OSDN Git Service

drm/vmwgfx: Use a per-device semaphore for reservation protection
[android-x86/kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2  *
3  * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34
35 #define VMW_RES_EVICT_ERR_COUNT 10
36
37 struct vmw_user_dma_buffer {
38         struct ttm_prime_object prime;
39         struct vmw_dma_buffer dma;
40 };
41
42 struct vmw_bo_user_rep {
43         uint32_t handle;
44         uint64_t map_handle;
45 };
46
47 struct vmw_stream {
48         struct vmw_resource res;
49         uint32_t stream_id;
50 };
51
52 struct vmw_user_stream {
53         struct ttm_base_object base;
54         struct vmw_stream stream;
55 };
56
57
58 static uint64_t vmw_user_stream_size;
59
60 static const struct vmw_res_func vmw_stream_func = {
61         .res_type = vmw_res_stream,
62         .needs_backup = false,
63         .may_evict = false,
64         .type_name = "video streams",
65         .backup_placement = NULL,
66         .create = NULL,
67         .destroy = NULL,
68         .bind = NULL,
69         .unbind = NULL
70 };
71
72 static inline struct vmw_dma_buffer *
73 vmw_dma_buffer(struct ttm_buffer_object *bo)
74 {
75         return container_of(bo, struct vmw_dma_buffer, base);
76 }
77
78 static inline struct vmw_user_dma_buffer *
79 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80 {
81         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82         return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83 }
84
85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86 {
87         kref_get(&res->kref);
88         return res;
89 }
90
91 struct vmw_resource *
92 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
93 {
94         return kref_get_unless_zero(&res->kref) ? res : NULL;
95 }
96
97 /**
98  * vmw_resource_release_id - release a resource id to the id manager.
99  *
100  * @res: Pointer to the resource.
101  *
102  * Release the resource id to the resource id manager and set it to -1
103  */
104 void vmw_resource_release_id(struct vmw_resource *res)
105 {
106         struct vmw_private *dev_priv = res->dev_priv;
107         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
108
109         write_lock(&dev_priv->resource_lock);
110         if (res->id != -1)
111                 idr_remove(idr, res->id);
112         res->id = -1;
113         write_unlock(&dev_priv->resource_lock);
114 }
115
116 static void vmw_resource_release(struct kref *kref)
117 {
118         struct vmw_resource *res =
119             container_of(kref, struct vmw_resource, kref);
120         struct vmw_private *dev_priv = res->dev_priv;
121         int id;
122         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
123
124         res->avail = false;
125         list_del_init(&res->lru_head);
126         write_unlock(&dev_priv->resource_lock);
127         if (res->backup) {
128                 struct ttm_buffer_object *bo = &res->backup->base;
129
130                 ttm_bo_reserve(bo, false, false, false, 0);
131                 if (!list_empty(&res->mob_head) &&
132                     res->func->unbind != NULL) {
133                         struct ttm_validate_buffer val_buf;
134
135                         val_buf.bo = bo;
136                         res->func->unbind(res, false, &val_buf);
137                 }
138                 res->backup_dirty = false;
139                 list_del_init(&res->mob_head);
140                 ttm_bo_unreserve(bo);
141                 vmw_dmabuf_unreference(&res->backup);
142         }
143
144         if (likely(res->hw_destroy != NULL)) {
145                 res->hw_destroy(res);
146                 mutex_lock(&dev_priv->binding_mutex);
147                 vmw_context_binding_res_list_kill(&res->binding_head);
148                 mutex_unlock(&dev_priv->binding_mutex);
149         }
150
151         id = res->id;
152         if (res->res_free != NULL)
153                 res->res_free(res);
154         else
155                 kfree(res);
156
157         write_lock(&dev_priv->resource_lock);
158
159         if (id != -1)
160                 idr_remove(idr, id);
161 }
162
163 void vmw_resource_unreference(struct vmw_resource **p_res)
164 {
165         struct vmw_resource *res = *p_res;
166         struct vmw_private *dev_priv = res->dev_priv;
167
168         *p_res = NULL;
169         write_lock(&dev_priv->resource_lock);
170         kref_put(&res->kref, vmw_resource_release);
171         write_unlock(&dev_priv->resource_lock);
172 }
173
174
175 /**
176  * vmw_resource_alloc_id - release a resource id to the id manager.
177  *
178  * @res: Pointer to the resource.
179  *
180  * Allocate the lowest free resource from the resource manager, and set
181  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182  */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185         struct vmw_private *dev_priv = res->dev_priv;
186         int ret;
187         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189         BUG_ON(res->id != -1);
190
191         idr_preload(GFP_KERNEL);
192         write_lock(&dev_priv->resource_lock);
193
194         ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195         if (ret >= 0)
196                 res->id = ret;
197
198         write_unlock(&dev_priv->resource_lock);
199         idr_preload_end();
200         return ret < 0 ? ret : 0;
201 }
202
203 /**
204  * vmw_resource_init - initialize a struct vmw_resource
205  *
206  * @dev_priv:       Pointer to a device private struct.
207  * @res:            The struct vmw_resource to initialize.
208  * @obj_type:       Resource object type.
209  * @delay_id:       Boolean whether to defer device id allocation until
210  *                  the first validation.
211  * @res_free:       Resource destructor.
212  * @func:           Resource function table.
213  */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215                       bool delay_id,
216                       void (*res_free) (struct vmw_resource *res),
217                       const struct vmw_res_func *func)
218 {
219         kref_init(&res->kref);
220         res->hw_destroy = NULL;
221         res->res_free = res_free;
222         res->avail = false;
223         res->dev_priv = dev_priv;
224         res->func = func;
225         INIT_LIST_HEAD(&res->lru_head);
226         INIT_LIST_HEAD(&res->mob_head);
227         INIT_LIST_HEAD(&res->binding_head);
228         res->id = -1;
229         res->backup = NULL;
230         res->backup_offset = 0;
231         res->backup_dirty = false;
232         res->res_dirty = false;
233         if (delay_id)
234                 return 0;
235         else
236                 return vmw_resource_alloc_id(res);
237 }
238
239 /**
240  * vmw_resource_activate
241  *
242  * @res:        Pointer to the newly created resource
243  * @hw_destroy: Destroy function. NULL if none.
244  *
245  * Activate a resource after the hardware has been made aware of it.
246  * Set tye destroy function to @destroy. Typically this frees the
247  * resource and destroys the hardware resources associated with it.
248  * Activate basically means that the function vmw_resource_lookup will
249  * find it.
250  */
251 void vmw_resource_activate(struct vmw_resource *res,
252                            void (*hw_destroy) (struct vmw_resource *))
253 {
254         struct vmw_private *dev_priv = res->dev_priv;
255
256         write_lock(&dev_priv->resource_lock);
257         res->avail = true;
258         res->hw_destroy = hw_destroy;
259         write_unlock(&dev_priv->resource_lock);
260 }
261
262 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263                                          struct idr *idr, int id)
264 {
265         struct vmw_resource *res;
266
267         read_lock(&dev_priv->resource_lock);
268         res = idr_find(idr, id);
269         if (res && res->avail)
270                 kref_get(&res->kref);
271         else
272                 res = NULL;
273         read_unlock(&dev_priv->resource_lock);
274
275         if (unlikely(res == NULL))
276                 return NULL;
277
278         return res;
279 }
280
281 /**
282  * vmw_user_resource_lookup_handle - lookup a struct resource from a
283  * TTM user-space handle and perform basic type checks
284  *
285  * @dev_priv:     Pointer to a device private struct
286  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
287  * @handle:       The TTM user-space handle
288  * @converter:    Pointer to an object describing the resource type
289  * @p_res:        On successful return the location pointed to will contain
290  *                a pointer to a refcounted struct vmw_resource.
291  *
292  * If the handle can't be found or is associated with an incorrect resource
293  * type, -EINVAL will be returned.
294  */
295 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
296                                     struct ttm_object_file *tfile,
297                                     uint32_t handle,
298                                     const struct vmw_user_resource_conv
299                                     *converter,
300                                     struct vmw_resource **p_res)
301 {
302         struct ttm_base_object *base;
303         struct vmw_resource *res;
304         int ret = -EINVAL;
305
306         base = ttm_base_object_lookup(tfile, handle);
307         if (unlikely(base == NULL))
308                 return -EINVAL;
309
310         if (unlikely(ttm_base_object_type(base) != converter->object_type))
311                 goto out_bad_resource;
312
313         res = converter->base_obj_to_res(base);
314
315         read_lock(&dev_priv->resource_lock);
316         if (!res->avail || res->res_free != converter->res_free) {
317                 read_unlock(&dev_priv->resource_lock);
318                 goto out_bad_resource;
319         }
320
321         kref_get(&res->kref);
322         read_unlock(&dev_priv->resource_lock);
323
324         *p_res = res;
325         ret = 0;
326
327 out_bad_resource:
328         ttm_base_object_unref(&base);
329
330         return ret;
331 }
332
333 /**
334  * Helper function that looks either a surface or dmabuf.
335  *
336  * The pointer this pointed at by out_surf and out_buf needs to be null.
337  */
338 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
339                            struct ttm_object_file *tfile,
340                            uint32_t handle,
341                            struct vmw_surface **out_surf,
342                            struct vmw_dma_buffer **out_buf)
343 {
344         struct vmw_resource *res;
345         int ret;
346
347         BUG_ON(*out_surf || *out_buf);
348
349         ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
350                                               user_surface_converter,
351                                               &res);
352         if (!ret) {
353                 *out_surf = vmw_res_to_srf(res);
354                 return 0;
355         }
356
357         *out_surf = NULL;
358         ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
359         return ret;
360 }
361
362 /**
363  * Buffer management.
364  */
365
366 /**
367  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
368  *
369  * @dev_priv: Pointer to a struct vmw_private identifying the device.
370  * @size: The requested buffer size.
371  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
372  */
373 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
374                                   bool user)
375 {
376         static size_t struct_size, user_struct_size;
377         size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
378         size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
379
380         if (unlikely(struct_size == 0)) {
381                 size_t backend_size = ttm_round_pot(vmw_tt_size);
382
383                 struct_size = backend_size +
384                         ttm_round_pot(sizeof(struct vmw_dma_buffer));
385                 user_struct_size = backend_size +
386                         ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
387         }
388
389         if (dev_priv->map_mode == vmw_dma_alloc_coherent)
390                 page_array_size +=
391                         ttm_round_pot(num_pages * sizeof(dma_addr_t));
392
393         return ((user) ? user_struct_size : struct_size) +
394                 page_array_size;
395 }
396
397 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
398 {
399         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
400
401         kfree(vmw_bo);
402 }
403
404 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
405 {
406         struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
407
408         ttm_prime_object_kfree(vmw_user_bo, prime);
409 }
410
411 int vmw_dmabuf_init(struct vmw_private *dev_priv,
412                     struct vmw_dma_buffer *vmw_bo,
413                     size_t size, struct ttm_placement *placement,
414                     bool interruptible,
415                     void (*bo_free) (struct ttm_buffer_object *bo))
416 {
417         struct ttm_bo_device *bdev = &dev_priv->bdev;
418         size_t acc_size;
419         int ret;
420         bool user = (bo_free == &vmw_user_dmabuf_destroy);
421
422         BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
423
424         acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
425         memset(vmw_bo, 0, sizeof(*vmw_bo));
426
427         INIT_LIST_HEAD(&vmw_bo->res_list);
428
429         ret = ttm_bo_init(bdev, &vmw_bo->base, size,
430                           ttm_bo_type_device, placement,
431                           0, interruptible,
432                           NULL, acc_size, NULL, bo_free);
433         return ret;
434 }
435
436 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
437 {
438         struct vmw_user_dma_buffer *vmw_user_bo;
439         struct ttm_base_object *base = *p_base;
440         struct ttm_buffer_object *bo;
441
442         *p_base = NULL;
443
444         if (unlikely(base == NULL))
445                 return;
446
447         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
448                                    prime.base);
449         bo = &vmw_user_bo->dma.base;
450         ttm_bo_unref(&bo);
451 }
452
453 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
454                                             enum ttm_ref_type ref_type)
455 {
456         struct vmw_user_dma_buffer *user_bo;
457         user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
458
459         switch (ref_type) {
460         case TTM_REF_SYNCCPU_WRITE:
461                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
462                 break;
463         default:
464                 BUG();
465         }
466 }
467
468 /**
469  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
470  *
471  * @dev_priv: Pointer to a struct device private.
472  * @tfile: Pointer to a struct ttm_object_file on which to register the user
473  * object.
474  * @size: Size of the dma buffer.
475  * @shareable: Boolean whether the buffer is shareable with other open files.
476  * @handle: Pointer to where the handle value should be assigned.
477  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
478  * should be assigned.
479  */
480 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
481                           struct ttm_object_file *tfile,
482                           uint32_t size,
483                           bool shareable,
484                           uint32_t *handle,
485                           struct vmw_dma_buffer **p_dma_buf)
486 {
487         struct vmw_user_dma_buffer *user_bo;
488         struct ttm_buffer_object *tmp;
489         int ret;
490
491         user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492         if (unlikely(user_bo == NULL)) {
493                 DRM_ERROR("Failed to allocate a buffer.\n");
494                 return -ENOMEM;
495         }
496
497         ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498                               (dev_priv->has_mob) ?
499                               &vmw_sys_placement :
500                               &vmw_vram_sys_placement, true,
501                               &vmw_user_dmabuf_destroy);
502         if (unlikely(ret != 0))
503                 return ret;
504
505         tmp = ttm_bo_reference(&user_bo->dma.base);
506         ret = ttm_prime_object_init(tfile,
507                                     size,
508                                     &user_bo->prime,
509                                     shareable,
510                                     ttm_buffer_type,
511                                     &vmw_user_dmabuf_release,
512                                     &vmw_user_dmabuf_ref_obj_release);
513         if (unlikely(ret != 0)) {
514                 ttm_bo_unref(&tmp);
515                 goto out_no_base_object;
516         }
517
518         *p_dma_buf = &user_bo->dma;
519         *handle = user_bo->prime.base.hash.key;
520
521 out_no_base_object:
522         return ret;
523 }
524
525 /**
526  * vmw_user_dmabuf_verify_access - verify access permissions on this
527  * buffer object.
528  *
529  * @bo: Pointer to the buffer object being accessed
530  * @tfile: Identifying the caller.
531  */
532 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
533                                   struct ttm_object_file *tfile)
534 {
535         struct vmw_user_dma_buffer *vmw_user_bo;
536
537         if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
538                 return -EPERM;
539
540         vmw_user_bo = vmw_user_dma_buffer(bo);
541         return (vmw_user_bo->prime.base.tfile == tfile ||
542                 vmw_user_bo->prime.base.shareable) ? 0 : -EPERM;
543 }
544
545 /**
546  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
547  * access, idling previous GPU operations on the buffer and optionally
548  * blocking it for further command submissions.
549  *
550  * @user_bo: Pointer to the buffer object being grabbed for CPU access
551  * @tfile: Identifying the caller.
552  * @flags: Flags indicating how the grab should be performed.
553  *
554  * A blocking grab will be automatically released when @tfile is closed.
555  */
556 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
557                                         struct ttm_object_file *tfile,
558                                         uint32_t flags)
559 {
560         struct ttm_buffer_object *bo = &user_bo->dma.base;
561         bool existed;
562         int ret;
563
564         if (flags & drm_vmw_synccpu_allow_cs) {
565                 struct ttm_bo_device *bdev = bo->bdev;
566
567                 spin_lock(&bdev->fence_lock);
568                 ret = ttm_bo_wait(bo, false, true,
569                                   !!(flags & drm_vmw_synccpu_dontblock));
570                 spin_unlock(&bdev->fence_lock);
571                 return ret;
572         }
573
574         ret = ttm_bo_synccpu_write_grab
575                 (bo, !!(flags & drm_vmw_synccpu_dontblock));
576         if (unlikely(ret != 0))
577                 return ret;
578
579         ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
580                                  TTM_REF_SYNCCPU_WRITE, &existed);
581         if (ret != 0 || existed)
582                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
583
584         return ret;
585 }
586
587 /**
588  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
589  * and unblock command submission on the buffer if blocked.
590  *
591  * @handle: Handle identifying the buffer object.
592  * @tfile: Identifying the caller.
593  * @flags: Flags indicating the type of release.
594  */
595 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
596                                            struct ttm_object_file *tfile,
597                                            uint32_t flags)
598 {
599         if (!(flags & drm_vmw_synccpu_allow_cs))
600                 return ttm_ref_object_base_unref(tfile, handle,
601                                                  TTM_REF_SYNCCPU_WRITE);
602
603         return 0;
604 }
605
606 /**
607  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
608  * functionality.
609  *
610  * @dev: Identifies the drm device.
611  * @data: Pointer to the ioctl argument.
612  * @file_priv: Identifies the caller.
613  *
614  * This function checks the ioctl arguments for validity and calls the
615  * relevant synccpu functions.
616  */
617 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
618                                   struct drm_file *file_priv)
619 {
620         struct drm_vmw_synccpu_arg *arg =
621                 (struct drm_vmw_synccpu_arg *) data;
622         struct vmw_dma_buffer *dma_buf;
623         struct vmw_user_dma_buffer *user_bo;
624         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
625         int ret;
626
627         if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
628             || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
629                                drm_vmw_synccpu_dontblock |
630                                drm_vmw_synccpu_allow_cs)) != 0) {
631                 DRM_ERROR("Illegal synccpu flags.\n");
632                 return -EINVAL;
633         }
634
635         switch (arg->op) {
636         case drm_vmw_synccpu_grab:
637                 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf);
638                 if (unlikely(ret != 0))
639                         return ret;
640
641                 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
642                                        dma);
643                 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
644                 vmw_dmabuf_unreference(&dma_buf);
645                 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
646                              ret != -EBUSY)) {
647                         DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
648                                   (unsigned int) arg->handle);
649                         return ret;
650                 }
651                 break;
652         case drm_vmw_synccpu_release:
653                 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
654                                                       arg->flags);
655                 if (unlikely(ret != 0)) {
656                         DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
657                                   (unsigned int) arg->handle);
658                         return ret;
659                 }
660                 break;
661         default:
662                 DRM_ERROR("Invalid synccpu operation.\n");
663                 return -EINVAL;
664         }
665
666         return 0;
667 }
668
669 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
670                            struct drm_file *file_priv)
671 {
672         struct vmw_private *dev_priv = vmw_priv(dev);
673         union drm_vmw_alloc_dmabuf_arg *arg =
674             (union drm_vmw_alloc_dmabuf_arg *)data;
675         struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
676         struct drm_vmw_dmabuf_rep *rep = &arg->rep;
677         struct vmw_dma_buffer *dma_buf;
678         uint32_t handle;
679         int ret;
680
681         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
682         if (unlikely(ret != 0))
683                 return ret;
684
685         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
686                                     req->size, false, &handle, &dma_buf);
687         if (unlikely(ret != 0))
688                 goto out_no_dmabuf;
689
690         rep->handle = handle;
691         rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
692         rep->cur_gmr_id = handle;
693         rep->cur_gmr_offset = 0;
694
695         vmw_dmabuf_unreference(&dma_buf);
696
697 out_no_dmabuf:
698         ttm_read_unlock(&dev_priv->reservation_sem);
699
700         return ret;
701 }
702
703 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
704                            struct drm_file *file_priv)
705 {
706         struct drm_vmw_unref_dmabuf_arg *arg =
707             (struct drm_vmw_unref_dmabuf_arg *)data;
708
709         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
710                                          arg->handle,
711                                          TTM_REF_USAGE);
712 }
713
714 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
715                            uint32_t handle, struct vmw_dma_buffer **out)
716 {
717         struct vmw_user_dma_buffer *vmw_user_bo;
718         struct ttm_base_object *base;
719
720         base = ttm_base_object_lookup(tfile, handle);
721         if (unlikely(base == NULL)) {
722                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
723                        (unsigned long)handle);
724                 return -ESRCH;
725         }
726
727         if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
728                 ttm_base_object_unref(&base);
729                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
730                        (unsigned long)handle);
731                 return -EINVAL;
732         }
733
734         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
735                                    prime.base);
736         (void)ttm_bo_reference(&vmw_user_bo->dma.base);
737         ttm_base_object_unref(&base);
738         *out = &vmw_user_bo->dma;
739
740         return 0;
741 }
742
743 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
744                               struct vmw_dma_buffer *dma_buf,
745                               uint32_t *handle)
746 {
747         struct vmw_user_dma_buffer *user_bo;
748
749         if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
750                 return -EINVAL;
751
752         user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
753
754         *handle = user_bo->prime.base.hash.key;
755         return ttm_ref_object_add(tfile, &user_bo->prime.base,
756                                   TTM_REF_USAGE, NULL);
757 }
758
759 /*
760  * Stream management
761  */
762
763 static void vmw_stream_destroy(struct vmw_resource *res)
764 {
765         struct vmw_private *dev_priv = res->dev_priv;
766         struct vmw_stream *stream;
767         int ret;
768
769         DRM_INFO("%s: unref\n", __func__);
770         stream = container_of(res, struct vmw_stream, res);
771
772         ret = vmw_overlay_unref(dev_priv, stream->stream_id);
773         WARN_ON(ret != 0);
774 }
775
776 static int vmw_stream_init(struct vmw_private *dev_priv,
777                            struct vmw_stream *stream,
778                            void (*res_free) (struct vmw_resource *res))
779 {
780         struct vmw_resource *res = &stream->res;
781         int ret;
782
783         ret = vmw_resource_init(dev_priv, res, false, res_free,
784                                 &vmw_stream_func);
785
786         if (unlikely(ret != 0)) {
787                 if (res_free == NULL)
788                         kfree(stream);
789                 else
790                         res_free(&stream->res);
791                 return ret;
792         }
793
794         ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
795         if (ret) {
796                 vmw_resource_unreference(&res);
797                 return ret;
798         }
799
800         DRM_INFO("%s: claimed\n", __func__);
801
802         vmw_resource_activate(&stream->res, vmw_stream_destroy);
803         return 0;
804 }
805
806 static void vmw_user_stream_free(struct vmw_resource *res)
807 {
808         struct vmw_user_stream *stream =
809             container_of(res, struct vmw_user_stream, stream.res);
810         struct vmw_private *dev_priv = res->dev_priv;
811
812         ttm_base_object_kfree(stream, base);
813         ttm_mem_global_free(vmw_mem_glob(dev_priv),
814                             vmw_user_stream_size);
815 }
816
817 /**
818  * This function is called when user space has no more references on the
819  * base object. It releases the base-object's reference on the resource object.
820  */
821
822 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
823 {
824         struct ttm_base_object *base = *p_base;
825         struct vmw_user_stream *stream =
826             container_of(base, struct vmw_user_stream, base);
827         struct vmw_resource *res = &stream->stream.res;
828
829         *p_base = NULL;
830         vmw_resource_unreference(&res);
831 }
832
833 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
834                            struct drm_file *file_priv)
835 {
836         struct vmw_private *dev_priv = vmw_priv(dev);
837         struct vmw_resource *res;
838         struct vmw_user_stream *stream;
839         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
840         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
841         struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
842         int ret = 0;
843
844
845         res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
846         if (unlikely(res == NULL))
847                 return -EINVAL;
848
849         if (res->res_free != &vmw_user_stream_free) {
850                 ret = -EINVAL;
851                 goto out;
852         }
853
854         stream = container_of(res, struct vmw_user_stream, stream.res);
855         if (stream->base.tfile != tfile) {
856                 ret = -EINVAL;
857                 goto out;
858         }
859
860         ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
861 out:
862         vmw_resource_unreference(&res);
863         return ret;
864 }
865
866 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
867                            struct drm_file *file_priv)
868 {
869         struct vmw_private *dev_priv = vmw_priv(dev);
870         struct vmw_user_stream *stream;
871         struct vmw_resource *res;
872         struct vmw_resource *tmp;
873         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
874         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
875         int ret;
876
877         /*
878          * Approximate idr memory usage with 128 bytes. It will be limited
879          * by maximum number_of streams anyway?
880          */
881
882         if (unlikely(vmw_user_stream_size == 0))
883                 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
884
885         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
886         if (unlikely(ret != 0))
887                 return ret;
888
889         ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
890                                    vmw_user_stream_size,
891                                    false, true);
892         if (unlikely(ret != 0)) {
893                 if (ret != -ERESTARTSYS)
894                         DRM_ERROR("Out of graphics memory for stream"
895                                   " creation.\n");
896                 goto out_unlock;
897         }
898
899
900         stream = kmalloc(sizeof(*stream), GFP_KERNEL);
901         if (unlikely(stream == NULL)) {
902                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
903                                     vmw_user_stream_size);
904                 ret = -ENOMEM;
905                 goto out_unlock;
906         }
907
908         res = &stream->stream.res;
909         stream->base.shareable = false;
910         stream->base.tfile = NULL;
911
912         /*
913          * From here on, the destructor takes over resource freeing.
914          */
915
916         ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
917         if (unlikely(ret != 0))
918                 goto out_unlock;
919
920         tmp = vmw_resource_reference(res);
921         ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
922                                    &vmw_user_stream_base_release, NULL);
923
924         if (unlikely(ret != 0)) {
925                 vmw_resource_unreference(&tmp);
926                 goto out_err;
927         }
928
929         arg->stream_id = res->id;
930 out_err:
931         vmw_resource_unreference(&res);
932 out_unlock:
933         ttm_read_unlock(&dev_priv->reservation_sem);
934         return ret;
935 }
936
937 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
938                            struct ttm_object_file *tfile,
939                            uint32_t *inout_id, struct vmw_resource **out)
940 {
941         struct vmw_user_stream *stream;
942         struct vmw_resource *res;
943         int ret;
944
945         res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
946                                   *inout_id);
947         if (unlikely(res == NULL))
948                 return -EINVAL;
949
950         if (res->res_free != &vmw_user_stream_free) {
951                 ret = -EINVAL;
952                 goto err_ref;
953         }
954
955         stream = container_of(res, struct vmw_user_stream, stream.res);
956         if (stream->base.tfile != tfile) {
957                 ret = -EPERM;
958                 goto err_ref;
959         }
960
961         *inout_id = stream->stream.stream_id;
962         *out = res;
963         return 0;
964 err_ref:
965         vmw_resource_unreference(&res);
966         return ret;
967 }
968
969
970 /**
971  * vmw_dumb_create - Create a dumb kms buffer
972  *
973  * @file_priv: Pointer to a struct drm_file identifying the caller.
974  * @dev: Pointer to the drm device.
975  * @args: Pointer to a struct drm_mode_create_dumb structure
976  *
977  * This is a driver callback for the core drm create_dumb functionality.
978  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
979  * that the arguments have a different format.
980  */
981 int vmw_dumb_create(struct drm_file *file_priv,
982                     struct drm_device *dev,
983                     struct drm_mode_create_dumb *args)
984 {
985         struct vmw_private *dev_priv = vmw_priv(dev);
986         struct vmw_dma_buffer *dma_buf;
987         int ret;
988
989         args->pitch = args->width * ((args->bpp + 7) / 8);
990         args->size = args->pitch * args->height;
991
992         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
993         if (unlikely(ret != 0))
994                 return ret;
995
996         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
997                                     args->size, false, &args->handle,
998                                     &dma_buf);
999         if (unlikely(ret != 0))
1000                 goto out_no_dmabuf;
1001
1002         vmw_dmabuf_unreference(&dma_buf);
1003 out_no_dmabuf:
1004         ttm_read_unlock(&dev_priv->reservation_sem);
1005         return ret;
1006 }
1007
1008 /**
1009  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1010  *
1011  * @file_priv: Pointer to a struct drm_file identifying the caller.
1012  * @dev: Pointer to the drm device.
1013  * @handle: Handle identifying the dumb buffer.
1014  * @offset: The address space offset returned.
1015  *
1016  * This is a driver callback for the core drm dumb_map_offset functionality.
1017  */
1018 int vmw_dumb_map_offset(struct drm_file *file_priv,
1019                         struct drm_device *dev, uint32_t handle,
1020                         uint64_t *offset)
1021 {
1022         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1023         struct vmw_dma_buffer *out_buf;
1024         int ret;
1025
1026         ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1027         if (ret != 0)
1028                 return -EINVAL;
1029
1030         *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1031         vmw_dmabuf_unreference(&out_buf);
1032         return 0;
1033 }
1034
1035 /**
1036  * vmw_dumb_destroy - Destroy a dumb boffer
1037  *
1038  * @file_priv: Pointer to a struct drm_file identifying the caller.
1039  * @dev: Pointer to the drm device.
1040  * @handle: Handle identifying the dumb buffer.
1041  *
1042  * This is a driver callback for the core drm dumb_destroy functionality.
1043  */
1044 int vmw_dumb_destroy(struct drm_file *file_priv,
1045                      struct drm_device *dev,
1046                      uint32_t handle)
1047 {
1048         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1049                                          handle, TTM_REF_USAGE);
1050 }
1051
1052 /**
1053  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1054  *
1055  * @res:            The resource for which to allocate a backup buffer.
1056  * @interruptible:  Whether any sleeps during allocation should be
1057  *                  performed while interruptible.
1058  */
1059 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1060                                   bool interruptible)
1061 {
1062         unsigned long size =
1063                 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1064         struct vmw_dma_buffer *backup;
1065         int ret;
1066
1067         if (likely(res->backup)) {
1068                 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1069                 return 0;
1070         }
1071
1072         backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1073         if (unlikely(backup == NULL))
1074                 return -ENOMEM;
1075
1076         ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1077                               res->func->backup_placement,
1078                               interruptible,
1079                               &vmw_dmabuf_bo_free);
1080         if (unlikely(ret != 0))
1081                 goto out_no_dmabuf;
1082
1083         res->backup = backup;
1084
1085 out_no_dmabuf:
1086         return ret;
1087 }
1088
1089 /**
1090  * vmw_resource_do_validate - Make a resource up-to-date and visible
1091  *                            to the device.
1092  *
1093  * @res:            The resource to make visible to the device.
1094  * @val_buf:        Information about a buffer possibly
1095  *                  containing backup data if a bind operation is needed.
1096  *
1097  * On hardware resource shortage, this function returns -EBUSY and
1098  * should be retried once resources have been freed up.
1099  */
1100 static int vmw_resource_do_validate(struct vmw_resource *res,
1101                                     struct ttm_validate_buffer *val_buf)
1102 {
1103         int ret = 0;
1104         const struct vmw_res_func *func = res->func;
1105
1106         if (unlikely(res->id == -1)) {
1107                 ret = func->create(res);
1108                 if (unlikely(ret != 0))
1109                         return ret;
1110         }
1111
1112         if (func->bind &&
1113             ((func->needs_backup && list_empty(&res->mob_head) &&
1114               val_buf->bo != NULL) ||
1115              (!func->needs_backup && val_buf->bo != NULL))) {
1116                 ret = func->bind(res, val_buf);
1117                 if (unlikely(ret != 0))
1118                         goto out_bind_failed;
1119                 if (func->needs_backup)
1120                         list_add_tail(&res->mob_head, &res->backup->res_list);
1121         }
1122
1123         /*
1124          * Only do this on write operations, and move to
1125          * vmw_resource_unreserve if it can be called after
1126          * backup buffers have been unreserved. Otherwise
1127          * sort out locking.
1128          */
1129         res->res_dirty = true;
1130
1131         return 0;
1132
1133 out_bind_failed:
1134         func->destroy(res);
1135
1136         return ret;
1137 }
1138
1139 /**
1140  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1141  * command submission.
1142  *
1143  * @res:               Pointer to the struct vmw_resource to unreserve.
1144  * @new_backup:        Pointer to new backup buffer if command submission
1145  *                     switched.
1146  * @new_backup_offset: New backup offset if @new_backup is !NULL.
1147  *
1148  * Currently unreserving a resource means putting it back on the device's
1149  * resource lru list, so that it can be evicted if necessary.
1150  */
1151 void vmw_resource_unreserve(struct vmw_resource *res,
1152                             struct vmw_dma_buffer *new_backup,
1153                             unsigned long new_backup_offset)
1154 {
1155         struct vmw_private *dev_priv = res->dev_priv;
1156
1157         if (!list_empty(&res->lru_head))
1158                 return;
1159
1160         if (new_backup && new_backup != res->backup) {
1161
1162                 if (res->backup) {
1163                         lockdep_assert_held(&res->backup->base.resv->lock.base);
1164                         list_del_init(&res->mob_head);
1165                         vmw_dmabuf_unreference(&res->backup);
1166                 }
1167
1168                 res->backup = vmw_dmabuf_reference(new_backup);
1169                 lockdep_assert_held(&new_backup->base.resv->lock.base);
1170                 list_add_tail(&res->mob_head, &new_backup->res_list);
1171         }
1172         if (new_backup)
1173                 res->backup_offset = new_backup_offset;
1174
1175         if (!res->func->may_evict || res->id == -1)
1176                 return;
1177
1178         write_lock(&dev_priv->resource_lock);
1179         list_add_tail(&res->lru_head,
1180                       &res->dev_priv->res_lru[res->func->res_type]);
1181         write_unlock(&dev_priv->resource_lock);
1182 }
1183
1184 /**
1185  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1186  *                             for a resource and in that case, allocate
1187  *                             one, reserve and validate it.
1188  *
1189  * @res:            The resource for which to allocate a backup buffer.
1190  * @interruptible:  Whether any sleeps during allocation should be
1191  *                  performed while interruptible.
1192  * @val_buf:        On successful return contains data about the
1193  *                  reserved and validated backup buffer.
1194  */
1195 static int
1196 vmw_resource_check_buffer(struct vmw_resource *res,
1197                           bool interruptible,
1198                           struct ttm_validate_buffer *val_buf)
1199 {
1200         struct list_head val_list;
1201         bool backup_dirty = false;
1202         int ret;
1203
1204         if (unlikely(res->backup == NULL)) {
1205                 ret = vmw_resource_buf_alloc(res, interruptible);
1206                 if (unlikely(ret != 0))
1207                         return ret;
1208         }
1209
1210         INIT_LIST_HEAD(&val_list);
1211         val_buf->bo = ttm_bo_reference(&res->backup->base);
1212         list_add_tail(&val_buf->head, &val_list);
1213         ret = ttm_eu_reserve_buffers(NULL, &val_list);
1214         if (unlikely(ret != 0))
1215                 goto out_no_reserve;
1216
1217         if (res->func->needs_backup && list_empty(&res->mob_head))
1218                 return 0;
1219
1220         backup_dirty = res->backup_dirty;
1221         ret = ttm_bo_validate(&res->backup->base,
1222                               res->func->backup_placement,
1223                               true, false);
1224
1225         if (unlikely(ret != 0))
1226                 goto out_no_validate;
1227
1228         return 0;
1229
1230 out_no_validate:
1231         ttm_eu_backoff_reservation(NULL, &val_list);
1232 out_no_reserve:
1233         ttm_bo_unref(&val_buf->bo);
1234         if (backup_dirty)
1235                 vmw_dmabuf_unreference(&res->backup);
1236
1237         return ret;
1238 }
1239
1240 /**
1241  * vmw_resource_reserve - Reserve a resource for command submission
1242  *
1243  * @res:            The resource to reserve.
1244  *
1245  * This function takes the resource off the LRU list and make sure
1246  * a backup buffer is present for guest-backed resources. However,
1247  * the buffer may not be bound to the resource at this point.
1248  *
1249  */
1250 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1251 {
1252         struct vmw_private *dev_priv = res->dev_priv;
1253         int ret;
1254
1255         write_lock(&dev_priv->resource_lock);
1256         list_del_init(&res->lru_head);
1257         write_unlock(&dev_priv->resource_lock);
1258
1259         if (res->func->needs_backup && res->backup == NULL &&
1260             !no_backup) {
1261                 ret = vmw_resource_buf_alloc(res, true);
1262                 if (unlikely(ret != 0))
1263                         return ret;
1264         }
1265
1266         return 0;
1267 }
1268
1269 /**
1270  * vmw_resource_backoff_reservation - Unreserve and unreference a
1271  *                                    backup buffer
1272  *.
1273  * @val_buf:        Backup buffer information.
1274  */
1275 static void
1276 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1277 {
1278         struct list_head val_list;
1279
1280         if (likely(val_buf->bo == NULL))
1281                 return;
1282
1283         INIT_LIST_HEAD(&val_list);
1284         list_add_tail(&val_buf->head, &val_list);
1285         ttm_eu_backoff_reservation(NULL, &val_list);
1286         ttm_bo_unref(&val_buf->bo);
1287 }
1288
1289 /**
1290  * vmw_resource_do_evict - Evict a resource, and transfer its data
1291  *                         to a backup buffer.
1292  *
1293  * @res:            The resource to evict.
1294  * @interruptible:  Whether to wait interruptible.
1295  */
1296 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1297 {
1298         struct ttm_validate_buffer val_buf;
1299         const struct vmw_res_func *func = res->func;
1300         int ret;
1301
1302         BUG_ON(!func->may_evict);
1303
1304         val_buf.bo = NULL;
1305         ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1306         if (unlikely(ret != 0))
1307                 return ret;
1308
1309         if (unlikely(func->unbind != NULL &&
1310                      (!func->needs_backup || !list_empty(&res->mob_head)))) {
1311                 ret = func->unbind(res, res->res_dirty, &val_buf);
1312                 if (unlikely(ret != 0))
1313                         goto out_no_unbind;
1314                 list_del_init(&res->mob_head);
1315         }
1316         ret = func->destroy(res);
1317         res->backup_dirty = true;
1318         res->res_dirty = false;
1319 out_no_unbind:
1320         vmw_resource_backoff_reservation(&val_buf);
1321
1322         return ret;
1323 }
1324
1325
1326 /**
1327  * vmw_resource_validate - Make a resource up-to-date and visible
1328  *                         to the device.
1329  *
1330  * @res:            The resource to make visible to the device.
1331  *
1332  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1333  * be reserved and validated.
1334  * On hardware resource shortage, this function will repeatedly evict
1335  * resources of the same type until the validation succeeds.
1336  */
1337 int vmw_resource_validate(struct vmw_resource *res)
1338 {
1339         int ret;
1340         struct vmw_resource *evict_res;
1341         struct vmw_private *dev_priv = res->dev_priv;
1342         struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1343         struct ttm_validate_buffer val_buf;
1344         unsigned err_count = 0;
1345
1346         if (likely(!res->func->may_evict))
1347                 return 0;
1348
1349         val_buf.bo = NULL;
1350         if (res->backup)
1351                 val_buf.bo = &res->backup->base;
1352         do {
1353                 ret = vmw_resource_do_validate(res, &val_buf);
1354                 if (likely(ret != -EBUSY))
1355                         break;
1356
1357                 write_lock(&dev_priv->resource_lock);
1358                 if (list_empty(lru_list) || !res->func->may_evict) {
1359                         DRM_ERROR("Out of device device resources "
1360                                   "for %s.\n", res->func->type_name);
1361                         ret = -EBUSY;
1362                         write_unlock(&dev_priv->resource_lock);
1363                         break;
1364                 }
1365
1366                 evict_res = vmw_resource_reference
1367                         (list_first_entry(lru_list, struct vmw_resource,
1368                                           lru_head));
1369                 list_del_init(&evict_res->lru_head);
1370
1371                 write_unlock(&dev_priv->resource_lock);
1372
1373                 ret = vmw_resource_do_evict(evict_res, true);
1374                 if (unlikely(ret != 0)) {
1375                         write_lock(&dev_priv->resource_lock);
1376                         list_add_tail(&evict_res->lru_head, lru_list);
1377                         write_unlock(&dev_priv->resource_lock);
1378                         if (ret == -ERESTARTSYS ||
1379                             ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1380                                 vmw_resource_unreference(&evict_res);
1381                                 goto out_no_validate;
1382                         }
1383                 }
1384
1385                 vmw_resource_unreference(&evict_res);
1386         } while (1);
1387
1388         if (unlikely(ret != 0))
1389                 goto out_no_validate;
1390         else if (!res->func->needs_backup && res->backup) {
1391                 list_del_init(&res->mob_head);
1392                 vmw_dmabuf_unreference(&res->backup);
1393         }
1394
1395         return 0;
1396
1397 out_no_validate:
1398         return ret;
1399 }
1400
1401 /**
1402  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1403  *                       object without unreserving it.
1404  *
1405  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1406  * @fence:          Pointer to the fence. If NULL, this function will
1407  *                  insert a fence into the command stream..
1408  *
1409  * Contrary to the ttm_eu version of this function, it takes only
1410  * a single buffer object instead of a list, and it also doesn't
1411  * unreserve the buffer object, which needs to be done separately.
1412  */
1413 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1414                          struct vmw_fence_obj *fence)
1415 {
1416         struct ttm_bo_device *bdev = bo->bdev;
1417         struct ttm_bo_driver *driver = bdev->driver;
1418         struct vmw_fence_obj *old_fence_obj;
1419         struct vmw_private *dev_priv =
1420                 container_of(bdev, struct vmw_private, bdev);
1421
1422         if (fence == NULL)
1423                 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1424         else
1425                 driver->sync_obj_ref(fence);
1426
1427         spin_lock(&bdev->fence_lock);
1428
1429         old_fence_obj = bo->sync_obj;
1430         bo->sync_obj = fence;
1431
1432         spin_unlock(&bdev->fence_lock);
1433
1434         if (old_fence_obj)
1435                 vmw_fence_obj_unreference(&old_fence_obj);
1436 }
1437
1438 /**
1439  * vmw_resource_move_notify - TTM move_notify_callback
1440  *
1441  * @bo:             The TTM buffer object about to move.
1442  * @mem:            The truct ttm_mem_reg indicating to what memory
1443  *                  region the move is taking place.
1444  *
1445  * Evicts the Guest Backed hardware resource if the backup
1446  * buffer is being moved out of MOB memory.
1447  * Note that this function should not race with the resource
1448  * validation code as long as it accesses only members of struct
1449  * resource that remain static while bo::res is !NULL and
1450  * while we have @bo reserved. struct resource::backup is *not* a
1451  * static member. The resource validation code will take care
1452  * to set @bo::res to NULL, while having @bo reserved when the
1453  * buffer is no longer bound to the resource, so @bo:res can be
1454  * used to determine whether there is a need to unbind and whether
1455  * it is safe to unbind.
1456  */
1457 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1458                               struct ttm_mem_reg *mem)
1459 {
1460         struct vmw_dma_buffer *dma_buf;
1461
1462         if (mem == NULL)
1463                 return;
1464
1465         if (bo->destroy != vmw_dmabuf_bo_free &&
1466             bo->destroy != vmw_user_dmabuf_destroy)
1467                 return;
1468
1469         dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1470
1471         if (mem->mem_type != VMW_PL_MOB) {
1472                 struct vmw_resource *res, *n;
1473                 struct ttm_bo_device *bdev = bo->bdev;
1474                 struct ttm_validate_buffer val_buf;
1475
1476                 val_buf.bo = bo;
1477
1478                 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1479
1480                         if (unlikely(res->func->unbind == NULL))
1481                                 continue;
1482
1483                         (void) res->func->unbind(res, true, &val_buf);
1484                         res->backup_dirty = true;
1485                         res->res_dirty = false;
1486                         list_del_init(&res->mob_head);
1487                 }
1488
1489                 spin_lock(&bdev->fence_lock);
1490                 (void) ttm_bo_wait(bo, false, false, false);
1491                 spin_unlock(&bdev->fence_lock);
1492         }
1493 }
1494
1495 /**
1496  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1497  *
1498  * @res:            The resource being queried.
1499  */
1500 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1501 {
1502         return res->func->needs_backup;
1503 }
1504
1505 /**
1506  * vmw_resource_evict_type - Evict all resources of a specific type
1507  *
1508  * @dev_priv:       Pointer to a device private struct
1509  * @type:           The resource type to evict
1510  *
1511  * To avoid thrashing starvation or as part of the hibernation sequence,
1512  * try to evict all evictable resources of a specific type.
1513  */
1514 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1515                                     enum vmw_res_type type)
1516 {
1517         struct list_head *lru_list = &dev_priv->res_lru[type];
1518         struct vmw_resource *evict_res;
1519         unsigned err_count = 0;
1520         int ret;
1521
1522         do {
1523                 write_lock(&dev_priv->resource_lock);
1524
1525                 if (list_empty(lru_list))
1526                         goto out_unlock;
1527
1528                 evict_res = vmw_resource_reference(
1529                         list_first_entry(lru_list, struct vmw_resource,
1530                                          lru_head));
1531                 list_del_init(&evict_res->lru_head);
1532                 write_unlock(&dev_priv->resource_lock);
1533
1534                 ret = vmw_resource_do_evict(evict_res, false);
1535                 if (unlikely(ret != 0)) {
1536                         write_lock(&dev_priv->resource_lock);
1537                         list_add_tail(&evict_res->lru_head, lru_list);
1538                         write_unlock(&dev_priv->resource_lock);
1539                         if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1540                                 vmw_resource_unreference(&evict_res);
1541                                 return;
1542                         }
1543                 }
1544
1545                 vmw_resource_unreference(&evict_res);
1546         } while (1);
1547
1548 out_unlock:
1549         write_unlock(&dev_priv->resource_lock);
1550 }
1551
1552 /**
1553  * vmw_resource_evict_all - Evict all evictable resources
1554  *
1555  * @dev_priv:       Pointer to a device private struct
1556  *
1557  * To avoid thrashing starvation or as part of the hibernation sequence,
1558  * evict all evictable resources. In particular this means that all
1559  * guest-backed resources that are registered with the device are
1560  * evicted and the OTable becomes clean.
1561  */
1562 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1563 {
1564         enum vmw_res_type type;
1565
1566         mutex_lock(&dev_priv->cmdbuf_mutex);
1567
1568         for (type = 0; type < vmw_res_max; ++type)
1569                 vmw_resource_evict_type(dev_priv, type);
1570
1571         mutex_unlock(&dev_priv->cmdbuf_mutex);
1572 }