(gr, 0);
863 }
864
865 static int
866 gf100_gr_fecs_discover_pm_image_size(struct gf100_gr *gr, u32 *psize)
867 {
868         struct nvkm_device *device = gr->base.engine.subdev.device;
869
870         nvkm_wr32(device, 0x409840, 0xffffffff);
871         nvkm_wr32(device, 0x409500, 0x00000000);
872         nvkm_wr32(device, 0x409504, 0x00000025);
873         nvkm_msec(device, 2000,
874                 if ((*psize = nvkm_rd32(device, 0x409800)))
875                         return 0;
876         );
877
878         return -ETIMEDOUT;
879 }
880
881 static int
882 gf100_gr_fecs_discover_zcull_image_size(struct gf100_gr *gr, u32 *psize)
883 {
884         struct nvkm_device *device = gr->base.engine.subdev.device;
885
886         nvkm_wr32(device, 0x409840, 0xffffffff);
887         nvkm_wr32(device, 0x409500, 0x00000000);
888         nvkm_wr32(device, 0x409504, 0x00000016);
889         nvkm_msec(device, 2000,
890                 if ((*psize = nvkm_rd32(device, 0x409800)))
891                         return 0;
892         );
893
894         return -ETIMEDOUT;
895 }
896
897 static int
898 gf100_gr_fecs_discover_image_size(struct gf100_gr *gr, u32 *psize)
899 {
900         struct nvkm_device *device = gr->base.engine.subdev.device;
901
902         nvkm_wr32(device, 0x409840, 0xffffffff);
903         nvkm_wr32(device, 0x409500, 0x00000000);
904         nvkm_wr32(device, 0x409504, 0x00000010);
905         nvkm_msec(device, 2000,
906                 if ((*psize = nvkm_rd32(device, 0x409800)))
907                         return 0;
908         );
909
910         return -ETIMEDOUT;
911 }
912
913 static void
914 gf100_gr_fecs_set_watchdog_timeout(struct gf100_gr *gr, u32 timeout)
915 {
916         struct nvkm_device *device = gr->base.engine.subdev.device;
917
918         nvkm_wr32(device, 0x409840, 0xffffffff);
919         nvkm_wr32(device, 0x409500, timeout);
920         nvkm_wr32(device, 0x409504, 0x00000021);
921 }
922
923 static bool
924 gf100_gr_chsw_load(struct nvkm_gr *base)
925 {
926         struct gf100_gr *gr = gf100_gr(base);
927         if (!gr->firmware) {
928                 u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
929                 if (trace & 0x00000040)
930                         return true;
931         } else {
932                 u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
933                 if (mthd & 0x00080000)
934                         return true;
935         }
936         return false;
937 }
938
939 int
940 gf100_gr_rops(struct gf100_gr *gr)
941 {
942         struct nvkm_device *device = gr->base.engine.subdev.device;
943         return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
944 }
945
946 void
947 gf100_gr_zbc_init(struct gf100_gr *gr)
948 {
949         const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
950                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
951         const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
952                               0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
953         const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
954                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
955         const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
956                               0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
957         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
958         int index, c = ltc->zbc_min, d = ltc->zbc_min, s = ltc->zbc_min;
959
960         if (!gr->zbc_color[0].format) {
961                 gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]); c++;
962                 gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]); c++;
963                 gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]); c++;
964                 gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]); c++;
965                 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
966                 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
967                 if (gr->func->zbc->stencil_get) {
968                         gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
969                         gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
970                         gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
971                 }
972         }
973
974         for (index = c; index <= ltc->zbc_max; index++)
975                 gr->func->zbc->clear_color(gr, index);
976         for (index = d; index <= ltc->zbc_max; index++)
977                 gr->func->zbc->clear_depth(gr, index);
978
979         if (gr->func->zbc->clear_stencil) {
980                 for (index = s; index <= ltc->zbc_max; index++)
981                         gr->func->zbc->clear_stencil(gr, index);
982         }
983 }
984
985 /**
986  * Wait until GR goes idle. GR is considered idle if it is disabled by the
987  * MC (0x200) register, or GR is not busy and a context switch is not in
988  * progress.
989  */
990 int
991 gf100_gr_wait_idle(struct gf100_gr *gr)
992 {
993         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
994         struct nvkm_device *device = subdev->device;
995         unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
996         bool gr_enabled, ctxsw_active, gr_busy;
997
998         do {
999                 /*
1000                  * required to make sure FIFO_ENGINE_STATUS (0x2640) is
1001                  * up-to-date
1002                  */
1003                 nvkm_rd32(device, 0x400700);
1004
1005                 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
1006                 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
1007                 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
1008
1009                 if (!gr_enabled || (!gr_busy && !ctxsw_active))
1010                         return 0;
1011         } while (time_before(jiffies, end_jiffies));
1012
1013         nvkm_error(subdev,
1014                    "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
1015                    gr_enabled, ctxsw_active, gr_busy);
1016         return -EAGAIN;
1017 }
1018
1019 void
1020 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1021 {
1022         struct nvkm_device *device = gr->base.engine.subdev.device;
1023         const struct gf100_gr_pack *pack;
1024         const struct gf100_gr_init *init;
1025
1026         pack_for_each_init(init, pack, p) {
1027                 u32 next = init->addr + init->count * init->pitch;
1028                 u32 addr = init->addr;
1029                 while (addr < next) {
1030                         nvkm_wr32(device, addr, init->data);
1031                         addr += init->pitch;
1032                 }
1033         }
1034 }
1035
1036 void
1037 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1038 {
1039         struct nvkm_device *device = gr->base.engine.subdev.device;
1040         const struct gf100_gr_pack *pack;
1041         const struct gf100_gr_init *init;
1042         u32 data = 0;
1043
1044         nvkm_wr32(device, 0x400208, 0x80000000);
1045
1046         pack_for_each_init(init, pack, p) {
1047                 u32 next = init->addr + init->count * init->pitch;
1048                 u32 addr = init->addr;
1049
1050                 if ((pack == p && init == p->init) || data != init->data) {
1051                         nvkm_wr32(device, 0x400204, init->data);
1052                         data = init->data;
1053                 }
1054
1055                 while (addr < next) {
1056                         nvkm_wr32(device, 0x400200, addr);
1057                         /**
1058                          * Wait for GR to go idle after submitting a
1059                          * GO_IDLE bundle
1060                          */
1061                         if ((addr & 0xffff) == 0xe100)
1062                                 gf100_gr_wait_idle(gr);
1063                         nvkm_msec(device, 2000,
1064                                 if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
1065                                         break;
1066                         );
1067                         addr += init->pitch;
1068                 }
1069         }
1070
1071         nvkm_wr32(device, 0x400208, 0x00000000);
1072 }
1073
1074 void
1075 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1076 {
1077         struct nvkm_device *device = gr->base.engine.subdev.device;
1078         const struct gf100_gr_pack *pack;
1079         const struct gf100_gr_init *init;
1080         u32 data = 0;
1081
1082         pack_for_each_init(init, pack, p) {
1083                 u32 ctrl = 0x80000000 | pack->type;
1084                 u32 next = init->addr + init->count * init->pitch;
1085                 u32 addr = init->addr;
1086
1087                 if ((pack == p && init == p->init) || data != init->data) {
1088                         nvkm_wr32(device, 0x40448c, init->data);
1089                         data = init->data;
1090                 }
1091
1092                 while (addr < next) {
1093                         nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
1094                         addr += init->pitch;
1095                 }
1096         }
1097 }
1098
1099 u64
1100 gf100_gr_units(struct nvkm_gr *base)
1101 {
1102         struct gf100_gr *gr = gf100_gr(base);
1103         u64 cfg;
1104
1105         cfg  = (u32)gr->gpc_nr;
1106         cfg |= (u32)gr->tpc_total << 8;
1107         cfg |= (u64)gr->rop_nr << 32;
1108
1109         return cfg;
1110 }
1111
1112 static const struct nvkm_bitfield gf100_dispatch_error[] = {
1113         { 0x00000001, "INJECTED_BUNDLE_ERROR" },
1114         { 0x00000002, "CLASS_SUBCH_MISMATCH" },
1115         { 0x00000004, "SUBCHSW_DURING_NOTIFY" },
1116         {}
1117 };
1118
1119 static const struct nvkm_bitfield gf100_m2mf_error[] = {
1120         { 0x00000001, "PUSH_TOO_MUCH_DATA" },
1121         { 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
1122         {}
1123 };
1124
1125 static const struct nvkm_bitfield gf100_unk6_error[] = {
1126         { 0x00000001, "TEMP_TOO_SMALL" },
1127         {}
1128 };
1129
1130 static const struct nvkm_bitfield gf100_ccache_error[] = {
1131         { 0x00000001, "INTR" },
1132         { 0x00000002, "LDCONST_OOB" },
1133         {}
1134 };
1135
1136 static const struct nvkm_bitfield gf100_macro_error[] = {
1137         { 0x00000001, "TOO_FEW_PARAMS" },
1138         { 0x00000002, "TOO_MANY_PARAMS" },
1139         { 0x00000004, "ILLEGAL_OPCODE" },
1140         { 0x00000008, "DOUBLE_BRANCH" },
1141         { 0x00000010, "WATCHDOG" },
1142         {}
1143 };
1144
1145 static const struct nvkm_bitfield gk104_sked_error[] = {
1146         { 0x00000040, "CTA_RESUME" },
1147         { 0x00000080, "CONSTANT_BUFFER_SIZE" },
1148         { 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
1149         { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
1150         { 0x00000800, "WARP_CSTACK_SIZE" },
1151         { 0x00001000, "TOTAL_TEMP_SIZE" },
1152         { 0x00002000, "REGISTER_COUNT" },
1153         { 0x00040000, "TOTAL_THREADS" },
1154         { 0x00100000, "PROGRAM_OFFSET" },
1155         { 0x00200000, "SHARED_MEMORY_SIZE" },
1156         { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
1157         { 0x01000000, "MEMORY_WINDOW_OVERLAP" },
1158         { 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
1159         { 0x04000000, "TOTAL_REGISTER_COUNT" },
1160         {}
1161 };
1162
1163 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
1164         { 0x00000002, "RT_PITCH_OVERRUN" },
1165         { 0x00000010, "RT_WIDTH_OVERRUN" },
1166         { 0x00000020, "RT_HEIGHT_OVERRUN" },
1167         { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
1168         { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
1169         { 0x00000400, "RT_LINEAR_MISMATCH" },
1170         {}
1171 };
1172
1173 static void
1174 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
1175 {
1176         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1177         struct nvkm_device *device = subdev->device;
1178         char error[128];
1179         u32 trap[4];
1180
1181         trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
1182         trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
1183         trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
1184         trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
1185
1186         nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
1187
1188         nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
1189                            "format = %x, storage type = %x\n",
1190                    gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
1191                    (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
1192         nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1193 }
1194
1195 const struct nvkm_enum gf100_mp_warp_error[] = {
1196         { 0x01, "STACK_ERROR" },
1197         { 0x02, "API_STACK_ERROR" },
1198         { 0x03, "RET_EMPTY_STACK_ERROR" },
1199         { 0x04, "PC_WRAP" },
1200         { 0x05, "MISALIGNED_PC" },
1201         { 0x06, "PC_OVERFLOW" },
1202         { 0x07, "MISALIGNED_IMMC_ADDR" },
1203         { 0x08, "MISALIGNED_REG" },
1204         { 0x09, "ILLEGAL_INSTR_ENCODING" },
1205         { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
1206         { 0x0b, "ILLEGAL_INSTR_PARAM" },
1207         { 0x0c, "INVALID_CONST_ADDR" },
1208         { 0x0d, "OOR_REG" },
1209         { 0x0e, "OOR_ADDR" },
1210         { 0x0f, "MISALIGNED_ADDR" },
1211         { 0x10, "INVALID_ADDR_SPACE" },
1212         { 0x11, "ILLEGAL_INSTR_PARAM2" },
1213         { 0x12, "INVALID_CONST_ADDR_LDC" },
1214         { 0x13, "GEOMETRY_SM_ERROR" },
1215         { 0x14, "DIVERGENT" },
1216         { 0x15, "WARP_EXIT" },
1217         {}
1218 };
1219
1220 const struct nvkm_bitfield gf100_mp_global_error[] = {
1221         { 0x00000001, "SM_TO_SM_FAULT" },
1222         { 0x00000002, "L1_ERROR" },
1223         { 0x00000004, "MULTIPLE_WARP_ERRORS" },
1224         { 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
1225         { 0x00000010, "BPT_INT" },
1226         { 0x00000020, "BPT_PAUSE" },
1227         { 0x00000040, "SINGLE_STEP_COMPLETE" },
1228         { 0x20000000, "ECC_SEC_ERROR" },
1229         { 0x40000000, "ECC_DED_ERROR" },
1230         { 0x80000000, "TIMEOUT" },
1231         {}
1232 };
1233
1234 void
1235 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1236 {
1237         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1238         struct nvkm_device *device = subdev->device;
1239         u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1240         u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1241         const struct nvkm_enum *warp;
1242         char glob[128];
1243
1244         nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1245         warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1246
1247         nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1248                            "global %08x [%s] warp %04x [%s]\n",
1249                    gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1250
1251         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1252         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1253 }
1254
1255 static void
1256 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1257 {
1258         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1259         struct nvkm_device *device = subdev->device;
1260         u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1261
1262         if (stat & 0x00000001) {
1263                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1264                 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1265                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1266                 stat &= ~0x00000001;
1267         }
1268
1269         if (stat & 0x00000002) {
1270                 gr->func->trap_mp(gr, gpc, tpc);
1271                 stat &= ~0x00000002;
1272         }
1273
1274         if (stat & 0x00000004) {
1275                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1276                 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1277                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1278                 stat &= ~0x00000004;
1279         }
1280
1281         if (stat & 0x00000008) {
1282                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1283                 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1284                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1285                 stat &= ~0x00000008;
1286         }
1287
1288         if (stat & 0x00000010) {
1289                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1290                 nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1291                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1292                 stat &= ~0x00000010;
1293         }
1294
1295         if (stat) {
1296                 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1297         }
1298 }
1299
1300 static void
1301 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1302 {
1303         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1304         struct nvkm_device *device = subdev->device;
1305         u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1306         int tpc;
1307
1308         if (stat & 0x00000001) {
1309                 gf100_gr_trap_gpc_rop(gr, gpc);
1310                 stat &= ~0x00000001;
1311         }
1312
1313         if (stat & 0x00000002) {
1314                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1315                 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1316                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1317                 stat &= ~0x00000002;
1318         }
1319
1320         if (stat & 0x00000004) {
1321                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1322                 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1323                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1324                 stat &= ~0x00000004;
1325         }
1326
1327         if (stat & 0x00000008) {
1328                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1329                 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1330                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1331                 stat &= ~0x00000009;
1332         }
1333
1334         for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1335                 u32 mask = 0x00010000 << tpc;
1336                 if (stat & mask) {
1337                         gf100_gr_trap_tpc(gr, gpc, tpc);
1338                         nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1339                         stat &= ~mask;
1340                 }
1341         }
1342
1343         if (stat) {
1344                 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1345         }
1346 }
1347
1348 static void
1349 gf100_gr_trap_intr(struct gf100_gr *gr)
1350 {
1351         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1352         struct nvkm_device *device = subdev->device;
1353         char error[128];
1354         u32 trap = nvkm_rd32(device, 0x400108);
1355         int rop, gpc;
1356
1357         if (trap & 0x00000001) {
1358                 u32 stat = nvkm_rd32(device, 0x404000);
1359
1360                 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1361                                stat & 0x3fffffff);
1362                 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1363                 nvkm_wr32(device, 0x404000, 0xc0000000);
1364                 nvkm_wr32(device, 0x400108, 0x00000001);
1365                 trap &= ~0x00000001;
1366         }
1367
1368         if (trap & 0x00000002) {
1369                 u32 stat = nvkm_rd32(device, 0x404600);
1370
1371                 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1372                                stat & 0x3fffffff);
1373                 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1374
1375                 nvkm_wr32(device, 0x404600, 0xc0000000);
1376                 nvkm_wr32(device, 0x400108, 0x00000002);
1377                 trap &= ~0x00000002;
1378         }
1379
1380         if (trap & 0x00000008) {
1381                 u32 stat = nvkm_rd32(device, 0x408030);
1382
1383                 nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1384                                stat & 0x3fffffff);
1385                 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1386                 nvkm_wr32(device, 0x408030, 0xc0000000);
1387                 nvkm_wr32(device, 0x400108, 0x00000008);
1388                 trap &= ~0x00000008;
1389         }
1390
1391         if (trap & 0x00000010) {
1392                 u32 stat = nvkm_rd32(device, 0x405840);
1393                 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1394                            stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1395                 nvkm_wr32(device, 0x405840, 0xc0000000);
1396                 nvkm_wr32(device, 0x400108, 0x00000010);
1397                 trap &= ~0x00000010;
1398         }
1399
1400         if (trap & 0x00000040) {
1401                 u32 stat = nvkm_rd32(device, 0x40601c);
1402
1403                 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1404                                stat & 0x3fffffff);
1405                 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1406
1407                 nvkm_wr32(device, 0x40601c, 0xc0000000);
1408                 nvkm_wr32(device, 0x400108, 0x00000040);
1409                 trap &= ~0x00000040;
1410         }
1411
1412         if (trap & 0x00000080) {
1413                 u32 stat = nvkm_rd32(device, 0x404490);
1414                 u32 pc = nvkm_rd32(device, 0x404494);
1415                 u32 op = nvkm_rd32(device, 0x40449c);
1416
1417                 nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1418                                stat & 0x1fffffff);
1419                 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1420                            stat, error, pc & 0x7ff,
1421                            (pc & 0x10000000) ? "" : " (invalid)",
1422                            op);
1423
1424                 nvkm_wr32(device, 0x404490, 0xc0000000);
1425                 nvkm_wr32(device, 0x400108, 0x00000080);
1426                 trap &= ~0x00000080;
1427         }
1428
1429         if (trap & 0x00000100) {
1430                 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1431
1432                 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1433                 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1434
1435                 if (stat)
1436                         nvkm_wr32(device, 0x407020, 0x40000000);
1437                 nvkm_wr32(device, 0x400108, 0x00000100);
1438                 trap &= ~0x00000100;
1439         }
1440
1441         if (trap & 0x01000000) {
1442                 u32 stat = nvkm_rd32(device, 0x400118);
1443                 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1444                         u32 mask = 0x00000001 << gpc;
1445                         if (stat & mask) {
1446                                 gf100_gr_trap_gpc(gr, gpc);
1447                                 nvkm_wr32(device, 0x400118, mask);
1448                                 stat &= ~mask;
1449                         }
1450                 }
1451                 nvkm_wr32(device, 0x400108, 0x01000000);
1452                 trap &= ~0x01000000;
1453         }
1454
1455         if (trap & 0x02000000) {
1456                 for (rop = 0; rop < gr->rop_nr; rop++) {
1457                         u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1458                         u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1459                         nvkm_error(subdev, "ROP%d %08x %08x\n",
1460                                  rop, statz, statc);
1461                         nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1462                         nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1463                 }
1464                 nvkm_wr32(device, 0x400108, 0x02000000);
1465                 trap &= ~0x02000000;
1466         }
1467
1468         if (trap) {
1469                 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1470                 nvkm_wr32(device, 0x400108, trap);
1471         }
1472 }
1473
1474 static void
1475 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1476 {
1477         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1478         struct nvkm_device *device = subdev->device;
1479         nvkm_error(subdev, "%06x - done %08x\n", base,
1480                    nvkm_rd32(device, base + 0x400));
1481         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1482                    nvkm_rd32(device, base + 0x800),
1483                    nvkm_rd32(device, base + 0x804),
1484                    nvkm_rd32(device, base + 0x808),
1485                    nvkm_rd32(device, base + 0x80c));
1486         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1487                    nvkm_rd32(device, base + 0x810),
1488                    nvkm_rd32(device, base + 0x814),
1489                    nvkm_rd32(device, base + 0x818),
1490                    nvkm_rd32(device, base + 0x81c));
1491 }
1492
1493 void
1494 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1495 {
1496         struct nvkm_device *device = gr->base.engine.subdev.device;
1497         u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1498         u32 gpc;
1499
1500         gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1501         for (gpc = 0; gpc < gpcnr; gpc++)
1502                 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1503 }
1504
1505 static void
1506 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1507 {
1508         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1509         struct nvkm_device *device = subdev->device;
1510         u32 stat = nvkm_rd32(device, 0x409c18);
1511
1512         if (!gr->firmware && (stat & 0x00000001)) {
1513                 u32 code = nvkm_rd32(device, 0x409814);
1514                 if (code == E_BAD_FWMTHD) {
1515                         u32 class = nvkm_rd32(device, 0x409808);
1516                         u32  addr = nvkm_rd32(device, 0x40980c);
1517                         u32  subc = (addr & 0x00070000) >> 16;
1518                         u32  mthd = (addr & 0x00003ffc);
1519                         u32  data = nvkm_rd32(device, 0x409810);
1520
1521                         nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1522                                            "mthd %04x data %08x\n",
1523                                    subc, class, mthd, data);
1524                 } else {
1525                         nvkm_error(subdev, "FECS ucode error %d\n", code);
1526                 }
1527                 nvkm_wr32(device, 0x409c20, 0x00000001);
1528                 stat &= ~0x00000001;
1529         }
1530
1531         if (!gr->firmware && (stat & 0x00080000)) {
1532                 nvkm_error(subdev, "FECS watchdog timeout\n");
1533                 gf100_gr_ctxctl_debug(gr);
1534                 nvkm_wr32(device, 0x409c20, 0x00080000);
1535                 stat &= ~0x00080000;
1536         }
1537
1538         if (stat) {
1539                 nvkm_error(subdev, "FECS %08x\n", stat);
1540                 gf100_gr_ctxctl_debug(gr);
1541                 nvkm_wr32(device, 0x409c20, stat);
1542         }
1543 }
1544
1545 static void
1546 gf100_gr_intr(struct nvkm_gr *base)
1547 {
1548         struct gf100_gr *gr = gf100_gr(base);
1549         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1550         struct nvkm_device *device = subdev->device;
1551         struct nvkm_fifo_chan *chan;
1552         unsigned long flags;
1553         u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1554         u32 stat = nvkm_rd32(device, 0x400100);
1555         u32 addr = nvkm_rd32(device, 0x400704);
1556         u32 mthd = (addr & 0x00003ffc);
1557         u32 subc = (addr & 0x00070000) >> 16;
1558         u32 data = nvkm_rd32(device, 0x400708);
1559         u32 code = nvkm_rd32(device, 0x400110);
1560         u32 class;
1561         const char *name = "unknown";
1562         int chid = -1;
1563
1564         chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1565         if (chan) {
1566                 name = chan->object.client->name;
1567                 chid = chan->chid;
1568         }
1569
1570         if (device->card_type < NV_E0 || subc < 4)
1571                 class = nvkm_rd32(device, 0x404200 + (subc * 4));
1572         else
1573                 class = 0x0000;
1574
1575         if (stat & 0x00000001) {
1576                 /*
1577                  * notifier interrupt, only needed for cyclestats
1578                  * can be safely ignored
1579                  */
1580                 nvkm_wr32(device, 0x400100, 0x00000001);
1581                 stat &= ~0x00000001;
1582         }
1583
1584         if (stat & 0x00000010) {
1585                 if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1586                         nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1587                                    "subc %d class %04x mthd %04x data %08x\n",
1588                                    chid, inst << 12, name, subc,
1589                                    class, mthd, data);
1590                 }
1591                 nvkm_wr32(device, 0x400100, 0x00000010);
1592                 stat &= ~0x00000010;
1593         }
1594
1595         if (stat & 0x00000020) {
1596                 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1597                            "subc %d class %04x mthd %04x data %08x\n",
1598                            chid, inst << 12, name, subc, class, mthd, data);
1599                 nvkm_wr32(device, 0x400100, 0x00000020);
1600                 stat &= ~0x00000020;
1601         }
1602
1603         if (stat & 0x00100000) {
1604                 const struct nvkm_enum *en =
1605                         nvkm_enum_find(nv50_data_error_names, code);
1606                 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1607                                    "subc %d class %04x mthd %04x data %08x\n",
1608                            code, en ? en->name : "", chid, inst << 12,
1609                            name, subc, class, mthd, data);
1610                 nvkm_wr32(device, 0x400100, 0x00100000);
1611                 stat &= ~0x00100000;
1612         }
1613
1614         if (stat & 0x00200000) {
1615                 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1616                            chid, inst << 12, name);
1617                 gf100_gr_trap_intr(gr);
1618                 nvkm_wr32(device, 0x400100, 0x00200000);
1619                 stat &= ~0x00200000;
1620         }
1621
1622         if (stat & 0x00080000) {
1623                 gf100_gr_ctxctl_isr(gr);
1624                 nvkm_wr32(device, 0x400100, 0x00080000);
1625                 stat &= ~0x00080000;
1626         }
1627
1628         if (stat) {
1629                 nvkm_error(subdev, "intr %08x\n", stat);
1630                 nvkm_wr32(device, 0x400100, stat);
1631         }
1632
1633         nvkm_wr32(device, 0x400500, 0x00010001);
1634         nvkm_fifo_chan_put(device->fifo, flags, &chan);
1635 }
1636
1637 static void
1638 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1639                  struct nvkm_blob *code, struct nvkm_blob *data)
1640 {
1641         nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1642         nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1643 }
1644
1645 static void
1646 gf100_gr_init_csdata(struct gf100_gr *gr,
1647                      const struct gf100_gr_pack *pack,
1648                      u32 falcon, u32 starstar, u32 base)
1649 {
1650         struct nvkm_device *device = gr->base.engine.subdev.device;
1651         const struct gf100_gr_pack *iter;
1652         const struct gf100_gr_init *init;
1653         u32 addr = ~0, prev = ~0, xfer = 0;
1654         u32 star, temp;
1655
1656         nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1657         star = nvkm_rd32(device, falcon + 0x01c4);
1658         temp = nvkm_rd32(device, falcon + 0x01c4);
1659         if (temp > star)
1660                 star = temp;
1661         nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1662
1663         pack_for_each_init(init, iter, pack) {
1664                 u32 head = init->addr - base;
1665                 u32 tail = head + init->count * init->pitch;
1666                 while (head < tail) {
1667                         if (head != prev + 4 || xfer >= 32) {
1668                                 if (xfer) {
1669                                         u32 data = ((--xfer << 26) | addr);
1670                                         nvkm_wr32(device, falcon + 0x01c4, data);
1671                                         star += 4;
1672                                 }
1673                                 addr = head;
1674                                 xfer = 0;
1675                         }
1676                         prev = head;
1677                         xfer = xfer + 1;
1678                         head = head + init->pitch;
1679                 }
1680         }
1681
1682         nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1683         nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1684         nvkm_wr32(device, falcon + 0x01c4, star + 4);
1685 }
1686
1687 /* Initialize context from an external (secure or not) firmware */
1688 static int
1689 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1690 {
1691         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1692         struct nvkm_device *device = subdev->device;
1693         u32 lsf_mask = 0;
1694         int ret;
1695
1696         /* load fuc microcode */
1697         nvkm_mc_unk260(device, 0);
1698
1699         /* securely-managed falcons must be reset using secure boot */
1700
1701         if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_FECS)) {
1702                 gf100_gr_init_fw(&gr->fecs.falcon, &gr->fecs.inst,
1703                                                    &gr->fecs.data);
1704         } else {
1705                 lsf_mask |= BIT(NVKM_ACR_LSF_FECS);
1706         }
1707
1708         if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_GPCCS)) {
1709                 gf100_gr_init_fw(&gr->gpccs.falcon, &gr->gpccs.inst,
1710                                                     &gr->gpccs.data);
1711         } else {
1712                 lsf_mask |= BIT(NVKM_ACR_LSF_GPCCS);
1713         }
1714
1715         if (lsf_mask) {
1716                 ret = nvkm_acr_bootstrap_falcons(device, lsf_mask);
1717                 if (ret)
1718                         return ret;
1719         }
1720
1721         nvkm_mc_unk260(device, 1);
1722
1723         /* start both of them running */
1724         nvkm_wr32(device, 0x409840, 0xffffffff);
1725         nvkm_wr32(device, 0x41a10c, 0x00000000);
1726         nvkm_wr32(device, 0x40910c, 0x00000000);
1727
1728         nvkm_falcon_start(&gr->gpccs.falcon);
1729         nvkm_falcon_start(&gr->fecs.falcon);
1730
1731         if (nvkm_msec(device, 2000,
1732                 if (nvkm_rd32(device, 0x409800) & 0x00000001)
1733                         break;
1734         ) < 0)
1735                 return -EBUSY;
1736
1737         gf100_gr_fecs_set_watchdog_timeout(gr, 0x7fffffff);
1738
1739         /* Determine how much memory is required to store main context image. */
1740         ret = gf100_gr_fecs_discover_image_size(gr, &gr->size);
1741         if (ret)
1742                 return ret;
1743
1744         /* Determine how much memory is required to store ZCULL image. */
1745         ret = gf100_gr_fecs_discover_zcull_image_size(gr, &gr->size_zcull);
1746         if (ret)
1747                 return ret;
1748
1749         /* Determine how much memory is required to store PerfMon image. */
1750         ret = gf100_gr_fecs_discover_pm_image_size(gr, &gr->size_pm);
1751         if (ret)
1752                 return ret;
1753
1754         /*XXX: We (likely) require PMU support to even bother with this.
1755          *
1756          *     Also, it seems like not all GPUs support ELPG.  Traces I
1757          *     have here show RM enabling it on Kepler/Turing, but none
1758          *     of the GPUs between those.  NVGPU decides this by PCIID.
1759          */
1760         if (0) {
1761                 ret = gf100_gr_fecs_elpg_bind(gr);
1762                 if (ret)
1763                         return ret;
1764         }
1765
1766         /* Generate golden context image. */
1767         if (gr->data == NULL) {
1768                 int ret = gf100_grctx_generate(gr);
1769                 if (ret) {
1770                         nvkm_error(subdev, "failed to construct context\n");
1771                         return ret;
1772                 }
1773         }
1774
1775         return 0;
1776 }
1777
1778 static int
1779 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1780 {
1781         const struct gf100_grctx_func *grctx = gr->func->grctx;
1782         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1783         struct nvkm_device *device = subdev->device;
1784
1785         if (!gr->func->fecs.ucode) {
1786                 return -ENOSYS;
1787         }
1788
1789         /* load HUB microcode */
1790         nvkm_mc_unk260(device, 0);
1791         nvkm_falcon_load_dmem(&gr->fecs.falcon,
1792                               gr->func->fecs.ucode->data.data, 0x0,
1793                               gr->func->fecs.ucode->data.size, 0);
1794         nvkm_falcon_load_imem(&gr->fecs.falcon,
1795                               gr->func->fecs.ucode->code.data, 0x0,
1796                               gr->func->fecs.ucode->code.size, 0, 0, false);
1797
1798         /* load GPC microcode */
1799         nvkm_falcon_load_dmem(&gr->gpccs.falcon,
1800                               gr->func->gpccs.ucode->data.data, 0x0,
1801                               gr->func->gpccs.ucode->data.size, 0);
1802         nvkm_falcon_load_imem(&gr->gpccs.falcon,
1803                               gr->func->gpccs.ucode->code.data, 0x0,
1804                               gr->func->gpccs.ucode->code.size, 0, 0, false);
1805         nvkm_mc_unk260(device, 1);
1806
1807         /* load register lists */
1808         gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1809         gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
1810         gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
1811         gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1812         gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1813
1814         /* start HUB ucode running, it'll init the GPCs */
1815         nvkm_wr32(device, 0x40910c, 0x00000000);
1816         nvkm_wr32(device, 0x409100, 0x00000002);
1817         if (nvkm_msec(device, 2000,
1818                 if (nvkm_rd32(device, 0x409800) & 0x80000000)
1819                         break;
1820         ) < 0) {
1821                 gf100_gr_ctxctl_debug(gr);
1822                 return -EBUSY;
1823         }
1824
1825         gr->size = nvkm_rd32(device, 0x409804);
1826         if (gr->data == NULL) {
1827                 int ret = gf100_grctx_generate(gr);
1828                 if (ret) {
1829                         nvkm_error(subdev, "failed to construct context\n");
1830                         return ret;
1831                 }
1832         }
1833
1834         return 0;
1835 }
1836
1837 int
1838 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1839 {
1840         int ret;
1841
1842         if (gr->firmware)
1843                 ret = gf100_gr_init_ctxctl_ext(gr);
1844         else
1845                 ret = gf100_gr_init_ctxctl_int(gr);
1846
1847         return ret;
1848 }
1849
1850 void
1851 gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
1852 {
1853         int tpc, gpc;
1854         for (tpc = 0; tpc < gr->tpc_max; tpc++) {
1855                 for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1856                         if (tpc < gr->tpc_nr[gpc]) {
1857                                 gr->sm[gr->sm_nr].gpc = gpc;
1858                                 gr->sm[gr->sm_nr].tpc = tpc;
1859                                 gr->sm_nr++;
1860                         }
1861                 }
1862         }
1863 }
1864
1865 void
1866 gf100_gr_oneinit_tiles(struct gf100_gr *gr)
1867 {
1868         static const u8 primes[] = {
1869                 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
1870         };
1871         int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
1872         u32 mul_factor, comm_denom;
1873         u8  gpc_map[GPC_MAX];
1874         bool sorted;
1875
1876         switch (gr->tpc_total) {
1877         case 15: gr->screen_tile_row_offset = 0x06; break;
1878         case 14: gr->screen_tile_row_offset = 0x05; break;
1879         case 13: gr->screen_tile_row_offset = 0x02; break;
1880         case 11: gr->screen_tile_row_offset = 0x07; break;
1881         case 10: gr->screen_tile_row_offset = 0x06; break;
1882         case  7:
1883         case  5: gr->screen_tile_row_offset = 0x01; break;
1884         case  3: gr->screen_tile_row_offset = 0x02; break;
1885         case  2:
1886         case  1: gr->screen_tile_row_offset = 0x01; break;
1887         default: gr->screen_tile_row_offset = 0x03;
1888                 for (i = 0; i < ARRAY_SIZE(primes); i++) {
1889                         if (gr->tpc_total % primes[i]) {
1890                                 gr->screen_tile_row_offset = primes[i];
1891                                 break;
1892                         }
1893                 }
1894                 break;
1895         }
1896
1897         /* Sort GPCs by TPC count, highest-to-lowest. */
1898         for (i = 0; i < gr->gpc_nr; i++)
1899                 gpc_map[i] = i;
1900         sorted = false;
1901
1902         while (!sorted) {
1903                 for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
1904                         if (gr->tpc_nr[gpc_map[i + 1]] >
1905                             gr->tpc_nr[gpc_map[i + 0]]) {
1906                                 u8 swap = gpc_map[i];
1907                                 gpc_map[i + 0] = gpc_map[i + 1];
1908                                 gpc_map[i + 1] = swap;
1909                                 sorted = false;
1910                         }
1911                 }
1912         }
1913
1914         /* Determine tile->GPC mapping */
1915         mul_factor = gr->gpc_nr * gr->tpc_max;
1916         if (mul_factor & 1)
1917                 mul_factor = 2;
1918         else
1919                 mul_factor = 1;
1920
1921         comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;
1922
1923         for (i = 0; i < gr->gpc_nr; i++) {
1924                 init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
1925                  init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
1926                   run_err[i] = init_frac[i] + init_err[i];
1927         }
1928
1929         for (i = 0; i < gr->tpc_total;) {
1930                 for (j = 0; j < gr->gpc_nr; j++) {
1931                         if ((run_err[j] * 2) >= comm_denom) {
1932                                 gr->tile[i++] = gpc_map[j];
1933                                 run_err[j] += init_frac[j] - comm_denom;
1934                         } else {
1935                                 run_err[j] += init_frac[j];
1936                         }
1937                 }
1938         }
1939 }
1940
1941 static int
1942 gf100_gr_oneinit(struct nvkm_gr *base)
1943 {
1944         struct gf100_gr *gr = gf100_gr(base);
1945         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1946         struct nvkm_device *device = subdev->device;
1947         int i, j;
1948
1949         nvkm_pmu_pgob(device->pmu, false);
1950
1951         gr->rop_nr = gr->func->rops(gr);
1952         gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1953         for (i = 0; i < gr->gpc_nr; i++) {
1954                 gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1955                 gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
1956                 gr->tpc_total += gr->tpc_nr[i];
1957                 gr->ppc_nr[i]  = gr->func->ppc_nr;
1958                 for (j = 0; j < gr->ppc_nr[i]; j++) {
1959                         gr->ppc_tpc_mask[i][j] =
1960                                 nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1961                         if (gr->ppc_tpc_mask[i][j] == 0)
1962                                 continue;
1963                         gr->ppc_mask[i] |= (1 << j);
1964                         gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
1965                         if (gr->ppc_tpc_min == 0 ||
1966                             gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
1967                                 gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
1968                         if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
1969                                 gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
1970                 }
1971         }
1972
1973         memset(gr->tile, 0xff, sizeof(gr->tile));
1974         gr->func->oneinit_tiles(gr);
1975         gr->func->oneinit_sm_id(gr);
1976         return 0;
1977 }
1978
1979 static int
1980 gf100_gr_init_(struct nvkm_gr *base)
1981 {
1982         struct gf100_gr *gr = gf100_gr(base);
1983         struct nvkm_subdev *subdev = &base->engine.subdev;
1984         u32 ret;
1985
1986         nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1987
1988         ret = nvkm_falcon_get(&gr->fecs.falcon, subdev);
1989         if (ret)
1990                 return ret;
1991
1992         ret = nvkm_falcon_get(&gr->gpccs.falcon, subdev);
1993         if (ret)
1994                 return ret;
1995
1996         return gr->func->init(gr);
1997 }
1998
1999 static int
2000 gf100_gr_fini(struct nvkm_gr *base, bool suspend)
2001 {
2002         struct gf100_gr *gr = gf100_gr(base);
2003         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
2004         nvkm_falcon_put(&gr->gpccs.falcon, subdev);
2005         nvkm_falcon_put(&gr->fecs.falcon, subdev);
2006         return 0;
2007 }
2008
2009 void *
2010 gf100_gr_dtor(struct nvkm_gr *base)
2011 {
2012         struct gf100_gr *gr = gf100_gr(base);
2013
2014         kfree(gr->data);
2015
2016         nvkm_falcon_dtor(&gr->gpccs.falcon);
2017         nvkm_falcon_dtor(&gr->fecs.falcon);
2018
2019         nvkm_blob_dtor(&gr->fecs.inst);
2020         nvkm_blob_dtor(&gr->fecs.data);
2021         nvkm_blob_dtor(&gr->gpccs.inst);
2022         nvkm_blob_dtor(&gr->gpccs.data);
2023
2024         vfree(gr->bundle);
2025         vfree(gr->method);
2026         vfree(gr->sw_ctx);
2027         vfree(gr->sw_nonctx);
2028
2029         return gr;
2030 }
2031
2032 static const struct nvkm_gr_func
2033 gf100_gr_ = {
2034         .dtor = gf100_gr_dtor,
2035         .oneinit = gf100_gr_oneinit,
2036         .init = gf100_gr_init_,
2037         .fini = gf100_gr_fini,
2038         .intr = gf100_gr_intr,
2039         .units = gf100_gr_units,
2040         .chan_new = gf100_gr_chan_new,
2041         .object_get = gf100_gr_object_get,
2042         .chsw_load = gf100_gr_chsw_load,
2043         .ctxsw.pause = gf100_gr_fecs_stop_ctxsw,
2044         .ctxsw.resume = gf100_gr_fecs_start_ctxsw,
2045         .ctxsw.inst = gf100_gr_ctxsw_inst,
2046 };
2047
2048 static const struct nvkm_falcon_func
2049 gf100_gr_flcn = {
2050         .fbif = 0x600,
2051         .load_imem = nvkm_falcon_v1_load_imem,
2052         .load_dmem = nvkm_falcon_v1_load_dmem,
2053         .read_dmem = nvkm_falcon_v1_read_dmem,
2054         .bind_context = nvkm_falcon_v1_bind_context,
2055         .wait_for_halt = nvkm_falcon_v1_wait_for_halt,
2056         .clear_interrupt = nvkm_falcon_v1_clear_interrupt,
2057         .set_start_addr = nvkm_falcon_v1_set_start_addr,
2058         .start = nvkm_falcon_v1_start,
2059         .enable = nvkm_falcon_v1_enable,
2060         .disable = nvkm_falcon_v1_disable,
2061 };
2062
2063 int
2064 gf100_gr_new_(const struct gf100_gr_fwif *fwif,
2065               struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2066 {
2067         struct gf100_gr *gr;
2068         int ret;
2069
2070         if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
2071                 return -ENOMEM;
2072         *pgr = &gr->base;
2073
2074         ret = nvkm_gr_ctor(&gf100_gr_, device, index, true, &gr->base);
2075         if (ret)
2076                 return ret;
2077
2078         fwif = nvkm_firmware_load(&gr->base.engine.subdev, fwif, "Gr", gr);
2079         if (IS_ERR(fwif))
2080                 return -ENODEV;
2081
2082         gr->func = fwif->func;
2083
2084         ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
2085                                "fecs", 0x409000, &gr->fecs.falcon);
2086         if (ret)
2087                 return ret;
2088
2089         mutex_init(&gr->fecs.mutex);
2090
2091         ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
2092                                "gpccs", 0x41a000, &gr->gpccs.falcon);
2093         if (ret)
2094                 return ret;
2095
2096         return 0;
2097 }
2098
2099 void
2100 gf100_gr_init_num_tpc_per_gpc(struct gf100_gr *gr, bool pd, bool ds)
2101 {
2102         struct nvkm_device *device = gr->base.engine.subdev.device;
2103         int gpc, i, j;
2104         u32 data;
2105
2106         for (gpc = 0, i = 0; i < 4; i++) {
2107                 for (data = 0, j = 0; j < 8 && gpc < gr->gpc_nr; j++, gpc++)
2108                         data |= gr->tpc_nr[gpc] << (j * 4);
2109                 if (pd)
2110                         nvkm_wr32(device, 0x406028 + (i * 4), data);
2111                 if (ds)
2112                         nvkm_wr32(device, 0x405870 + (i * 4), data);
2113         }
2114 }
2115
2116 void
2117 gf100_gr_init_400054(struct gf100_gr *gr)
2118 {
2119         nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
2120 }
2121
2122 void
2123 gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
2124 {
2125         struct nvkm_device *device = gr->base.engine.subdev.device;
2126         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
2127         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
2128 }
2129
2130 void
2131 gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
2132 {
2133         struct nvkm_device *device = gr->base.engine.subdev.device;
2134         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
2135 }
2136
2137 void
2138 gf100_gr_init_419eb4(struct gf100_gr *gr)
2139 {
2140         struct nvkm_device *device = gr->base.engine.subdev.device;
2141         nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
2142 }
2143
2144 void
2145 gf100_gr_init_419cc0(struct gf100_gr *gr)
2146 {
2147         struct nvkm_device *device = gr->base.engine.subdev.device;
2148         int gpc, tpc;
2149
2150         nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
2151
2152         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2153                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
2154                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
2155         }
2156 }
2157
2158 void
2159 gf100_gr_init_40601c(struct gf100_gr *gr)
2160 {
2161         nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
2162 }
2163
2164 void
2165 gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
2166 {
2167         const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
2168         nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
2169 }
2170
2171 void
2172 gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
2173 {
2174         struct nvkm_device *device = gr->base.engine.subdev.device;
2175         struct nvkm_fb *fb = device->fb;
2176
2177         nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
2178         nvkm_wr32(device, 0x4188a4, 0x03000000);
2179         nvkm_wr32(device, 0x418888, 0x00000000);
2180         nvkm_wr32(device, 0x41888c, 0x00000000);
2181         nvkm_wr32(device, 0x418890, 0x00000000);
2182         nvkm_wr32(device, 0x418894, 0x00000000);
2183         nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
2184         nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
2185 }
2186
2187 void
2188 gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
2189 {
2190         struct nvkm_device *device = gr->base.engine.subdev.device;
2191         nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
2192 }
2193
2194 void
2195 gf100_gr_init_zcull(struct gf100_gr *gr)
2196 {
2197         struct nvkm_device *device = gr->base.engine.subdev.device;
2198         const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
2199         const u8 tile_nr = ALIGN(gr->tpc_total, 32);
2200         u8 bank[GPC_MAX] = {}, gpc, i, j;
2201         u32 data;
2202
2203         for (i = 0; i < tile_nr; i += 8) {
2204                 for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
2205                         data |= bank[gr->tile[i + j]] << (j * 4);
2206                         bank[gr->tile[i + j]]++;
2207                 }
2208                 nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
2209         }
2210
2211         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2212                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
2213                           gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
2214                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
2215                                                          gr->tpc_total);
2216                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
2217         }
2218
2219         nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
2220 }
2221
2222 void
2223 gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
2224 {
2225         struct nvkm_device *device = gr->base.engine.subdev.device;
2226         nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
2227 }
2228
2229 int
2230 gf100_gr_init(struct gf100_gr *gr)
2231 {
2232         struct nvkm_device *device = gr->base.engine.subdev.device;
2233         int gpc, tpc, rop;
2234
2235         if (gr->func->init_419bd8)
2236                 gr->func->init_419bd8(gr);
2237
2238         gr->func->init_gpc_mmu(gr);
2239
2240         if (gr->sw_nonctx)
2241                 gf100_gr_mmio(gr, gr->sw_nonctx);
2242         else
2243                 gf100_gr_mmio(gr, gr->func->mmio);
2244
2245         gf100_gr_wait_idle(gr);
2246
2247         if (gr->func->init_r405a14)
2248                 gr->func->init_r405a14(gr);
2249
2250         if (gr->func->clkgate_pack)
2251                 nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);
2252
2253         if (gr->func->init_bios)
2254                 gr->func->init_bios(gr);
2255
2256         gr->func->init_vsc_stream_master(gr);
2257         gr->func->init_zcull(gr);
2258         gr->func->init_num_active_ltcs(gr);
2259         if (gr->func->init_rop_active_fbps)
2260                 gr->func->init_rop_active_fbps(gr);
2261         if (gr->func->init_bios_2)
2262                 gr->func->init_bios_2(gr);
2263         if (gr->func->init_swdx_pes_mask)
2264                 gr->func->init_swdx_pes_mask(gr);
2265         if (gr->func->init_fs)
2266                 gr->func->init_fs(gr);
2267
2268         nvkm_wr32(device, 0x400500, 0x00010001);
2269
2270         nvkm_wr32(device, 0x400100, 0xffffffff);
2271         nvkm_wr32(device, 0x40013c, 0xffffffff);
2272         nvkm_wr32(device, 0x400124, 0x00000002);
2273
2274         gr->func->init_fecs_exceptions(gr);
2275         if (gr->func->init_ds_hww_esr_2)
2276                 gr->func->init_ds_hww_esr_2(gr);
2277
2278         nvkm_wr32(device, 0x404000, 0xc0000000);
2279         nvkm_wr32(device, 0x404600, 0xc0000000);
2280         nvkm_wr32(device, 0x408030, 0xc0000000);
2281
2282         if (gr->func->init_40601c)
2283                 gr->func->init_40601c(gr);
2284
2285         nvkm_wr32(device, 0x406018, 0xc0000000);
2286         nvkm_wr32(device, 0x404490, 0xc0000000);
2287
2288         if (gr->func->init_sked_hww_esr)
2289                 gr->func->init_sked_hww_esr(gr);
2290
2291         nvkm_wr32(device, 0x405840, 0xc0000000);
2292         nvkm_wr32(device, 0x405844, 0x00ffffff);
2293
2294         if (gr->func->init_419cc0)
2295                 gr->func->init_419cc0(gr);
2296         if (gr->func->init_419eb4)
2297                 gr->func->init_419eb4(gr);
2298         if (gr->func->init_419c9c)
2299                 gr->func->init_419c9c(gr);
2300
2301         if (gr->func->init_ppc_exceptions)
2302                 gr->func->init_ppc_exceptions(gr);
2303
2304         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2305                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
2306                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
2307                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
2308                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
2309                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
2310                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
2311                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
2312                         if (gr->func->init_tex_hww_esr)
2313                                 gr->func->init_tex_hww_esr(gr, gpc, tpc);
2314                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
2315                         if (gr->func->init_504430)
2316                                 gr->func->init_504430(gr, gpc, tpc);
2317                         gr->func->init_shader_exceptions(gr, gpc, tpc);
2318                 }
2319                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
2320                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
2321         }
2322
2323         for (rop = 0; rop < gr->rop_nr; rop++) {
2324                 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
2325                 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
2326                 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
2327                 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2328         }
2329
2330         nvkm_wr32(device, 0x400108, 0xffffffff);
2331         nvkm_wr32(device, 0x400138, 0xffffffff);
2332         nvkm_wr32(device, 0x400118, 0xffffffff);
2333         nvkm_wr32(device, 0x400130, 0xffffffff);
2334         nvkm_wr32(device, 0x40011c, 0xffffffff);
2335         nvkm_wr32(device, 0x400134, 0xffffffff);
2336
2337         if (gr->func->init_400054)
2338                 gr->func->init_400054(gr);
2339
2340         gf100_gr_zbc_init(gr);
2341
2342         if (gr->func->init_4188a4)
2343                 gr->func->init_4188a4(gr);
2344
2345         return gf100_gr_init_ctxctl(gr);
2346 }
2347
2348 #include "fuc/hubgf100.fuc3.h"
2349
2350 struct gf100_gr_ucode
2351 gf100_gr_fecs_ucode = {
2352         .code.data = gf100_grhub_code,
2353         .code.size = sizeof(gf100_grhub_code),
2354         .data.data = gf100_grhub_data,
2355         .data.size = sizeof(gf100_grhub_data),
2356 };
2357
2358 #include "fuc/gpcgf100.fuc3.h"
2359
2360 struct gf100_gr_ucode
2361 gf100_gr_gpccs_ucode = {
2362         .code.data = gf100_grgpc_code,
2363         .code.size = sizeof(gf100_grgpc_code),
2364         .data.data = gf100_grgpc_data,
2365         .data.size = sizeof(gf100_grgpc_data),
2366 };
2367
2368 static const struct gf100_gr_func
2369 gf100_gr = {
2370         .oneinit_tiles = gf100_gr_oneinit_tiles,
2371         .oneinit_sm_id = gf100_gr_oneinit_sm_id,
2372         .init = gf100_gr_init,
2373         .init_gpc_mmu = gf100_gr_init_gpc_mmu,
2374         .init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
2375         .init_zcull = gf100_gr_init_zcull,
2376         .init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
2377         .init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
2378         .init_40601c = gf100_gr_init_40601c,
2379         .init_419cc0 = gf100_gr_init_419cc0,
2380         .init_419eb4 = gf100_gr_init_419eb4,
2381         .init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
2382         .init_shader_exceptions = gf100_gr_init_shader_exceptions,
2383         .init_400054 = gf100_gr_init_400054,
2384         .trap_mp = gf100_gr_trap_mp,
2385         .mmio = gf100_gr_pack_mmio,
2386         .fecs.ucode = &gf100_gr_fecs_ucode,
2387         .gpccs.ucode = &gf100_gr_gpccs_ucode,
2388         .rops = gf100_gr_rops,
2389         .grctx = &gf100_grctx,
2390         .zbc = &gf100_gr_zbc,
2391         .sclass = {
2392                 { -1, -1, FERMI_TWOD_A },
2393                 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2394                 { -1, -1, FERMI_A, &gf100_fermi },
2395                 { -1, -1, FERMI_COMPUTE_A },
2396                 {}
2397         }
2398 };
2399
2400 int
2401 gf100_gr_nofw(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
2402 {
2403         gr->firmware = false;
2404         return 0;
2405 }
2406
2407 static int
2408 gf100_gr_load_fw(struct gf100_gr *gr, const char *name,
2409                  struct nvkm_blob *blob)
2410 {
2411         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
2412         struct nvkm_device *device = subdev->device;
2413         const struct firmware *fw;
2414         char f[32];
2415         int ret;
2416
2417         snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, name);
2418         ret = request_firmware(&fw, f, device->dev);
2419         if (ret) {
2420                 snprintf(f, sizeof(f), "nouveau/%s", name);
2421                 ret = request_firmware(&fw, f, device->dev);
2422                 if (ret) {
2423                         nvkm_error(subdev, "failed to load %s\n", name);
2424                         return ret;
2425                 }
2426         }
2427
2428         blob->size = fw->size;
2429         blob->data = kmemdup(fw->data, blob->size, GFP_KERNEL);
2430         release_firmware(fw);
2431         return (blob->data != NULL) ? 0 : -ENOMEM;
2432 }
2433
2434 int
2435 gf100_gr_load(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
2436 {
2437         struct nvkm_device *device = gr->base.engine.subdev.device;
2438
2439         if (!nvkm_boolopt(device->cfgopt, "NvGrUseFW", false))
2440                 return -EINVAL;
2441
2442         if (gf100_gr_load_fw(gr, "fuc409c", &gr->fecs.inst) ||
2443             gf100_gr_load_fw(gr, "fuc409d", &gr->fecs.data) ||
2444             gf100_gr_load_fw(gr, "fuc41ac", &gr->gpccs.inst) ||
2445             gf100_gr_load_fw(gr, "fuc41ad", &gr->gpccs.data))
2446                 return -ENOENT;
2447
2448         gr->firmware = true;
2449         return 0;
2450 }
2451
2452 static const struct gf100_gr_fwif
2453 gf100_gr_fwif[] = {
2454         { -1, gf100_gr_load, &gf100_gr },
2455         { -1, gf100_gr_nofw, &gf100_gr },
2456         {}
2457 };
2458
2459 int
2460 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2461 {
2462         return gf100_gr_new_(gf100_gr_fwif, device, index, pgr);
2463 }