OSDN Git Service

Merge tag 'drm-misc-fixes-2020-05-07' of git://anongit.freedesktop.org/drm/drm-misc...
[tomoyo/tomoyo-test1.git] / drivers / iio / imu / st_lsm6dsx / st_lsm6dsx_buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STMicroelectronics st_lsm6dsx FIFO buffer library driver
4  *
5  * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C:
6  * The FIFO buffer can be configured to store data from gyroscope and
7  * accelerometer. Samples are queued without any tag according to a
8  * specific pattern based on 'FIFO data sets' (6 bytes each):
9  *  - 1st data set is reserved for gyroscope data
10  *  - 2nd data set is reserved for accelerometer data
11  * The FIFO pattern changes depending on the ODRs and decimation factors
12  * assigned to the FIFO data sets. The first sequence of data stored in FIFO
13  * buffer contains the data of all the enabled FIFO data sets
14  * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
15  * value of the decimation factor and ODR set for each FIFO data set.
16  *
17  * LSM6DSO/LSM6DSOX/ASM330LHH/LSM6DSR/LSM6DSRX/ISM330DHCX:
18  * The FIFO buffer can be configured to store data from gyroscope and
19  * accelerometer. Each sample is queued with a tag (1B) indicating data
20  * source (gyroscope, accelerometer, hw timer).
21  *
22  * FIFO supported modes:
23  *  - BYPASS: FIFO disabled
24  *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
25  *    restarts from the beginning and the oldest sample is overwritten
26  *
27  * Copyright 2016 STMicroelectronics Inc.
28  *
29  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
30  * Denis Ciocca <denis.ciocca@st.com>
31  */
32 #include <linux/module.h>
33 #include <linux/iio/kfifo_buf.h>
34 #include <linux/iio/iio.h>
35 #include <linux/iio/buffer.h>
36 #include <linux/regmap.h>
37 #include <linux/bitfield.h>
38
39 #include <linux/platform_data/st_sensors_pdata.h>
40
41 #include "st_lsm6dsx.h"
42
43 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR           0x0a
44 #define ST_LSM6DSX_FIFO_MODE_MASK               GENMASK(2, 0)
45 #define ST_LSM6DSX_FIFO_ODR_MASK                GENMASK(6, 3)
46 #define ST_LSM6DSX_FIFO_EMPTY_MASK              BIT(12)
47 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR           0x3e
48 #define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR        0x78
49 #define ST_LSM6DSX_REG_TS_RESET_ADDR            0x42
50
51 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL             0x08
52
53 #define ST_LSM6DSX_TS_RESET_VAL                 0xaa
54
55 struct st_lsm6dsx_decimator_entry {
56         u8 decimator;
57         u8 val;
58 };
59
60 enum st_lsm6dsx_fifo_tag {
61         ST_LSM6DSX_GYRO_TAG = 0x01,
62         ST_LSM6DSX_ACC_TAG = 0x02,
63         ST_LSM6DSX_TS_TAG = 0x04,
64         ST_LSM6DSX_EXT0_TAG = 0x0f,
65         ST_LSM6DSX_EXT1_TAG = 0x10,
66         ST_LSM6DSX_EXT2_TAG = 0x11,
67 };
68
69 static const
70 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
71         {  0, 0x0 },
72         {  1, 0x1 },
73         {  2, 0x2 },
74         {  3, 0x3 },
75         {  4, 0x4 },
76         {  8, 0x5 },
77         { 16, 0x6 },
78         { 32, 0x7 },
79 };
80
81 static int
82 st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor *sensor, u32 max_odr)
83 {
84         const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
85         u32 decimator =  max_odr / sensor->odr;
86         int i;
87
88         if (decimator > 1)
89                 decimator = round_down(decimator, 2);
90
91         for (i = 0; i < max_size; i++) {
92                 if (st_lsm6dsx_decimator_table[i].decimator == decimator)
93                         break;
94         }
95
96         sensor->decimator = decimator;
97         return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
98 }
99
100 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
101                                        u32 *max_odr, u32 *min_odr)
102 {
103         struct st_lsm6dsx_sensor *sensor;
104         int i;
105
106         *max_odr = 0, *min_odr = ~0;
107         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
108                 if (!hw->iio_devs[i])
109                         continue;
110
111                 sensor = iio_priv(hw->iio_devs[i]);
112
113                 if (!(hw->enable_mask & BIT(sensor->id)))
114                         continue;
115
116                 *max_odr = max_t(u32, *max_odr, sensor->odr);
117                 *min_odr = min_t(u32, *min_odr, sensor->odr);
118         }
119 }
120
121 static u8 st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor *sensor, u32 min_odr)
122 {
123         u8 sip = sensor->odr / min_odr;
124
125         return sip > 1 ? round_down(sip, 2) : sip;
126 }
127
128 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
129 {
130         const struct st_lsm6dsx_reg *ts_dec_reg;
131         struct st_lsm6dsx_sensor *sensor;
132         u16 sip = 0, ts_sip = 0;
133         u32 max_odr, min_odr;
134         int err = 0, i;
135         u8 data;
136
137         st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
138
139         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
140                 const struct st_lsm6dsx_reg *dec_reg;
141
142                 if (!hw->iio_devs[i])
143                         continue;
144
145                 sensor = iio_priv(hw->iio_devs[i]);
146                 /* update fifo decimators and sample in pattern */
147                 if (hw->enable_mask & BIT(sensor->id)) {
148                         sensor->sip = st_lsm6dsx_get_sip(sensor, min_odr);
149                         data = st_lsm6dsx_get_decimator_val(sensor, max_odr);
150                 } else {
151                         sensor->sip = 0;
152                         data = 0;
153                 }
154                 ts_sip = max_t(u16, ts_sip, sensor->sip);
155
156                 dec_reg = &hw->settings->decimator[sensor->id];
157                 if (dec_reg->addr) {
158                         int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
159
160                         err = st_lsm6dsx_update_bits_locked(hw, dec_reg->addr,
161                                                             dec_reg->mask,
162                                                             val);
163                         if (err < 0)
164                                 return err;
165                 }
166                 sip += sensor->sip;
167         }
168         hw->sip = sip + ts_sip;
169         hw->ts_sip = ts_sip;
170
171         /*
172          * update hw ts decimator if necessary. Decimator for hw timestamp
173          * is always 1 or 0 in order to have a ts sample for each data
174          * sample in FIFO
175          */
176         ts_dec_reg = &hw->settings->ts_settings.decimator;
177         if (ts_dec_reg->addr) {
178                 int val, ts_dec = !!hw->ts_sip;
179
180                 val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
181                 err = st_lsm6dsx_update_bits_locked(hw, ts_dec_reg->addr,
182                                                     ts_dec_reg->mask, val);
183         }
184         return err;
185 }
186
187 int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
188                              enum st_lsm6dsx_fifo_mode fifo_mode)
189 {
190         unsigned int data;
191
192         data = FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode);
193         return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
194                                              ST_LSM6DSX_FIFO_MODE_MASK, data);
195 }
196
197 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
198                                    bool enable)
199 {
200         struct st_lsm6dsx_hw *hw = sensor->hw;
201         const struct st_lsm6dsx_reg *batch_reg;
202         u8 data;
203
204         batch_reg = &hw->settings->batch[sensor->id];
205         if (batch_reg->addr) {
206                 int val;
207
208                 if (enable) {
209                         int err;
210
211                         err = st_lsm6dsx_check_odr(sensor, sensor->odr,
212                                                    &data);
213                         if (err < 0)
214                                 return err;
215                 } else {
216                         data = 0;
217                 }
218                 val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask);
219                 return st_lsm6dsx_update_bits_locked(hw, batch_reg->addr,
220                                                      batch_reg->mask, val);
221         } else {
222                 data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
223                 return st_lsm6dsx_update_bits_locked(hw,
224                                         ST_LSM6DSX_REG_FIFO_MODE_ADDR,
225                                         ST_LSM6DSX_FIFO_ODR_MASK,
226                                         FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK,
227                                                    data));
228         }
229 }
230
231 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
232 {
233         u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask;
234         struct st_lsm6dsx_hw *hw = sensor->hw;
235         struct st_lsm6dsx_sensor *cur_sensor;
236         int i, err, data;
237         __le16 wdata;
238
239         if (!hw->sip)
240                 return 0;
241
242         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
243                 if (!hw->iio_devs[i])
244                         continue;
245
246                 cur_sensor = iio_priv(hw->iio_devs[i]);
247
248                 if (!(hw->enable_mask & BIT(cur_sensor->id)))
249                         continue;
250
251                 cur_watermark = (cur_sensor == sensor) ? watermark
252                                                        : cur_sensor->watermark;
253
254                 fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
255         }
256
257         fifo_watermark = max_t(u16, fifo_watermark, hw->sip);
258         fifo_watermark = (fifo_watermark / hw->sip) * hw->sip;
259         fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
260
261         mutex_lock(&hw->page_lock);
262         err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
263                           &data);
264         if (err < 0)
265                 goto out;
266
267         fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
268         fifo_watermark = ((data << 8) & ~fifo_th_mask) |
269                          (fifo_watermark & fifo_th_mask);
270
271         wdata = cpu_to_le16(fifo_watermark);
272         err = regmap_bulk_write(hw->regmap,
273                                 hw->settings->fifo_ops.fifo_th.addr,
274                                 &wdata, sizeof(wdata));
275 out:
276         mutex_unlock(&hw->page_lock);
277         return err;
278 }
279
280 static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
281 {
282         struct st_lsm6dsx_sensor *sensor;
283         int i, err;
284
285         /* reset hw ts counter */
286         err = st_lsm6dsx_write_locked(hw, ST_LSM6DSX_REG_TS_RESET_ADDR,
287                                       ST_LSM6DSX_TS_RESET_VAL);
288         if (err < 0)
289                 return err;
290
291         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
292                 if (!hw->iio_devs[i])
293                         continue;
294
295                 sensor = iio_priv(hw->iio_devs[i]);
296                 /*
297                  * store enable buffer timestamp as reference for
298                  * hw timestamp
299                  */
300                 sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
301         }
302         return 0;
303 }
304
305 /*
306  * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN
307  * in order to avoid a kmalloc for each bus access
308  */
309 static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr,
310                                         u8 *data, unsigned int data_len,
311                                         unsigned int max_word_len)
312 {
313         unsigned int word_len, read_len = 0;
314         int err;
315
316         while (read_len < data_len) {
317                 word_len = min_t(unsigned int, data_len - read_len,
318                                  max_word_len);
319                 err = st_lsm6dsx_read_locked(hw, addr, data + read_len,
320                                              word_len);
321                 if (err < 0)
322                         return err;
323                 read_len += word_len;
324         }
325         return 0;
326 }
327
328 #define ST_LSM6DSX_IIO_BUFF_SIZE        (ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
329                                                sizeof(s64)) + sizeof(s64))
330 /**
331  * st_lsm6dsx_read_fifo() - hw FIFO read routine
332  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
333  *
334  * Read samples from the hw FIFO and push them to IIO buffers.
335  *
336  * Return: Number of bytes read from the FIFO
337  */
338 int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
339 {
340         struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor, *ext_sensor = NULL;
341         int err, sip, acc_sip, gyro_sip, ts_sip, ext_sip, read_len, offset;
342         u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
343         u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
344         u8 gyro_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
345         u8 acc_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
346         u8 ext_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
347         bool reset_ts = false;
348         __le16 fifo_status;
349         s64 ts = 0;
350
351         err = st_lsm6dsx_read_locked(hw,
352                                      hw->settings->fifo_ops.fifo_diff.addr,
353                                      &fifo_status, sizeof(fifo_status));
354         if (err < 0) {
355                 dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
356                         err);
357                 return err;
358         }
359
360         if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
361                 return 0;
362
363         fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
364                    ST_LSM6DSX_CHAN_SIZE;
365         fifo_len = (fifo_len / pattern_len) * pattern_len;
366
367         acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
368         gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
369         if (hw->iio_devs[ST_LSM6DSX_ID_EXT0])
370                 ext_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_EXT0]);
371
372         for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
373                 err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
374                                             hw->buff, pattern_len,
375                                             ST_LSM6DSX_MAX_WORD_LEN);
376                 if (err < 0) {
377                         dev_err(hw->dev,
378                                 "failed to read pattern from fifo (err=%d)\n",
379                                 err);
380                         return err;
381                 }
382
383                 /*
384                  * Data are written to the FIFO with a specific pattern
385                  * depending on the configured ODRs. The first sequence of data
386                  * stored in FIFO contains the data of all enabled sensors
387                  * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
388                  * depending on the value of the decimation factor set for each
389                  * sensor.
390                  *
391                  * Supposing the FIFO is storing data from gyroscope and
392                  * accelerometer at different ODRs:
393                  *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
394                  * Since the gyroscope ODR is twice the accelerometer one, the
395                  * following pattern is repeated every 9 samples:
396                  *   - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
397                  */
398                 ext_sip = ext_sensor ? ext_sensor->sip : 0;
399                 gyro_sip = gyro_sensor->sip;
400                 acc_sip = acc_sensor->sip;
401                 ts_sip = hw->ts_sip;
402                 offset = 0;
403                 sip = 0;
404
405                 while (acc_sip > 0 || gyro_sip > 0 || ext_sip > 0) {
406                         if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
407                                 memcpy(gyro_buff, &hw->buff[offset],
408                                        ST_LSM6DSX_SAMPLE_SIZE);
409                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
410                         }
411                         if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
412                                 memcpy(acc_buff, &hw->buff[offset],
413                                        ST_LSM6DSX_SAMPLE_SIZE);
414                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
415                         }
416                         if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
417                                 memcpy(ext_buff, &hw->buff[offset],
418                                        ST_LSM6DSX_SAMPLE_SIZE);
419                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
420                         }
421
422                         if (ts_sip-- > 0) {
423                                 u8 data[ST_LSM6DSX_SAMPLE_SIZE];
424
425                                 memcpy(data, &hw->buff[offset], sizeof(data));
426                                 /*
427                                  * hw timestamp is 3B long and it is stored
428                                  * in FIFO using 6B as 4th FIFO data set
429                                  * according to this schema:
430                                  * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
431                                  */
432                                 ts = data[1] << 16 | data[0] << 8 | data[3];
433                                 /*
434                                  * check if hw timestamp engine is going to
435                                  * reset (the sensor generates an interrupt
436                                  * to signal the hw timestamp will reset in
437                                  * 1.638s)
438                                  */
439                                 if (!reset_ts && ts >= 0xff0000)
440                                         reset_ts = true;
441                                 ts *= hw->ts_gain;
442
443                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
444                         }
445
446                         if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
447                                 iio_push_to_buffers_with_timestamp(
448                                         hw->iio_devs[ST_LSM6DSX_ID_GYRO],
449                                         gyro_buff, gyro_sensor->ts_ref + ts);
450                                 gyro_sip--;
451                         }
452                         if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
453                                 iio_push_to_buffers_with_timestamp(
454                                         hw->iio_devs[ST_LSM6DSX_ID_ACC],
455                                         acc_buff, acc_sensor->ts_ref + ts);
456                                 acc_sip--;
457                         }
458                         if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
459                                 iio_push_to_buffers_with_timestamp(
460                                         hw->iio_devs[ST_LSM6DSX_ID_EXT0],
461                                         ext_buff, ext_sensor->ts_ref + ts);
462                                 ext_sip--;
463                         }
464                         sip++;
465                 }
466         }
467
468         if (unlikely(reset_ts)) {
469                 err = st_lsm6dsx_reset_hw_ts(hw);
470                 if (err < 0) {
471                         dev_err(hw->dev, "failed to reset hw ts (err=%d)\n",
472                                 err);
473                         return err;
474                 }
475         }
476         return read_len;
477 }
478
479 #define ST_LSM6DSX_INVALID_SAMPLE       0x7ffd
480 static int
481 st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw *hw, u8 tag,
482                             u8 *data, s64 ts)
483 {
484         s16 val = le16_to_cpu(*(__le16 *)data);
485         struct st_lsm6dsx_sensor *sensor;
486         struct iio_dev *iio_dev;
487
488         /* invalid sample during bootstrap phase */
489         if (val >= ST_LSM6DSX_INVALID_SAMPLE)
490                 return -EINVAL;
491
492         /*
493          * EXT_TAG are managed in FIFO fashion so ST_LSM6DSX_EXT0_TAG
494          * corresponds to the first enabled channel, ST_LSM6DSX_EXT1_TAG
495          * to the second one and ST_LSM6DSX_EXT2_TAG to the last enabled
496          * channel
497          */
498         switch (tag) {
499         case ST_LSM6DSX_GYRO_TAG:
500                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_GYRO];
501                 break;
502         case ST_LSM6DSX_ACC_TAG:
503                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_ACC];
504                 break;
505         case ST_LSM6DSX_EXT0_TAG:
506                 if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0))
507                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT0];
508                 else if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1))
509                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
510                 else
511                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
512                 break;
513         case ST_LSM6DSX_EXT1_TAG:
514                 if ((hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) &&
515                     (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1)))
516                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
517                 else
518                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
519                 break;
520         case ST_LSM6DSX_EXT2_TAG:
521                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
522                 break;
523         default:
524                 return -EINVAL;
525         }
526
527         sensor = iio_priv(iio_dev);
528         iio_push_to_buffers_with_timestamp(iio_dev, data,
529                                            ts + sensor->ts_ref);
530
531         return 0;
532 }
533
534 /**
535  * st_lsm6dsx_read_tagged_fifo() - tagged hw FIFO read routine
536  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
537  *
538  * Read samples from the hw FIFO and push them to IIO buffers.
539  *
540  * Return: Number of bytes read from the FIFO
541  */
542 int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw)
543 {
544         u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
545         u16 fifo_len, fifo_diff_mask;
546         u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE], tag;
547         bool reset_ts = false;
548         int i, err, read_len;
549         __le16 fifo_status;
550         s64 ts = 0;
551
552         err = st_lsm6dsx_read_locked(hw,
553                                      hw->settings->fifo_ops.fifo_diff.addr,
554                                      &fifo_status, sizeof(fifo_status));
555         if (err < 0) {
556                 dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
557                         err);
558                 return err;
559         }
560
561         fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
562         fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
563                    ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
564         if (!fifo_len)
565                 return 0;
566
567         for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
568                 err = st_lsm6dsx_read_block(hw,
569                                             ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR,
570                                             hw->buff, pattern_len,
571                                             ST_LSM6DSX_MAX_TAGGED_WORD_LEN);
572                 if (err < 0) {
573                         dev_err(hw->dev,
574                                 "failed to read pattern from fifo (err=%d)\n",
575                                 err);
576                         return err;
577                 }
578
579                 for (i = 0; i < pattern_len;
580                      i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) {
581                         memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE],
582                                ST_LSM6DSX_SAMPLE_SIZE);
583
584                         tag = hw->buff[i] >> 3;
585                         if (tag == ST_LSM6DSX_TS_TAG) {
586                                 /*
587                                  * hw timestamp is 4B long and it is stored
588                                  * in FIFO according to this schema:
589                                  * B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16],
590                                  * B3 = ts[31:24]
591                                  */
592                                 ts = le32_to_cpu(*((__le32 *)iio_buff));
593                                 /*
594                                  * check if hw timestamp engine is going to
595                                  * reset (the sensor generates an interrupt
596                                  * to signal the hw timestamp will reset in
597                                  * 1.638s)
598                                  */
599                                 if (!reset_ts && ts >= 0xffff0000)
600                                         reset_ts = true;
601                                 ts *= hw->ts_gain;
602                         } else {
603                                 st_lsm6dsx_push_tagged_data(hw, tag, iio_buff,
604                                                             ts);
605                         }
606                 }
607         }
608
609         if (unlikely(reset_ts)) {
610                 err = st_lsm6dsx_reset_hw_ts(hw);
611                 if (err < 0)
612                         return err;
613         }
614         return read_len;
615 }
616
617 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
618 {
619         int err;
620
621         if (!hw->settings->fifo_ops.read_fifo)
622                 return -ENOTSUPP;
623
624         mutex_lock(&hw->fifo_lock);
625
626         hw->settings->fifo_ops.read_fifo(hw);
627         err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
628
629         mutex_unlock(&hw->fifo_lock);
630
631         return err;
632 }
633
634 int st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor *sensor, bool enable)
635 {
636         struct st_lsm6dsx_hw *hw = sensor->hw;
637         u8 fifo_mask;
638         int err;
639
640         mutex_lock(&hw->conf_lock);
641
642         if (enable)
643                 fifo_mask = hw->fifo_mask | BIT(sensor->id);
644         else
645                 fifo_mask = hw->fifo_mask & ~BIT(sensor->id);
646
647         if (hw->fifo_mask) {
648                 err = st_lsm6dsx_flush_fifo(hw);
649                 if (err < 0)
650                         goto out;
651         }
652
653         if (sensor->id == ST_LSM6DSX_ID_EXT0 ||
654             sensor->id == ST_LSM6DSX_ID_EXT1 ||
655             sensor->id == ST_LSM6DSX_ID_EXT2) {
656                 err = st_lsm6dsx_shub_set_enable(sensor, enable);
657                 if (err < 0)
658                         goto out;
659         } else {
660                 err = st_lsm6dsx_sensor_set_enable(sensor, enable);
661                 if (err < 0)
662                         goto out;
663         }
664
665         err = st_lsm6dsx_set_fifo_odr(sensor, enable);
666         if (err < 0)
667                 goto out;
668
669         err = st_lsm6dsx_update_decimators(hw);
670         if (err < 0)
671                 goto out;
672
673         err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
674         if (err < 0)
675                 goto out;
676
677         if (fifo_mask) {
678                 /* reset hw ts counter */
679                 err = st_lsm6dsx_reset_hw_ts(hw);
680                 if (err < 0)
681                         goto out;
682
683                 err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
684                 if (err < 0)
685                         goto out;
686         }
687
688         hw->fifo_mask = fifo_mask;
689
690 out:
691         mutex_unlock(&hw->conf_lock);
692
693         return err;
694 }
695
696 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
697 {
698         struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
699         struct st_lsm6dsx_hw *hw = sensor->hw;
700
701         if (!hw->settings->fifo_ops.update_fifo)
702                 return -ENOTSUPP;
703
704         return hw->settings->fifo_ops.update_fifo(sensor, true);
705 }
706
707 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
708 {
709         struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
710         struct st_lsm6dsx_hw *hw = sensor->hw;
711
712         if (!hw->settings->fifo_ops.update_fifo)
713                 return -ENOTSUPP;
714
715         return hw->settings->fifo_ops.update_fifo(sensor, false);
716 }
717
718 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
719         .preenable = st_lsm6dsx_buffer_preenable,
720         .postdisable = st_lsm6dsx_buffer_postdisable,
721 };
722
723 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
724 {
725         struct iio_buffer *buffer;
726         int i;
727
728         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
729                 if (!hw->iio_devs[i])
730                         continue;
731
732                 buffer = devm_iio_kfifo_allocate(hw->dev);
733                 if (!buffer)
734                         return -ENOMEM;
735
736                 iio_device_attach_buffer(hw->iio_devs[i], buffer);
737                 hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE;
738                 hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops;
739         }
740
741         return 0;
742 }