OSDN Git Service

08e51e79a054b6f6e7cbe7b3e3e422c9343a4646
[android-x86/kernel.git] / drivers / infiniband / ulp / iser / iser_verbs.c
1 /*
2  * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
4  * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38
39 #include "iscsi_iser.h"
40
41 #define ISCSI_ISER_MAX_CONN     8
42 #define ISER_MAX_RX_LEN         (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN         (ISER_QP_MAX_REQ_DTOS  * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN         (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45                                  ISCSI_ISER_MAX_CONN)
46
47 static int iser_cq_poll_limit = 512;
48
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54         iser_err("got cq event %d \n", cause->event);
55 }
56
57 static void iser_qp_event_callback(struct ib_event *cause, void *context)
58 {
59         iser_err("got qp event %d\n",cause->event);
60 }
61
62 static void iser_event_handler(struct ib_event_handler *handler,
63                                 struct ib_event *event)
64 {
65         iser_err("async event %d on device %s port %d\n", event->event,
66                 event->device->name, event->element.port_num);
67 }
68
69 /**
70  * iser_create_device_ib_res - creates Protection Domain (PD), Completion
71  * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
72  * the adapator.
73  *
74  * returns 0 on success, -1 on failure
75  */
76 static int iser_create_device_ib_res(struct iser_device *device)
77 {
78         struct ib_device_attr *dev_attr = &device->dev_attr;
79         int ret, i, max_cqe;
80
81         ret = ib_query_device(device->ib_device, dev_attr);
82         if (ret) {
83                 pr_warn("Query device failed for %s\n", device->ib_device->name);
84                 return ret;
85         }
86
87         /* Assign function handles  - based on FMR support */
88         if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr &&
89             device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) {
90                 iser_info("FMR supported, using FMR for registration\n");
91                 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool;
92                 device->iser_free_rdma_reg_res = iser_free_fmr_pool;
93                 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr;
94                 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr;
95         } else
96         if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
97                 iser_info("FastReg supported, using FastReg for registration\n");
98                 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool;
99                 device->iser_free_rdma_reg_res = iser_free_fastreg_pool;
100                 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg;
101                 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg;
102         } else {
103                 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n");
104                 return -1;
105         }
106
107         device->comps_used = min(ISER_MAX_CQ,
108                                  device->ib_device->num_comp_vectors);
109
110         max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
111
112         iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
113                   device->comps_used, device->ib_device->name,
114                   device->ib_device->num_comp_vectors, max_cqe);
115
116         device->pd = ib_alloc_pd(device->ib_device);
117         if (IS_ERR(device->pd))
118                 goto pd_err;
119
120         for (i = 0; i < device->comps_used; i++) {
121                 struct iser_comp *comp = &device->comps[i];
122
123                 comp->device = device;
124                 comp->cq = ib_create_cq(device->ib_device,
125                                         iser_cq_callback,
126                                         iser_cq_event_callback,
127                                         (void *)comp,
128                                         max_cqe, i);
129                 if (IS_ERR(comp->cq)) {
130                         comp->cq = NULL;
131                         goto cq_err;
132                 }
133
134                 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
135                         goto cq_err;
136
137                 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
138                              (unsigned long)comp);
139         }
140
141         device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
142                                    IB_ACCESS_REMOTE_WRITE |
143                                    IB_ACCESS_REMOTE_READ);
144         if (IS_ERR(device->mr))
145                 goto dma_mr_err;
146
147         INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
148                                 iser_event_handler);
149         if (ib_register_event_handler(&device->event_handler))
150                 goto handler_err;
151
152         return 0;
153
154 handler_err:
155         ib_dereg_mr(device->mr);
156 dma_mr_err:
157         for (i = 0; i < device->comps_used; i++)
158                 tasklet_kill(&device->comps[i].tasklet);
159 cq_err:
160         for (i = 0; i < device->comps_used; i++) {
161                 struct iser_comp *comp = &device->comps[i];
162
163                 if (comp->cq)
164                         ib_destroy_cq(comp->cq);
165         }
166         ib_dealloc_pd(device->pd);
167 pd_err:
168         iser_err("failed to allocate an IB resource\n");
169         return -1;
170 }
171
172 /**
173  * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
174  * CQ and PD created with the device associated with the adapator.
175  */
176 static void iser_free_device_ib_res(struct iser_device *device)
177 {
178         int i;
179         BUG_ON(device->mr == NULL);
180
181         for (i = 0; i < device->comps_used; i++) {
182                 struct iser_comp *comp = &device->comps[i];
183
184                 tasklet_kill(&comp->tasklet);
185                 ib_destroy_cq(comp->cq);
186                 comp->cq = NULL;
187         }
188
189         (void)ib_unregister_event_handler(&device->event_handler);
190         (void)ib_dereg_mr(device->mr);
191         (void)ib_dealloc_pd(device->pd);
192
193         device->mr = NULL;
194         device->pd = NULL;
195 }
196
197 /**
198  * iser_create_fmr_pool - Creates FMR pool and page_vector
199  *
200  * returns 0 on success, or errno code on failure
201  */
202 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max)
203 {
204         struct iser_device *device = ib_conn->device;
205         struct ib_fmr_pool_param params;
206         int ret = -ENOMEM;
207
208         ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) +
209                                         (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)),
210                                         GFP_KERNEL);
211         if (!ib_conn->fmr.page_vec)
212                 return ret;
213
214         ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1);
215
216         params.page_shift        = SHIFT_4K;
217         /* when the first/last SG element are not start/end *
218          * page aligned, the map whould be of N+1 pages     */
219         params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
220         /* make the pool size twice the max number of SCSI commands *
221          * the ML is expected to queue, watermark for unmap at 50%  */
222         params.pool_size         = cmds_max * 2;
223         params.dirty_watermark   = cmds_max;
224         params.cache             = 0;
225         params.flush_function    = NULL;
226         params.access            = (IB_ACCESS_LOCAL_WRITE  |
227                                     IB_ACCESS_REMOTE_WRITE |
228                                     IB_ACCESS_REMOTE_READ);
229
230         ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, &params);
231         if (!IS_ERR(ib_conn->fmr.pool))
232                 return 0;
233
234         /* no FMR => no need for page_vec */
235         kfree(ib_conn->fmr.page_vec);
236         ib_conn->fmr.page_vec = NULL;
237
238         ret = PTR_ERR(ib_conn->fmr.pool);
239         ib_conn->fmr.pool = NULL;
240         if (ret != -ENOSYS) {
241                 iser_err("FMR allocation failed, err %d\n", ret);
242                 return ret;
243         } else {
244                 iser_warn("FMRs are not supported, using unaligned mode\n");
245                 return 0;
246         }
247 }
248
249 /**
250  * iser_free_fmr_pool - releases the FMR pool and page vec
251  */
252 void iser_free_fmr_pool(struct ib_conn *ib_conn)
253 {
254         iser_info("freeing conn %p fmr pool %p\n",
255                   ib_conn, ib_conn->fmr.pool);
256
257         if (ib_conn->fmr.pool != NULL)
258                 ib_destroy_fmr_pool(ib_conn->fmr.pool);
259
260         ib_conn->fmr.pool = NULL;
261
262         kfree(ib_conn->fmr.page_vec);
263         ib_conn->fmr.page_vec = NULL;
264 }
265
266 static int
267 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd,
268                          bool pi_enable, struct fast_reg_descriptor *desc)
269 {
270         int ret;
271
272         desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device,
273                                                       ISCSI_ISER_SG_TABLESIZE + 1);
274         if (IS_ERR(desc->data_frpl)) {
275                 ret = PTR_ERR(desc->data_frpl);
276                 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
277                          ret);
278                 return PTR_ERR(desc->data_frpl);
279         }
280
281         desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1);
282         if (IS_ERR(desc->data_mr)) {
283                 ret = PTR_ERR(desc->data_mr);
284                 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
285                 goto fast_reg_mr_failure;
286         }
287         desc->reg_indicators |= ISER_DATA_KEY_VALID;
288
289         if (pi_enable) {
290                 struct ib_mr_init_attr mr_init_attr = {0};
291                 struct iser_pi_context *pi_ctx = NULL;
292
293                 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
294                 if (!desc->pi_ctx) {
295                         iser_err("Failed to allocate pi context\n");
296                         ret = -ENOMEM;
297                         goto pi_ctx_alloc_failure;
298                 }
299                 pi_ctx = desc->pi_ctx;
300
301                 pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device,
302                                                     ISCSI_ISER_SG_TABLESIZE);
303                 if (IS_ERR(pi_ctx->prot_frpl)) {
304                         ret = PTR_ERR(pi_ctx->prot_frpl);
305                         iser_err("Failed to allocate prot frpl ret=%d\n",
306                                  ret);
307                         goto prot_frpl_failure;
308                 }
309
310                 pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd,
311                                                 ISCSI_ISER_SG_TABLESIZE + 1);
312                 if (IS_ERR(pi_ctx->prot_mr)) {
313                         ret = PTR_ERR(pi_ctx->prot_mr);
314                         iser_err("Failed to allocate prot frmr ret=%d\n",
315                                  ret);
316                         goto prot_mr_failure;
317                 }
318                 desc->reg_indicators |= ISER_PROT_KEY_VALID;
319
320                 mr_init_attr.max_reg_descriptors = 2;
321                 mr_init_attr.flags |= IB_MR_SIGNATURE_EN;
322                 pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr);
323                 if (IS_ERR(pi_ctx->sig_mr)) {
324                         ret = PTR_ERR(pi_ctx->sig_mr);
325                         iser_err("Failed to allocate signature enabled mr err=%d\n",
326                                  ret);
327                         goto sig_mr_failure;
328                 }
329                 desc->reg_indicators |= ISER_SIG_KEY_VALID;
330         }
331         desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
332
333         iser_dbg("Create fr_desc %p page_list %p\n",
334                  desc, desc->data_frpl->page_list);
335
336         return 0;
337 sig_mr_failure:
338         ib_dereg_mr(desc->pi_ctx->prot_mr);
339 prot_mr_failure:
340         ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
341 prot_frpl_failure:
342         kfree(desc->pi_ctx);
343 pi_ctx_alloc_failure:
344         ib_dereg_mr(desc->data_mr);
345 fast_reg_mr_failure:
346         ib_free_fast_reg_page_list(desc->data_frpl);
347
348         return ret;
349 }
350
351 /**
352  * iser_create_fastreg_pool - Creates pool of fast_reg descriptors
353  * for fast registration work requests.
354  * returns 0 on success, or errno code on failure
355  */
356 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max)
357 {
358         struct iser_device *device = ib_conn->device;
359         struct fast_reg_descriptor *desc;
360         int i, ret;
361
362         INIT_LIST_HEAD(&ib_conn->fastreg.pool);
363         ib_conn->fastreg.pool_size = 0;
364         for (i = 0; i < cmds_max; i++) {
365                 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
366                 if (!desc) {
367                         iser_err("Failed to allocate a new fast_reg descriptor\n");
368                         ret = -ENOMEM;
369                         goto err;
370                 }
371
372                 ret = iser_create_fastreg_desc(device->ib_device, device->pd,
373                                                ib_conn->pi_support, desc);
374                 if (ret) {
375                         iser_err("Failed to create fastreg descriptor err=%d\n",
376                                  ret);
377                         kfree(desc);
378                         goto err;
379                 }
380
381                 list_add_tail(&desc->list, &ib_conn->fastreg.pool);
382                 ib_conn->fastreg.pool_size++;
383         }
384
385         return 0;
386
387 err:
388         iser_free_fastreg_pool(ib_conn);
389         return ret;
390 }
391
392 /**
393  * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
394  */
395 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
396 {
397         struct fast_reg_descriptor *desc, *tmp;
398         int i = 0;
399
400         if (list_empty(&ib_conn->fastreg.pool))
401                 return;
402
403         iser_info("freeing conn %p fr pool\n", ib_conn);
404
405         list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) {
406                 list_del(&desc->list);
407                 ib_free_fast_reg_page_list(desc->data_frpl);
408                 ib_dereg_mr(desc->data_mr);
409                 if (desc->pi_ctx) {
410                         ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
411                         ib_dereg_mr(desc->pi_ctx->prot_mr);
412                         ib_destroy_mr(desc->pi_ctx->sig_mr);
413                         kfree(desc->pi_ctx);
414                 }
415                 kfree(desc);
416                 ++i;
417         }
418
419         if (i < ib_conn->fastreg.pool_size)
420                 iser_warn("pool still has %d regions registered\n",
421                           ib_conn->fastreg.pool_size - i);
422 }
423
424 /**
425  * iser_create_ib_conn_res - Queue-Pair (QP)
426  *
427  * returns 0 on success, -1 on failure
428  */
429 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
430 {
431         struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
432                                                    ib_conn);
433         struct iser_device      *device;
434         struct ib_device_attr *dev_attr;
435         struct ib_qp_init_attr  init_attr;
436         int                     ret = -ENOMEM;
437         int index, min_index = 0;
438
439         BUG_ON(ib_conn->device == NULL);
440
441         device = ib_conn->device;
442         dev_attr = &device->dev_attr;
443
444         memset(&init_attr, 0, sizeof init_attr);
445
446         mutex_lock(&ig.connlist_mutex);
447         /* select the CQ with the minimal number of usages */
448         for (index = 0; index < device->comps_used; index++) {
449                 if (device->comps[index].active_qps <
450                     device->comps[min_index].active_qps)
451                         min_index = index;
452         }
453         ib_conn->comp = &device->comps[min_index];
454         ib_conn->comp->active_qps++;
455         mutex_unlock(&ig.connlist_mutex);
456         iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
457
458         init_attr.event_handler = iser_qp_event_callback;
459         init_attr.qp_context    = (void *)ib_conn;
460         init_attr.send_cq       = ib_conn->comp->cq;
461         init_attr.recv_cq       = ib_conn->comp->cq;
462         init_attr.cap.max_recv_wr  = ISER_QP_MAX_RECV_DTOS;
463         init_attr.cap.max_send_sge = 2;
464         init_attr.cap.max_recv_sge = 1;
465         init_attr.sq_sig_type   = IB_SIGNAL_REQ_WR;
466         init_attr.qp_type       = IB_QPT_RC;
467         if (ib_conn->pi_support) {
468                 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
469                 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
470                 iser_conn->max_cmds =
471                         ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
472         } else {
473                 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
474                         init_attr.cap.max_send_wr  = ISER_QP_MAX_REQ_DTOS + 1;
475                         iser_conn->max_cmds =
476                                 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
477                 } else {
478                         init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
479                         iser_conn->max_cmds =
480                                 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
481                         iser_dbg("device %s supports max_send_wr %d\n",
482                                  device->ib_device->name, dev_attr->max_qp_wr);
483                 }
484         }
485
486         ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
487         if (ret)
488                 goto out_err;
489
490         ib_conn->qp = ib_conn->cma_id->qp;
491         iser_info("setting conn %p cma_id %p qp %p\n",
492                   ib_conn, ib_conn->cma_id,
493                   ib_conn->cma_id->qp);
494         return ret;
495
496 out_err:
497         iser_err("unable to alloc mem or create resource, err %d\n", ret);
498         return ret;
499 }
500
501 /**
502  * based on the resolved device node GUID see if there already allocated
503  * device for this device. If there's no such, create one.
504  */
505 static
506 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
507 {
508         struct iser_device *device;
509
510         mutex_lock(&ig.device_list_mutex);
511
512         list_for_each_entry(device, &ig.device_list, ig_list)
513                 /* find if there's a match using the node GUID */
514                 if (device->ib_device->node_guid == cma_id->device->node_guid)
515                         goto inc_refcnt;
516
517         device = kzalloc(sizeof *device, GFP_KERNEL);
518         if (device == NULL)
519                 goto out;
520
521         /* assign this device to the device */
522         device->ib_device = cma_id->device;
523         /* init the device and link it into ig device list */
524         if (iser_create_device_ib_res(device)) {
525                 kfree(device);
526                 device = NULL;
527                 goto out;
528         }
529         list_add(&device->ig_list, &ig.device_list);
530
531 inc_refcnt:
532         device->refcount++;
533 out:
534         mutex_unlock(&ig.device_list_mutex);
535         return device;
536 }
537
538 /* if there's no demand for this device, release it */
539 static void iser_device_try_release(struct iser_device *device)
540 {
541         mutex_lock(&ig.device_list_mutex);
542         device->refcount--;
543         iser_info("device %p refcount %d\n", device, device->refcount);
544         if (!device->refcount) {
545                 iser_free_device_ib_res(device);
546                 list_del(&device->ig_list);
547                 kfree(device);
548         }
549         mutex_unlock(&ig.device_list_mutex);
550 }
551
552 /**
553  * Called with state mutex held
554  **/
555 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
556                                      enum iser_conn_state comp,
557                                      enum iser_conn_state exch)
558 {
559         int ret;
560
561         ret = (iser_conn->state == comp);
562         if (ret)
563                 iser_conn->state = exch;
564
565         return ret;
566 }
567
568 void iser_release_work(struct work_struct *work)
569 {
570         struct iser_conn *iser_conn;
571
572         iser_conn = container_of(work, struct iser_conn, release_work);
573
574         /* Wait for conn_stop to complete */
575         wait_for_completion(&iser_conn->stop_completion);
576         /* Wait for IB resouces cleanup to complete */
577         wait_for_completion(&iser_conn->ib_completion);
578
579         mutex_lock(&iser_conn->state_mutex);
580         iser_conn->state = ISER_CONN_DOWN;
581         mutex_unlock(&iser_conn->state_mutex);
582
583         iser_conn_release(iser_conn);
584 }
585
586 /**
587  * iser_free_ib_conn_res - release IB related resources
588  * @iser_conn: iser connection struct
589  * @destroy_device: indicator if we need to try to release
590  *     the iser device (only iscsi shutdown and DEVICE_REMOVAL
591  *     will use this.
592  *
593  * This routine is called with the iser state mutex held
594  * so the cm_id removal is out of here. It is Safe to
595  * be invoked multiple times.
596  */
597 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
598                                   bool destroy_device)
599 {
600         struct ib_conn *ib_conn = &iser_conn->ib_conn;
601         struct iser_device *device = ib_conn->device;
602
603         iser_info("freeing conn %p cma_id %p qp %p\n",
604                   iser_conn, ib_conn->cma_id, ib_conn->qp);
605
606         iser_free_rx_descriptors(iser_conn);
607
608         if (ib_conn->qp != NULL) {
609                 ib_conn->comp->active_qps--;
610                 rdma_destroy_qp(ib_conn->cma_id);
611                 ib_conn->qp = NULL;
612         }
613
614         if (destroy_device && device != NULL) {
615                 iser_device_try_release(device);
616                 ib_conn->device = NULL;
617         }
618 }
619
620 /**
621  * Frees all conn objects and deallocs conn descriptor
622  */
623 void iser_conn_release(struct iser_conn *iser_conn)
624 {
625         struct ib_conn *ib_conn = &iser_conn->ib_conn;
626
627         mutex_lock(&ig.connlist_mutex);
628         list_del(&iser_conn->conn_list);
629         mutex_unlock(&ig.connlist_mutex);
630
631         mutex_lock(&iser_conn->state_mutex);
632         if (iser_conn->state != ISER_CONN_DOWN)
633                 iser_warn("iser conn %p state %d, expected state down.\n",
634                           iser_conn, iser_conn->state);
635         /*
636          * In case we never got to bind stage, we still need to
637          * release IB resources (which is safe to call more than once).
638          */
639         iser_free_ib_conn_res(iser_conn, true);
640         mutex_unlock(&iser_conn->state_mutex);
641
642         if (ib_conn->cma_id != NULL) {
643                 rdma_destroy_id(ib_conn->cma_id);
644                 ib_conn->cma_id = NULL;
645         }
646
647         kfree(iser_conn);
648 }
649
650 /**
651  * triggers start of the disconnect procedures and wait for them to be done
652  * Called with state mutex held
653  */
654 int iser_conn_terminate(struct iser_conn *iser_conn)
655 {
656         struct ib_conn *ib_conn = &iser_conn->ib_conn;
657         struct ib_send_wr *bad_wr;
658         int err = 0;
659
660         /* terminate the iser conn only if the conn state is UP */
661         if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
662                                        ISER_CONN_TERMINATING))
663                 return 0;
664
665         iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
666
667         /* suspend queuing of new iscsi commands */
668         if (iser_conn->iscsi_conn)
669                 iscsi_suspend_queue(iser_conn->iscsi_conn);
670
671         /*
672          * In case we didn't already clean up the cma_id (peer initiated
673          * a disconnection), we need to Cause the CMA to change the QP
674          * state to ERROR.
675          */
676         if (ib_conn->cma_id) {
677                 err = rdma_disconnect(ib_conn->cma_id);
678                 if (err)
679                         iser_err("Failed to disconnect, conn: 0x%p err %d\n",
680                                  iser_conn, err);
681
682                 /* post an indication that all flush errors were consumed */
683                 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
684                 if (err)
685                         iser_err("conn %p failed to post beacon", ib_conn);
686
687                 wait_for_completion(&ib_conn->flush_comp);
688         }
689
690         return 1;
691 }
692
693 /**
694  * Called with state mutex held
695  **/
696 static void iser_connect_error(struct rdma_cm_id *cma_id)
697 {
698         struct iser_conn *iser_conn;
699
700         iser_conn = (struct iser_conn *)cma_id->context;
701         iser_conn->state = ISER_CONN_DOWN;
702 }
703
704 /**
705  * Called with state mutex held
706  **/
707 static void iser_addr_handler(struct rdma_cm_id *cma_id)
708 {
709         struct iser_device *device;
710         struct iser_conn   *iser_conn;
711         struct ib_conn   *ib_conn;
712         int    ret;
713
714         iser_conn = (struct iser_conn *)cma_id->context;
715         if (iser_conn->state != ISER_CONN_PENDING)
716                 /* bailout */
717                 return;
718
719         ib_conn = &iser_conn->ib_conn;
720         device = iser_device_find_by_ib_device(cma_id);
721         if (!device) {
722                 iser_err("device lookup/creation failed\n");
723                 iser_connect_error(cma_id);
724                 return;
725         }
726
727         ib_conn->device = device;
728
729         /* connection T10-PI support */
730         if (iser_pi_enable) {
731                 if (!(device->dev_attr.device_cap_flags &
732                       IB_DEVICE_SIGNATURE_HANDOVER)) {
733                         iser_warn("T10-PI requested but not supported on %s, "
734                                   "continue without T10-PI\n",
735                                   ib_conn->device->ib_device->name);
736                         ib_conn->pi_support = false;
737                 } else {
738                         ib_conn->pi_support = true;
739                 }
740         }
741
742         ret = rdma_resolve_route(cma_id, 1000);
743         if (ret) {
744                 iser_err("resolve route failed: %d\n", ret);
745                 iser_connect_error(cma_id);
746                 return;
747         }
748 }
749
750 /**
751  * Called with state mutex held
752  **/
753 static void iser_route_handler(struct rdma_cm_id *cma_id)
754 {
755         struct rdma_conn_param conn_param;
756         int    ret;
757         struct iser_cm_hdr req_hdr;
758         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
759         struct ib_conn *ib_conn = &iser_conn->ib_conn;
760         struct iser_device *device = ib_conn->device;
761
762         if (iser_conn->state != ISER_CONN_PENDING)
763                 /* bailout */
764                 return;
765
766         ret = iser_create_ib_conn_res(ib_conn);
767         if (ret)
768                 goto failure;
769
770         memset(&conn_param, 0, sizeof conn_param);
771         conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
772         conn_param.initiator_depth     = 1;
773         conn_param.retry_count         = 7;
774         conn_param.rnr_retry_count     = 6;
775
776         memset(&req_hdr, 0, sizeof(req_hdr));
777         req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
778                         ISER_SEND_W_INV_NOT_SUPPORTED);
779         conn_param.private_data         = (void *)&req_hdr;
780         conn_param.private_data_len     = sizeof(struct iser_cm_hdr);
781
782         ret = rdma_connect(cma_id, &conn_param);
783         if (ret) {
784                 iser_err("failure connecting: %d\n", ret);
785                 goto failure;
786         }
787
788         return;
789 failure:
790         iser_connect_error(cma_id);
791 }
792
793 static void iser_connected_handler(struct rdma_cm_id *cma_id)
794 {
795         struct iser_conn *iser_conn;
796         struct ib_qp_attr attr;
797         struct ib_qp_init_attr init_attr;
798
799         iser_conn = (struct iser_conn *)cma_id->context;
800         if (iser_conn->state != ISER_CONN_PENDING)
801                 /* bailout */
802                 return;
803
804         (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
805         iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
806
807         iser_conn->state = ISER_CONN_UP;
808         complete(&iser_conn->up_completion);
809 }
810
811 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
812 {
813         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
814
815         if (iser_conn_terminate(iser_conn)) {
816                 if (iser_conn->iscsi_conn)
817                         iscsi_conn_failure(iser_conn->iscsi_conn,
818                                            ISCSI_ERR_CONN_FAILED);
819                 else
820                         iser_err("iscsi_iser connection isn't bound\n");
821         }
822 }
823
824 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
825                                  bool destroy_device)
826 {
827         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
828
829         /*
830          * We are not guaranteed that we visited disconnected_handler
831          * by now, call it here to be safe that we handle CM drep
832          * and flush errors.
833          */
834         iser_disconnected_handler(cma_id);
835         iser_free_ib_conn_res(iser_conn, destroy_device);
836         complete(&iser_conn->ib_completion);
837 };
838
839 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
840 {
841         struct iser_conn *iser_conn;
842         int ret = 0;
843
844         iser_conn = (struct iser_conn *)cma_id->context;
845         iser_info("event %d status %d conn %p id %p\n",
846                   event->event, event->status, cma_id->context, cma_id);
847
848         mutex_lock(&iser_conn->state_mutex);
849         switch (event->event) {
850         case RDMA_CM_EVENT_ADDR_RESOLVED:
851                 iser_addr_handler(cma_id);
852                 break;
853         case RDMA_CM_EVENT_ROUTE_RESOLVED:
854                 iser_route_handler(cma_id);
855                 break;
856         case RDMA_CM_EVENT_ESTABLISHED:
857                 iser_connected_handler(cma_id);
858                 break;
859         case RDMA_CM_EVENT_ADDR_ERROR:
860         case RDMA_CM_EVENT_ROUTE_ERROR:
861         case RDMA_CM_EVENT_CONNECT_ERROR:
862         case RDMA_CM_EVENT_UNREACHABLE:
863         case RDMA_CM_EVENT_REJECTED:
864                 iser_connect_error(cma_id);
865                 break;
866         case RDMA_CM_EVENT_DISCONNECTED:
867         case RDMA_CM_EVENT_ADDR_CHANGE:
868                 iser_disconnected_handler(cma_id);
869                 break;
870         case RDMA_CM_EVENT_DEVICE_REMOVAL:
871                 /*
872                  * we *must* destroy the device as we cannot rely
873                  * on iscsid to be around to initiate error handling.
874                  * also implicitly destroy the cma_id.
875                  */
876                 iser_cleanup_handler(cma_id, true);
877                 iser_conn->ib_conn.cma_id = NULL;
878                 ret = 1;
879                 break;
880         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
881                 iser_cleanup_handler(cma_id, false);
882                 break;
883         default:
884                 iser_err("Unexpected RDMA CM event (%d)\n", event->event);
885                 break;
886         }
887         mutex_unlock(&iser_conn->state_mutex);
888
889         return ret;
890 }
891
892 void iser_conn_init(struct iser_conn *iser_conn)
893 {
894         iser_conn->state = ISER_CONN_INIT;
895         iser_conn->ib_conn.post_recv_buf_count = 0;
896         init_completion(&iser_conn->ib_conn.flush_comp);
897         init_completion(&iser_conn->stop_completion);
898         init_completion(&iser_conn->ib_completion);
899         init_completion(&iser_conn->up_completion);
900         INIT_LIST_HEAD(&iser_conn->conn_list);
901         spin_lock_init(&iser_conn->ib_conn.lock);
902         mutex_init(&iser_conn->state_mutex);
903 }
904
905  /**
906  * starts the process of connecting to the target
907  * sleeps until the connection is established or rejected
908  */
909 int iser_connect(struct iser_conn   *iser_conn,
910                  struct sockaddr    *src_addr,
911                  struct sockaddr    *dst_addr,
912                  int                 non_blocking)
913 {
914         struct ib_conn *ib_conn = &iser_conn->ib_conn;
915         int err = 0;
916
917         mutex_lock(&iser_conn->state_mutex);
918
919         sprintf(iser_conn->name, "%pISp", dst_addr);
920
921         iser_info("connecting to: %s\n", iser_conn->name);
922
923         /* the device is known only --after-- address resolution */
924         ib_conn->device = NULL;
925
926         iser_conn->state = ISER_CONN_PENDING;
927
928         ib_conn->beacon.wr_id = ISER_BEACON_WRID;
929         ib_conn->beacon.opcode = IB_WR_SEND;
930
931         ib_conn->cma_id = rdma_create_id(iser_cma_handler,
932                                          (void *)iser_conn,
933                                          RDMA_PS_TCP, IB_QPT_RC);
934         if (IS_ERR(ib_conn->cma_id)) {
935                 err = PTR_ERR(ib_conn->cma_id);
936                 iser_err("rdma_create_id failed: %d\n", err);
937                 goto id_failure;
938         }
939
940         err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
941         if (err) {
942                 iser_err("rdma_resolve_addr failed: %d\n", err);
943                 goto addr_failure;
944         }
945
946         if (!non_blocking) {
947                 wait_for_completion_interruptible(&iser_conn->up_completion);
948
949                 if (iser_conn->state != ISER_CONN_UP) {
950                         err =  -EIO;
951                         goto connect_failure;
952                 }
953         }
954         mutex_unlock(&iser_conn->state_mutex);
955
956         mutex_lock(&ig.connlist_mutex);
957         list_add(&iser_conn->conn_list, &ig.connlist);
958         mutex_unlock(&ig.connlist_mutex);
959         return 0;
960
961 id_failure:
962         ib_conn->cma_id = NULL;
963 addr_failure:
964         iser_conn->state = ISER_CONN_DOWN;
965 connect_failure:
966         mutex_unlock(&iser_conn->state_mutex);
967         iser_conn_release(iser_conn);
968         return err;
969 }
970
971 /**
972  * iser_reg_page_vec - Register physical memory
973  *
974  * returns: 0 on success, errno code on failure
975  */
976 int iser_reg_page_vec(struct ib_conn *ib_conn,
977                       struct iser_page_vec *page_vec,
978                       struct iser_mem_reg  *mem_reg)
979 {
980         struct ib_pool_fmr *mem;
981         u64                io_addr;
982         u64                *page_list;
983         int                status;
984
985         page_list = page_vec->pages;
986         io_addr   = page_list[0];
987
988         mem  = ib_fmr_pool_map_phys(ib_conn->fmr.pool,
989                                     page_list,
990                                     page_vec->length,
991                                     io_addr);
992
993         if (IS_ERR(mem)) {
994                 status = (int)PTR_ERR(mem);
995                 iser_err("ib_fmr_pool_map_phys failed: %d\n", status);
996                 return status;
997         }
998
999         mem_reg->lkey  = mem->fmr->lkey;
1000         mem_reg->rkey  = mem->fmr->rkey;
1001         mem_reg->len   = page_vec->length * SIZE_4K;
1002         mem_reg->va    = io_addr;
1003         mem_reg->is_mr = 1;
1004         mem_reg->mem_h = (void *)mem;
1005
1006         mem_reg->va   += page_vec->offset;
1007         mem_reg->len   = page_vec->data_size;
1008
1009         iser_dbg("PHYSICAL Mem.register, [PHYS p_array: 0x%p, sz: %d, "
1010                  "entry[0]: (0x%08lx,%ld)] -> "
1011                  "[lkey: 0x%08X mem_h: 0x%p va: 0x%08lX sz: %ld]\n",
1012                  page_vec, page_vec->length,
1013                  (unsigned long)page_vec->pages[0],
1014                  (unsigned long)page_vec->data_size,
1015                  (unsigned int)mem_reg->lkey, mem_reg->mem_h,
1016                  (unsigned long)mem_reg->va, (unsigned long)mem_reg->len);
1017         return 0;
1018 }
1019
1020 /**
1021  * Unregister (previosuly registered using FMR) memory.
1022  * If memory is non-FMR does nothing.
1023  */
1024 void iser_unreg_mem_fmr(struct iscsi_iser_task *iser_task,
1025                         enum iser_data_dir cmd_dir)
1026 {
1027         struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
1028         int ret;
1029
1030         if (!reg->is_mr)
1031                 return;
1032
1033         iser_dbg("PHYSICAL Mem.Unregister mem_h %p\n",reg->mem_h);
1034
1035         ret = ib_fmr_pool_unmap((struct ib_pool_fmr *)reg->mem_h);
1036         if (ret)
1037                 iser_err("ib_fmr_pool_unmap failed %d\n", ret);
1038
1039         reg->mem_h = NULL;
1040 }
1041
1042 void iser_unreg_mem_fastreg(struct iscsi_iser_task *iser_task,
1043                             enum iser_data_dir cmd_dir)
1044 {
1045         struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
1046         struct iser_conn *iser_conn = iser_task->iser_conn;
1047         struct ib_conn *ib_conn = &iser_conn->ib_conn;
1048         struct fast_reg_descriptor *desc = reg->mem_h;
1049
1050         if (!reg->is_mr)
1051                 return;
1052
1053         reg->mem_h = NULL;
1054         reg->is_mr = 0;
1055         spin_lock_bh(&ib_conn->lock);
1056         list_add_tail(&desc->list, &ib_conn->fastreg.pool);
1057         spin_unlock_bh(&ib_conn->lock);
1058 }
1059
1060 int iser_post_recvl(struct iser_conn *iser_conn)
1061 {
1062         struct ib_recv_wr rx_wr, *rx_wr_failed;
1063         struct ib_conn *ib_conn = &iser_conn->ib_conn;
1064         struct ib_sge     sge;
1065         int ib_ret;
1066
1067         sge.addr   = iser_conn->login_resp_dma;
1068         sge.length = ISER_RX_LOGIN_SIZE;
1069         sge.lkey   = ib_conn->device->mr->lkey;
1070
1071         rx_wr.wr_id   = (unsigned long)iser_conn->login_resp_buf;
1072         rx_wr.sg_list = &sge;
1073         rx_wr.num_sge = 1;
1074         rx_wr.next    = NULL;
1075
1076         ib_conn->post_recv_buf_count++;
1077         ib_ret  = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1078         if (ib_ret) {
1079                 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1080                 ib_conn->post_recv_buf_count--;
1081         }
1082         return ib_ret;
1083 }
1084
1085 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1086 {
1087         struct ib_recv_wr *rx_wr, *rx_wr_failed;
1088         int i, ib_ret;
1089         struct ib_conn *ib_conn = &iser_conn->ib_conn;
1090         unsigned int my_rx_head = iser_conn->rx_desc_head;
1091         struct iser_rx_desc *rx_desc;
1092
1093         for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1094                 rx_desc         = &iser_conn->rx_descs[my_rx_head];
1095                 rx_wr->wr_id    = (unsigned long)rx_desc;
1096                 rx_wr->sg_list  = &rx_desc->rx_sg;
1097                 rx_wr->num_sge  = 1;
1098                 rx_wr->next     = rx_wr + 1;
1099                 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1100         }
1101
1102         rx_wr--;
1103         rx_wr->next = NULL; /* mark end of work requests list */
1104
1105         ib_conn->post_recv_buf_count += count;
1106         ib_ret  = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1107         if (ib_ret) {
1108                 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1109                 ib_conn->post_recv_buf_count -= count;
1110         } else
1111                 iser_conn->rx_desc_head = my_rx_head;
1112         return ib_ret;
1113 }
1114
1115
1116 /**
1117  * iser_start_send - Initiate a Send DTO operation
1118  *
1119  * returns 0 on success, -1 on failure
1120  */
1121 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1122                    bool signal)
1123 {
1124         int               ib_ret;
1125         struct ib_send_wr send_wr, *send_wr_failed;
1126
1127         ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1128                                       tx_desc->dma_addr, ISER_HEADERS_LEN,
1129                                       DMA_TO_DEVICE);
1130
1131         send_wr.next       = NULL;
1132         send_wr.wr_id      = (unsigned long)tx_desc;
1133         send_wr.sg_list    = tx_desc->tx_sg;
1134         send_wr.num_sge    = tx_desc->num_sge;
1135         send_wr.opcode     = IB_WR_SEND;
1136         send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0;
1137
1138         ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
1139         if (ib_ret)
1140                 iser_err("ib_post_send failed, ret:%d\n", ib_ret);
1141
1142         return ib_ret;
1143 }
1144
1145 /**
1146  * is_iser_tx_desc - Indicate if the completion wr_id
1147  *     is a TX descriptor or not.
1148  * @iser_conn: iser connection
1149  * @wr_id: completion WR identifier
1150  *
1151  * Since we cannot rely on wc opcode in FLUSH errors
1152  * we must work around it by checking if the wr_id address
1153  * falls in the iser connection rx_descs buffer. If so
1154  * it is an RX descriptor, otherwize it is a TX.
1155  */
1156 static inline bool
1157 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1158 {
1159         void *start = iser_conn->rx_descs;
1160         int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1161
1162         if (wr_id >= start && wr_id < start + len)
1163                 return false;
1164
1165         return true;
1166 }
1167
1168 /**
1169  * iser_handle_comp_error() - Handle error completion
1170  * @ib_conn:   connection RDMA resources
1171  * @wc:        work completion
1172  *
1173  * Notes: We may handle a FLUSH error completion and in this case
1174  *        we only cleanup in case TX type was DATAOUT. For non-FLUSH
1175  *        error completion we should also notify iscsi layer that
1176  *        connection is failed (in case we passed bind stage).
1177  */
1178 static void
1179 iser_handle_comp_error(struct ib_conn *ib_conn,
1180                        struct ib_wc *wc)
1181 {
1182         struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1183                                                    ib_conn);
1184
1185         if (wc->status != IB_WC_WR_FLUSH_ERR)
1186                 if (iser_conn->iscsi_conn)
1187                         iscsi_conn_failure(iser_conn->iscsi_conn,
1188                                            ISCSI_ERR_CONN_FAILED);
1189
1190         if (is_iser_tx_desc(iser_conn, (void *)wc->wr_id)) {
1191                 struct iser_tx_desc *desc = (struct iser_tx_desc *)wc->wr_id;
1192
1193                 if (desc->type == ISCSI_TX_DATAOUT)
1194                         kmem_cache_free(ig.desc_cache, desc);
1195         } else {
1196                 ib_conn->post_recv_buf_count--;
1197         }
1198 }
1199
1200 /**
1201  * iser_handle_wc - handle a single work completion
1202  * @wc: work completion
1203  *
1204  * Soft-IRQ context, work completion can be either
1205  * SEND or RECV, and can turn out successful or
1206  * with error (or flush error).
1207  */
1208 static void iser_handle_wc(struct ib_wc *wc)
1209 {
1210         struct ib_conn *ib_conn;
1211         struct iser_tx_desc *tx_desc;
1212         struct iser_rx_desc *rx_desc;
1213
1214         ib_conn = wc->qp->qp_context;
1215         if (wc->status == IB_WC_SUCCESS) {
1216                 if (wc->opcode == IB_WC_RECV) {
1217                         rx_desc = (struct iser_rx_desc *)wc->wr_id;
1218                         iser_rcv_completion(rx_desc, wc->byte_len,
1219                                             ib_conn);
1220                 } else
1221                 if (wc->opcode == IB_WC_SEND) {
1222                         tx_desc = (struct iser_tx_desc *)wc->wr_id;
1223                         iser_snd_completion(tx_desc, ib_conn);
1224                 } else {
1225                         iser_err("Unknown wc opcode %d\n", wc->opcode);
1226                 }
1227         } else {
1228                 if (wc->status != IB_WC_WR_FLUSH_ERR)
1229                         iser_err("wr id %llx status %d vend_err %x\n",
1230                                  wc->wr_id, wc->status, wc->vendor_err);
1231                 else
1232                         iser_dbg("flush error: wr id %llx\n", wc->wr_id);
1233
1234                 if (wc->wr_id != ISER_FASTREG_LI_WRID &&
1235                     wc->wr_id != ISER_BEACON_WRID)
1236                         iser_handle_comp_error(ib_conn, wc);
1237
1238                 /* complete in case all flush errors were consumed */
1239                 if (wc->wr_id == ISER_BEACON_WRID)
1240                         complete(&ib_conn->flush_comp);
1241         }
1242 }
1243
1244 /**
1245  * iser_cq_tasklet_fn - iSER completion polling loop
1246  * @data: iSER completion context
1247  *
1248  * Soft-IRQ context, polling connection CQ until
1249  * either CQ was empty or we exausted polling budget
1250  */
1251 static void iser_cq_tasklet_fn(unsigned long data)
1252 {
1253         struct iser_comp *comp = (struct iser_comp *)data;
1254         struct ib_cq *cq = comp->cq;
1255         struct ib_wc *const wcs = comp->wcs;
1256         int i, n, completed = 0;
1257
1258         while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1259                 for (i = 0; i < n; i++)
1260                         iser_handle_wc(&wcs[i]);
1261
1262                 completed += n;
1263                 if (completed >= iser_cq_poll_limit)
1264                         break;
1265         }
1266
1267         /*
1268          * It is assumed here that arming CQ only once its empty
1269          * would not cause interrupts to be missed.
1270          */
1271         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1272
1273         iser_dbg("got %d completions\n", completed);
1274 }
1275
1276 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1277 {
1278         struct iser_comp *comp = cq_context;
1279
1280         tasklet_schedule(&comp->tasklet);
1281 }
1282
1283 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1284                              enum iser_data_dir cmd_dir, sector_t *sector)
1285 {
1286         struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
1287         struct fast_reg_descriptor *desc = reg->mem_h;
1288         unsigned long sector_size = iser_task->sc->device->sector_size;
1289         struct ib_mr_status mr_status;
1290         int ret;
1291
1292         if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) {
1293                 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
1294                 ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1295                                          IB_MR_CHECK_SIG_STATUS, &mr_status);
1296                 if (ret) {
1297                         pr_err("ib_check_mr_status failed, ret %d\n", ret);
1298                         goto err;
1299                 }
1300
1301                 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1302                         sector_t sector_off = mr_status.sig_err.sig_err_offset;
1303
1304                         do_div(sector_off, sector_size + 8);
1305                         *sector = scsi_get_lba(iser_task->sc) + sector_off;
1306
1307                         pr_err("PI error found type %d at sector %llx "
1308                                "expected %x vs actual %x\n",
1309                                mr_status.sig_err.err_type,
1310                                (unsigned long long)*sector,
1311                                mr_status.sig_err.expected,
1312                                mr_status.sig_err.actual);
1313
1314                         switch (mr_status.sig_err.err_type) {
1315                         case IB_SIG_BAD_GUARD:
1316                                 return 0x1;
1317                         case IB_SIG_BAD_REFTAG:
1318                                 return 0x3;
1319                         case IB_SIG_BAD_APPTAG:
1320                                 return 0x2;
1321                         }
1322                 }
1323         }
1324
1325         return 0;
1326 err:
1327         /* Not alot we can do here, return ambiguous guard error */
1328         return 0x1;
1329 }