OSDN Git Service

SCSI: Fix NULL pointer dereference in runtime PM
[uclinux-h8/linux.git] / drivers / iio / magnetometer / bmc150_magn.c
1 /*
2  * Bosch BMC150 three-axis magnetic field sensor driver
3  *
4  * Copyright (c) 2015, Intel Corporation.
5  *
6  * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
7  *
8  * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms and conditions of the GNU General Public License,
12  * version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  */
19
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/acpi.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/pm.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/trigger.h>
34 #include <linux/iio/trigger_consumer.h>
35 #include <linux/iio/triggered_buffer.h>
36 #include <linux/regmap.h>
37
38 #define BMC150_MAGN_DRV_NAME                    "bmc150_magn"
39 #define BMC150_MAGN_IRQ_NAME                    "bmc150_magn_event"
40 #define BMC150_MAGN_GPIO_INT                    "interrupt"
41
42 #define BMC150_MAGN_REG_CHIP_ID                 0x40
43 #define BMC150_MAGN_CHIP_ID_VAL                 0x32
44
45 #define BMC150_MAGN_REG_X_L                     0x42
46 #define BMC150_MAGN_REG_X_M                     0x43
47 #define BMC150_MAGN_REG_Y_L                     0x44
48 #define BMC150_MAGN_REG_Y_M                     0x45
49 #define BMC150_MAGN_SHIFT_XY_L                  3
50 #define BMC150_MAGN_REG_Z_L                     0x46
51 #define BMC150_MAGN_REG_Z_M                     0x47
52 #define BMC150_MAGN_SHIFT_Z_L                   1
53 #define BMC150_MAGN_REG_RHALL_L                 0x48
54 #define BMC150_MAGN_REG_RHALL_M                 0x49
55 #define BMC150_MAGN_SHIFT_RHALL_L               2
56
57 #define BMC150_MAGN_REG_INT_STATUS              0x4A
58
59 #define BMC150_MAGN_REG_POWER                   0x4B
60 #define BMC150_MAGN_MASK_POWER_CTL              BIT(0)
61
62 #define BMC150_MAGN_REG_OPMODE_ODR              0x4C
63 #define BMC150_MAGN_MASK_OPMODE                 GENMASK(2, 1)
64 #define BMC150_MAGN_SHIFT_OPMODE                1
65 #define BMC150_MAGN_MODE_NORMAL                 0x00
66 #define BMC150_MAGN_MODE_FORCED                 0x01
67 #define BMC150_MAGN_MODE_SLEEP                  0x03
68 #define BMC150_MAGN_MASK_ODR                    GENMASK(5, 3)
69 #define BMC150_MAGN_SHIFT_ODR                   3
70
71 #define BMC150_MAGN_REG_INT                     0x4D
72
73 #define BMC150_MAGN_REG_INT_DRDY                0x4E
74 #define BMC150_MAGN_MASK_DRDY_EN                BIT(7)
75 #define BMC150_MAGN_SHIFT_DRDY_EN               7
76 #define BMC150_MAGN_MASK_DRDY_INT3              BIT(6)
77 #define BMC150_MAGN_MASK_DRDY_Z_EN              BIT(5)
78 #define BMC150_MAGN_MASK_DRDY_Y_EN              BIT(4)
79 #define BMC150_MAGN_MASK_DRDY_X_EN              BIT(3)
80 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY       BIT(2)
81 #define BMC150_MAGN_MASK_DRDY_LATCHING          BIT(1)
82 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY     BIT(0)
83
84 #define BMC150_MAGN_REG_LOW_THRESH              0x4F
85 #define BMC150_MAGN_REG_HIGH_THRESH             0x50
86 #define BMC150_MAGN_REG_REP_XY                  0x51
87 #define BMC150_MAGN_REG_REP_Z                   0x52
88
89 #define BMC150_MAGN_REG_TRIM_START              0x5D
90 #define BMC150_MAGN_REG_TRIM_END                0x71
91
92 #define BMC150_MAGN_XY_OVERFLOW_VAL             -4096
93 #define BMC150_MAGN_Z_OVERFLOW_VAL              -16384
94
95 /* Time from SUSPEND to SLEEP */
96 #define BMC150_MAGN_START_UP_TIME_MS            3
97
98 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS       2000
99
100 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
101 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
102 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
103 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
104
105 enum bmc150_magn_axis {
106         AXIS_X,
107         AXIS_Y,
108         AXIS_Z,
109         RHALL,
110         AXIS_XYZ_MAX = RHALL,
111         AXIS_XYZR_MAX,
112 };
113
114 enum bmc150_magn_power_modes {
115         BMC150_MAGN_POWER_MODE_SUSPEND,
116         BMC150_MAGN_POWER_MODE_SLEEP,
117         BMC150_MAGN_POWER_MODE_NORMAL,
118 };
119
120 struct bmc150_magn_trim_regs {
121         s8 x1;
122         s8 y1;
123         __le16 reserved1;
124         u8 reserved2;
125         __le16 z4;
126         s8 x2;
127         s8 y2;
128         __le16 reserved3;
129         __le16 z2;
130         __le16 z1;
131         __le16 xyz1;
132         __le16 z3;
133         s8 xy2;
134         u8 xy1;
135 } __packed;
136
137 struct bmc150_magn_data {
138         struct i2c_client *client;
139         /*
140          * 1. Protect this structure.
141          * 2. Serialize sequences that power on/off the device and access HW.
142          */
143         struct mutex mutex;
144         struct regmap *regmap;
145         /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
146         s32 buffer[6];
147         struct iio_trigger *dready_trig;
148         bool dready_trigger_on;
149         int max_odr;
150 };
151
152 static const struct {
153         int freq;
154         u8 reg_val;
155 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
156                                     {6, 0x02},
157                                     {8, 0x03},
158                                     {10, 0x00},
159                                     {15, 0x04},
160                                     {20, 0x05},
161                                     {25, 0x06},
162                                     {30, 0x07} };
163
164 enum bmc150_magn_presets {
165         LOW_POWER_PRESET,
166         REGULAR_PRESET,
167         ENHANCED_REGULAR_PRESET,
168         HIGH_ACCURACY_PRESET
169 };
170
171 static const struct bmc150_magn_preset {
172         u8 rep_xy;
173         u8 rep_z;
174         u8 odr;
175 } bmc150_magn_presets_table[] = {
176         [LOW_POWER_PRESET] = {3, 3, 10},
177         [REGULAR_PRESET] =  {9, 15, 10},
178         [ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
179         [HIGH_ACCURACY_PRESET] =  {47, 83, 20},
180 };
181
182 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
183
184 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
185 {
186         switch (reg) {
187         case BMC150_MAGN_REG_POWER:
188         case BMC150_MAGN_REG_OPMODE_ODR:
189         case BMC150_MAGN_REG_INT:
190         case BMC150_MAGN_REG_INT_DRDY:
191         case BMC150_MAGN_REG_LOW_THRESH:
192         case BMC150_MAGN_REG_HIGH_THRESH:
193         case BMC150_MAGN_REG_REP_XY:
194         case BMC150_MAGN_REG_REP_Z:
195                 return true;
196         default:
197                 return false;
198         };
199 }
200
201 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
202 {
203         switch (reg) {
204         case BMC150_MAGN_REG_X_L:
205         case BMC150_MAGN_REG_X_M:
206         case BMC150_MAGN_REG_Y_L:
207         case BMC150_MAGN_REG_Y_M:
208         case BMC150_MAGN_REG_Z_L:
209         case BMC150_MAGN_REG_Z_M:
210         case BMC150_MAGN_REG_RHALL_L:
211         case BMC150_MAGN_REG_RHALL_M:
212         case BMC150_MAGN_REG_INT_STATUS:
213                 return true;
214         default:
215                 return false;
216         }
217 }
218
219 static const struct regmap_config bmc150_magn_regmap_config = {
220         .reg_bits = 8,
221         .val_bits = 8,
222
223         .max_register = BMC150_MAGN_REG_TRIM_END,
224         .cache_type = REGCACHE_RBTREE,
225
226         .writeable_reg = bmc150_magn_is_writeable_reg,
227         .volatile_reg = bmc150_magn_is_volatile_reg,
228 };
229
230 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
231                                       enum bmc150_magn_power_modes mode,
232                                       bool state)
233 {
234         int ret;
235
236         switch (mode) {
237         case BMC150_MAGN_POWER_MODE_SUSPEND:
238                 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
239                                          BMC150_MAGN_MASK_POWER_CTL, !state);
240                 if (ret < 0)
241                         return ret;
242                 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
243                 return 0;
244         case BMC150_MAGN_POWER_MODE_SLEEP:
245                 return regmap_update_bits(data->regmap,
246                                           BMC150_MAGN_REG_OPMODE_ODR,
247                                           BMC150_MAGN_MASK_OPMODE,
248                                           BMC150_MAGN_MODE_SLEEP <<
249                                           BMC150_MAGN_SHIFT_OPMODE);
250         case BMC150_MAGN_POWER_MODE_NORMAL:
251                 return regmap_update_bits(data->regmap,
252                                           BMC150_MAGN_REG_OPMODE_ODR,
253                                           BMC150_MAGN_MASK_OPMODE,
254                                           BMC150_MAGN_MODE_NORMAL <<
255                                           BMC150_MAGN_SHIFT_OPMODE);
256         }
257
258         return -EINVAL;
259 }
260
261 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
262 {
263 #ifdef CONFIG_PM
264         int ret;
265
266         if (on) {
267                 ret = pm_runtime_get_sync(&data->client->dev);
268         } else {
269                 pm_runtime_mark_last_busy(&data->client->dev);
270                 ret = pm_runtime_put_autosuspend(&data->client->dev);
271         }
272
273         if (ret < 0) {
274                 dev_err(&data->client->dev,
275                         "failed to change power state to %d\n", on);
276                 if (on)
277                         pm_runtime_put_noidle(&data->client->dev);
278
279                 return ret;
280         }
281 #endif
282
283         return 0;
284 }
285
286 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
287 {
288         int ret, reg_val;
289         u8 i, odr_val;
290
291         ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
292         if (ret < 0)
293                 return ret;
294         odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
295
296         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
297                 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
298                         *val = bmc150_magn_samp_freq_table[i].freq;
299                         return 0;
300                 }
301
302         return -EINVAL;
303 }
304
305 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
306 {
307         int ret;
308         u8 i;
309
310         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
311                 if (bmc150_magn_samp_freq_table[i].freq == val) {
312                         ret = regmap_update_bits(data->regmap,
313                                                  BMC150_MAGN_REG_OPMODE_ODR,
314                                                  BMC150_MAGN_MASK_ODR,
315                                                  bmc150_magn_samp_freq_table[i].
316                                                  reg_val <<
317                                                  BMC150_MAGN_SHIFT_ODR);
318                         if (ret < 0)
319                                 return ret;
320                         return 0;
321                 }
322         }
323
324         return -EINVAL;
325 }
326
327 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
328                                    int rep_z, int odr)
329 {
330         int ret, reg_val, max_odr;
331
332         if (rep_xy <= 0) {
333                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
334                                   &reg_val);
335                 if (ret < 0)
336                         return ret;
337                 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
338         }
339         if (rep_z <= 0) {
340                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
341                                   &reg_val);
342                 if (ret < 0)
343                         return ret;
344                 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
345         }
346         if (odr <= 0) {
347                 ret = bmc150_magn_get_odr(data, &odr);
348                 if (ret < 0)
349                         return ret;
350         }
351         /* the maximum selectable read-out frequency from datasheet */
352         max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
353         if (odr > max_odr) {
354                 dev_err(&data->client->dev,
355                         "Can't set oversampling with sampling freq %d\n",
356                         odr);
357                 return -EINVAL;
358         }
359         data->max_odr = max_odr;
360
361         return 0;
362 }
363
364 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
365                                     u16 rhall)
366 {
367         s16 val;
368         u16 xyz1 = le16_to_cpu(tregs->xyz1);
369
370         if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
371                 return S32_MIN;
372
373         if (!rhall)
374                 rhall = xyz1;
375
376         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
377         val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
378               ((s32)val)) >> 7)) + (((s32)val) *
379               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
380               ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
381               (((s16)tregs->x1) << 3);
382
383         return (s32)val;
384 }
385
386 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
387                                     u16 rhall)
388 {
389         s16 val;
390         u16 xyz1 = le16_to_cpu(tregs->xyz1);
391
392         if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
393                 return S32_MIN;
394
395         if (!rhall)
396                 rhall = xyz1;
397
398         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
399         val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
400               ((s32)val)) >> 7)) + (((s32)val) *
401               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
402               ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
403               (((s16)tregs->y1) << 3);
404
405         return (s32)val;
406 }
407
408 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
409                                     u16 rhall)
410 {
411         s32 val;
412         u16 xyz1 = le16_to_cpu(tregs->xyz1);
413         u16 z1 = le16_to_cpu(tregs->z1);
414         s16 z2 = le16_to_cpu(tregs->z2);
415         s16 z3 = le16_to_cpu(tregs->z3);
416         s16 z4 = le16_to_cpu(tregs->z4);
417
418         if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
419                 return S32_MIN;
420
421         val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
422               ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
423               ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
424
425         return val;
426 }
427
428 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
429 {
430         int ret;
431         __le16 values[AXIS_XYZR_MAX];
432         s16 raw_x, raw_y, raw_z;
433         u16 rhall;
434         struct bmc150_magn_trim_regs tregs;
435
436         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
437                                values, sizeof(values));
438         if (ret < 0)
439                 return ret;
440
441         raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
442         raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
443         raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
444         rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
445
446         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
447                                &tregs, sizeof(tregs));
448         if (ret < 0)
449                 return ret;
450
451         buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
452         buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
453         buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
454
455         return 0;
456 }
457
458 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
459                                 struct iio_chan_spec const *chan,
460                                 int *val, int *val2, long mask)
461 {
462         struct bmc150_magn_data *data = iio_priv(indio_dev);
463         int ret, tmp;
464         s32 values[AXIS_XYZ_MAX];
465
466         switch (mask) {
467         case IIO_CHAN_INFO_RAW:
468                 if (iio_buffer_enabled(indio_dev))
469                         return -EBUSY;
470                 mutex_lock(&data->mutex);
471
472                 ret = bmc150_magn_set_power_state(data, true);
473                 if (ret < 0) {
474                         mutex_unlock(&data->mutex);
475                         return ret;
476                 }
477
478                 ret = bmc150_magn_read_xyz(data, values);
479                 if (ret < 0) {
480                         bmc150_magn_set_power_state(data, false);
481                         mutex_unlock(&data->mutex);
482                         return ret;
483                 }
484                 *val = values[chan->scan_index];
485
486                 ret = bmc150_magn_set_power_state(data, false);
487                 if (ret < 0) {
488                         mutex_unlock(&data->mutex);
489                         return ret;
490                 }
491
492                 mutex_unlock(&data->mutex);
493                 return IIO_VAL_INT;
494         case IIO_CHAN_INFO_SCALE:
495                 /*
496                  * The API/driver performs an off-chip temperature
497                  * compensation and outputs x/y/z magnetic field data in
498                  * 16 LSB/uT to the upper application layer.
499                  */
500                 *val = 0;
501                 *val2 = 625;
502                 return IIO_VAL_INT_PLUS_MICRO;
503         case IIO_CHAN_INFO_SAMP_FREQ:
504                 ret = bmc150_magn_get_odr(data, val);
505                 if (ret < 0)
506                         return ret;
507                 return IIO_VAL_INT;
508         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
509                 switch (chan->channel2) {
510                 case IIO_MOD_X:
511                 case IIO_MOD_Y:
512                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
513                                           &tmp);
514                         if (ret < 0)
515                                 return ret;
516                         *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
517                         return IIO_VAL_INT;
518                 case IIO_MOD_Z:
519                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
520                                           &tmp);
521                         if (ret < 0)
522                                 return ret;
523                         *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
524                         return IIO_VAL_INT;
525                 default:
526                         return -EINVAL;
527                 }
528         default:
529                 return -EINVAL;
530         }
531 }
532
533 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
534                                  struct iio_chan_spec const *chan,
535                                  int val, int val2, long mask)
536 {
537         struct bmc150_magn_data *data = iio_priv(indio_dev);
538         int ret;
539
540         switch (mask) {
541         case IIO_CHAN_INFO_SAMP_FREQ:
542                 if (val > data->max_odr)
543                         return -EINVAL;
544                 mutex_lock(&data->mutex);
545                 ret = bmc150_magn_set_odr(data, val);
546                 mutex_unlock(&data->mutex);
547                 return ret;
548         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
549                 switch (chan->channel2) {
550                 case IIO_MOD_X:
551                 case IIO_MOD_Y:
552                         if (val < 1 || val > 511)
553                                 return -EINVAL;
554                         mutex_lock(&data->mutex);
555                         ret = bmc150_magn_set_max_odr(data, val, 0, 0);
556                         if (ret < 0) {
557                                 mutex_unlock(&data->mutex);
558                                 return ret;
559                         }
560                         ret = regmap_update_bits(data->regmap,
561                                                  BMC150_MAGN_REG_REP_XY,
562                                                  0xFF,
563                                                  BMC150_MAGN_REPXY_TO_REGVAL
564                                                  (val));
565                         mutex_unlock(&data->mutex);
566                         return ret;
567                 case IIO_MOD_Z:
568                         if (val < 1 || val > 256)
569                                 return -EINVAL;
570                         mutex_lock(&data->mutex);
571                         ret = bmc150_magn_set_max_odr(data, 0, val, 0);
572                         if (ret < 0) {
573                                 mutex_unlock(&data->mutex);
574                                 return ret;
575                         }
576                         ret = regmap_update_bits(data->regmap,
577                                                  BMC150_MAGN_REG_REP_Z,
578                                                  0xFF,
579                                                  BMC150_MAGN_REPZ_TO_REGVAL
580                                                  (val));
581                         mutex_unlock(&data->mutex);
582                         return ret;
583                 default:
584                         return -EINVAL;
585                 }
586         default:
587                 return -EINVAL;
588         }
589 }
590
591 static int bmc150_magn_validate_trigger(struct iio_dev *indio_dev,
592                                         struct iio_trigger *trig)
593 {
594         struct bmc150_magn_data *data = iio_priv(indio_dev);
595
596         if (data->dready_trig != trig)
597                 return -EINVAL;
598
599         return 0;
600 }
601
602 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
603                                                 struct device_attribute *attr,
604                                                 char *buf)
605 {
606         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
607         struct bmc150_magn_data *data = iio_priv(indio_dev);
608         size_t len = 0;
609         u8 i;
610
611         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
612                 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
613                         break;
614                 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
615                                  bmc150_magn_samp_freq_table[i].freq);
616         }
617         /* replace last space with a newline */
618         buf[len - 1] = '\n';
619
620         return len;
621 }
622
623 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
624
625 static struct attribute *bmc150_magn_attributes[] = {
626         &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
627         NULL,
628 };
629
630 static const struct attribute_group bmc150_magn_attrs_group = {
631         .attrs = bmc150_magn_attributes,
632 };
633
634 #define BMC150_MAGN_CHANNEL(_axis) {                                    \
635         .type = IIO_MAGN,                                               \
636         .modified = 1,                                                  \
637         .channel2 = IIO_MOD_##_axis,                                    \
638         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                  \
639                               BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),    \
640         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |      \
641                                     BIT(IIO_CHAN_INFO_SCALE),           \
642         .scan_index = AXIS_##_axis,                                     \
643         .scan_type = {                                                  \
644                 .sign = 's',                                            \
645                 .realbits = 32,                                         \
646                 .storagebits = 32,                                      \
647                 .endianness = IIO_LE                                    \
648         },                                                              \
649 }
650
651 static const struct iio_chan_spec bmc150_magn_channels[] = {
652         BMC150_MAGN_CHANNEL(X),
653         BMC150_MAGN_CHANNEL(Y),
654         BMC150_MAGN_CHANNEL(Z),
655         IIO_CHAN_SOFT_TIMESTAMP(3),
656 };
657
658 static const struct iio_info bmc150_magn_info = {
659         .attrs = &bmc150_magn_attrs_group,
660         .read_raw = bmc150_magn_read_raw,
661         .write_raw = bmc150_magn_write_raw,
662         .validate_trigger = bmc150_magn_validate_trigger,
663         .driver_module = THIS_MODULE,
664 };
665
666 static const unsigned long bmc150_magn_scan_masks[] = {0x07, 0};
667
668 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
669 {
670         struct iio_poll_func *pf = p;
671         struct iio_dev *indio_dev = pf->indio_dev;
672         struct bmc150_magn_data *data = iio_priv(indio_dev);
673         int ret;
674
675         mutex_lock(&data->mutex);
676         ret = bmc150_magn_read_xyz(data, data->buffer);
677         mutex_unlock(&data->mutex);
678         if (ret < 0)
679                 goto err;
680
681         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
682                                            pf->timestamp);
683
684 err:
685         iio_trigger_notify_done(data->dready_trig);
686
687         return IRQ_HANDLED;
688 }
689
690 static int bmc150_magn_init(struct bmc150_magn_data *data)
691 {
692         int ret, chip_id;
693         struct bmc150_magn_preset preset;
694
695         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
696                                          false);
697         if (ret < 0) {
698                 dev_err(&data->client->dev,
699                         "Failed to bring up device from suspend mode\n");
700                 return ret;
701         }
702
703         ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
704         if (ret < 0) {
705                 dev_err(&data->client->dev, "Failed reading chip id\n");
706                 goto err_poweroff;
707         }
708         if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
709                 dev_err(&data->client->dev, "Invalid chip id 0x%x\n", ret);
710                 ret = -ENODEV;
711                 goto err_poweroff;
712         }
713         dev_dbg(&data->client->dev, "Chip id %x\n", ret);
714
715         preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
716         ret = bmc150_magn_set_odr(data, preset.odr);
717         if (ret < 0) {
718                 dev_err(&data->client->dev, "Failed to set ODR to %d\n",
719                         preset.odr);
720                 goto err_poweroff;
721         }
722
723         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
724                            BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
725         if (ret < 0) {
726                 dev_err(&data->client->dev, "Failed to set REP XY to %d\n",
727                         preset.rep_xy);
728                 goto err_poweroff;
729         }
730
731         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
732                            BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
733         if (ret < 0) {
734                 dev_err(&data->client->dev, "Failed to set REP Z to %d\n",
735                         preset.rep_z);
736                 goto err_poweroff;
737         }
738
739         ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
740                                       preset.odr);
741         if (ret < 0)
742                 goto err_poweroff;
743
744         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
745                                          true);
746         if (ret < 0) {
747                 dev_err(&data->client->dev, "Failed to power on device\n");
748                 goto err_poweroff;
749         }
750
751         return 0;
752
753 err_poweroff:
754         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
755         return ret;
756 }
757
758 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
759 {
760         int tmp;
761
762         /*
763          * Data Ready (DRDY) is always cleared after
764          * readout of data registers ends.
765          */
766         return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
767 }
768
769 static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
770 {
771         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
772         struct bmc150_magn_data *data = iio_priv(indio_dev);
773         int ret;
774
775         if (!data->dready_trigger_on)
776                 return 0;
777
778         mutex_lock(&data->mutex);
779         ret = bmc150_magn_reset_intr(data);
780         mutex_unlock(&data->mutex);
781
782         return ret;
783 }
784
785 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
786                                                   bool state)
787 {
788         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
789         struct bmc150_magn_data *data = iio_priv(indio_dev);
790         int ret = 0;
791
792         mutex_lock(&data->mutex);
793         if (state == data->dready_trigger_on)
794                 goto err_unlock;
795
796         ret = bmc150_magn_set_power_state(data, state);
797         if (ret < 0)
798                 goto err_unlock;
799
800         ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
801                                  BMC150_MAGN_MASK_DRDY_EN,
802                                  state << BMC150_MAGN_SHIFT_DRDY_EN);
803         if (ret < 0)
804                 goto err_poweroff;
805
806         data->dready_trigger_on = state;
807
808         if (state) {
809                 ret = bmc150_magn_reset_intr(data);
810                 if (ret < 0)
811                         goto err_poweroff;
812         }
813         mutex_unlock(&data->mutex);
814
815         return 0;
816
817 err_poweroff:
818         bmc150_magn_set_power_state(data, false);
819 err_unlock:
820         mutex_unlock(&data->mutex);
821         return ret;
822 }
823
824 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
825         .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
826         .try_reenable = bmc150_magn_trig_try_reen,
827         .owner = THIS_MODULE,
828 };
829
830 static int bmc150_magn_gpio_probe(struct i2c_client *client)
831 {
832         struct device *dev;
833         struct gpio_desc *gpio;
834         int ret;
835
836         if (!client)
837                 return -EINVAL;
838
839         dev = &client->dev;
840
841         /* data ready GPIO interrupt pin */
842         gpio = devm_gpiod_get_index(dev, BMC150_MAGN_GPIO_INT, 0);
843         if (IS_ERR(gpio)) {
844                 dev_err(dev, "ACPI GPIO get index failed\n");
845                 return PTR_ERR(gpio);
846         }
847
848         ret = gpiod_direction_input(gpio);
849         if (ret)
850                 return ret;
851
852         ret = gpiod_to_irq(gpio);
853
854         dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
855
856         return ret;
857 }
858
859 static const char *bmc150_magn_match_acpi_device(struct device *dev)
860 {
861         const struct acpi_device_id *id;
862
863         id = acpi_match_device(dev->driver->acpi_match_table, dev);
864         if (!id)
865                 return NULL;
866
867         return dev_name(dev);
868 }
869
870 static int bmc150_magn_probe(struct i2c_client *client,
871                              const struct i2c_device_id *id)
872 {
873         struct bmc150_magn_data *data;
874         struct iio_dev *indio_dev;
875         const char *name = NULL;
876         int ret;
877
878         indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
879         if (!indio_dev)
880                 return -ENOMEM;
881
882         data = iio_priv(indio_dev);
883         i2c_set_clientdata(client, indio_dev);
884         data->client = client;
885
886         if (id)
887                 name = id->name;
888         else if (ACPI_HANDLE(&client->dev))
889                 name = bmc150_magn_match_acpi_device(&client->dev);
890         else
891                 return -ENOSYS;
892
893         mutex_init(&data->mutex);
894         data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config);
895         if (IS_ERR(data->regmap)) {
896                 dev_err(&client->dev, "Failed to allocate register map\n");
897                 return PTR_ERR(data->regmap);
898         }
899
900         ret = bmc150_magn_init(data);
901         if (ret < 0)
902                 return ret;
903
904         indio_dev->dev.parent = &client->dev;
905         indio_dev->channels = bmc150_magn_channels;
906         indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
907         indio_dev->available_scan_masks = bmc150_magn_scan_masks;
908         indio_dev->name = name;
909         indio_dev->modes = INDIO_DIRECT_MODE;
910         indio_dev->info = &bmc150_magn_info;
911
912         if (client->irq <= 0)
913                 client->irq = bmc150_magn_gpio_probe(client);
914
915         if (client->irq > 0) {
916                 data->dready_trig = devm_iio_trigger_alloc(&client->dev,
917                                                            "%s-dev%d",
918                                                            indio_dev->name,
919                                                            indio_dev->id);
920                 if (!data->dready_trig) {
921                         ret = -ENOMEM;
922                         dev_err(&client->dev, "iio trigger alloc failed\n");
923                         goto err_poweroff;
924                 }
925
926                 data->dready_trig->dev.parent = &client->dev;
927                 data->dready_trig->ops = &bmc150_magn_trigger_ops;
928                 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
929                 ret = iio_trigger_register(data->dready_trig);
930                 if (ret) {
931                         dev_err(&client->dev, "iio trigger register failed\n");
932                         goto err_poweroff;
933                 }
934
935                 ret = iio_triggered_buffer_setup(indio_dev,
936                                                  &iio_pollfunc_store_time,
937                                                  bmc150_magn_trigger_handler,
938                                                  NULL);
939                 if (ret < 0) {
940                         dev_err(&client->dev,
941                                 "iio triggered buffer setup failed\n");
942                         goto err_trigger_unregister;
943                 }
944
945                 ret = request_threaded_irq(client->irq,
946                                            iio_trigger_generic_data_rdy_poll,
947                                            NULL,
948                                            IRQF_TRIGGER_RISING | IRQF_ONESHOT,
949                                            BMC150_MAGN_IRQ_NAME,
950                                            data->dready_trig);
951                 if (ret < 0) {
952                         dev_err(&client->dev, "request irq %d failed\n",
953                                 client->irq);
954                         goto err_buffer_cleanup;
955                 }
956         }
957
958         ret = iio_device_register(indio_dev);
959         if (ret < 0) {
960                 dev_err(&client->dev, "unable to register iio device\n");
961                 goto err_free_irq;
962         }
963
964         ret = pm_runtime_set_active(&client->dev);
965         if (ret)
966                 goto err_iio_unregister;
967
968         pm_runtime_enable(&client->dev);
969         pm_runtime_set_autosuspend_delay(&client->dev,
970                                          BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
971         pm_runtime_use_autosuspend(&client->dev);
972
973         dev_dbg(&indio_dev->dev, "Registered device %s\n", name);
974
975         return 0;
976
977 err_iio_unregister:
978         iio_device_unregister(indio_dev);
979 err_free_irq:
980         if (client->irq > 0)
981                 free_irq(client->irq, data->dready_trig);
982 err_buffer_cleanup:
983         if (data->dready_trig)
984                 iio_triggered_buffer_cleanup(indio_dev);
985 err_trigger_unregister:
986         if (data->dready_trig)
987                 iio_trigger_unregister(data->dready_trig);
988 err_poweroff:
989         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
990         return ret;
991 }
992
993 static int bmc150_magn_remove(struct i2c_client *client)
994 {
995         struct iio_dev *indio_dev = i2c_get_clientdata(client);
996         struct bmc150_magn_data *data = iio_priv(indio_dev);
997
998         pm_runtime_disable(&client->dev);
999         pm_runtime_set_suspended(&client->dev);
1000         pm_runtime_put_noidle(&client->dev);
1001
1002         iio_device_unregister(indio_dev);
1003
1004         if (client->irq > 0)
1005                 free_irq(data->client->irq, data->dready_trig);
1006
1007         if (data->dready_trig) {
1008                 iio_triggered_buffer_cleanup(indio_dev);
1009                 iio_trigger_unregister(data->dready_trig);
1010         }
1011
1012         mutex_lock(&data->mutex);
1013         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
1014         mutex_unlock(&data->mutex);
1015
1016         return 0;
1017 }
1018
1019 #ifdef CONFIG_PM
1020 static int bmc150_magn_runtime_suspend(struct device *dev)
1021 {
1022         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1023         struct bmc150_magn_data *data = iio_priv(indio_dev);
1024         int ret;
1025
1026         mutex_lock(&data->mutex);
1027         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1028                                          true);
1029         mutex_unlock(&data->mutex);
1030         if (ret < 0) {
1031                 dev_err(&data->client->dev, "powering off device failed\n");
1032                 return ret;
1033         }
1034         return 0;
1035 }
1036
1037 static int bmc150_magn_runtime_resume(struct device *dev)
1038 {
1039         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1040         struct bmc150_magn_data *data = iio_priv(indio_dev);
1041
1042         return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1043                                           true);
1044 }
1045 #endif
1046
1047 #ifdef CONFIG_PM_SLEEP
1048 static int bmc150_magn_suspend(struct device *dev)
1049 {
1050         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1051         struct bmc150_magn_data *data = iio_priv(indio_dev);
1052         int ret;
1053
1054         mutex_lock(&data->mutex);
1055         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1056                                          true);
1057         mutex_unlock(&data->mutex);
1058
1059         return ret;
1060 }
1061
1062 static int bmc150_magn_resume(struct device *dev)
1063 {
1064         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1065         struct bmc150_magn_data *data = iio_priv(indio_dev);
1066         int ret;
1067
1068         mutex_lock(&data->mutex);
1069         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1070                                          true);
1071         mutex_unlock(&data->mutex);
1072
1073         return ret;
1074 }
1075 #endif
1076
1077 static const struct dev_pm_ops bmc150_magn_pm_ops = {
1078         SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1079         SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1080                            bmc150_magn_runtime_resume, NULL)
1081 };
1082
1083 static const struct acpi_device_id bmc150_magn_acpi_match[] = {
1084         {"BMC150B", 0},
1085         {},
1086 };
1087 MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match);
1088
1089 static const struct i2c_device_id bmc150_magn_id[] = {
1090         {"bmc150_magn", 0},
1091         {},
1092 };
1093 MODULE_DEVICE_TABLE(i2c, bmc150_magn_id);
1094
1095 static struct i2c_driver bmc150_magn_driver = {
1096         .driver = {
1097                    .name = BMC150_MAGN_DRV_NAME,
1098                    .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match),
1099                    .pm = &bmc150_magn_pm_ops,
1100                    },
1101         .probe = bmc150_magn_probe,
1102         .remove = bmc150_magn_remove,
1103         .id_table = bmc150_magn_id,
1104 };
1105 module_i2c_driver(bmc150_magn_driver);
1106
1107 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1108 MODULE_LICENSE("GPL v2");
1109 MODULE_DESCRIPTION("BMC150 magnetometer driver");