OSDN Git Service

perf/x86/uncore: Correct the number of CHAs on EMR
[tomoyo/tomoyo-test1.git] / drivers / i2c / busses / i2c-npcm7xx.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23
24 enum i2c_mode {
25         I2C_MASTER,
26         I2C_SLAVE,
27 };
28
29 /*
30  * External I2C Interface driver xfer indication values, which indicate status
31  * of the bus.
32  */
33 enum i2c_state_ind {
34         I2C_NO_STATUS_IND = 0,
35         I2C_SLAVE_RCV_IND,
36         I2C_SLAVE_XMIT_IND,
37         I2C_SLAVE_XMIT_MISSING_DATA_IND,
38         I2C_SLAVE_RESTART_IND,
39         I2C_SLAVE_DONE_IND,
40         I2C_MASTER_DONE_IND,
41         I2C_NACK_IND,
42         I2C_BUS_ERR_IND,
43         I2C_WAKE_UP_IND,
44         I2C_BLOCK_BYTES_ERR_IND,
45         I2C_SLAVE_RCV_MISSING_DATA_IND,
46 };
47
48 /*
49  * Operation type values (used to define the operation currently running)
50  * module is interrupt driven, on each interrupt the current operation is
51  * checked to see if the module is currently reading or writing.
52  */
53 enum i2c_oper {
54         I2C_NO_OPER = 0,
55         I2C_WRITE_OPER,
56         I2C_READ_OPER,
57 };
58
59 /* I2C Bank (module had 2 banks of registers) */
60 enum i2c_bank {
61         I2C_BANK_0 = 0,
62         I2C_BANK_1,
63 };
64
65 /* Internal I2C states values (for the I2C module state machine). */
66 enum i2c_state {
67         I2C_DISABLE = 0,
68         I2C_IDLE,
69         I2C_MASTER_START,
70         I2C_SLAVE_MATCH,
71         I2C_OPER_STARTED,
72         I2C_STOP_PENDING,
73 };
74
75 #if IS_ENABLED(CONFIG_I2C_SLAVE)
76 /* Module supports setting multiple own slave addresses */
77 enum i2c_addr {
78         I2C_SLAVE_ADDR1 = 0,
79         I2C_SLAVE_ADDR2,
80         I2C_SLAVE_ADDR3,
81         I2C_SLAVE_ADDR4,
82         I2C_SLAVE_ADDR5,
83         I2C_SLAVE_ADDR6,
84         I2C_SLAVE_ADDR7,
85         I2C_SLAVE_ADDR8,
86         I2C_SLAVE_ADDR9,
87         I2C_SLAVE_ADDR10,
88         I2C_GC_ADDR,
89         I2C_ARP_ADDR,
90 };
91 #endif
92
93 /* init register and default value required to enable module */
94 #define NPCM_I2CSEGCTL                  0xE4
95
96 /* Common regs */
97 #define NPCM_I2CSDA                     0x00
98 #define NPCM_I2CST                      0x02
99 #define NPCM_I2CCST                     0x04
100 #define NPCM_I2CCTL1                    0x06
101 #define NPCM_I2CADDR1                   0x08
102 #define NPCM_I2CCTL2                    0x0A
103 #define NPCM_I2CADDR2                   0x0C
104 #define NPCM_I2CCTL3                    0x0E
105 #define NPCM_I2CCST2                    0x18
106 #define NPCM_I2CCST3                    0x19
107 #define I2C_VER                         0x1F
108
109 /* BANK 0 regs */
110 #define NPCM_I2CADDR3                   0x10
111 #define NPCM_I2CADDR7                   0x11
112 #define NPCM_I2CADDR4                   0x12
113 #define NPCM_I2CADDR8                   0x13
114 #define NPCM_I2CADDR5                   0x14
115 #define NPCM_I2CADDR9                   0x15
116 #define NPCM_I2CADDR6                   0x16
117 #define NPCM_I2CADDR10                  0x17
118 #define NPCM_I2CCTL4                    0x1A
119 #define NPCM_I2CCTL5                    0x1B
120 #define NPCM_I2CSCLLT                   0x1C /* SCL Low Time */
121 #define NPCM_I2CFIF_CTL                 0x1D /* FIFO Control */
122 #define NPCM_I2CSCLHT                   0x1E /* SCL High Time */
123
124 /* BANK 1 regs */
125 #define NPCM_I2CFIF_CTS                 0x10 /* Both FIFOs Control and Status */
126 #define NPCM_I2CTXF_CTL                 0x12 /* Tx-FIFO Control */
127 #define NPCM_I2CT_OUT                   0x14 /* Bus T.O. */
128 #define NPCM_I2CPEC                     0x16 /* PEC Data */
129 #define NPCM_I2CTXF_STS                 0x1A /* Tx-FIFO Status */
130 #define NPCM_I2CRXF_STS                 0x1C /* Rx-FIFO Status */
131 #define NPCM_I2CRXF_CTL                 0x1E /* Rx-FIFO Control */
132
133 #if IS_ENABLED(CONFIG_I2C_SLAVE)
134 /*
135  * npcm_i2caddr array:
136  * The module supports having multiple own slave addresses.
137  * Since the addr regs are sprinkled all over the address space,
138  * use this array to get the address or each register.
139  */
140 #define I2C_NUM_OWN_ADDR 2
141 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
142
143 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
144         NPCM_I2CADDR1, NPCM_I2CADDR2,
145 };
146 #endif
147
148 /* NPCM_I2CST reg fields */
149 #define NPCM_I2CST_XMIT                 BIT(0)  /* Transmit mode */
150 #define NPCM_I2CST_MASTER               BIT(1)  /* Master mode */
151 #define NPCM_I2CST_NMATCH               BIT(2)  /* New match */
152 #define NPCM_I2CST_STASTR               BIT(3)  /* Stall after start */
153 #define NPCM_I2CST_NEGACK               BIT(4)  /* Negative ACK */
154 #define NPCM_I2CST_BER                  BIT(5)  /* Bus error */
155 #define NPCM_I2CST_SDAST                BIT(6)  /* SDA status */
156 #define NPCM_I2CST_SLVSTP               BIT(7)  /* Slave stop */
157
158 /* NPCM_I2CCST reg fields */
159 #define NPCM_I2CCST_BUSY                BIT(0)  /* Busy */
160 #define NPCM_I2CCST_BB                  BIT(1)  /* Bus busy */
161 #define NPCM_I2CCST_MATCH               BIT(2)  /* Address match */
162 #define NPCM_I2CCST_GCMATCH             BIT(3)  /* Global call match */
163 #define NPCM_I2CCST_TSDA                BIT(4)  /* Test SDA line */
164 #define NPCM_I2CCST_TGSCL               BIT(5)  /* Toggle SCL line */
165 #define NPCM_I2CCST_MATCHAF             BIT(6)  /* Match address field */
166 #define NPCM_I2CCST_ARPMATCH            BIT(7)  /* ARP address match */
167
168 /* NPCM_I2CCTL1 reg fields */
169 #define NPCM_I2CCTL1_START              BIT(0)  /* Generate start condition */
170 #define NPCM_I2CCTL1_STOP               BIT(1)  /* Generate stop condition */
171 #define NPCM_I2CCTL1_INTEN              BIT(2)  /* Interrupt enable */
172 #define NPCM_I2CCTL1_EOBINTE            BIT(3)
173 #define NPCM_I2CCTL1_ACK                BIT(4)
174 #define NPCM_I2CCTL1_GCMEN              BIT(5)  /* Global call match enable */
175 #define NPCM_I2CCTL1_NMINTE             BIT(6)  /* New match interrupt enable */
176 #define NPCM_I2CCTL1_STASTRE            BIT(7)  /* Stall after start enable */
177
178 /* RW1S fields (inside a RW reg): */
179 #define NPCM_I2CCTL1_RWS   \
180         (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
181
182 /* npcm_i2caddr reg fields */
183 #define NPCM_I2CADDR_A                  GENMASK(6, 0)   /* Address */
184 #define NPCM_I2CADDR_SAEN               BIT(7)          /* Slave address enable */
185
186 /* NPCM_I2CCTL2 reg fields */
187 #define I2CCTL2_ENABLE                  BIT(0)          /* Module enable */
188 #define I2CCTL2_SCLFRQ6_0               GENMASK(7, 1)   /* Bits 0:6 of frequency divisor */
189
190 /* NPCM_I2CCTL3 reg fields */
191 #define I2CCTL3_SCLFRQ8_7               GENMASK(1, 0)   /* Bits 7:8 of frequency divisor */
192 #define I2CCTL3_ARPMEN                  BIT(2)  /* ARP match enable */
193 #define I2CCTL3_IDL_START               BIT(3)
194 #define I2CCTL3_400K_MODE               BIT(4)
195 #define I2CCTL3_BNK_SEL                 BIT(5)
196 #define I2CCTL3_SDA_LVL                 BIT(6)
197 #define I2CCTL3_SCL_LVL                 BIT(7)
198
199 /* NPCM_I2CCST2 reg fields */
200 #define NPCM_I2CCST2_MATCHA1F           BIT(0)
201 #define NPCM_I2CCST2_MATCHA2F           BIT(1)
202 #define NPCM_I2CCST2_MATCHA3F           BIT(2)
203 #define NPCM_I2CCST2_MATCHA4F           BIT(3)
204 #define NPCM_I2CCST2_MATCHA5F           BIT(4)
205 #define NPCM_I2CCST2_MATCHA6F           BIT(5)
206 #define NPCM_I2CCST2_MATCHA7F           BIT(5)
207 #define NPCM_I2CCST2_INTSTS             BIT(7)
208
209 /* NPCM_I2CCST3 reg fields */
210 #define NPCM_I2CCST3_MATCHA8F           BIT(0)
211 #define NPCM_I2CCST3_MATCHA9F           BIT(1)
212 #define NPCM_I2CCST3_MATCHA10F          BIT(2)
213 #define NPCM_I2CCST3_EO_BUSY            BIT(7)
214
215 /* NPCM_I2CCTL4 reg fields */
216 #define I2CCTL4_HLDT                    GENMASK(5, 0)
217 #define I2CCTL4_LVL_WE                  BIT(7)
218
219 /* NPCM_I2CCTL5 reg fields */
220 #define I2CCTL5_DBNCT                   GENMASK(3, 0)
221
222 /* NPCM_I2CFIF_CTS reg fields */
223 #define NPCM_I2CFIF_CTS_RXF_TXE         BIT(1)
224 #define NPCM_I2CFIF_CTS_RFTE_IE         BIT(3)
225 #define NPCM_I2CFIF_CTS_CLR_FIFO        BIT(6)
226 #define NPCM_I2CFIF_CTS_SLVRSTR         BIT(7)
227
228 /* NPCM_I2CTXF_CTL reg field */
229 #define NPCM_I2CTXF_CTL_THR_TXIE        BIT(6)
230
231 /* NPCM_I2CT_OUT reg fields */
232 #define NPCM_I2CT_OUT_TO_CKDIV          GENMASK(5, 0)
233 #define NPCM_I2CT_OUT_T_OUTIE           BIT(6)
234 #define NPCM_I2CT_OUT_T_OUTST           BIT(7)
235
236 /* NPCM_I2CTXF_STS reg fields */
237 #define NPCM_I2CTXF_STS_TX_THST         BIT(6)
238
239 /* NPCM_I2CRXF_STS reg fields */
240 #define NPCM_I2CRXF_STS_RX_THST         BIT(6)
241
242 /* NPCM_I2CFIF_CTL reg fields */
243 #define NPCM_I2CFIF_CTL_FIFO_EN         BIT(4)
244
245 /* NPCM_I2CRXF_CTL reg fields */
246 #define NPCM_I2CRXF_CTL_THR_RXIE        BIT(6)
247
248 #define MAX_I2C_HW_FIFO_SIZE            32
249
250 /* I2C_VER reg fields */
251 #define I2C_VER_VERSION                 GENMASK(6, 0)
252 #define I2C_VER_FIFO_EN                 BIT(7)
253
254 /* stall/stuck timeout in us */
255 #define DEFAULT_STALL_COUNT             25
256
257 /* SCLFRQ field position */
258 #define SCLFRQ_0_TO_6                   GENMASK(6, 0)
259 #define SCLFRQ_7_TO_8                   GENMASK(8, 7)
260
261 /* supported clk settings. values in Hz. */
262 #define I2C_FREQ_MIN_HZ                 10000
263 #define I2C_FREQ_MAX_HZ                 I2C_MAX_FAST_MODE_PLUS_FREQ
264
265 struct npcm_i2c_data {
266         u8 fifo_size;
267         u32 segctl_init_val;
268         u8 txf_sts_tx_bytes;
269         u8 rxf_sts_rx_bytes;
270         u8 rxf_ctl_last_pec;
271 };
272
273 static const struct npcm_i2c_data npxm7xx_i2c_data = {
274         .fifo_size = 16,
275         .segctl_init_val = 0x0333F000,
276         .txf_sts_tx_bytes = GENMASK(4, 0),
277         .rxf_sts_rx_bytes = GENMASK(4, 0),
278         .rxf_ctl_last_pec = BIT(5),
279 };
280
281 static const struct npcm_i2c_data npxm8xx_i2c_data = {
282         .fifo_size = 32,
283         .segctl_init_val = 0x9333F000,
284         .txf_sts_tx_bytes = GENMASK(5, 0),
285         .rxf_sts_rx_bytes = GENMASK(5, 0),
286         .rxf_ctl_last_pec = BIT(7),
287 };
288
289 /* Status of one I2C module */
290 struct npcm_i2c {
291         struct i2c_adapter adap;
292         struct device *dev;
293         unsigned char __iomem *reg;
294         const struct npcm_i2c_data *data;
295         spinlock_t lock;   /* IRQ synchronization */
296         struct completion cmd_complete;
297         int cmd_err;
298         struct i2c_msg *msgs;
299         int msgs_num;
300         int num;
301         u32 apb_clk;
302         struct i2c_bus_recovery_info rinfo;
303         enum i2c_state state;
304         enum i2c_oper operation;
305         enum i2c_mode master_or_slave;
306         enum i2c_state_ind stop_ind;
307         u8 dest_addr;
308         u8 *rd_buf;
309         u16 rd_size;
310         u16 rd_ind;
311         u8 *wr_buf;
312         u16 wr_size;
313         u16 wr_ind;
314         bool fifo_use;
315         u16 PEC_mask; /* PEC bit mask per slave address */
316         bool PEC_use;
317         bool read_block_use;
318         unsigned long int_time_stamp;
319         unsigned long bus_freq; /* in Hz */
320 #if IS_ENABLED(CONFIG_I2C_SLAVE)
321         u8 own_slave_addr;
322         struct i2c_client *slave;
323         int slv_rd_size;
324         int slv_rd_ind;
325         int slv_wr_size;
326         int slv_wr_ind;
327         u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
328         u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
329 #endif
330         struct dentry *debugfs; /* debugfs device directory */
331         u64 ber_cnt;
332         u64 rec_succ_cnt;
333         u64 rec_fail_cnt;
334         u64 nack_cnt;
335         u64 timeout_cnt;
336         u64 tx_complete_cnt;
337 };
338
339 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
340                                         enum i2c_bank bank)
341 {
342         u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
343
344         if (bank == I2C_BANK_0)
345                 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
346         else
347                 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
348         iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
349 }
350
351 static void npcm_i2c_init_params(struct npcm_i2c *bus)
352 {
353         bus->stop_ind = I2C_NO_STATUS_IND;
354         bus->rd_size = 0;
355         bus->wr_size = 0;
356         bus->rd_ind = 0;
357         bus->wr_ind = 0;
358         bus->read_block_use = false;
359         bus->int_time_stamp = 0;
360         bus->PEC_use = false;
361         bus->PEC_mask = 0;
362 #if IS_ENABLED(CONFIG_I2C_SLAVE)
363         if (bus->slave)
364                 bus->master_or_slave = I2C_SLAVE;
365 #endif
366 }
367
368 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
369 {
370         iowrite8(data, bus->reg + NPCM_I2CSDA);
371 }
372
373 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
374 {
375         return ioread8(bus->reg + NPCM_I2CSDA);
376 }
377
378 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
379 {
380         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
381
382         return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
383 }
384
385 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
386 {
387         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
388
389         return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
390 }
391
392 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
393 {
394         if (bus->operation == I2C_READ_OPER)
395                 return bus->rd_ind;
396         if (bus->operation == I2C_WRITE_OPER)
397                 return bus->wr_ind;
398         return 0;
399 }
400
401 /* quick protocol (just address) */
402 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
403 {
404         return bus->wr_size == 0 && bus->rd_size == 0;
405 }
406
407 static void npcm_i2c_disable(struct npcm_i2c *bus)
408 {
409         u8 i2cctl2;
410
411 #if IS_ENABLED(CONFIG_I2C_SLAVE)
412         int i;
413
414         /* Slave addresses removal */
415         for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
416                 iowrite8(0, bus->reg + npcm_i2caddr[i]);
417
418 #endif
419         /* Disable module */
420         i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
421         i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
422         iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
423
424         bus->state = I2C_DISABLE;
425 }
426
427 static void npcm_i2c_enable(struct npcm_i2c *bus)
428 {
429         u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
430
431         i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
432         iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
433         bus->state = I2C_IDLE;
434 }
435
436 /* enable\disable end of busy (EOB) interrupts */
437 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
438 {
439         u8 val;
440
441         /* Clear EO_BUSY pending bit: */
442         val = ioread8(bus->reg + NPCM_I2CCST3);
443         val = val | NPCM_I2CCST3_EO_BUSY;
444         iowrite8(val, bus->reg + NPCM_I2CCST3);
445
446         val = ioread8(bus->reg + NPCM_I2CCTL1);
447         val &= ~NPCM_I2CCTL1_RWS;
448         if (enable)
449                 val |= NPCM_I2CCTL1_EOBINTE;
450         else
451                 val &= ~NPCM_I2CCTL1_EOBINTE;
452         iowrite8(val, bus->reg + NPCM_I2CCTL1);
453 }
454
455 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
456 {
457         u8 tx_fifo_sts;
458
459         tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
460         /* check if TX FIFO is not empty */
461         if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
462                 return false;
463
464         /* check if TX FIFO status bit is set: */
465         return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
466 }
467
468 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
469 {
470         u8 rx_fifo_sts;
471
472         rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
473         /* check if RX FIFO is not empty: */
474         if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
475                 return false;
476
477         /* check if rx fifo full status is set: */
478         return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
479 }
480
481 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
482 {
483         u8 val;
484
485         val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
486         val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
487         iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
488 }
489
490 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
491 {
492         u8 val;
493
494         val = ioread8(bus->reg + NPCM_I2CTXF_STS);
495         val = val | NPCM_I2CTXF_STS_TX_THST;
496         iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
497 }
498
499 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
500 {
501         u8 val;
502
503         val = ioread8(bus->reg + NPCM_I2CRXF_STS);
504         val = val | NPCM_I2CRXF_STS_RX_THST;
505         iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
506 }
507
508 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
509 {
510         u8 val;
511
512         val = ioread8(bus->reg + NPCM_I2CCTL1);
513         val &= ~NPCM_I2CCTL1_RWS;
514         if (enable)
515                 val |= NPCM_I2CCTL1_INTEN;
516         else
517                 val &= ~NPCM_I2CCTL1_INTEN;
518         iowrite8(val, bus->reg + NPCM_I2CCTL1);
519 }
520
521 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
522 {
523         u8 val;
524
525         val = ioread8(bus->reg + NPCM_I2CCTL1);
526         val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
527         val |= NPCM_I2CCTL1_START;
528         iowrite8(val, bus->reg + NPCM_I2CCTL1);
529 }
530
531 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
532 {
533         u8 val;
534
535         /*
536          * override HW issue: I2C may fail to supply stop condition in Master
537          * Write operation.
538          * Need to delay at least 5 us from the last int, before issueing a stop
539          */
540         udelay(10); /* function called from interrupt, can't sleep */
541         val = ioread8(bus->reg + NPCM_I2CCTL1);
542         val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
543         val |= NPCM_I2CCTL1_STOP;
544         iowrite8(val, bus->reg + NPCM_I2CCTL1);
545
546         if (!bus->fifo_use)
547                 return;
548
549         npcm_i2c_select_bank(bus, I2C_BANK_1);
550
551         if (bus->operation == I2C_READ_OPER)
552                 npcm_i2c_clear_rx_fifo(bus);
553         else
554                 npcm_i2c_clear_tx_fifo(bus);
555         npcm_i2c_clear_fifo_int(bus);
556         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
557 }
558
559 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
560 {
561         u8 val;
562
563         val = ioread8(bus->reg + NPCM_I2CCTL1);
564         val &= ~NPCM_I2CCTL1_RWS;
565         if (stall)
566                 val |= NPCM_I2CCTL1_STASTRE;
567         else
568                 val &= ~NPCM_I2CCTL1_STASTRE;
569         iowrite8(val, bus->reg + NPCM_I2CCTL1);
570 }
571
572 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
573 {
574         u8 val;
575
576         val = ioread8(bus->reg + NPCM_I2CCTL1);
577         val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
578         val |= NPCM_I2CCTL1_ACK;
579         iowrite8(val, bus->reg + NPCM_I2CCTL1);
580 }
581
582 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
583 {
584         u8 val;
585
586         /* Clear NEGACK, STASTR and BER bits */
587         val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
588         iowrite8(val, bus->reg + NPCM_I2CST);
589 }
590
591 #if IS_ENABLED(CONFIG_I2C_SLAVE)
592 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
593 {
594         u8 i2cctl1;
595
596         /* enable interrupt on slave match: */
597         i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
598         i2cctl1 &= ~NPCM_I2CCTL1_RWS;
599         if (enable)
600                 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
601         else
602                 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
603         iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
604 }
605
606 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
607                                  u8 addr, bool enable)
608 {
609         u8 i2cctl1;
610         u8 i2cctl3;
611         u8 sa_reg;
612
613         sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
614         if (addr_type == I2C_GC_ADDR) {
615                 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
616                 if (enable)
617                         i2cctl1 |= NPCM_I2CCTL1_GCMEN;
618                 else
619                         i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
620                 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
621                 return 0;
622         } else if (addr_type == I2C_ARP_ADDR) {
623                 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
624                 if (enable)
625                         i2cctl3 |= I2CCTL3_ARPMEN;
626                 else
627                         i2cctl3 &= ~I2CCTL3_ARPMEN;
628                 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
629                 return 0;
630         }
631         if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
632                 dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
633
634         if (addr_type >= I2C_ARP_ADDR)
635                 return -EFAULT;
636
637         /* Set and enable the address */
638         iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
639         npcm_i2c_slave_int_enable(bus, enable);
640
641         return 0;
642 }
643 #endif
644
645 static void npcm_i2c_reset(struct npcm_i2c *bus)
646 {
647         /*
648          * Save I2CCTL1 relevant bits. It is being cleared when the module
649          *  is disabled.
650          */
651         u8 i2cctl1;
652 #if IS_ENABLED(CONFIG_I2C_SLAVE)
653         u8 addr;
654 #endif
655
656         i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
657
658         npcm_i2c_disable(bus);
659         npcm_i2c_enable(bus);
660
661         /* Restore NPCM_I2CCTL1 Status */
662         i2cctl1 &= ~NPCM_I2CCTL1_RWS;
663         iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
664
665         /* Clear BB (BUS BUSY) bit */
666         iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
667         iowrite8(0xFF, bus->reg + NPCM_I2CST);
668
669         /* Clear and disable EOB */
670         npcm_i2c_eob_int(bus, false);
671
672         /* Clear all fifo bits: */
673         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
674
675 #if IS_ENABLED(CONFIG_I2C_SLAVE)
676         if (bus->slave) {
677                 addr = bus->slave->addr;
678                 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
679         }
680 #endif
681
682         /* Clear status bits for spurious interrupts */
683         npcm_i2c_clear_master_status(bus);
684
685         bus->state = I2C_IDLE;
686 }
687
688 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
689 {
690         return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
691 }
692
693 static void npcm_i2c_callback(struct npcm_i2c *bus,
694                               enum i2c_state_ind op_status, u16 info)
695 {
696         struct i2c_msg *msgs;
697         int msgs_num;
698
699         msgs = bus->msgs;
700         msgs_num = bus->msgs_num;
701         /*
702          * check that transaction was not timed-out, and msgs still
703          * holds a valid value.
704          */
705         if (!msgs)
706                 return;
707
708         if (completion_done(&bus->cmd_complete))
709                 return;
710
711         switch (op_status) {
712         case I2C_MASTER_DONE_IND:
713                 bus->cmd_err = bus->msgs_num;
714                 if (bus->tx_complete_cnt < ULLONG_MAX)
715                         bus->tx_complete_cnt++;
716                 fallthrough;
717         case I2C_BLOCK_BYTES_ERR_IND:
718                 /* Master tx finished and all transmit bytes were sent */
719                 if (bus->msgs) {
720                         if (msgs[0].flags & I2C_M_RD)
721                                 msgs[0].len = info;
722                         else if (msgs_num == 2 &&
723                                  msgs[1].flags & I2C_M_RD)
724                                 msgs[1].len = info;
725                 }
726                 if (completion_done(&bus->cmd_complete) == false)
727                         complete(&bus->cmd_complete);
728         break;
729
730         case I2C_NACK_IND:
731                 /* MASTER transmit got a NACK before tx all bytes */
732                 bus->cmd_err = -ENXIO;
733                 if (bus->master_or_slave == I2C_MASTER)
734                         complete(&bus->cmd_complete);
735
736                 break;
737         case I2C_BUS_ERR_IND:
738                 /* Bus error */
739                 bus->cmd_err = -EAGAIN;
740                 if (bus->master_or_slave == I2C_MASTER)
741                         complete(&bus->cmd_complete);
742
743                 break;
744         case I2C_WAKE_UP_IND:
745                 /* I2C wake up */
746                 break;
747         default:
748                 break;
749         }
750
751         bus->operation = I2C_NO_OPER;
752 #if IS_ENABLED(CONFIG_I2C_SLAVE)
753         if (bus->slave)
754                 bus->master_or_slave = I2C_SLAVE;
755 #endif
756 }
757
758 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
759 {
760         if (bus->operation == I2C_WRITE_OPER)
761                 return (bus->data->txf_sts_tx_bytes &
762                         ioread8(bus->reg + NPCM_I2CTXF_STS));
763         if (bus->operation == I2C_READ_OPER)
764                 return (bus->data->rxf_sts_rx_bytes &
765                         ioread8(bus->reg + NPCM_I2CRXF_STS));
766         return 0;
767 }
768
769 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
770 {
771         u8 size_free_fifo;
772
773         /*
774          * Fill the FIFO, while the FIFO is not full and there are more bytes
775          * to write
776          */
777         size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
778         while (max_bytes-- && size_free_fifo) {
779                 if (bus->wr_ind < bus->wr_size)
780                         npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
781                 else
782                         npcm_i2c_wr_byte(bus, 0xFF);
783                 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
784         }
785 }
786
787 /*
788  * npcm_i2c_set_fifo:
789  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
790  * configured. same for nwrite
791  */
792 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
793 {
794         u8 rxf_ctl = 0;
795
796         if (!bus->fifo_use)
797                 return;
798         npcm_i2c_select_bank(bus, I2C_BANK_1);
799         npcm_i2c_clear_tx_fifo(bus);
800         npcm_i2c_clear_rx_fifo(bus);
801
802         /* configure RX FIFO */
803         if (nread > 0) {
804                 rxf_ctl = min_t(int, nread, bus->data->fifo_size);
805
806                 /* set LAST bit. if LAST is set next FIFO packet is nacked */
807                 if (nread <= bus->data->fifo_size)
808                         rxf_ctl |= bus->data->rxf_ctl_last_pec;
809
810                 /*
811                  * if we are about to read the first byte in blk rd mode,
812                  * don't NACK it. If slave returns zero size HW can't NACK
813                  * it immediately, it will read extra byte and then NACK.
814                  */
815                 if (bus->rd_ind == 0 && bus->read_block_use) {
816                         /* set fifo to read one byte, no last: */
817                         rxf_ctl = 1;
818                 }
819
820                 /* set fifo size: */
821                 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
822         }
823
824         /* configure TX FIFO */
825         if (nwrite > 0) {
826                 if (nwrite > bus->data->fifo_size)
827                         /* data to send is more then FIFO size. */
828                         iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
829                 else
830                         iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
831
832                 npcm_i2c_clear_tx_fifo(bus);
833         }
834 }
835
836 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
837 {
838         u8 data;
839
840         while (bytes_in_fifo--) {
841                 data = npcm_i2c_rd_byte(bus);
842                 if (bus->rd_ind < bus->rd_size)
843                         bus->rd_buf[bus->rd_ind++] = data;
844         }
845 }
846
847 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
848 {
849         /* Only current master is allowed to issue a stop condition */
850         if (!npcm_i2c_is_master(bus))
851                 return;
852
853         npcm_i2c_eob_int(bus, true);
854         npcm_i2c_master_stop(bus);
855         npcm_i2c_clear_master_status(bus);
856 }
857
858 #if IS_ENABLED(CONFIG_I2C_SLAVE)
859 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
860 {
861         u8 slave_add;
862
863         if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
864                 dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
865
866         slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
867
868         return slave_add;
869 }
870
871 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
872 {
873         int i;
874
875         /* Set the enable bit */
876         slave_add |= 0x80;
877
878         for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
879                 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
880                         iowrite8(0, bus->reg + npcm_i2caddr[i]);
881         }
882
883         return 0;
884 }
885
886 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
887 {
888         /*
889          * Fill the FIFO, while the FIFO is not full and there are more bytes
890          * to write
891          */
892         npcm_i2c_clear_fifo_int(bus);
893         npcm_i2c_clear_tx_fifo(bus);
894         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
895         while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
896                 if (bus->slv_wr_size <= 0)
897                         break;
898                 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
899                 npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
900                 bus->slv_wr_ind++;
901                 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
902                 bus->slv_wr_size--;
903         }
904 }
905
906 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
907 {
908         u8 data;
909
910         if (!bus->slave)
911                 return;
912
913         while (bytes_in_fifo--) {
914                 data = npcm_i2c_rd_byte(bus);
915
916                 bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
917                 bus->slv_rd_buf[bus->slv_rd_ind] = data;
918                 bus->slv_rd_ind++;
919
920                 /* 1st byte is length in block protocol: */
921                 if (bus->slv_rd_ind == 1 && bus->read_block_use)
922                         bus->slv_rd_size = data + bus->PEC_use + 1;
923         }
924 }
925
926 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
927 {
928         int i;
929         u8 value;
930         int ind;
931         int ret = bus->slv_wr_ind;
932
933         /* fill a cyclic buffer */
934         for (i = 0; i < bus->data->fifo_size; i++) {
935                 if (bus->slv_wr_size >= bus->data->fifo_size)
936                         break;
937                 if (bus->state == I2C_SLAVE_MATCH) {
938                         i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
939                         bus->state = I2C_OPER_STARTED;
940                 } else {
941                         i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
942                 }
943                 ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
944                 bus->slv_wr_buf[ind] = value;
945                 bus->slv_wr_size++;
946         }
947         return bus->data->fifo_size - ret;
948 }
949
950 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
951 {
952         int i;
953
954         for (i = 0; i < bus->slv_rd_ind; i++)
955                 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
956                                 &bus->slv_rd_buf[i]);
957         /*
958          * once we send bytes up, need to reset the counter of the wr buf
959          * got data from master (new offset in device), ignore wr fifo:
960          */
961         if (bus->slv_rd_ind) {
962                 bus->slv_wr_size = 0;
963                 bus->slv_wr_ind = 0;
964         }
965
966         bus->slv_rd_ind = 0;
967         bus->slv_rd_size = bus->adap.quirks->max_read_len;
968
969         npcm_i2c_clear_fifo_int(bus);
970         npcm_i2c_clear_rx_fifo(bus);
971 }
972
973 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
974                                    u8 *read_data)
975 {
976         bus->state = I2C_OPER_STARTED;
977         bus->operation = I2C_READ_OPER;
978         bus->slv_rd_size = nread;
979         bus->slv_rd_ind = 0;
980
981         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
982         iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
983         npcm_i2c_clear_tx_fifo(bus);
984         npcm_i2c_clear_rx_fifo(bus);
985 }
986
987 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
988                                 u8 *write_data)
989 {
990         if (nwrite == 0)
991                 return;
992
993         bus->operation = I2C_WRITE_OPER;
994
995         /* get the next buffer */
996         npcm_i2c_slave_get_wr_buf(bus);
997         npcm_i2c_write_fifo_slave(bus, nwrite);
998 }
999
1000 /*
1001  * npcm_i2c_slave_wr_buf_sync:
1002  * currently slave IF only supports single byte operations.
1003  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1004  * at a time, pack them in buffer, and then transmit them all together
1005  * to the FIFO and onward to the bus.
1006  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1007  * sending a NACK wherever the backend requests for it is not supported.
1008  * the next two functions allow reading to local buffer before writing it all
1009  * to the HW FIFO.
1010  */
1011 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1012 {
1013         int left_in_fifo;
1014
1015         left_in_fifo = bus->data->txf_sts_tx_bytes &
1016                         ioread8(bus->reg + NPCM_I2CTXF_STS);
1017
1018         /* fifo already full: */
1019         if (left_in_fifo >= bus->data->fifo_size ||
1020             bus->slv_wr_size >= bus->data->fifo_size)
1021                 return;
1022
1023         /* update the wr fifo index back to the untransmitted bytes: */
1024         bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1025         bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1026
1027         if (bus->slv_wr_ind < 0)
1028                 bus->slv_wr_ind += bus->data->fifo_size;
1029 }
1030
1031 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1032 {
1033         if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1034                 /*
1035                  * Slave got an address match with direction bit 1 so it should
1036                  * transmit data. Write till the master will NACK
1037                  */
1038                 bus->operation = I2C_WRITE_OPER;
1039                 npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1040                                     bus->slv_wr_buf);
1041         } else {
1042                 /*
1043                  * Slave got an address match with direction bit 0 so it should
1044                  * receive data.
1045                  * this module does not support saying no to bytes.
1046                  * it will always ACK.
1047                  */
1048                 bus->operation = I2C_READ_OPER;
1049                 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1050                 bus->stop_ind = I2C_SLAVE_RCV_IND;
1051                 npcm_i2c_slave_send_rd_buf(bus);
1052                 npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1053                                        bus->slv_rd_buf);
1054         }
1055 }
1056
1057 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1058 {
1059         u8 val;
1060         irqreturn_t ret = IRQ_NONE;
1061         u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1062
1063         /* Slave: A NACK has occurred */
1064         if (NPCM_I2CST_NEGACK & i2cst) {
1065                 bus->stop_ind = I2C_NACK_IND;
1066                 npcm_i2c_slave_wr_buf_sync(bus);
1067                 if (bus->fifo_use)
1068                         /* clear the FIFO */
1069                         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1070                                  bus->reg + NPCM_I2CFIF_CTS);
1071
1072                 /* In slave write, NACK is OK, otherwise it is a problem */
1073                 bus->stop_ind = I2C_NO_STATUS_IND;
1074                 bus->operation = I2C_NO_OPER;
1075                 bus->own_slave_addr = 0xFF;
1076
1077                 /*
1078                  * Slave has to wait for STOP to decide this is the end
1079                  * of the transaction. tx is not yet considered as done
1080                  */
1081                 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1082
1083                 ret = IRQ_HANDLED;
1084         }
1085
1086         /* Slave mode: a Bus Error (BER) has been identified */
1087         if (NPCM_I2CST_BER & i2cst) {
1088                 /*
1089                  * Check whether bus arbitration or Start or Stop during data
1090                  * xfer bus arbitration problem should not result in recovery
1091                  */
1092                 bus->stop_ind = I2C_BUS_ERR_IND;
1093
1094                 /* wait for bus busy before clear fifo */
1095                 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1096
1097                 bus->state = I2C_IDLE;
1098
1099                 /*
1100                  * in BER case we might get 2 interrupts: one for slave one for
1101                  * master ( for a channel which is master\slave switching)
1102                  */
1103                 if (completion_done(&bus->cmd_complete) == false) {
1104                         bus->cmd_err = -EIO;
1105                         complete(&bus->cmd_complete);
1106                 }
1107                 bus->own_slave_addr = 0xFF;
1108                 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1109                 ret = IRQ_HANDLED;
1110         }
1111
1112         /* A Slave Stop Condition has been identified */
1113         if (NPCM_I2CST_SLVSTP & i2cst) {
1114                 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1115
1116                 bus->stop_ind = I2C_SLAVE_DONE_IND;
1117
1118                 if (bus->operation == I2C_READ_OPER)
1119                         npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1120
1121                 /* if the buffer is empty nothing will be sent */
1122                 npcm_i2c_slave_send_rd_buf(bus);
1123
1124                 /* Slave done transmitting or receiving */
1125                 bus->stop_ind = I2C_NO_STATUS_IND;
1126
1127                 /*
1128                  * Note, just because we got here, it doesn't mean we through
1129                  * away the wr buffer.
1130                  * we keep it until the next received offset.
1131                  */
1132                 bus->operation = I2C_NO_OPER;
1133                 bus->own_slave_addr = 0xFF;
1134                 i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1135                 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1136                 if (bus->fifo_use) {
1137                         npcm_i2c_clear_fifo_int(bus);
1138                         npcm_i2c_clear_rx_fifo(bus);
1139                         npcm_i2c_clear_tx_fifo(bus);
1140
1141                         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1142                                  bus->reg + NPCM_I2CFIF_CTS);
1143                 }
1144                 bus->state = I2C_IDLE;
1145                 ret = IRQ_HANDLED;
1146         }
1147
1148         /* restart condition occurred and Rx-FIFO was not empty */
1149         if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1150                                        ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1151                 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1152                 bus->master_or_slave = I2C_SLAVE;
1153                 if (bus->operation == I2C_READ_OPER)
1154                         npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1155                 bus->operation = I2C_WRITE_OPER;
1156                 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1157                 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1158                       NPCM_I2CFIF_CTS_RXF_TXE;
1159                 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1160                 npcm_i2c_slave_rd_wr(bus);
1161                 ret = IRQ_HANDLED;
1162         }
1163
1164         /* A Slave Address Match has been identified */
1165         if (NPCM_I2CST_NMATCH & i2cst) {
1166                 u8 info = 0;
1167
1168                 /* Address match automatically implies slave mode */
1169                 bus->master_or_slave = I2C_SLAVE;
1170                 npcm_i2c_clear_fifo_int(bus);
1171                 npcm_i2c_clear_rx_fifo(bus);
1172                 npcm_i2c_clear_tx_fifo(bus);
1173                 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1174                 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1175                 if (NPCM_I2CST_XMIT & i2cst) {
1176                         bus->operation = I2C_WRITE_OPER;
1177                 } else {
1178                         i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1179                                         &info);
1180                         bus->operation = I2C_READ_OPER;
1181                 }
1182                 if (bus->own_slave_addr == 0xFF) {
1183                         /* Check which type of address match */
1184                         val = ioread8(bus->reg + NPCM_I2CCST);
1185                         if (NPCM_I2CCST_MATCH & val) {
1186                                 u16 addr;
1187                                 enum i2c_addr eaddr;
1188                                 u8 i2ccst2;
1189                                 u8 i2ccst3;
1190
1191                                 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1192                                 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1193
1194                                 /*
1195                                  * the i2c module can response to 10 own SA.
1196                                  * check which one was addressed by the master.
1197                                  * respond to the first one.
1198                                  */
1199                                 addr = ((i2ccst3 & 0x07) << 7) |
1200                                         (i2ccst2 & 0x7F);
1201                                 info = ffs(addr);
1202                                 eaddr = (enum i2c_addr)info;
1203                                 addr = npcm_i2c_get_slave_addr(bus, eaddr);
1204                                 addr &= 0x7F;
1205                                 bus->own_slave_addr = addr;
1206                                 if (bus->PEC_mask & BIT(info))
1207                                         bus->PEC_use = true;
1208                                 else
1209                                         bus->PEC_use = false;
1210                         } else {
1211                                 if (NPCM_I2CCST_GCMATCH & val)
1212                                         bus->own_slave_addr = 0;
1213                                 if (NPCM_I2CCST_ARPMATCH & val)
1214                                         bus->own_slave_addr = 0x61;
1215                         }
1216                 } else {
1217                         /*
1218                          *  Slave match can happen in two options:
1219                          *  1. Start, SA, read (slave read without further ado)
1220                          *  2. Start, SA, read, data, restart, SA, read,  ...
1221                          *     (slave read in fragmented mode)
1222                          *  3. Start, SA, write, data, restart, SA, read, ..
1223                          *     (regular write-read mode)
1224                          */
1225                         if ((bus->state == I2C_OPER_STARTED &&
1226                              bus->operation == I2C_READ_OPER &&
1227                              bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1228                              bus->stop_ind == I2C_SLAVE_RCV_IND) {
1229                                 /* slave tx after slave rx w/o STOP */
1230                                 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1231                         }
1232                 }
1233
1234                 if (NPCM_I2CST_XMIT & i2cst)
1235                         bus->stop_ind = I2C_SLAVE_XMIT_IND;
1236                 else
1237                         bus->stop_ind = I2C_SLAVE_RCV_IND;
1238                 bus->state = I2C_SLAVE_MATCH;
1239                 npcm_i2c_slave_rd_wr(bus);
1240                 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1241                 ret = IRQ_HANDLED;
1242         }
1243
1244         /* Slave SDA status is set - tx or rx */
1245         if ((NPCM_I2CST_SDAST & i2cst) ||
1246             (bus->fifo_use &&
1247             (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1248                 npcm_i2c_slave_rd_wr(bus);
1249                 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1250                 ret = IRQ_HANDLED;
1251         } /* SDAST */
1252
1253         /*
1254          * If irq is not one of the above, make sure EOB is disabled and all
1255          * status bits are cleared.
1256          */
1257         if (ret == IRQ_NONE) {
1258                 npcm_i2c_eob_int(bus, false);
1259                 npcm_i2c_clear_master_status(bus);
1260         }
1261
1262         return IRQ_HANDLED;
1263 }
1264
1265 static int npcm_i2c_reg_slave(struct i2c_client *client)
1266 {
1267         unsigned long lock_flags;
1268         struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1269
1270         bus->slave = client;
1271
1272         if (!bus->slave)
1273                 return -EINVAL;
1274
1275         if (client->flags & I2C_CLIENT_TEN)
1276                 return -EAFNOSUPPORT;
1277
1278         spin_lock_irqsave(&bus->lock, lock_flags);
1279
1280         npcm_i2c_init_params(bus);
1281         bus->slv_rd_size = 0;
1282         bus->slv_wr_size = 0;
1283         bus->slv_rd_ind = 0;
1284         bus->slv_wr_ind = 0;
1285         if (client->flags & I2C_CLIENT_PEC)
1286                 bus->PEC_use = true;
1287
1288         dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1289                  client->addr, bus->PEC_use);
1290
1291         npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1292         npcm_i2c_clear_fifo_int(bus);
1293         npcm_i2c_clear_rx_fifo(bus);
1294         npcm_i2c_clear_tx_fifo(bus);
1295         npcm_i2c_slave_int_enable(bus, true);
1296
1297         spin_unlock_irqrestore(&bus->lock, lock_flags);
1298         return 0;
1299 }
1300
1301 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1302 {
1303         struct npcm_i2c *bus = client->adapter->algo_data;
1304         unsigned long lock_flags;
1305
1306         spin_lock_irqsave(&bus->lock, lock_flags);
1307         if (!bus->slave) {
1308                 spin_unlock_irqrestore(&bus->lock, lock_flags);
1309                 return -EINVAL;
1310         }
1311         npcm_i2c_slave_int_enable(bus, false);
1312         npcm_i2c_remove_slave_addr(bus, client->addr);
1313         bus->slave = NULL;
1314         spin_unlock_irqrestore(&bus->lock, lock_flags);
1315         return 0;
1316 }
1317 #endif /* CONFIG_I2C_SLAVE */
1318
1319 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1320 {
1321         int rcount;
1322         int fifo_bytes;
1323         enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1324
1325         fifo_bytes = npcm_i2c_fifo_usage(bus);
1326         rcount = bus->rd_size - bus->rd_ind;
1327
1328         /*
1329          * In order not to change the RX_TRH during transaction (we found that
1330          * this might be problematic if it takes too much time to read the FIFO)
1331          * we read the data in the following way. If the number of bytes to
1332          * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1333          * and in the next int we read rest of the data.
1334          */
1335         if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1336                 fifo_bytes = rcount - bus->data->fifo_size;
1337
1338         if (rcount <= fifo_bytes) {
1339                 /* last bytes are about to be read - end of tx */
1340                 bus->state = I2C_STOP_PENDING;
1341                 bus->stop_ind = ind;
1342                 npcm_i2c_eob_int(bus, true);
1343                 /* Stop should be set before reading last byte. */
1344                 npcm_i2c_master_stop(bus);
1345                 npcm_i2c_read_fifo(bus, fifo_bytes);
1346         } else {
1347                 npcm_i2c_read_fifo(bus, fifo_bytes);
1348                 rcount = bus->rd_size - bus->rd_ind;
1349                 npcm_i2c_set_fifo(bus, rcount, -1);
1350         }
1351 }
1352
1353 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1354 {
1355         u16 wcount;
1356
1357         if (bus->fifo_use)
1358                 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1359
1360         /* Master write operation - last byte handling */
1361         if (bus->wr_ind == bus->wr_size) {
1362                 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1363                         /*
1364                          * No more bytes to send (to add to the FIFO),
1365                          * however the FIFO is not empty yet. It is
1366                          * still in the middle of tx. Currently there's nothing
1367                          * to do except for waiting to the end of the tx
1368                          * We will get an int when the FIFO will get empty.
1369                          */
1370                         return;
1371
1372                 if (bus->rd_size == 0) {
1373                         /* all bytes have been written, in wr only operation */
1374                         npcm_i2c_eob_int(bus, true);
1375                         bus->state = I2C_STOP_PENDING;
1376                         bus->stop_ind = I2C_MASTER_DONE_IND;
1377                         npcm_i2c_master_stop(bus);
1378                         /* Clear SDA Status bit (by writing dummy byte) */
1379                         npcm_i2c_wr_byte(bus, 0xFF);
1380
1381                 } else {
1382                         /* last write-byte written on previous int - restart */
1383                         npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1384                         /* Generate repeated start upon next write to SDA */
1385                         npcm_i2c_master_start(bus);
1386
1387                         /*
1388                          * Receiving one byte only - stall after successful
1389                          * completion of send address byte. If we NACK here, and
1390                          * slave doesn't ACK the address, we might
1391                          * unintentionally NACK the next multi-byte read.
1392                          */
1393                         if (bus->rd_size == 1)
1394                                 npcm_i2c_stall_after_start(bus, true);
1395
1396                         /* Next int will occur on read */
1397                         bus->operation = I2C_READ_OPER;
1398                         /* send the slave address in read direction */
1399                         npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1400                 }
1401         } else {
1402                 /* write next byte not last byte and not slave address */
1403                 if (!bus->fifo_use || bus->wr_size == 1) {
1404                         npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1405                 } else {
1406                         wcount = bus->wr_size - bus->wr_ind;
1407                         npcm_i2c_set_fifo(bus, -1, wcount);
1408                         if (wcount)
1409                                 npcm_i2c_write_to_fifo_master(bus, wcount);
1410                 }
1411         }
1412 }
1413
1414 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1415 {
1416         u16 block_extra_bytes_size;
1417         u8 data;
1418
1419         /* added bytes to the packet: */
1420         block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1421
1422         /*
1423          * Perform master read, distinguishing between last byte and the rest of
1424          * the bytes. The last byte should be read when the clock is stopped
1425          */
1426         if (bus->rd_ind == 0) { /* first byte handling: */
1427                 if (bus->read_block_use) {
1428                         /* first byte in block protocol is the size: */
1429                         data = npcm_i2c_rd_byte(bus);
1430                         data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1431                         bus->rd_size = data + block_extra_bytes_size;
1432                         bus->rd_buf[bus->rd_ind++] = data;
1433
1434                         /* clear RX FIFO interrupt status: */
1435                         if (bus->fifo_use) {
1436                                 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1437                                 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1438                                 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1439                         }
1440
1441                         npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1442                         npcm_i2c_stall_after_start(bus, false);
1443                 } else {
1444                         npcm_i2c_clear_tx_fifo(bus);
1445                         npcm_i2c_master_fifo_read(bus);
1446                 }
1447         } else {
1448                 if (bus->rd_size == block_extra_bytes_size &&
1449                     bus->read_block_use) {
1450                         bus->state = I2C_STOP_PENDING;
1451                         bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1452                         bus->cmd_err = -EIO;
1453                         npcm_i2c_eob_int(bus, true);
1454                         npcm_i2c_master_stop(bus);
1455                         npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1456                 } else {
1457                         npcm_i2c_master_fifo_read(bus);
1458                 }
1459         }
1460 }
1461
1462 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1463 {
1464         iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1465         npcm_i2c_nack(bus);
1466         bus->stop_ind = I2C_BUS_ERR_IND;
1467         npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1468 }
1469
1470 /* A NACK has occurred */
1471 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1472 {
1473         u8 val;
1474
1475         if (bus->nack_cnt < ULLONG_MAX)
1476                 bus->nack_cnt++;
1477
1478         if (bus->fifo_use) {
1479                 /*
1480                  * if there are still untransmitted bytes in TX FIFO
1481                  * reduce them from wr_ind
1482                  */
1483                 if (bus->operation == I2C_WRITE_OPER)
1484                         bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1485
1486                 /* clear the FIFO */
1487                 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1488         }
1489
1490         /* In master write operation, got unexpected NACK */
1491         bus->stop_ind = I2C_NACK_IND;
1492         /* Only current master is allowed to issue Stop Condition */
1493         if (npcm_i2c_is_master(bus)) {
1494                 /* stopping in the middle */
1495                 npcm_i2c_eob_int(bus, false);
1496                 npcm_i2c_master_stop(bus);
1497
1498                 /* Clear SDA Status bit (by reading dummy byte) */
1499                 npcm_i2c_rd_byte(bus);
1500
1501                 /*
1502                  * The bus is released from stall only after the SW clears
1503                  * NEGACK bit. Then a Stop condition is sent.
1504                  */
1505                 npcm_i2c_clear_master_status(bus);
1506                 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1507                                           !(val & NPCM_I2CCST_BUSY), 10, 200);
1508                 /* Verify no status bits are still set after bus is released */
1509                 npcm_i2c_clear_master_status(bus);
1510         }
1511         bus->state = I2C_IDLE;
1512
1513         /*
1514          * In Master mode, NACK should be cleared only after STOP.
1515          * In such case, the bus is released from stall only after the
1516          * software clears NACK bit. Then a Stop condition is sent.
1517          */
1518         npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1519 }
1520
1521         /* Master mode: a Bus Error has been identified */
1522 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1523 {
1524         if (bus->ber_cnt < ULLONG_MAX)
1525                 bus->ber_cnt++;
1526         bus->stop_ind = I2C_BUS_ERR_IND;
1527         if (npcm_i2c_is_master(bus)) {
1528                 npcm_i2c_master_abort(bus);
1529         } else {
1530                 npcm_i2c_clear_master_status(bus);
1531
1532                 /* Clear BB (BUS BUSY) bit */
1533                 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1534
1535                 bus->cmd_err = -EAGAIN;
1536                 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1537         }
1538         bus->state = I2C_IDLE;
1539 }
1540
1541         /* EOB: a master End Of Busy (meaning STOP completed) */
1542 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1543 {
1544         npcm_i2c_eob_int(bus, false);
1545         bus->state = I2C_IDLE;
1546         npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1547 }
1548
1549 /* Address sent and requested stall occurred (Master mode) */
1550 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1551 {
1552         if (npcm_i2c_is_quick(bus)) {
1553                 bus->state = I2C_STOP_PENDING;
1554                 bus->stop_ind = I2C_MASTER_DONE_IND;
1555                 npcm_i2c_eob_int(bus, true);
1556                 npcm_i2c_master_stop(bus);
1557         } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1558                 /*
1559                  * Receiving one byte only - set NACK after ensuring
1560                  * slave ACKed the address byte.
1561                  */
1562                 npcm_i2c_nack(bus);
1563         }
1564
1565         /* Reset stall-after-address-byte */
1566         npcm_i2c_stall_after_start(bus, false);
1567
1568         /* Clear stall only after setting STOP */
1569         iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1570 }
1571
1572 /* SDA status is set - TX or RX, master */
1573 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1574 {
1575         u8 fif_cts;
1576
1577         if (!npcm_i2c_is_master(bus))
1578                 return;
1579
1580         if (bus->state == I2C_IDLE) {
1581                 bus->stop_ind = I2C_WAKE_UP_IND;
1582
1583                 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1584                         /*
1585                          * Need to stall after successful
1586                          * completion of sending address byte
1587                          */
1588                         npcm_i2c_stall_after_start(bus, true);
1589                 else
1590                         npcm_i2c_stall_after_start(bus, false);
1591
1592                 /*
1593                  * Receiving one byte only - stall after successful completion
1594                  * of sending address byte If we NACK here, and slave doesn't
1595                  * ACK the address, we might unintentionally NACK the next
1596                  * multi-byte read
1597                  */
1598                 if (bus->wr_size == 0 && bus->rd_size == 1)
1599                         npcm_i2c_stall_after_start(bus, true);
1600
1601                 /* Initiate I2C master tx */
1602
1603                 /* select bank 1 for FIFO regs */
1604                 npcm_i2c_select_bank(bus, I2C_BANK_1);
1605
1606                 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1607                 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1608
1609                 /* clear FIFO and relevant status bits. */
1610                 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1611                 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1612
1613                 /* re-enable */
1614                 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1615                 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1616
1617                 /*
1618                  * Configure the FIFO threshold:
1619                  * according to the needed # of bytes to read.
1620                  * Note: due to HW limitation can't config the rx fifo before it
1621                  * got and ACK on the restart. LAST bit will not be reset unless
1622                  * RX completed. It will stay set on the next tx.
1623                  */
1624                 if (bus->wr_size)
1625                         npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1626                 else
1627                         npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1628
1629                 bus->state = I2C_OPER_STARTED;
1630
1631                 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1632                         npcm_i2c_wr_byte(bus, bus->dest_addr);
1633                 else
1634                         npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1635         /* SDA interrupt, after start\restart */
1636         } else {
1637                 if (NPCM_I2CST_XMIT & i2cst) {
1638                         bus->operation = I2C_WRITE_OPER;
1639                         npcm_i2c_irq_master_handler_write(bus);
1640                 } else {
1641                         bus->operation = I2C_READ_OPER;
1642                         npcm_i2c_irq_master_handler_read(bus);
1643                 }
1644         }
1645 }
1646
1647 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1648 {
1649         u8 i2cst;
1650         int ret = -EIO;
1651
1652         i2cst = ioread8(bus->reg + NPCM_I2CST);
1653
1654         if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1655                 npcm_i2c_irq_handle_nmatch(bus);
1656                 return 0;
1657         }
1658         /* A NACK has occurred */
1659         if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1660                 npcm_i2c_irq_handle_nack(bus);
1661                 return 0;
1662         }
1663
1664         /* Master mode: a Bus Error has been identified */
1665         if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1666                 npcm_i2c_irq_handle_ber(bus);
1667                 return 0;
1668         }
1669
1670         /* EOB: a master End Of Busy (meaning STOP completed) */
1671         if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1672                        ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1673             (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1674                        ioread8(bus->reg + NPCM_I2CCST3)))) {
1675                 npcm_i2c_irq_handle_eob(bus);
1676                 return 0;
1677         }
1678
1679         /* Address sent and requested stall occurred (Master mode) */
1680         if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1681                 npcm_i2c_irq_handle_stall_after_start(bus);
1682                 ret = 0;
1683         }
1684
1685         /* SDA status is set - TX or RX, master */
1686         if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1687             (bus->fifo_use &&
1688             (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1689                 npcm_i2c_irq_handle_sda(bus, i2cst);
1690                 ret = 0;
1691         }
1692
1693         return ret;
1694 }
1695
1696 /* recovery using TGCLK functionality of the module */
1697 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1698 {
1699         u8               val;
1700         u8               fif_cts;
1701         bool             done = false;
1702         int              status = -ENOTRECOVERABLE;
1703         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1704         /* Allow 3 bytes (27 toggles) to be read from the slave: */
1705         int              iter = 27;
1706
1707         if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1708                 dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1709                         bus->num, bus->dest_addr);
1710                 npcm_i2c_reset(bus);
1711                 return 0;
1712         }
1713
1714         npcm_i2c_int_enable(bus, false);
1715         npcm_i2c_disable(bus);
1716         npcm_i2c_enable(bus);
1717         iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1718         npcm_i2c_clear_tx_fifo(bus);
1719         npcm_i2c_clear_rx_fifo(bus);
1720         iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1721         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1722         npcm_i2c_stall_after_start(bus, false);
1723
1724         /* select bank 1 for FIFO regs */
1725         npcm_i2c_select_bank(bus, I2C_BANK_1);
1726
1727         /* clear FIFO and relevant status bits. */
1728         fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1729         fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1730         fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1731         iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1732         npcm_i2c_set_fifo(bus, -1, 0);
1733
1734         /* Repeat the following sequence until SDA is released */
1735         do {
1736                 /* Issue a single SCL toggle */
1737                 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1738                 usleep_range(20, 30);
1739                 /* If SDA line is inactive (high), stop */
1740                 if (npcm_i2c_get_SDA(_adap)) {
1741                         done = true;
1742                         status = 0;
1743                 }
1744         } while (!done && iter--);
1745
1746         /* If SDA line is released: send start-addr-stop, to re-sync. */
1747         if (npcm_i2c_get_SDA(_adap)) {
1748                 /* Send an address byte in write direction: */
1749                 npcm_i2c_wr_byte(bus, bus->dest_addr);
1750                 npcm_i2c_master_start(bus);
1751                 /* Wait until START condition is sent */
1752                 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1753                                             20, 200);
1754                 /* If START condition was sent */
1755                 if (npcm_i2c_is_master(bus) > 0) {
1756                         usleep_range(20, 30);
1757                         npcm_i2c_master_stop(bus);
1758                         usleep_range(200, 500);
1759                 }
1760         }
1761         npcm_i2c_reset(bus);
1762         npcm_i2c_int_enable(bus, true);
1763
1764         if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1765                 status = 0;
1766         else
1767                 status = -ENOTRECOVERABLE;
1768         if (status) {
1769                 if (bus->rec_fail_cnt < ULLONG_MAX)
1770                         bus->rec_fail_cnt++;
1771         } else {
1772                 if (bus->rec_succ_cnt < ULLONG_MAX)
1773                         bus->rec_succ_cnt++;
1774         }
1775         return status;
1776 }
1777
1778 /* recovery using bit banging functionality of the module */
1779 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1780 {
1781         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1782         struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1783
1784         rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1785
1786         /*
1787          * npcm i2c HW allows direct reading of SCL and SDA.
1788          * However, it does not support setting SCL and SDA directly.
1789          * The recovery function can toggle SCL when SDA is low (but not set)
1790          * Getter functions used internally, and can be used externally.
1791          */
1792         rinfo->get_scl = npcm_i2c_get_SCL;
1793         rinfo->get_sda = npcm_i2c_get_SDA;
1794         _adap->bus_recovery_info = rinfo;
1795 }
1796
1797 /* SCLFRQ min/max field values */
1798 #define SCLFRQ_MIN  10
1799 #define SCLFRQ_MAX  511
1800 #define clk_coef(freq, mul)     DIV_ROUND_UP((freq) * (mul), 1000000)
1801
1802 /*
1803  * npcm_i2c_init_clk: init HW timing parameters.
1804  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1805  * and bus frequency.
1806  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1807  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1808  * by the HW designer, given core clock range (equations in comments below).
1809  *
1810  */
1811 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1812 {
1813         u32  k1 = 0;
1814         u32  k2 = 0;
1815         u8   dbnct = 0;
1816         u32  sclfrq = 0;
1817         u8   hldt = 7;
1818         u8   fast_mode = 0;
1819         u32  src_clk_khz;
1820         u32  bus_freq_khz;
1821
1822         src_clk_khz = bus->apb_clk / 1000;
1823         bus_freq_khz = bus_freq_hz / 1000;
1824         bus->bus_freq = bus_freq_hz;
1825
1826         /* 100KHz and below: */
1827         if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1828                 sclfrq = src_clk_khz / (bus_freq_khz * 4);
1829
1830                 if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1831                         return -EDOM;
1832
1833                 if (src_clk_khz >= 40000)
1834                         hldt = 17;
1835                 else if (src_clk_khz >= 12500)
1836                         hldt = 15;
1837                 else
1838                         hldt = 7;
1839         }
1840
1841         /* 400KHz: */
1842         else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1843                 sclfrq = 0;
1844                 fast_mode = I2CCTL3_400K_MODE;
1845
1846                 if (src_clk_khz < 7500)
1847                         /* 400KHZ cannot be supported for core clock < 7.5MHz */
1848                         return -EDOM;
1849
1850                 else if (src_clk_khz >= 50000) {
1851                         k1 = 80;
1852                         k2 = 48;
1853                         hldt = 12;
1854                         dbnct = 7;
1855                 }
1856
1857                 /* Master or Slave with frequency > 25MHz */
1858                 else if (src_clk_khz > 25000) {
1859                         hldt = clk_coef(src_clk_khz, 300) + 7;
1860                         k1 = clk_coef(src_clk_khz, 1600);
1861                         k2 = clk_coef(src_clk_khz, 900);
1862                 }
1863         }
1864
1865         /* 1MHz: */
1866         else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1867                 sclfrq = 0;
1868                 fast_mode = I2CCTL3_400K_MODE;
1869
1870                 /* 1MHZ cannot be supported for core clock < 24 MHz */
1871                 if (src_clk_khz < 24000)
1872                         return -EDOM;
1873
1874                 k1 = clk_coef(src_clk_khz, 620);
1875                 k2 = clk_coef(src_clk_khz, 380);
1876
1877                 /* Core clk > 40 MHz */
1878                 if (src_clk_khz > 40000) {
1879                         /*
1880                          * Set HLDT:
1881                          * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1882                          * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1883                          */
1884                         hldt = clk_coef(src_clk_khz, 120) + 7;
1885                 } else {
1886                         hldt = 7;
1887                         dbnct = 2;
1888                 }
1889         }
1890
1891         /* Frequency larger than 1 MHz is not supported */
1892         else
1893                 return -EINVAL;
1894
1895         if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1896                 k1 = round_up(k1, 2);
1897                 k2 = round_up(k2 + 1, 2);
1898                 if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1899                     k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1900                         return -EDOM;
1901         }
1902
1903         /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1904         iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1905                  bus->reg + NPCM_I2CCTL2);
1906
1907         /* bits [8:7] are in I2CCTL3 reg */
1908         iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1909                  bus->reg + NPCM_I2CCTL3);
1910
1911         /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1912         npcm_i2c_select_bank(bus, I2C_BANK_0);
1913
1914         if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1915                 /*
1916                  * Set SCL Low/High Time:
1917                  * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1918                  * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1919                  */
1920                 iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1921                 iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1922
1923                 iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1924         }
1925
1926         iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1927
1928         /* Return to Bank 1, and stay there by default: */
1929         npcm_i2c_select_bank(bus, I2C_BANK_1);
1930
1931         return 0;
1932 }
1933
1934 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1935                                 u32 bus_freq_hz)
1936 {
1937         u8 val;
1938         int ret;
1939
1940         /* Check whether module already enabled or frequency is out of bounds */
1941         if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1942             bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1943                 return -EINVAL;
1944
1945         npcm_i2c_int_enable(bus, false);
1946         npcm_i2c_disable(bus);
1947
1948         /* Configure FIFO mode : */
1949         if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1950                 bus->fifo_use = true;
1951                 npcm_i2c_select_bank(bus, I2C_BANK_0);
1952                 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1953                 val |= NPCM_I2CFIF_CTL_FIFO_EN;
1954                 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1955                 npcm_i2c_select_bank(bus, I2C_BANK_1);
1956         } else {
1957                 bus->fifo_use = false;
1958         }
1959
1960         /* Configure I2C module clock frequency */
1961         ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1962         if (ret) {
1963                 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1964                 return ret;
1965         }
1966
1967         /* Enable module (before configuring CTL1) */
1968         npcm_i2c_enable(bus);
1969         bus->state = I2C_IDLE;
1970         val = ioread8(bus->reg + NPCM_I2CCTL1);
1971         val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1972         iowrite8(val, bus->reg + NPCM_I2CCTL1);
1973
1974         npcm_i2c_reset(bus);
1975
1976         /* Check HW is OK: SDA and SCL should be high at this point. */
1977         if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1978                 dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1979                 dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1980                         npcm_i2c_get_SCL(&bus->adap));
1981                 return -ENXIO;
1982         }
1983
1984         npcm_i2c_int_enable(bus, true);
1985         return 0;
1986 }
1987
1988 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1989 {
1990         u32 clk_freq_hz;
1991         int ret;
1992
1993         /* Initialize the internal data structures */
1994         bus->state = I2C_DISABLE;
1995         bus->master_or_slave = I2C_SLAVE;
1996         bus->int_time_stamp = 0;
1997 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1998         bus->slave = NULL;
1999 #endif
2000
2001         ret = device_property_read_u32(&pdev->dev, "clock-frequency",
2002                                        &clk_freq_hz);
2003         if (ret) {
2004                 dev_info(&pdev->dev, "Could not read clock-frequency property");
2005                 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2006         }
2007
2008         ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2009         if (ret) {
2010                 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2011                 return ret;
2012         }
2013
2014         return 0;
2015 }
2016
2017 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2018 {
2019         struct npcm_i2c *bus = dev_id;
2020
2021         if (npcm_i2c_is_master(bus))
2022                 bus->master_or_slave = I2C_MASTER;
2023
2024         if (bus->master_or_slave == I2C_MASTER) {
2025                 bus->int_time_stamp = jiffies;
2026                 if (!npcm_i2c_int_master_handler(bus))
2027                         return IRQ_HANDLED;
2028         }
2029 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2030         if (bus->slave) {
2031                 bus->master_or_slave = I2C_SLAVE;
2032                 if (npcm_i2c_int_slave_handler(bus))
2033                         return IRQ_HANDLED;
2034         }
2035 #endif
2036         /* Clear status bits for spurious interrupts */
2037         npcm_i2c_clear_master_status(bus);
2038
2039         return IRQ_HANDLED;
2040 }
2041
2042 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2043                                        u8 slave_addr, u16 nwrite, u16 nread,
2044                                        u8 *write_data, u8 *read_data,
2045                                        bool use_PEC, bool use_read_block)
2046 {
2047         if (bus->state != I2C_IDLE) {
2048                 bus->cmd_err = -EBUSY;
2049                 return false;
2050         }
2051         bus->dest_addr = slave_addr << 1;
2052         bus->wr_buf = write_data;
2053         bus->wr_size = nwrite;
2054         bus->wr_ind = 0;
2055         bus->rd_buf = read_data;
2056         bus->rd_size = nread;
2057         bus->rd_ind = 0;
2058         bus->PEC_use = 0;
2059
2060         /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2061         if (nread)
2062                 bus->PEC_use = use_PEC;
2063
2064         bus->read_block_use = use_read_block;
2065         if (nread && !nwrite)
2066                 bus->operation = I2C_READ_OPER;
2067         else
2068                 bus->operation = I2C_WRITE_OPER;
2069         if (bus->fifo_use) {
2070                 u8 i2cfif_cts;
2071
2072                 npcm_i2c_select_bank(bus, I2C_BANK_1);
2073                 /* clear FIFO and relevant status bits. */
2074                 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2075                 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2076                 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2077                 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2078         }
2079
2080         bus->state = I2C_IDLE;
2081         npcm_i2c_stall_after_start(bus, true);
2082         npcm_i2c_master_start(bus);
2083         return true;
2084 }
2085
2086 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2087                                 int num)
2088 {
2089         struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2090         struct i2c_msg *msg0, *msg1;
2091         unsigned long time_left, flags;
2092         u16 nwrite, nread;
2093         u8 *write_data, *read_data;
2094         u8 slave_addr;
2095         unsigned long timeout;
2096         bool read_block = false;
2097         bool read_PEC = false;
2098         u8 bus_busy;
2099         unsigned long timeout_usec;
2100
2101         if (bus->state == I2C_DISABLE) {
2102                 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2103                 return -EINVAL;
2104         }
2105
2106         msg0 = &msgs[0];
2107         slave_addr = msg0->addr;
2108         if (msg0->flags & I2C_M_RD) { /* read */
2109                 nwrite = 0;
2110                 write_data = NULL;
2111                 read_data = msg0->buf;
2112                 if (msg0->flags & I2C_M_RECV_LEN) {
2113                         nread = 1;
2114                         read_block = true;
2115                         if (msg0->flags & I2C_CLIENT_PEC)
2116                                 read_PEC = true;
2117                 } else {
2118                         nread = msg0->len;
2119                 }
2120         } else { /* write */
2121                 nwrite = msg0->len;
2122                 write_data = msg0->buf;
2123                 nread = 0;
2124                 read_data = NULL;
2125                 if (num == 2) {
2126                         msg1 = &msgs[1];
2127                         read_data = msg1->buf;
2128                         if (msg1->flags & I2C_M_RECV_LEN) {
2129                                 nread = 1;
2130                                 read_block = true;
2131                                 if (msg1->flags & I2C_CLIENT_PEC)
2132                                         read_PEC = true;
2133                         } else {
2134                                 nread = msg1->len;
2135                                 read_block = false;
2136                         }
2137                 }
2138         }
2139
2140         /*
2141          * Adaptive TimeOut: estimated time in usec + 100% margin:
2142          * 2: double the timeout for clock stretching case
2143          * 9: bits per transaction (including the ack/nack)
2144          */
2145         timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2146         timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2147         if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2148                 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2149                 return -EINVAL;
2150         }
2151
2152         time_left = jiffies + timeout + 1;
2153         do {
2154                 /*
2155                  * we must clear slave address immediately when the bus is not
2156                  * busy, so we spinlock it, but we don't keep the lock for the
2157                  * entire while since it is too long.
2158                  */
2159                 spin_lock_irqsave(&bus->lock, flags);
2160                 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2161 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2162                 if (!bus_busy && bus->slave)
2163                         iowrite8((bus->slave->addr & 0x7F),
2164                                  bus->reg + NPCM_I2CADDR1);
2165 #endif
2166                 spin_unlock_irqrestore(&bus->lock, flags);
2167
2168         } while (time_is_after_jiffies(time_left) && bus_busy);
2169
2170         if (bus_busy) {
2171                 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2172                 npcm_i2c_reset(bus);
2173                 i2c_recover_bus(adap);
2174                 return -EAGAIN;
2175         }
2176
2177         npcm_i2c_init_params(bus);
2178         bus->dest_addr = slave_addr;
2179         bus->msgs = msgs;
2180         bus->msgs_num = num;
2181         bus->cmd_err = 0;
2182         bus->read_block_use = read_block;
2183
2184         reinit_completion(&bus->cmd_complete);
2185
2186         npcm_i2c_int_enable(bus, true);
2187
2188         if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2189                                        write_data, read_data, read_PEC,
2190                                        read_block)) {
2191                 time_left = wait_for_completion_timeout(&bus->cmd_complete,
2192                                                         timeout);
2193
2194                 if (time_left == 0) {
2195                         if (bus->timeout_cnt < ULLONG_MAX)
2196                                 bus->timeout_cnt++;
2197                         if (bus->master_or_slave == I2C_MASTER) {
2198                                 i2c_recover_bus(adap);
2199                                 bus->cmd_err = -EIO;
2200                                 bus->state = I2C_IDLE;
2201                         }
2202                 }
2203         }
2204
2205         /* if there was BER, check if need to recover the bus: */
2206         if (bus->cmd_err == -EAGAIN)
2207                 bus->cmd_err = i2c_recover_bus(adap);
2208
2209         /*
2210          * After any type of error, check if LAST bit is still set,
2211          * due to a HW issue.
2212          * It cannot be cleared without resetting the module.
2213          */
2214         else if (bus->cmd_err &&
2215                  (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2216                 npcm_i2c_reset(bus);
2217
2218         /* After any xfer, successful or not, stall and EOB must be disabled */
2219         npcm_i2c_stall_after_start(bus, false);
2220         npcm_i2c_eob_int(bus, false);
2221
2222 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2223         /* reenable slave if it was enabled */
2224         if (bus->slave)
2225                 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2226                          bus->reg + NPCM_I2CADDR1);
2227 #else
2228         npcm_i2c_int_enable(bus, false);
2229 #endif
2230         return bus->cmd_err;
2231 }
2232
2233 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2234 {
2235         return I2C_FUNC_I2C |
2236                I2C_FUNC_SMBUS_EMUL |
2237                I2C_FUNC_SMBUS_BLOCK_DATA |
2238                I2C_FUNC_SMBUS_PEC |
2239                I2C_FUNC_SLAVE;
2240 }
2241
2242 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2243         .max_read_len = 32768,
2244         .max_write_len = 32768,
2245         .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2246 };
2247
2248 static const struct i2c_algorithm npcm_i2c_algo = {
2249         .master_xfer = npcm_i2c_master_xfer,
2250         .functionality = npcm_i2c_functionality,
2251 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2252         .reg_slave      = npcm_i2c_reg_slave,
2253         .unreg_slave    = npcm_i2c_unreg_slave,
2254 #endif
2255 };
2256
2257 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2258 static struct dentry *npcm_i2c_debugfs_dir;
2259
2260 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2261                                   struct npcm_i2c *bus)
2262 {
2263         struct dentry *d;
2264
2265         if (!npcm_i2c_debugfs_dir)
2266                 return;
2267         d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2268         if (IS_ERR_OR_NULL(d))
2269                 return;
2270         debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2271         debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2272         debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2273         debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2274         debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2275         debugfs_create_u64("tx_complete_cnt", 0444, d, &bus->tx_complete_cnt);
2276
2277         bus->debugfs = d;
2278 }
2279
2280 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2281 {
2282         struct device_node *np = pdev->dev.of_node;
2283         static struct regmap *gcr_regmap;
2284         struct device *dev = &pdev->dev;
2285         struct i2c_adapter *adap;
2286         struct npcm_i2c *bus;
2287         struct clk *i2c_clk;
2288         int irq;
2289         int ret;
2290
2291         bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2292         if (!bus)
2293                 return -ENOMEM;
2294
2295         bus->dev = &pdev->dev;
2296
2297         bus->data = of_device_get_match_data(dev);
2298         if (!bus->data) {
2299                 dev_err(dev, "OF data missing\n");
2300                 return -EINVAL;
2301         }
2302
2303         bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2304         /* core clk must be acquired to calculate module timing settings */
2305         i2c_clk = devm_clk_get(&pdev->dev, NULL);
2306         if (IS_ERR(i2c_clk))
2307                 return PTR_ERR(i2c_clk);
2308         bus->apb_clk = clk_get_rate(i2c_clk);
2309
2310         gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2311         if (IS_ERR(gcr_regmap))
2312                 gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2313
2314         if (IS_ERR(gcr_regmap))
2315                 return PTR_ERR(gcr_regmap);
2316         regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2317
2318         bus->reg = devm_platform_ioremap_resource(pdev, 0);
2319         if (IS_ERR(bus->reg))
2320                 return PTR_ERR(bus->reg);
2321
2322         spin_lock_init(&bus->lock);
2323         init_completion(&bus->cmd_complete);
2324
2325         adap = &bus->adap;
2326         adap->owner = THIS_MODULE;
2327         adap->retries = 3;
2328         adap->timeout = msecs_to_jiffies(35);
2329         adap->algo = &npcm_i2c_algo;
2330         adap->quirks = &npcm_i2c_quirks;
2331         adap->algo_data = bus;
2332         adap->dev.parent = &pdev->dev;
2333         adap->dev.of_node = pdev->dev.of_node;
2334         adap->nr = pdev->id;
2335
2336         irq = platform_get_irq(pdev, 0);
2337         if (irq < 0)
2338                 return irq;
2339
2340         ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2341                                dev_name(bus->dev), bus);
2342         if (ret)
2343                 return ret;
2344
2345         ret = __npcm_i2c_init(bus, pdev);
2346         if (ret)
2347                 return ret;
2348
2349         npcm_i2c_recovery_init(adap);
2350
2351         i2c_set_adapdata(adap, bus);
2352
2353         snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2354                  bus->num);
2355         ret = i2c_add_numbered_adapter(&bus->adap);
2356         if (ret)
2357                 return ret;
2358
2359         platform_set_drvdata(pdev, bus);
2360         npcm_i2c_init_debugfs(pdev, bus);
2361         return 0;
2362 }
2363
2364 static void npcm_i2c_remove_bus(struct platform_device *pdev)
2365 {
2366         unsigned long lock_flags;
2367         struct npcm_i2c *bus = platform_get_drvdata(pdev);
2368
2369         debugfs_remove_recursive(bus->debugfs);
2370         spin_lock_irqsave(&bus->lock, lock_flags);
2371         npcm_i2c_disable(bus);
2372         spin_unlock_irqrestore(&bus->lock, lock_flags);
2373         i2c_del_adapter(&bus->adap);
2374 }
2375
2376 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2377         { .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2378         { .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2379         {}
2380 };
2381 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2382
2383 static struct platform_driver npcm_i2c_bus_driver = {
2384         .probe = npcm_i2c_probe_bus,
2385         .remove_new = npcm_i2c_remove_bus,
2386         .driver = {
2387                 .name = "nuvoton-i2c",
2388                 .of_match_table = npcm_i2c_bus_of_table,
2389         }
2390 };
2391
2392 static int __init npcm_i2c_init(void)
2393 {
2394         int ret;
2395
2396         npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2397
2398         ret = platform_driver_register(&npcm_i2c_bus_driver);
2399         if (ret) {
2400                 debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2401                 return ret;
2402         }
2403
2404         return 0;
2405 }
2406 module_init(npcm_i2c_init);
2407
2408 static void __exit npcm_i2c_exit(void)
2409 {
2410         platform_driver_unregister(&npcm_i2c_bus_driver);
2411         debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2412 }
2413 module_exit(npcm_i2c_exit);
2414
2415 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2416 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2417 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2418 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2419 MODULE_LICENSE("GPL v2");