OSDN Git Service

perf/x86/uncore: Correct the number of CHAs on EMR
[tomoyo/tomoyo-test1.git] / drivers / i2c / busses / i2c-mxs.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale MXS I2C bus driver
4  *
5  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
7  *
8  * based on a (non-working) driver which was:
9  *
10  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
11  */
12
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
22 #include <linux/io.h>
23 #include <linux/stmp_device.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/mxs-dma.h>
29
30 #define DRIVER_NAME "mxs-i2c"
31
32 #define MXS_I2C_CTRL0           (0x00)
33 #define MXS_I2C_CTRL0_SET       (0x04)
34 #define MXS_I2C_CTRL0_CLR       (0x08)
35
36 #define MXS_I2C_CTRL0_SFTRST                    0x80000000
37 #define MXS_I2C_CTRL0_RUN                       0x20000000
38 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST          0x02000000
39 #define MXS_I2C_CTRL0_PIO_MODE                  0x01000000
40 #define MXS_I2C_CTRL0_RETAIN_CLOCK              0x00200000
41 #define MXS_I2C_CTRL0_POST_SEND_STOP            0x00100000
42 #define MXS_I2C_CTRL0_PRE_SEND_START            0x00080000
43 #define MXS_I2C_CTRL0_MASTER_MODE               0x00020000
44 #define MXS_I2C_CTRL0_DIRECTION                 0x00010000
45 #define MXS_I2C_CTRL0_XFER_COUNT(v)             ((v) & 0x0000FFFF)
46
47 #define MXS_I2C_TIMING0         (0x10)
48 #define MXS_I2C_TIMING1         (0x20)
49 #define MXS_I2C_TIMING2         (0x30)
50
51 #define MXS_I2C_CTRL1           (0x40)
52 #define MXS_I2C_CTRL1_SET       (0x44)
53 #define MXS_I2C_CTRL1_CLR       (0x48)
54
55 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK             0x10000000
56 #define MXS_I2C_CTRL1_BUS_FREE_IRQ              0x80
57 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ     0x40
58 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ          0x20
59 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ    0x10
60 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ            0x08
61 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ           0x04
62 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ            0x02
63 #define MXS_I2C_CTRL1_SLAVE_IRQ                 0x01
64
65 #define MXS_I2C_STAT            (0x50)
66 #define MXS_I2C_STAT_GOT_A_NAK                  0x10000000
67 #define MXS_I2C_STAT_BUS_BUSY                   0x00000800
68 #define MXS_I2C_STAT_CLK_GEN_BUSY               0x00000400
69
70 #define MXS_I2C_DATA(i2c)       ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
71
72 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
73
74 #define MXS_I2C_DEBUG0_DMAREQ   0x80000000
75
76 #define MXS_I2C_IRQ_MASK        (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
77                                  MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
78                                  MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
79                                  MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
80                                  MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
81                                  MXS_I2C_CTRL1_SLAVE_IRQ)
82
83
84 #define MXS_CMD_I2C_SELECT      (MXS_I2C_CTRL0_RETAIN_CLOCK |   \
85                                  MXS_I2C_CTRL0_PRE_SEND_START | \
86                                  MXS_I2C_CTRL0_MASTER_MODE |    \
87                                  MXS_I2C_CTRL0_DIRECTION |      \
88                                  MXS_I2C_CTRL0_XFER_COUNT(1))
89
90 #define MXS_CMD_I2C_WRITE       (MXS_I2C_CTRL0_PRE_SEND_START | \
91                                  MXS_I2C_CTRL0_MASTER_MODE |    \
92                                  MXS_I2C_CTRL0_DIRECTION)
93
94 #define MXS_CMD_I2C_READ        (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
95                                  MXS_I2C_CTRL0_MASTER_MODE)
96
97 enum mxs_i2c_devtype {
98         MXS_I2C_UNKNOWN = 0,
99         MXS_I2C_V1,
100         MXS_I2C_V2,
101 };
102
103 /**
104  * struct mxs_i2c_dev - per device, private MXS-I2C data
105  *
106  * @dev: driver model device node
107  * @dev_type: distinguish i.MX23/i.MX28 features
108  * @regs: IO registers pointer
109  * @cmd_complete: completion object for transaction wait
110  * @cmd_err: error code for last transaction
111  * @adapter: i2c subsystem adapter node
112  */
113 struct mxs_i2c_dev {
114         struct device *dev;
115         enum mxs_i2c_devtype dev_type;
116         void __iomem *regs;
117         struct completion cmd_complete;
118         int cmd_err;
119         struct i2c_adapter adapter;
120
121         uint32_t timing0;
122         uint32_t timing1;
123         uint32_t timing2;
124
125         /* DMA support components */
126         struct dma_chan                 *dmach;
127         uint32_t                        pio_data[2];
128         uint32_t                        addr_data;
129         struct scatterlist              sg_io[2];
130         bool                            dma_read;
131 };
132
133 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
134 {
135         int ret = stmp_reset_block(i2c->regs);
136         if (ret)
137                 return ret;
138
139         /*
140          * Configure timing for the I2C block. The I2C TIMING2 register has to
141          * be programmed with this particular magic number. The rest is derived
142          * from the XTAL speed and requested I2C speed.
143          *
144          * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
145          */
146         writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
147         writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
148         writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
149
150         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
151
152         return 0;
153 }
154
155 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
156 {
157         if (i2c->dma_read) {
158                 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
159                 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
160         } else {
161                 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
162         }
163 }
164
165 static void mxs_i2c_dma_irq_callback(void *param)
166 {
167         struct mxs_i2c_dev *i2c = param;
168
169         complete(&i2c->cmd_complete);
170         mxs_i2c_dma_finish(i2c);
171 }
172
173 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
174                         struct i2c_msg *msg, u8 *buf, uint32_t flags)
175 {
176         struct dma_async_tx_descriptor *desc;
177         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
178
179         i2c->addr_data = i2c_8bit_addr_from_msg(msg);
180
181         if (msg->flags & I2C_M_RD) {
182                 i2c->dma_read = true;
183
184                 /*
185                  * SELECT command.
186                  */
187
188                 /* Queue the PIO register write transfer. */
189                 i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
190                 desc = dmaengine_prep_slave_sg(i2c->dmach,
191                                         (struct scatterlist *)&i2c->pio_data[0],
192                                         1, DMA_TRANS_NONE, 0);
193                 if (!desc) {
194                         dev_err(i2c->dev,
195                                 "Failed to get PIO reg. write descriptor.\n");
196                         goto select_init_pio_fail;
197                 }
198
199                 /* Queue the DMA data transfer. */
200                 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
201                 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
202                 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
203                                         DMA_MEM_TO_DEV,
204                                         DMA_PREP_INTERRUPT |
205                                         MXS_DMA_CTRL_WAIT4END);
206                 if (!desc) {
207                         dev_err(i2c->dev,
208                                 "Failed to get DMA data write descriptor.\n");
209                         goto select_init_dma_fail;
210                 }
211
212                 /*
213                  * READ command.
214                  */
215
216                 /* Queue the PIO register write transfer. */
217                 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
218                                 MXS_I2C_CTRL0_XFER_COUNT(msg->len);
219                 desc = dmaengine_prep_slave_sg(i2c->dmach,
220                                         (struct scatterlist *)&i2c->pio_data[1],
221                                         1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
222                 if (!desc) {
223                         dev_err(i2c->dev,
224                                 "Failed to get PIO reg. write descriptor.\n");
225                         goto select_init_dma_fail;
226                 }
227
228                 /* Queue the DMA data transfer. */
229                 sg_init_one(&i2c->sg_io[1], buf, msg->len);
230                 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
231                 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
232                                         DMA_DEV_TO_MEM,
233                                         DMA_PREP_INTERRUPT |
234                                         MXS_DMA_CTRL_WAIT4END);
235                 if (!desc) {
236                         dev_err(i2c->dev,
237                                 "Failed to get DMA data write descriptor.\n");
238                         goto read_init_dma_fail;
239                 }
240         } else {
241                 i2c->dma_read = false;
242
243                 /*
244                  * WRITE command.
245                  */
246
247                 /* Queue the PIO register write transfer. */
248                 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
249                                 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
250                 desc = dmaengine_prep_slave_sg(i2c->dmach,
251                                         (struct scatterlist *)&i2c->pio_data[0],
252                                         1, DMA_TRANS_NONE, 0);
253                 if (!desc) {
254                         dev_err(i2c->dev,
255                                 "Failed to get PIO reg. write descriptor.\n");
256                         goto write_init_pio_fail;
257                 }
258
259                 /* Queue the DMA data transfer. */
260                 sg_init_table(i2c->sg_io, 2);
261                 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
262                 sg_set_buf(&i2c->sg_io[1], buf, msg->len);
263                 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
264                 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
265                                         DMA_MEM_TO_DEV,
266                                         DMA_PREP_INTERRUPT |
267                                         MXS_DMA_CTRL_WAIT4END);
268                 if (!desc) {
269                         dev_err(i2c->dev,
270                                 "Failed to get DMA data write descriptor.\n");
271                         goto write_init_dma_fail;
272                 }
273         }
274
275         /*
276          * The last descriptor must have this callback,
277          * to finish the DMA transaction.
278          */
279         desc->callback = mxs_i2c_dma_irq_callback;
280         desc->callback_param = i2c;
281
282         /* Start the transfer. */
283         dmaengine_submit(desc);
284         dma_async_issue_pending(i2c->dmach);
285         return 0;
286
287 /* Read failpath. */
288 read_init_dma_fail:
289         dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
290 select_init_dma_fail:
291         dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
292 select_init_pio_fail:
293         dmaengine_terminate_sync(i2c->dmach);
294         return -EINVAL;
295
296 /* Write failpath. */
297 write_init_dma_fail:
298         dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
299 write_init_pio_fail:
300         dmaengine_terminate_sync(i2c->dmach);
301         return -EINVAL;
302 }
303
304 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
305 {
306         unsigned long timeout = jiffies + msecs_to_jiffies(1000);
307
308         while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
309                 if (readl(i2c->regs + MXS_I2C_CTRL1) &
310                                 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
311                         return -ENXIO;
312                 if (time_after(jiffies, timeout))
313                         return -ETIMEDOUT;
314                 cond_resched();
315         }
316
317         return 0;
318 }
319
320 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
321 {
322         u32 state;
323
324         state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
325
326         if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
327                 i2c->cmd_err = -ENXIO;
328         else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
329                           MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
330                           MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
331                           MXS_I2C_CTRL1_SLAVE_IRQ))
332                 i2c->cmd_err = -EIO;
333
334         return i2c->cmd_err;
335 }
336
337 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
338 {
339         u32 reg;
340
341         writel(cmd, i2c->regs + MXS_I2C_CTRL0);
342
343         /* readback makes sure the write is latched into hardware */
344         reg = readl(i2c->regs + MXS_I2C_CTRL0);
345         reg |= MXS_I2C_CTRL0_RUN;
346         writel(reg, i2c->regs + MXS_I2C_CTRL0);
347 }
348
349 /*
350  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
351  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
352  * must be written during PIO mode operation. First, the CTRL0 register has
353  * to be programmed with all the necessary bits but the RUN bit. Then the
354  * payload has to be written into the DATA register. Finally, the transmission
355  * is executed by setting the RUN bit in CTRL0.
356  */
357 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
358                                           u32 data)
359 {
360         writel(cmd, i2c->regs + MXS_I2C_CTRL0);
361
362         if (i2c->dev_type == MXS_I2C_V1)
363                 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
364
365         writel(data, i2c->regs + MXS_I2C_DATA(i2c));
366         writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
367 }
368
369 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
370                         struct i2c_msg *msg, uint32_t flags)
371 {
372         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
373         uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
374         uint32_t data = 0;
375         int i, ret, xlen = 0, xmit = 0;
376         uint32_t start;
377
378         /* Mute IRQs coming from this block. */
379         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
380
381         /*
382          * MX23 idea:
383          * - Enable CTRL0::PIO_MODE (1 << 24)
384          * - Enable CTRL1::ACK_MODE (1 << 27)
385          *
386          * WARNING! The MX23 is broken in some way, even if it claims
387          * to support PIO, when we try to transfer any amount of data
388          * that is not aligned to 4 bytes, the DMA engine will have
389          * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
390          * transfer. This in turn will mess up the next transfer as
391          * the block it emit one byte write onto the bus terminated
392          * with a NAK+STOP. A possible workaround is to reset the IP
393          * block after every PIO transmission, which might just work.
394          *
395          * NOTE: The CTRL0::PIO_MODE description is important, since
396          * it outlines how the PIO mode is really supposed to work.
397          */
398         if (msg->flags & I2C_M_RD) {
399                 /*
400                  * PIO READ transfer:
401                  *
402                  * This transfer MUST be limited to 4 bytes maximum. It is not
403                  * possible to transfer more than four bytes via PIO, since we
404                  * can not in any way make sure we can read the data from the
405                  * DATA register fast enough. Besides, the RX FIFO is only four
406                  * bytes deep, thus we can only really read up to four bytes at
407                  * time. Finally, there is no bit indicating us that new data
408                  * arrived at the FIFO and can thus be fetched from the DATA
409                  * register.
410                  */
411                 BUG_ON(msg->len > 4);
412
413                 /* SELECT command. */
414                 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
415                                               addr_data);
416
417                 ret = mxs_i2c_pio_wait_xfer_end(i2c);
418                 if (ret) {
419                         dev_dbg(i2c->dev,
420                                 "PIO: Failed to send SELECT command!\n");
421                         goto cleanup;
422                 }
423
424                 /* READ command. */
425                 mxs_i2c_pio_trigger_cmd(i2c,
426                                         MXS_CMD_I2C_READ | flags |
427                                         MXS_I2C_CTRL0_XFER_COUNT(msg->len));
428
429                 ret = mxs_i2c_pio_wait_xfer_end(i2c);
430                 if (ret) {
431                         dev_dbg(i2c->dev,
432                                 "PIO: Failed to send READ command!\n");
433                         goto cleanup;
434                 }
435
436                 data = readl(i2c->regs + MXS_I2C_DATA(i2c));
437                 for (i = 0; i < msg->len; i++) {
438                         msg->buf[i] = data & 0xff;
439                         data >>= 8;
440                 }
441         } else {
442                 /*
443                  * PIO WRITE transfer:
444                  *
445                  * The code below implements clock stretching to circumvent
446                  * the possibility of kernel not being able to supply data
447                  * fast enough. It is possible to transfer arbitrary amount
448                  * of data using PIO write.
449                  */
450
451                 /*
452                  * The LSB of data buffer is the first byte blasted across
453                  * the bus. Higher order bytes follow. Thus the following
454                  * filling schematic.
455                  */
456
457                 data = addr_data << 24;
458
459                 /* Start the transfer with START condition. */
460                 start = MXS_I2C_CTRL0_PRE_SEND_START;
461
462                 /* If the transfer is long, use clock stretching. */
463                 if (msg->len > 3)
464                         start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
465
466                 for (i = 0; i < msg->len; i++) {
467                         data >>= 8;
468                         data |= (msg->buf[i] << 24);
469
470                         xmit = 0;
471
472                         /* This is the last transfer of the message. */
473                         if (i + 1 == msg->len) {
474                                 /* Add optional STOP flag. */
475                                 start |= flags;
476                                 /* Remove RETAIN_CLOCK bit. */
477                                 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
478                                 xmit = 1;
479                         }
480
481                         /* Four bytes are ready in the "data" variable. */
482                         if ((i & 3) == 2)
483                                 xmit = 1;
484
485                         /* Nothing interesting happened, continue stuffing. */
486                         if (!xmit)
487                                 continue;
488
489                         /*
490                          * Compute the size of the transfer and shift the
491                          * data accordingly.
492                          *
493                          * i = (4k + 0) .... xlen = 2
494                          * i = (4k + 1) .... xlen = 3
495                          * i = (4k + 2) .... xlen = 4
496                          * i = (4k + 3) .... xlen = 1
497                          */
498
499                         if ((i % 4) == 3)
500                                 xlen = 1;
501                         else
502                                 xlen = (i % 4) + 2;
503
504                         data >>= (4 - xlen) * 8;
505
506                         dev_dbg(i2c->dev,
507                                 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
508                                 xlen, i, msg->len,
509                                 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
510                                 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
511                                 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
512
513                         writel(MXS_I2C_DEBUG0_DMAREQ,
514                                i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
515
516                         mxs_i2c_pio_trigger_write_cmd(i2c,
517                                 start | MXS_I2C_CTRL0_MASTER_MODE |
518                                 MXS_I2C_CTRL0_DIRECTION |
519                                 MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
520
521                         /* The START condition is sent only once. */
522                         start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
523
524                         /* Wait for the end of the transfer. */
525                         ret = mxs_i2c_pio_wait_xfer_end(i2c);
526                         if (ret) {
527                                 dev_dbg(i2c->dev,
528                                         "PIO: Failed to finish WRITE cmd!\n");
529                                 break;
530                         }
531
532                         /* Check NAK here. */
533                         ret = readl(i2c->regs + MXS_I2C_STAT) &
534                                     MXS_I2C_STAT_GOT_A_NAK;
535                         if (ret) {
536                                 ret = -ENXIO;
537                                 goto cleanup;
538                         }
539                 }
540         }
541
542         /* make sure we capture any occurred error into cmd_err */
543         ret = mxs_i2c_pio_check_error_state(i2c);
544
545 cleanup:
546         /* Clear any dangling IRQs and re-enable interrupts. */
547         writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
548         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
549
550         /* Clear the PIO_MODE on i.MX23 */
551         if (i2c->dev_type == MXS_I2C_V1)
552                 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
553
554         return ret;
555 }
556
557 /*
558  * Low level master read/write transaction.
559  */
560 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
561                                 int stop)
562 {
563         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
564         int ret;
565         int flags;
566         u8 *dma_buf;
567         int use_pio = 0;
568         unsigned long time_left;
569
570         flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
571
572         dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
573                 msg->addr, msg->len, msg->flags, stop);
574
575         /*
576          * The MX28 I2C IP block can only do PIO READ for transfer of to up
577          * 4 bytes of length. The write transfer is not limited as it can use
578          * clock stretching to avoid FIFO underruns.
579          */
580         if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
581                 use_pio = 1;
582         if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
583                 use_pio = 1;
584
585         i2c->cmd_err = 0;
586         if (use_pio) {
587                 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
588                 /* No need to reset the block if NAK was received. */
589                 if (ret && (ret != -ENXIO))
590                         mxs_i2c_reset(i2c);
591         } else {
592                 dma_buf = i2c_get_dma_safe_msg_buf(msg, 1);
593                 if (!dma_buf)
594                         return -ENOMEM;
595
596                 reinit_completion(&i2c->cmd_complete);
597                 ret = mxs_i2c_dma_setup_xfer(adap, msg, dma_buf, flags);
598                 if (ret) {
599                         i2c_put_dma_safe_msg_buf(dma_buf, msg, false);
600                         return ret;
601                 }
602
603                 time_left = wait_for_completion_timeout(&i2c->cmd_complete,
604                                                 msecs_to_jiffies(1000));
605                 i2c_put_dma_safe_msg_buf(dma_buf, msg, true);
606                 if (!time_left)
607                         goto timeout;
608
609                 ret = i2c->cmd_err;
610         }
611
612         if (ret == -ENXIO) {
613                 /*
614                  * If the transfer fails with a NAK from the slave the
615                  * controller halts until it gets told to return to idle state.
616                  */
617                 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
618                        i2c->regs + MXS_I2C_CTRL1_SET);
619         }
620
621         /*
622          * WARNING!
623          * The i.MX23 is strange. After each and every operation, it's I2C IP
624          * block must be reset, otherwise the IP block will misbehave. This can
625          * be observed on the bus by the block sending out one single byte onto
626          * the bus. In case such an error happens, bit 27 will be set in the
627          * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
628          * and is marked as "TBD" instead. To reset this bit to a correct state,
629          * reset the whole block. Since the block reset does not take long, do
630          * reset the block after every transfer to play safe.
631          */
632         if (i2c->dev_type == MXS_I2C_V1)
633                 mxs_i2c_reset(i2c);
634
635         dev_dbg(i2c->dev, "Done with err=%d\n", ret);
636
637         return ret;
638
639 timeout:
640         dev_dbg(i2c->dev, "Timeout!\n");
641         mxs_i2c_dma_finish(i2c);
642         ret = mxs_i2c_reset(i2c);
643         if (ret)
644                 return ret;
645
646         return -ETIMEDOUT;
647 }
648
649 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
650                         int num)
651 {
652         int i;
653         int err;
654
655         for (i = 0; i < num; i++) {
656                 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
657                 if (err)
658                         return err;
659         }
660
661         return num;
662 }
663
664 static u32 mxs_i2c_func(struct i2c_adapter *adap)
665 {
666         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
667 }
668
669 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
670 {
671         struct mxs_i2c_dev *i2c = dev_id;
672         u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
673
674         if (!stat)
675                 return IRQ_NONE;
676
677         if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
678                 i2c->cmd_err = -ENXIO;
679         else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
680                     MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
681                     MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
682                 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
683                 i2c->cmd_err = -EIO;
684
685         writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
686
687         return IRQ_HANDLED;
688 }
689
690 static const struct i2c_algorithm mxs_i2c_algo = {
691         .master_xfer = mxs_i2c_xfer,
692         .functionality = mxs_i2c_func,
693 };
694
695 static const struct i2c_adapter_quirks mxs_i2c_quirks = {
696         .flags = I2C_AQ_NO_ZERO_LEN,
697 };
698
699 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
700 {
701         /* The I2C block clock runs at 24MHz */
702         const uint32_t clk = 24000000;
703         uint32_t divider;
704         uint16_t high_count, low_count, rcv_count, xmit_count;
705         uint32_t bus_free, leadin;
706         struct device *dev = i2c->dev;
707
708         divider = DIV_ROUND_UP(clk, speed);
709
710         if (divider < 25) {
711                 /*
712                  * limit the divider, so that min(low_count, high_count)
713                  * is >= 1
714                  */
715                 divider = 25;
716                 dev_warn(dev,
717                         "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
718                         speed / 1000, speed % 1000,
719                         clk / divider / 1000, clk / divider % 1000);
720         } else if (divider > 1897) {
721                 /*
722                  * limit the divider, so that max(low_count, high_count)
723                  * cannot exceed 1023
724                  */
725                 divider = 1897;
726                 dev_warn(dev,
727                         "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
728                         speed / 1000, speed % 1000,
729                         clk / divider / 1000, clk / divider % 1000);
730         }
731
732         /*
733          * The I2C spec specifies the following timing data:
734          *                          standard mode  fast mode Bitfield name
735          * tLOW (SCL LOW period)     4700 ns        1300 ns
736          * tHIGH (SCL HIGH period)   4000 ns         600 ns
737          * tSU;DAT (data setup time)  250 ns         100 ns
738          * tHD;STA (START hold time) 4000 ns         600 ns
739          * tBUF (bus free time)      4700 ns        1300 ns
740          *
741          * The hardware (of the i.MX28 at least) seems to add 2 additional
742          * clock cycles to the low_count and 7 cycles to the high_count.
743          * This is compensated for by subtracting the respective constants
744          * from the values written to the timing registers.
745          */
746         if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
747                 /* fast mode */
748                 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
749                 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
750                 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
751                 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
752         } else {
753                 /* normal mode */
754                 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
755                 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
756                 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
757                 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
758         }
759         rcv_count = high_count * 3 / 8;
760         xmit_count = low_count * 3 / 8;
761
762         dev_dbg(dev,
763                 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
764                 speed, clk / divider, divider, low_count, high_count,
765                 xmit_count, rcv_count, leadin, bus_free);
766
767         low_count -= 2;
768         high_count -= 7;
769         i2c->timing0 = (high_count << 16) | rcv_count;
770         i2c->timing1 = (low_count << 16) | xmit_count;
771         i2c->timing2 = (bus_free << 16 | leadin);
772 }
773
774 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
775 {
776         uint32_t speed;
777         struct device *dev = i2c->dev;
778         struct device_node *node = dev->of_node;
779         int ret;
780
781         ret = of_property_read_u32(node, "clock-frequency", &speed);
782         if (ret) {
783                 dev_warn(dev, "No I2C speed selected, using 100kHz\n");
784                 speed = I2C_MAX_STANDARD_MODE_FREQ;
785         }
786
787         mxs_i2c_derive_timing(i2c, speed);
788
789         return 0;
790 }
791
792 static const struct of_device_id mxs_i2c_dt_ids[] = {
793         { .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
794         { .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
795         { /* sentinel */ }
796 };
797 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
798
799 static int mxs_i2c_probe(struct platform_device *pdev)
800 {
801         struct device *dev = &pdev->dev;
802         struct mxs_i2c_dev *i2c;
803         struct i2c_adapter *adap;
804         int err, irq;
805
806         i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
807         if (!i2c)
808                 return -ENOMEM;
809
810         i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev);
811
812         i2c->regs = devm_platform_ioremap_resource(pdev, 0);
813         if (IS_ERR(i2c->regs))
814                 return PTR_ERR(i2c->regs);
815
816         irq = platform_get_irq(pdev, 0);
817         if (irq < 0)
818                 return irq;
819
820         err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
821         if (err)
822                 return err;
823
824         i2c->dev = dev;
825
826         init_completion(&i2c->cmd_complete);
827
828         if (dev->of_node) {
829                 err = mxs_i2c_get_ofdata(i2c);
830                 if (err)
831                         return err;
832         }
833
834         /* Setup the DMA */
835         i2c->dmach = dma_request_chan(dev, "rx-tx");
836         if (IS_ERR(i2c->dmach)) {
837                 return dev_err_probe(dev, PTR_ERR(i2c->dmach),
838                                      "Failed to request dma\n");
839         }
840
841         platform_set_drvdata(pdev, i2c);
842
843         /* Do reset to enforce correct startup after pinmuxing */
844         err = mxs_i2c_reset(i2c);
845         if (err)
846                 return err;
847
848         adap = &i2c->adapter;
849         strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
850         adap->owner = THIS_MODULE;
851         adap->algo = &mxs_i2c_algo;
852         adap->quirks = &mxs_i2c_quirks;
853         adap->dev.parent = dev;
854         adap->nr = pdev->id;
855         adap->dev.of_node = pdev->dev.of_node;
856         i2c_set_adapdata(adap, i2c);
857         err = i2c_add_numbered_adapter(adap);
858         if (err) {
859                 writel(MXS_I2C_CTRL0_SFTRST,
860                                 i2c->regs + MXS_I2C_CTRL0_SET);
861                 return err;
862         }
863
864         return 0;
865 }
866
867 static void mxs_i2c_remove(struct platform_device *pdev)
868 {
869         struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
870
871         i2c_del_adapter(&i2c->adapter);
872
873         if (i2c->dmach)
874                 dma_release_channel(i2c->dmach);
875
876         writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
877 }
878
879 static struct platform_driver mxs_i2c_driver = {
880         .driver = {
881                    .name = DRIVER_NAME,
882                    .of_match_table = mxs_i2c_dt_ids,
883                    },
884         .probe = mxs_i2c_probe,
885         .remove_new = mxs_i2c_remove,
886 };
887
888 static int __init mxs_i2c_init(void)
889 {
890         return platform_driver_register(&mxs_i2c_driver);
891 }
892 subsys_initcall(mxs_i2c_init);
893
894 static void __exit mxs_i2c_exit(void)
895 {
896         platform_driver_unregister(&mxs_i2c_driver);
897 }
898 module_exit(mxs_i2c_exit);
899
900 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
901 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
902 MODULE_DESCRIPTION("MXS I2C Bus Driver");
903 MODULE_LICENSE("GPL");
904 MODULE_ALIAS("platform:" DRIVER_NAME);