OSDN Git Service

Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "1.0"
59 #define DRV_RELDATE     "July 1, 2013"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr;
72 static bool register_always;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100                  "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106                 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111                 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113                  "Number of seconds between the observation of a transport"
114                  " layer error and failing all I/O. \"off\" means that this"
115                  " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119                 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121                  "Maximum number of seconds that the SRP transport should"
122                  " insulate transport layer errors. After this time has been"
123                  " exceeded the SCSI host is removed. Should be"
124                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125                  " if fast_io_fail_tmo has not been set. \"off\" means that"
126                  " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143         .name   = "srp",
144         .add    = srp_add_one,
145         .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152         int tmo = *(int *)kp->arg;
153
154         if (tmo >= 0)
155                 return sprintf(buffer, "%d", tmo);
156         else
157                 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162         int tmo, res;
163
164         if (strncmp(val, "off", 3) != 0) {
165                 res = kstrtoint(val, 0, &tmo);
166                 if (res)
167                         goto out;
168         } else {
169                 tmo = -1;
170         }
171         if (kp->arg == &srp_reconnect_delay)
172                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
173                                     srp_dev_loss_tmo);
174         else if (kp->arg == &srp_fast_io_fail_tmo)
175                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
176         else
177                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
178                                     tmo);
179         if (res)
180                 goto out;
181         *(int *)kp->arg = tmo;
182
183 out:
184         return res;
185 }
186
187 static const struct kernel_param_ops srp_tmo_ops = {
188         .get = srp_tmo_get,
189         .set = srp_tmo_set,
190 };
191
192 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
193 {
194         return (struct srp_target_port *) host->hostdata;
195 }
196
197 static const char *srp_target_info(struct Scsi_Host *host)
198 {
199         return host_to_target(host)->target_name;
200 }
201
202 static int srp_target_is_topspin(struct srp_target_port *target)
203 {
204         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
205         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
206
207         return topspin_workarounds &&
208                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
209                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
210 }
211
212 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
213                                    gfp_t gfp_mask,
214                                    enum dma_data_direction direction)
215 {
216         struct srp_iu *iu;
217
218         iu = kmalloc(sizeof *iu, gfp_mask);
219         if (!iu)
220                 goto out;
221
222         iu->buf = kzalloc(size, gfp_mask);
223         if (!iu->buf)
224                 goto out_free_iu;
225
226         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
227                                     direction);
228         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
229                 goto out_free_buf;
230
231         iu->size      = size;
232         iu->direction = direction;
233
234         return iu;
235
236 out_free_buf:
237         kfree(iu->buf);
238 out_free_iu:
239         kfree(iu);
240 out:
241         return NULL;
242 }
243
244 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
245 {
246         if (!iu)
247                 return;
248
249         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
250                             iu->direction);
251         kfree(iu->buf);
252         kfree(iu);
253 }
254
255 static void srp_qp_event(struct ib_event *event, void *context)
256 {
257         pr_debug("QP event %s (%d)\n",
258                  ib_event_msg(event->event), event->event);
259 }
260
261 static int srp_init_qp(struct srp_target_port *target,
262                        struct ib_qp *qp)
263 {
264         struct ib_qp_attr *attr;
265         int ret;
266
267         attr = kmalloc(sizeof *attr, GFP_KERNEL);
268         if (!attr)
269                 return -ENOMEM;
270
271         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
272                                   target->srp_host->port,
273                                   be16_to_cpu(target->pkey),
274                                   &attr->pkey_index);
275         if (ret)
276                 goto out;
277
278         attr->qp_state        = IB_QPS_INIT;
279         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
280                                     IB_ACCESS_REMOTE_WRITE);
281         attr->port_num        = target->srp_host->port;
282
283         ret = ib_modify_qp(qp, attr,
284                            IB_QP_STATE          |
285                            IB_QP_PKEY_INDEX     |
286                            IB_QP_ACCESS_FLAGS   |
287                            IB_QP_PORT);
288
289 out:
290         kfree(attr);
291         return ret;
292 }
293
294 static int srp_new_cm_id(struct srp_rdma_ch *ch)
295 {
296         struct srp_target_port *target = ch->target;
297         struct ib_cm_id *new_cm_id;
298
299         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
300                                     srp_cm_handler, ch);
301         if (IS_ERR(new_cm_id))
302                 return PTR_ERR(new_cm_id);
303
304         if (ch->cm_id)
305                 ib_destroy_cm_id(ch->cm_id);
306         ch->cm_id = new_cm_id;
307         ch->path.sgid = target->sgid;
308         ch->path.dgid = target->orig_dgid;
309         ch->path.pkey = target->pkey;
310         ch->path.service_id = target->service_id;
311
312         return 0;
313 }
314
315 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
316 {
317         struct srp_device *dev = target->srp_host->srp_dev;
318         struct ib_fmr_pool_param fmr_param;
319
320         memset(&fmr_param, 0, sizeof(fmr_param));
321         fmr_param.pool_size         = target->scsi_host->can_queue;
322         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
323         fmr_param.cache             = 1;
324         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
325         fmr_param.page_shift        = ilog2(dev->mr_page_size);
326         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
327                                        IB_ACCESS_REMOTE_WRITE |
328                                        IB_ACCESS_REMOTE_READ);
329
330         return ib_create_fmr_pool(dev->pd, &fmr_param);
331 }
332
333 /**
334  * srp_destroy_fr_pool() - free the resources owned by a pool
335  * @pool: Fast registration pool to be destroyed.
336  */
337 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
338 {
339         int i;
340         struct srp_fr_desc *d;
341
342         if (!pool)
343                 return;
344
345         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
346                 if (d->frpl)
347                         ib_free_fast_reg_page_list(d->frpl);
348                 if (d->mr)
349                         ib_dereg_mr(d->mr);
350         }
351         kfree(pool);
352 }
353
354 /**
355  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
356  * @device:            IB device to allocate fast registration descriptors for.
357  * @pd:                Protection domain associated with the FR descriptors.
358  * @pool_size:         Number of descriptors to allocate.
359  * @max_page_list_len: Maximum fast registration work request page list length.
360  */
361 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
362                                               struct ib_pd *pd, int pool_size,
363                                               int max_page_list_len)
364 {
365         struct srp_fr_pool *pool;
366         struct srp_fr_desc *d;
367         struct ib_mr *mr;
368         struct ib_fast_reg_page_list *frpl;
369         int i, ret = -EINVAL;
370
371         if (pool_size <= 0)
372                 goto err;
373         ret = -ENOMEM;
374         pool = kzalloc(sizeof(struct srp_fr_pool) +
375                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
376         if (!pool)
377                 goto err;
378         pool->size = pool_size;
379         pool->max_page_list_len = max_page_list_len;
380         spin_lock_init(&pool->lock);
381         INIT_LIST_HEAD(&pool->free_list);
382
383         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
384                 mr = ib_alloc_fast_reg_mr(pd, max_page_list_len);
385                 if (IS_ERR(mr)) {
386                         ret = PTR_ERR(mr);
387                         goto destroy_pool;
388                 }
389                 d->mr = mr;
390                 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
391                 if (IS_ERR(frpl)) {
392                         ret = PTR_ERR(frpl);
393                         goto destroy_pool;
394                 }
395                 d->frpl = frpl;
396                 list_add_tail(&d->entry, &pool->free_list);
397         }
398
399 out:
400         return pool;
401
402 destroy_pool:
403         srp_destroy_fr_pool(pool);
404
405 err:
406         pool = ERR_PTR(ret);
407         goto out;
408 }
409
410 /**
411  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
412  * @pool: Pool to obtain descriptor from.
413  */
414 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
415 {
416         struct srp_fr_desc *d = NULL;
417         unsigned long flags;
418
419         spin_lock_irqsave(&pool->lock, flags);
420         if (!list_empty(&pool->free_list)) {
421                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
422                 list_del(&d->entry);
423         }
424         spin_unlock_irqrestore(&pool->lock, flags);
425
426         return d;
427 }
428
429 /**
430  * srp_fr_pool_put() - put an FR descriptor back in the free list
431  * @pool: Pool the descriptor was allocated from.
432  * @desc: Pointer to an array of fast registration descriptor pointers.
433  * @n:    Number of descriptors to put back.
434  *
435  * Note: The caller must already have queued an invalidation request for
436  * desc->mr->rkey before calling this function.
437  */
438 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
439                             int n)
440 {
441         unsigned long flags;
442         int i;
443
444         spin_lock_irqsave(&pool->lock, flags);
445         for (i = 0; i < n; i++)
446                 list_add(&desc[i]->entry, &pool->free_list);
447         spin_unlock_irqrestore(&pool->lock, flags);
448 }
449
450 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
451 {
452         struct srp_device *dev = target->srp_host->srp_dev;
453
454         return srp_create_fr_pool(dev->dev, dev->pd,
455                                   target->scsi_host->can_queue,
456                                   dev->max_pages_per_mr);
457 }
458
459 /**
460  * srp_destroy_qp() - destroy an RDMA queue pair
461  * @ch: SRP RDMA channel.
462  *
463  * Change a queue pair into the error state and wait until all receive
464  * completions have been processed before destroying it. This avoids that
465  * the receive completion handler can access the queue pair while it is
466  * being destroyed.
467  */
468 static void srp_destroy_qp(struct srp_rdma_ch *ch)
469 {
470         static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
471         static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
472         struct ib_recv_wr *bad_wr;
473         int ret;
474
475         /* Destroying a QP and reusing ch->done is only safe if not connected */
476         WARN_ON_ONCE(ch->connected);
477
478         ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
479         WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
480         if (ret)
481                 goto out;
482
483         init_completion(&ch->done);
484         ret = ib_post_recv(ch->qp, &wr, &bad_wr);
485         WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
486         if (ret == 0)
487                 wait_for_completion(&ch->done);
488
489 out:
490         ib_destroy_qp(ch->qp);
491 }
492
493 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
494 {
495         struct srp_target_port *target = ch->target;
496         struct srp_device *dev = target->srp_host->srp_dev;
497         struct ib_qp_init_attr *init_attr;
498         struct ib_cq *recv_cq, *send_cq;
499         struct ib_qp *qp;
500         struct ib_fmr_pool *fmr_pool = NULL;
501         struct srp_fr_pool *fr_pool = NULL;
502         const int m = 1 + dev->use_fast_reg;
503         struct ib_cq_init_attr cq_attr = {};
504         int ret;
505
506         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
507         if (!init_attr)
508                 return -ENOMEM;
509
510         /* + 1 for SRP_LAST_WR_ID */
511         cq_attr.cqe = target->queue_size + 1;
512         cq_attr.comp_vector = ch->comp_vector;
513         recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
514                                &cq_attr);
515         if (IS_ERR(recv_cq)) {
516                 ret = PTR_ERR(recv_cq);
517                 goto err;
518         }
519
520         cq_attr.cqe = m * target->queue_size;
521         cq_attr.comp_vector = ch->comp_vector;
522         send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
523                                &cq_attr);
524         if (IS_ERR(send_cq)) {
525                 ret = PTR_ERR(send_cq);
526                 goto err_recv_cq;
527         }
528
529         ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
530
531         init_attr->event_handler       = srp_qp_event;
532         init_attr->cap.max_send_wr     = m * target->queue_size;
533         init_attr->cap.max_recv_wr     = target->queue_size + 1;
534         init_attr->cap.max_recv_sge    = 1;
535         init_attr->cap.max_send_sge    = 1;
536         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
537         init_attr->qp_type             = IB_QPT_RC;
538         init_attr->send_cq             = send_cq;
539         init_attr->recv_cq             = recv_cq;
540
541         qp = ib_create_qp(dev->pd, init_attr);
542         if (IS_ERR(qp)) {
543                 ret = PTR_ERR(qp);
544                 goto err_send_cq;
545         }
546
547         ret = srp_init_qp(target, qp);
548         if (ret)
549                 goto err_qp;
550
551         if (dev->use_fast_reg && dev->has_fr) {
552                 fr_pool = srp_alloc_fr_pool(target);
553                 if (IS_ERR(fr_pool)) {
554                         ret = PTR_ERR(fr_pool);
555                         shost_printk(KERN_WARNING, target->scsi_host, PFX
556                                      "FR pool allocation failed (%d)\n", ret);
557                         goto err_qp;
558                 }
559                 if (ch->fr_pool)
560                         srp_destroy_fr_pool(ch->fr_pool);
561                 ch->fr_pool = fr_pool;
562         } else if (!dev->use_fast_reg && dev->has_fmr) {
563                 fmr_pool = srp_alloc_fmr_pool(target);
564                 if (IS_ERR(fmr_pool)) {
565                         ret = PTR_ERR(fmr_pool);
566                         shost_printk(KERN_WARNING, target->scsi_host, PFX
567                                      "FMR pool allocation failed (%d)\n", ret);
568                         goto err_qp;
569                 }
570                 if (ch->fmr_pool)
571                         ib_destroy_fmr_pool(ch->fmr_pool);
572                 ch->fmr_pool = fmr_pool;
573         }
574
575         if (ch->qp)
576                 srp_destroy_qp(ch);
577         if (ch->recv_cq)
578                 ib_destroy_cq(ch->recv_cq);
579         if (ch->send_cq)
580                 ib_destroy_cq(ch->send_cq);
581
582         ch->qp = qp;
583         ch->recv_cq = recv_cq;
584         ch->send_cq = send_cq;
585
586         kfree(init_attr);
587         return 0;
588
589 err_qp:
590         ib_destroy_qp(qp);
591
592 err_send_cq:
593         ib_destroy_cq(send_cq);
594
595 err_recv_cq:
596         ib_destroy_cq(recv_cq);
597
598 err:
599         kfree(init_attr);
600         return ret;
601 }
602
603 /*
604  * Note: this function may be called without srp_alloc_iu_bufs() having been
605  * invoked. Hence the ch->[rt]x_ring checks.
606  */
607 static void srp_free_ch_ib(struct srp_target_port *target,
608                            struct srp_rdma_ch *ch)
609 {
610         struct srp_device *dev = target->srp_host->srp_dev;
611         int i;
612
613         if (!ch->target)
614                 return;
615
616         if (ch->cm_id) {
617                 ib_destroy_cm_id(ch->cm_id);
618                 ch->cm_id = NULL;
619         }
620
621         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
622         if (!ch->qp)
623                 return;
624
625         if (dev->use_fast_reg) {
626                 if (ch->fr_pool)
627                         srp_destroy_fr_pool(ch->fr_pool);
628         } else {
629                 if (ch->fmr_pool)
630                         ib_destroy_fmr_pool(ch->fmr_pool);
631         }
632         srp_destroy_qp(ch);
633         ib_destroy_cq(ch->send_cq);
634         ib_destroy_cq(ch->recv_cq);
635
636         /*
637          * Avoid that the SCSI error handler tries to use this channel after
638          * it has been freed. The SCSI error handler can namely continue
639          * trying to perform recovery actions after scsi_remove_host()
640          * returned.
641          */
642         ch->target = NULL;
643
644         ch->qp = NULL;
645         ch->send_cq = ch->recv_cq = NULL;
646
647         if (ch->rx_ring) {
648                 for (i = 0; i < target->queue_size; ++i)
649                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
650                 kfree(ch->rx_ring);
651                 ch->rx_ring = NULL;
652         }
653         if (ch->tx_ring) {
654                 for (i = 0; i < target->queue_size; ++i)
655                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
656                 kfree(ch->tx_ring);
657                 ch->tx_ring = NULL;
658         }
659 }
660
661 static void srp_path_rec_completion(int status,
662                                     struct ib_sa_path_rec *pathrec,
663                                     void *ch_ptr)
664 {
665         struct srp_rdma_ch *ch = ch_ptr;
666         struct srp_target_port *target = ch->target;
667
668         ch->status = status;
669         if (status)
670                 shost_printk(KERN_ERR, target->scsi_host,
671                              PFX "Got failed path rec status %d\n", status);
672         else
673                 ch->path = *pathrec;
674         complete(&ch->done);
675 }
676
677 static int srp_lookup_path(struct srp_rdma_ch *ch)
678 {
679         struct srp_target_port *target = ch->target;
680         int ret;
681
682         ch->path.numb_path = 1;
683
684         init_completion(&ch->done);
685
686         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
687                                                target->srp_host->srp_dev->dev,
688                                                target->srp_host->port,
689                                                &ch->path,
690                                                IB_SA_PATH_REC_SERVICE_ID |
691                                                IB_SA_PATH_REC_DGID       |
692                                                IB_SA_PATH_REC_SGID       |
693                                                IB_SA_PATH_REC_NUMB_PATH  |
694                                                IB_SA_PATH_REC_PKEY,
695                                                SRP_PATH_REC_TIMEOUT_MS,
696                                                GFP_KERNEL,
697                                                srp_path_rec_completion,
698                                                ch, &ch->path_query);
699         if (ch->path_query_id < 0)
700                 return ch->path_query_id;
701
702         ret = wait_for_completion_interruptible(&ch->done);
703         if (ret < 0)
704                 return ret;
705
706         if (ch->status < 0)
707                 shost_printk(KERN_WARNING, target->scsi_host,
708                              PFX "Path record query failed\n");
709
710         return ch->status;
711 }
712
713 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
714 {
715         struct srp_target_port *target = ch->target;
716         struct {
717                 struct ib_cm_req_param param;
718                 struct srp_login_req   priv;
719         } *req = NULL;
720         int status;
721
722         req = kzalloc(sizeof *req, GFP_KERNEL);
723         if (!req)
724                 return -ENOMEM;
725
726         req->param.primary_path               = &ch->path;
727         req->param.alternate_path             = NULL;
728         req->param.service_id                 = target->service_id;
729         req->param.qp_num                     = ch->qp->qp_num;
730         req->param.qp_type                    = ch->qp->qp_type;
731         req->param.private_data               = &req->priv;
732         req->param.private_data_len           = sizeof req->priv;
733         req->param.flow_control               = 1;
734
735         get_random_bytes(&req->param.starting_psn, 4);
736         req->param.starting_psn              &= 0xffffff;
737
738         /*
739          * Pick some arbitrary defaults here; we could make these
740          * module parameters if anyone cared about setting them.
741          */
742         req->param.responder_resources        = 4;
743         req->param.remote_cm_response_timeout = 20;
744         req->param.local_cm_response_timeout  = 20;
745         req->param.retry_count                = target->tl_retry_count;
746         req->param.rnr_retry_count            = 7;
747         req->param.max_cm_retries             = 15;
748
749         req->priv.opcode        = SRP_LOGIN_REQ;
750         req->priv.tag           = 0;
751         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
752         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
753                                               SRP_BUF_FORMAT_INDIRECT);
754         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
755                                    SRP_MULTICHAN_SINGLE);
756         /*
757          * In the published SRP specification (draft rev. 16a), the
758          * port identifier format is 8 bytes of ID extension followed
759          * by 8 bytes of GUID.  Older drafts put the two halves in the
760          * opposite order, so that the GUID comes first.
761          *
762          * Targets conforming to these obsolete drafts can be
763          * recognized by the I/O Class they report.
764          */
765         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
766                 memcpy(req->priv.initiator_port_id,
767                        &target->sgid.global.interface_id, 8);
768                 memcpy(req->priv.initiator_port_id + 8,
769                        &target->initiator_ext, 8);
770                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
771                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
772         } else {
773                 memcpy(req->priv.initiator_port_id,
774                        &target->initiator_ext, 8);
775                 memcpy(req->priv.initiator_port_id + 8,
776                        &target->sgid.global.interface_id, 8);
777                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
778                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
779         }
780
781         /*
782          * Topspin/Cisco SRP targets will reject our login unless we
783          * zero out the first 8 bytes of our initiator port ID and set
784          * the second 8 bytes to the local node GUID.
785          */
786         if (srp_target_is_topspin(target)) {
787                 shost_printk(KERN_DEBUG, target->scsi_host,
788                              PFX "Topspin/Cisco initiator port ID workaround "
789                              "activated for target GUID %016llx\n",
790                              be64_to_cpu(target->ioc_guid));
791                 memset(req->priv.initiator_port_id, 0, 8);
792                 memcpy(req->priv.initiator_port_id + 8,
793                        &target->srp_host->srp_dev->dev->node_guid, 8);
794         }
795
796         status = ib_send_cm_req(ch->cm_id, &req->param);
797
798         kfree(req);
799
800         return status;
801 }
802
803 static bool srp_queue_remove_work(struct srp_target_port *target)
804 {
805         bool changed = false;
806
807         spin_lock_irq(&target->lock);
808         if (target->state != SRP_TARGET_REMOVED) {
809                 target->state = SRP_TARGET_REMOVED;
810                 changed = true;
811         }
812         spin_unlock_irq(&target->lock);
813
814         if (changed)
815                 queue_work(srp_remove_wq, &target->remove_work);
816
817         return changed;
818 }
819
820 static void srp_disconnect_target(struct srp_target_port *target)
821 {
822         struct srp_rdma_ch *ch;
823         int i;
824
825         /* XXX should send SRP_I_LOGOUT request */
826
827         for (i = 0; i < target->ch_count; i++) {
828                 ch = &target->ch[i];
829                 ch->connected = false;
830                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
831                         shost_printk(KERN_DEBUG, target->scsi_host,
832                                      PFX "Sending CM DREQ failed\n");
833                 }
834         }
835 }
836
837 static void srp_free_req_data(struct srp_target_port *target,
838                               struct srp_rdma_ch *ch)
839 {
840         struct srp_device *dev = target->srp_host->srp_dev;
841         struct ib_device *ibdev = dev->dev;
842         struct srp_request *req;
843         int i;
844
845         if (!ch->req_ring)
846                 return;
847
848         for (i = 0; i < target->req_ring_size; ++i) {
849                 req = &ch->req_ring[i];
850                 if (dev->use_fast_reg)
851                         kfree(req->fr_list);
852                 else
853                         kfree(req->fmr_list);
854                 kfree(req->map_page);
855                 if (req->indirect_dma_addr) {
856                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
857                                             target->indirect_size,
858                                             DMA_TO_DEVICE);
859                 }
860                 kfree(req->indirect_desc);
861         }
862
863         kfree(ch->req_ring);
864         ch->req_ring = NULL;
865 }
866
867 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
868 {
869         struct srp_target_port *target = ch->target;
870         struct srp_device *srp_dev = target->srp_host->srp_dev;
871         struct ib_device *ibdev = srp_dev->dev;
872         struct srp_request *req;
873         void *mr_list;
874         dma_addr_t dma_addr;
875         int i, ret = -ENOMEM;
876
877         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
878                                GFP_KERNEL);
879         if (!ch->req_ring)
880                 goto out;
881
882         for (i = 0; i < target->req_ring_size; ++i) {
883                 req = &ch->req_ring[i];
884                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
885                                   GFP_KERNEL);
886                 if (!mr_list)
887                         goto out;
888                 if (srp_dev->use_fast_reg)
889                         req->fr_list = mr_list;
890                 else
891                         req->fmr_list = mr_list;
892                 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
893                                         sizeof(void *), GFP_KERNEL);
894                 if (!req->map_page)
895                         goto out;
896                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
897                 if (!req->indirect_desc)
898                         goto out;
899
900                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
901                                              target->indirect_size,
902                                              DMA_TO_DEVICE);
903                 if (ib_dma_mapping_error(ibdev, dma_addr))
904                         goto out;
905
906                 req->indirect_dma_addr = dma_addr;
907         }
908         ret = 0;
909
910 out:
911         return ret;
912 }
913
914 /**
915  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
916  * @shost: SCSI host whose attributes to remove from sysfs.
917  *
918  * Note: Any attributes defined in the host template and that did not exist
919  * before invocation of this function will be ignored.
920  */
921 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
922 {
923         struct device_attribute **attr;
924
925         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
926                 device_remove_file(&shost->shost_dev, *attr);
927 }
928
929 static void srp_remove_target(struct srp_target_port *target)
930 {
931         struct srp_rdma_ch *ch;
932         int i;
933
934         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
935
936         srp_del_scsi_host_attr(target->scsi_host);
937         srp_rport_get(target->rport);
938         srp_remove_host(target->scsi_host);
939         scsi_remove_host(target->scsi_host);
940         srp_stop_rport_timers(target->rport);
941         srp_disconnect_target(target);
942         for (i = 0; i < target->ch_count; i++) {
943                 ch = &target->ch[i];
944                 srp_free_ch_ib(target, ch);
945         }
946         cancel_work_sync(&target->tl_err_work);
947         srp_rport_put(target->rport);
948         for (i = 0; i < target->ch_count; i++) {
949                 ch = &target->ch[i];
950                 srp_free_req_data(target, ch);
951         }
952         kfree(target->ch);
953         target->ch = NULL;
954
955         spin_lock(&target->srp_host->target_lock);
956         list_del(&target->list);
957         spin_unlock(&target->srp_host->target_lock);
958
959         scsi_host_put(target->scsi_host);
960 }
961
962 static void srp_remove_work(struct work_struct *work)
963 {
964         struct srp_target_port *target =
965                 container_of(work, struct srp_target_port, remove_work);
966
967         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
968
969         srp_remove_target(target);
970 }
971
972 static void srp_rport_delete(struct srp_rport *rport)
973 {
974         struct srp_target_port *target = rport->lld_data;
975
976         srp_queue_remove_work(target);
977 }
978
979 /**
980  * srp_connected_ch() - number of connected channels
981  * @target: SRP target port.
982  */
983 static int srp_connected_ch(struct srp_target_port *target)
984 {
985         int i, c = 0;
986
987         for (i = 0; i < target->ch_count; i++)
988                 c += target->ch[i].connected;
989
990         return c;
991 }
992
993 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
994 {
995         struct srp_target_port *target = ch->target;
996         int ret;
997
998         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
999
1000         ret = srp_lookup_path(ch);
1001         if (ret)
1002                 return ret;
1003
1004         while (1) {
1005                 init_completion(&ch->done);
1006                 ret = srp_send_req(ch, multich);
1007                 if (ret)
1008                         return ret;
1009                 ret = wait_for_completion_interruptible(&ch->done);
1010                 if (ret < 0)
1011                         return ret;
1012
1013                 /*
1014                  * The CM event handling code will set status to
1015                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1016                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1017                  * redirect REJ back.
1018                  */
1019                 switch (ch->status) {
1020                 case 0:
1021                         ch->connected = true;
1022                         return 0;
1023
1024                 case SRP_PORT_REDIRECT:
1025                         ret = srp_lookup_path(ch);
1026                         if (ret)
1027                                 return ret;
1028                         break;
1029
1030                 case SRP_DLID_REDIRECT:
1031                         break;
1032
1033                 case SRP_STALE_CONN:
1034                         shost_printk(KERN_ERR, target->scsi_host, PFX
1035                                      "giving up on stale connection\n");
1036                         ch->status = -ECONNRESET;
1037                         return ch->status;
1038
1039                 default:
1040                         return ch->status;
1041                 }
1042         }
1043 }
1044
1045 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1046 {
1047         struct ib_send_wr *bad_wr;
1048         struct ib_send_wr wr = {
1049                 .opcode             = IB_WR_LOCAL_INV,
1050                 .wr_id              = LOCAL_INV_WR_ID_MASK,
1051                 .next               = NULL,
1052                 .num_sge            = 0,
1053                 .send_flags         = 0,
1054                 .ex.invalidate_rkey = rkey,
1055         };
1056
1057         return ib_post_send(ch->qp, &wr, &bad_wr);
1058 }
1059
1060 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1061                            struct srp_rdma_ch *ch,
1062                            struct srp_request *req)
1063 {
1064         struct srp_target_port *target = ch->target;
1065         struct srp_device *dev = target->srp_host->srp_dev;
1066         struct ib_device *ibdev = dev->dev;
1067         int i, res;
1068
1069         if (!scsi_sglist(scmnd) ||
1070             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1071              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1072                 return;
1073
1074         if (dev->use_fast_reg) {
1075                 struct srp_fr_desc **pfr;
1076
1077                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1078                         res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1079                         if (res < 0) {
1080                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1081                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1082                                   (*pfr)->mr->rkey, res);
1083                                 queue_work(system_long_wq,
1084                                            &target->tl_err_work);
1085                         }
1086                 }
1087                 if (req->nmdesc)
1088                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1089                                         req->nmdesc);
1090         } else {
1091                 struct ib_pool_fmr **pfmr;
1092
1093                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1094                         ib_fmr_pool_unmap(*pfmr);
1095         }
1096
1097         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1098                         scmnd->sc_data_direction);
1099 }
1100
1101 /**
1102  * srp_claim_req - Take ownership of the scmnd associated with a request.
1103  * @ch: SRP RDMA channel.
1104  * @req: SRP request.
1105  * @sdev: If not NULL, only take ownership for this SCSI device.
1106  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1107  *         ownership of @req->scmnd if it equals @scmnd.
1108  *
1109  * Return value:
1110  * Either NULL or a pointer to the SCSI command the caller became owner of.
1111  */
1112 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1113                                        struct srp_request *req,
1114                                        struct scsi_device *sdev,
1115                                        struct scsi_cmnd *scmnd)
1116 {
1117         unsigned long flags;
1118
1119         spin_lock_irqsave(&ch->lock, flags);
1120         if (req->scmnd &&
1121             (!sdev || req->scmnd->device == sdev) &&
1122             (!scmnd || req->scmnd == scmnd)) {
1123                 scmnd = req->scmnd;
1124                 req->scmnd = NULL;
1125         } else {
1126                 scmnd = NULL;
1127         }
1128         spin_unlock_irqrestore(&ch->lock, flags);
1129
1130         return scmnd;
1131 }
1132
1133 /**
1134  * srp_free_req() - Unmap data and add request to the free request list.
1135  * @ch:     SRP RDMA channel.
1136  * @req:    Request to be freed.
1137  * @scmnd:  SCSI command associated with @req.
1138  * @req_lim_delta: Amount to be added to @target->req_lim.
1139  */
1140 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1141                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1142 {
1143         unsigned long flags;
1144
1145         srp_unmap_data(scmnd, ch, req);
1146
1147         spin_lock_irqsave(&ch->lock, flags);
1148         ch->req_lim += req_lim_delta;
1149         spin_unlock_irqrestore(&ch->lock, flags);
1150 }
1151
1152 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1153                            struct scsi_device *sdev, int result)
1154 {
1155         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1156
1157         if (scmnd) {
1158                 srp_free_req(ch, req, scmnd, 0);
1159                 scmnd->result = result;
1160                 scmnd->scsi_done(scmnd);
1161         }
1162 }
1163
1164 static void srp_terminate_io(struct srp_rport *rport)
1165 {
1166         struct srp_target_port *target = rport->lld_data;
1167         struct srp_rdma_ch *ch;
1168         struct Scsi_Host *shost = target->scsi_host;
1169         struct scsi_device *sdev;
1170         int i, j;
1171
1172         /*
1173          * Invoking srp_terminate_io() while srp_queuecommand() is running
1174          * is not safe. Hence the warning statement below.
1175          */
1176         shost_for_each_device(sdev, shost)
1177                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1178
1179         for (i = 0; i < target->ch_count; i++) {
1180                 ch = &target->ch[i];
1181
1182                 for (j = 0; j < target->req_ring_size; ++j) {
1183                         struct srp_request *req = &ch->req_ring[j];
1184
1185                         srp_finish_req(ch, req, NULL,
1186                                        DID_TRANSPORT_FAILFAST << 16);
1187                 }
1188         }
1189 }
1190
1191 /*
1192  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1193  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1194  * srp_reset_device() or srp_reset_host() calls will occur while this function
1195  * is in progress. One way to realize that is not to call this function
1196  * directly but to call srp_reconnect_rport() instead since that last function
1197  * serializes calls of this function via rport->mutex and also blocks
1198  * srp_queuecommand() calls before invoking this function.
1199  */
1200 static int srp_rport_reconnect(struct srp_rport *rport)
1201 {
1202         struct srp_target_port *target = rport->lld_data;
1203         struct srp_rdma_ch *ch;
1204         int i, j, ret = 0;
1205         bool multich = false;
1206
1207         srp_disconnect_target(target);
1208
1209         if (target->state == SRP_TARGET_SCANNING)
1210                 return -ENODEV;
1211
1212         /*
1213          * Now get a new local CM ID so that we avoid confusing the target in
1214          * case things are really fouled up. Doing so also ensures that all CM
1215          * callbacks will have finished before a new QP is allocated.
1216          */
1217         for (i = 0; i < target->ch_count; i++) {
1218                 ch = &target->ch[i];
1219                 ret += srp_new_cm_id(ch);
1220         }
1221         for (i = 0; i < target->ch_count; i++) {
1222                 ch = &target->ch[i];
1223                 for (j = 0; j < target->req_ring_size; ++j) {
1224                         struct srp_request *req = &ch->req_ring[j];
1225
1226                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1227                 }
1228         }
1229         for (i = 0; i < target->ch_count; i++) {
1230                 ch = &target->ch[i];
1231                 /*
1232                  * Whether or not creating a new CM ID succeeded, create a new
1233                  * QP. This guarantees that all completion callback function
1234                  * invocations have finished before request resetting starts.
1235                  */
1236                 ret += srp_create_ch_ib(ch);
1237
1238                 INIT_LIST_HEAD(&ch->free_tx);
1239                 for (j = 0; j < target->queue_size; ++j)
1240                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1241         }
1242
1243         target->qp_in_error = false;
1244
1245         for (i = 0; i < target->ch_count; i++) {
1246                 ch = &target->ch[i];
1247                 if (ret)
1248                         break;
1249                 ret = srp_connect_ch(ch, multich);
1250                 multich = true;
1251         }
1252
1253         if (ret == 0)
1254                 shost_printk(KERN_INFO, target->scsi_host,
1255                              PFX "reconnect succeeded\n");
1256
1257         return ret;
1258 }
1259
1260 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1261                          unsigned int dma_len, u32 rkey)
1262 {
1263         struct srp_direct_buf *desc = state->desc;
1264
1265         desc->va = cpu_to_be64(dma_addr);
1266         desc->key = cpu_to_be32(rkey);
1267         desc->len = cpu_to_be32(dma_len);
1268
1269         state->total_len += dma_len;
1270         state->desc++;
1271         state->ndesc++;
1272 }
1273
1274 static int srp_map_finish_fmr(struct srp_map_state *state,
1275                               struct srp_rdma_ch *ch)
1276 {
1277         struct ib_pool_fmr *fmr;
1278         u64 io_addr = 0;
1279
1280         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1281                                    state->npages, io_addr);
1282         if (IS_ERR(fmr))
1283                 return PTR_ERR(fmr);
1284
1285         *state->next_fmr++ = fmr;
1286         state->nmdesc++;
1287
1288         srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey);
1289
1290         return 0;
1291 }
1292
1293 static int srp_map_finish_fr(struct srp_map_state *state,
1294                              struct srp_rdma_ch *ch)
1295 {
1296         struct srp_target_port *target = ch->target;
1297         struct srp_device *dev = target->srp_host->srp_dev;
1298         struct ib_send_wr *bad_wr;
1299         struct ib_send_wr wr;
1300         struct srp_fr_desc *desc;
1301         u32 rkey;
1302
1303         desc = srp_fr_pool_get(ch->fr_pool);
1304         if (!desc)
1305                 return -ENOMEM;
1306
1307         rkey = ib_inc_rkey(desc->mr->rkey);
1308         ib_update_fast_reg_key(desc->mr, rkey);
1309
1310         memcpy(desc->frpl->page_list, state->pages,
1311                sizeof(state->pages[0]) * state->npages);
1312
1313         memset(&wr, 0, sizeof(wr));
1314         wr.opcode = IB_WR_FAST_REG_MR;
1315         wr.wr_id = FAST_REG_WR_ID_MASK;
1316         wr.wr.fast_reg.iova_start = state->base_dma_addr;
1317         wr.wr.fast_reg.page_list = desc->frpl;
1318         wr.wr.fast_reg.page_list_len = state->npages;
1319         wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1320         wr.wr.fast_reg.length = state->dma_len;
1321         wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1322                                        IB_ACCESS_REMOTE_READ |
1323                                        IB_ACCESS_REMOTE_WRITE);
1324         wr.wr.fast_reg.rkey = desc->mr->lkey;
1325
1326         *state->next_fr++ = desc;
1327         state->nmdesc++;
1328
1329         srp_map_desc(state, state->base_dma_addr, state->dma_len,
1330                      desc->mr->rkey);
1331
1332         return ib_post_send(ch->qp, &wr, &bad_wr);
1333 }
1334
1335 static int srp_finish_mapping(struct srp_map_state *state,
1336                               struct srp_rdma_ch *ch)
1337 {
1338         struct srp_target_port *target = ch->target;
1339         int ret = 0;
1340
1341         if (state->npages == 0)
1342                 return 0;
1343
1344         if (state->npages == 1 && !register_always)
1345                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1346                              target->rkey);
1347         else
1348                 ret = target->srp_host->srp_dev->use_fast_reg ?
1349                         srp_map_finish_fr(state, ch) :
1350                         srp_map_finish_fmr(state, ch);
1351
1352         if (ret == 0) {
1353                 state->npages = 0;
1354                 state->dma_len = 0;
1355         }
1356
1357         return ret;
1358 }
1359
1360 static void srp_map_update_start(struct srp_map_state *state,
1361                                  struct scatterlist *sg, int sg_index,
1362                                  dma_addr_t dma_addr)
1363 {
1364         state->unmapped_sg = sg;
1365         state->unmapped_index = sg_index;
1366         state->unmapped_addr = dma_addr;
1367 }
1368
1369 static int srp_map_sg_entry(struct srp_map_state *state,
1370                             struct srp_rdma_ch *ch,
1371                             struct scatterlist *sg, int sg_index,
1372                             bool use_mr)
1373 {
1374         struct srp_target_port *target = ch->target;
1375         struct srp_device *dev = target->srp_host->srp_dev;
1376         struct ib_device *ibdev = dev->dev;
1377         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1378         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1379         unsigned int len;
1380         int ret;
1381
1382         if (!dma_len)
1383                 return 0;
1384
1385         if (!use_mr) {
1386                 /*
1387                  * Once we're in direct map mode for a request, we don't
1388                  * go back to FMR or FR mode, so no need to update anything
1389                  * other than the descriptor.
1390                  */
1391                 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1392                 return 0;
1393         }
1394
1395         /*
1396          * Since not all RDMA HW drivers support non-zero page offsets for
1397          * FMR, if we start at an offset into a page, don't merge into the
1398          * current FMR mapping. Finish it out, and use the kernel's MR for
1399          * this sg entry.
1400          */
1401         if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) ||
1402             dma_len > dev->mr_max_size) {
1403                 ret = srp_finish_mapping(state, ch);
1404                 if (ret)
1405                         return ret;
1406
1407                 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1408                 srp_map_update_start(state, NULL, 0, 0);
1409                 return 0;
1410         }
1411
1412         /*
1413          * If this is the first sg that will be mapped via FMR or via FR, save
1414          * our position. We need to know the first unmapped entry, its index,
1415          * and the first unmapped address within that entry to be able to
1416          * restart mapping after an error.
1417          */
1418         if (!state->unmapped_sg)
1419                 srp_map_update_start(state, sg, sg_index, dma_addr);
1420
1421         while (dma_len) {
1422                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1423                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1424                         ret = srp_finish_mapping(state, ch);
1425                         if (ret)
1426                                 return ret;
1427
1428                         srp_map_update_start(state, sg, sg_index, dma_addr);
1429                 }
1430
1431                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1432
1433                 if (!state->npages)
1434                         state->base_dma_addr = dma_addr;
1435                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1436                 state->dma_len += len;
1437                 dma_addr += len;
1438                 dma_len -= len;
1439         }
1440
1441         /*
1442          * If the last entry of the MR wasn't a full page, then we need to
1443          * close it out and start a new one -- we can only merge at page
1444          * boundries.
1445          */
1446         ret = 0;
1447         if (len != dev->mr_page_size) {
1448                 ret = srp_finish_mapping(state, ch);
1449                 if (!ret)
1450                         srp_map_update_start(state, NULL, 0, 0);
1451         }
1452         return ret;
1453 }
1454
1455 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1456                       struct srp_request *req, struct scatterlist *scat,
1457                       int count)
1458 {
1459         struct srp_target_port *target = ch->target;
1460         struct srp_device *dev = target->srp_host->srp_dev;
1461         struct ib_device *ibdev = dev->dev;
1462         struct scatterlist *sg;
1463         int i;
1464         bool use_mr;
1465
1466         state->desc     = req->indirect_desc;
1467         state->pages    = req->map_page;
1468         if (dev->use_fast_reg) {
1469                 state->next_fr = req->fr_list;
1470                 use_mr = !!ch->fr_pool;
1471         } else {
1472                 state->next_fmr = req->fmr_list;
1473                 use_mr = !!ch->fmr_pool;
1474         }
1475
1476         for_each_sg(scat, sg, count, i) {
1477                 if (srp_map_sg_entry(state, ch, sg, i, use_mr)) {
1478                         /*
1479                          * Memory registration failed, so backtrack to the
1480                          * first unmapped entry and continue on without using
1481                          * memory registration.
1482                          */
1483                         dma_addr_t dma_addr;
1484                         unsigned int dma_len;
1485
1486 backtrack:
1487                         sg = state->unmapped_sg;
1488                         i = state->unmapped_index;
1489
1490                         dma_addr = ib_sg_dma_address(ibdev, sg);
1491                         dma_len = ib_sg_dma_len(ibdev, sg);
1492                         dma_len -= (state->unmapped_addr - dma_addr);
1493                         dma_addr = state->unmapped_addr;
1494                         use_mr = false;
1495                         srp_map_desc(state, dma_addr, dma_len, target->rkey);
1496                 }
1497         }
1498
1499         if (use_mr && srp_finish_mapping(state, ch))
1500                 goto backtrack;
1501
1502         req->nmdesc = state->nmdesc;
1503
1504         return 0;
1505 }
1506
1507 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1508                         struct srp_request *req)
1509 {
1510         struct srp_target_port *target = ch->target;
1511         struct scatterlist *scat;
1512         struct srp_cmd *cmd = req->cmd->buf;
1513         int len, nents, count;
1514         struct srp_device *dev;
1515         struct ib_device *ibdev;
1516         struct srp_map_state state;
1517         struct srp_indirect_buf *indirect_hdr;
1518         u32 table_len;
1519         u8 fmt;
1520
1521         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1522                 return sizeof (struct srp_cmd);
1523
1524         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1525             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1526                 shost_printk(KERN_WARNING, target->scsi_host,
1527                              PFX "Unhandled data direction %d\n",
1528                              scmnd->sc_data_direction);
1529                 return -EINVAL;
1530         }
1531
1532         nents = scsi_sg_count(scmnd);
1533         scat  = scsi_sglist(scmnd);
1534
1535         dev = target->srp_host->srp_dev;
1536         ibdev = dev->dev;
1537
1538         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1539         if (unlikely(count == 0))
1540                 return -EIO;
1541
1542         fmt = SRP_DATA_DESC_DIRECT;
1543         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1544
1545         if (count == 1 && !register_always) {
1546                 /*
1547                  * The midlayer only generated a single gather/scatter
1548                  * entry, or DMA mapping coalesced everything to a
1549                  * single entry.  So a direct descriptor along with
1550                  * the DMA MR suffices.
1551                  */
1552                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1553
1554                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1555                 buf->key = cpu_to_be32(target->rkey);
1556                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1557
1558                 req->nmdesc = 0;
1559                 goto map_complete;
1560         }
1561
1562         /*
1563          * We have more than one scatter/gather entry, so build our indirect
1564          * descriptor table, trying to merge as many entries as we can.
1565          */
1566         indirect_hdr = (void *) cmd->add_data;
1567
1568         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1569                                    target->indirect_size, DMA_TO_DEVICE);
1570
1571         memset(&state, 0, sizeof(state));
1572         srp_map_sg(&state, ch, req, scat, count);
1573
1574         /* We've mapped the request, now pull as much of the indirect
1575          * descriptor table as we can into the command buffer. If this
1576          * target is not using an external indirect table, we are
1577          * guaranteed to fit into the command, as the SCSI layer won't
1578          * give us more S/G entries than we allow.
1579          */
1580         if (state.ndesc == 1) {
1581                 /*
1582                  * Memory registration collapsed the sg-list into one entry,
1583                  * so use a direct descriptor.
1584                  */
1585                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1586
1587                 *buf = req->indirect_desc[0];
1588                 goto map_complete;
1589         }
1590
1591         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1592                                                 !target->allow_ext_sg)) {
1593                 shost_printk(KERN_ERR, target->scsi_host,
1594                              "Could not fit S/G list into SRP_CMD\n");
1595                 return -EIO;
1596         }
1597
1598         count = min(state.ndesc, target->cmd_sg_cnt);
1599         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1600
1601         fmt = SRP_DATA_DESC_INDIRECT;
1602         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1603         len += count * sizeof (struct srp_direct_buf);
1604
1605         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1606                count * sizeof (struct srp_direct_buf));
1607
1608         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1609         indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1610         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1611         indirect_hdr->len = cpu_to_be32(state.total_len);
1612
1613         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1614                 cmd->data_out_desc_cnt = count;
1615         else
1616                 cmd->data_in_desc_cnt = count;
1617
1618         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1619                                       DMA_TO_DEVICE);
1620
1621 map_complete:
1622         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1623                 cmd->buf_fmt = fmt << 4;
1624         else
1625                 cmd->buf_fmt = fmt;
1626
1627         return len;
1628 }
1629
1630 /*
1631  * Return an IU and possible credit to the free pool
1632  */
1633 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1634                           enum srp_iu_type iu_type)
1635 {
1636         unsigned long flags;
1637
1638         spin_lock_irqsave(&ch->lock, flags);
1639         list_add(&iu->list, &ch->free_tx);
1640         if (iu_type != SRP_IU_RSP)
1641                 ++ch->req_lim;
1642         spin_unlock_irqrestore(&ch->lock, flags);
1643 }
1644
1645 /*
1646  * Must be called with ch->lock held to protect req_lim and free_tx.
1647  * If IU is not sent, it must be returned using srp_put_tx_iu().
1648  *
1649  * Note:
1650  * An upper limit for the number of allocated information units for each
1651  * request type is:
1652  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1653  *   more than Scsi_Host.can_queue requests.
1654  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1655  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1656  *   one unanswered SRP request to an initiator.
1657  */
1658 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1659                                       enum srp_iu_type iu_type)
1660 {
1661         struct srp_target_port *target = ch->target;
1662         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1663         struct srp_iu *iu;
1664
1665         srp_send_completion(ch->send_cq, ch);
1666
1667         if (list_empty(&ch->free_tx))
1668                 return NULL;
1669
1670         /* Initiator responses to target requests do not consume credits */
1671         if (iu_type != SRP_IU_RSP) {
1672                 if (ch->req_lim <= rsv) {
1673                         ++target->zero_req_lim;
1674                         return NULL;
1675                 }
1676
1677                 --ch->req_lim;
1678         }
1679
1680         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1681         list_del(&iu->list);
1682         return iu;
1683 }
1684
1685 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1686 {
1687         struct srp_target_port *target = ch->target;
1688         struct ib_sge list;
1689         struct ib_send_wr wr, *bad_wr;
1690
1691         list.addr   = iu->dma;
1692         list.length = len;
1693         list.lkey   = target->lkey;
1694
1695         wr.next       = NULL;
1696         wr.wr_id      = (uintptr_t) iu;
1697         wr.sg_list    = &list;
1698         wr.num_sge    = 1;
1699         wr.opcode     = IB_WR_SEND;
1700         wr.send_flags = IB_SEND_SIGNALED;
1701
1702         return ib_post_send(ch->qp, &wr, &bad_wr);
1703 }
1704
1705 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1706 {
1707         struct srp_target_port *target = ch->target;
1708         struct ib_recv_wr wr, *bad_wr;
1709         struct ib_sge list;
1710
1711         list.addr   = iu->dma;
1712         list.length = iu->size;
1713         list.lkey   = target->lkey;
1714
1715         wr.next     = NULL;
1716         wr.wr_id    = (uintptr_t) iu;
1717         wr.sg_list  = &list;
1718         wr.num_sge  = 1;
1719
1720         return ib_post_recv(ch->qp, &wr, &bad_wr);
1721 }
1722
1723 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1724 {
1725         struct srp_target_port *target = ch->target;
1726         struct srp_request *req;
1727         struct scsi_cmnd *scmnd;
1728         unsigned long flags;
1729
1730         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1731                 spin_lock_irqsave(&ch->lock, flags);
1732                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1733                 spin_unlock_irqrestore(&ch->lock, flags);
1734
1735                 ch->tsk_mgmt_status = -1;
1736                 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1737                         ch->tsk_mgmt_status = rsp->data[3];
1738                 complete(&ch->tsk_mgmt_done);
1739         } else {
1740                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1741                 if (scmnd) {
1742                         req = (void *)scmnd->host_scribble;
1743                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1744                 }
1745                 if (!scmnd) {
1746                         shost_printk(KERN_ERR, target->scsi_host,
1747                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1748                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1749
1750                         spin_lock_irqsave(&ch->lock, flags);
1751                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1752                         spin_unlock_irqrestore(&ch->lock, flags);
1753
1754                         return;
1755                 }
1756                 scmnd->result = rsp->status;
1757
1758                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1759                         memcpy(scmnd->sense_buffer, rsp->data +
1760                                be32_to_cpu(rsp->resp_data_len),
1761                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1762                                      SCSI_SENSE_BUFFERSIZE));
1763                 }
1764
1765                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1766                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1767                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1768                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1769                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1770                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1771                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1772                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1773
1774                 srp_free_req(ch, req, scmnd,
1775                              be32_to_cpu(rsp->req_lim_delta));
1776
1777                 scmnd->host_scribble = NULL;
1778                 scmnd->scsi_done(scmnd);
1779         }
1780 }
1781
1782 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1783                                void *rsp, int len)
1784 {
1785         struct srp_target_port *target = ch->target;
1786         struct ib_device *dev = target->srp_host->srp_dev->dev;
1787         unsigned long flags;
1788         struct srp_iu *iu;
1789         int err;
1790
1791         spin_lock_irqsave(&ch->lock, flags);
1792         ch->req_lim += req_delta;
1793         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1794         spin_unlock_irqrestore(&ch->lock, flags);
1795
1796         if (!iu) {
1797                 shost_printk(KERN_ERR, target->scsi_host, PFX
1798                              "no IU available to send response\n");
1799                 return 1;
1800         }
1801
1802         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1803         memcpy(iu->buf, rsp, len);
1804         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1805
1806         err = srp_post_send(ch, iu, len);
1807         if (err) {
1808                 shost_printk(KERN_ERR, target->scsi_host, PFX
1809                              "unable to post response: %d\n", err);
1810                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1811         }
1812
1813         return err;
1814 }
1815
1816 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1817                                  struct srp_cred_req *req)
1818 {
1819         struct srp_cred_rsp rsp = {
1820                 .opcode = SRP_CRED_RSP,
1821                 .tag = req->tag,
1822         };
1823         s32 delta = be32_to_cpu(req->req_lim_delta);
1824
1825         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1826                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1827                              "problems processing SRP_CRED_REQ\n");
1828 }
1829
1830 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1831                                 struct srp_aer_req *req)
1832 {
1833         struct srp_target_port *target = ch->target;
1834         struct srp_aer_rsp rsp = {
1835                 .opcode = SRP_AER_RSP,
1836                 .tag = req->tag,
1837         };
1838         s32 delta = be32_to_cpu(req->req_lim_delta);
1839
1840         shost_printk(KERN_ERR, target->scsi_host, PFX
1841                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1842
1843         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1844                 shost_printk(KERN_ERR, target->scsi_host, PFX
1845                              "problems processing SRP_AER_REQ\n");
1846 }
1847
1848 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1849 {
1850         struct srp_target_port *target = ch->target;
1851         struct ib_device *dev = target->srp_host->srp_dev->dev;
1852         struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1853         int res;
1854         u8 opcode;
1855
1856         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1857                                    DMA_FROM_DEVICE);
1858
1859         opcode = *(u8 *) iu->buf;
1860
1861         if (0) {
1862                 shost_printk(KERN_ERR, target->scsi_host,
1863                              PFX "recv completion, opcode 0x%02x\n", opcode);
1864                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1865                                iu->buf, wc->byte_len, true);
1866         }
1867
1868         switch (opcode) {
1869         case SRP_RSP:
1870                 srp_process_rsp(ch, iu->buf);
1871                 break;
1872
1873         case SRP_CRED_REQ:
1874                 srp_process_cred_req(ch, iu->buf);
1875                 break;
1876
1877         case SRP_AER_REQ:
1878                 srp_process_aer_req(ch, iu->buf);
1879                 break;
1880
1881         case SRP_T_LOGOUT:
1882                 /* XXX Handle target logout */
1883                 shost_printk(KERN_WARNING, target->scsi_host,
1884                              PFX "Got target logout request\n");
1885                 break;
1886
1887         default:
1888                 shost_printk(KERN_WARNING, target->scsi_host,
1889                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1890                 break;
1891         }
1892
1893         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1894                                       DMA_FROM_DEVICE);
1895
1896         res = srp_post_recv(ch, iu);
1897         if (res != 0)
1898                 shost_printk(KERN_ERR, target->scsi_host,
1899                              PFX "Recv failed with error code %d\n", res);
1900 }
1901
1902 /**
1903  * srp_tl_err_work() - handle a transport layer error
1904  * @work: Work structure embedded in an SRP target port.
1905  *
1906  * Note: This function may get invoked before the rport has been created,
1907  * hence the target->rport test.
1908  */
1909 static void srp_tl_err_work(struct work_struct *work)
1910 {
1911         struct srp_target_port *target;
1912
1913         target = container_of(work, struct srp_target_port, tl_err_work);
1914         if (target->rport)
1915                 srp_start_tl_fail_timers(target->rport);
1916 }
1917
1918 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1919                               bool send_err, struct srp_rdma_ch *ch)
1920 {
1921         struct srp_target_port *target = ch->target;
1922
1923         if (wr_id == SRP_LAST_WR_ID) {
1924                 complete(&ch->done);
1925                 return;
1926         }
1927
1928         if (ch->connected && !target->qp_in_error) {
1929                 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1930                         shost_printk(KERN_ERR, target->scsi_host, PFX
1931                                      "LOCAL_INV failed with status %s (%d)\n",
1932                                      ib_wc_status_msg(wc_status), wc_status);
1933                 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1934                         shost_printk(KERN_ERR, target->scsi_host, PFX
1935                                      "FAST_REG_MR failed status %s (%d)\n",
1936                                      ib_wc_status_msg(wc_status), wc_status);
1937                 } else {
1938                         shost_printk(KERN_ERR, target->scsi_host,
1939                                      PFX "failed %s status %s (%d) for iu %p\n",
1940                                      send_err ? "send" : "receive",
1941                                      ib_wc_status_msg(wc_status), wc_status,
1942                                      (void *)(uintptr_t)wr_id);
1943                 }
1944                 queue_work(system_long_wq, &target->tl_err_work);
1945         }
1946         target->qp_in_error = true;
1947 }
1948
1949 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1950 {
1951         struct srp_rdma_ch *ch = ch_ptr;
1952         struct ib_wc wc;
1953
1954         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1955         while (ib_poll_cq(cq, 1, &wc) > 0) {
1956                 if (likely(wc.status == IB_WC_SUCCESS)) {
1957                         srp_handle_recv(ch, &wc);
1958                 } else {
1959                         srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1960                 }
1961         }
1962 }
1963
1964 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1965 {
1966         struct srp_rdma_ch *ch = ch_ptr;
1967         struct ib_wc wc;
1968         struct srp_iu *iu;
1969
1970         while (ib_poll_cq(cq, 1, &wc) > 0) {
1971                 if (likely(wc.status == IB_WC_SUCCESS)) {
1972                         iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1973                         list_add(&iu->list, &ch->free_tx);
1974                 } else {
1975                         srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1976                 }
1977         }
1978 }
1979
1980 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1981 {
1982         struct srp_target_port *target = host_to_target(shost);
1983         struct srp_rport *rport = target->rport;
1984         struct srp_rdma_ch *ch;
1985         struct srp_request *req;
1986         struct srp_iu *iu;
1987         struct srp_cmd *cmd;
1988         struct ib_device *dev;
1989         unsigned long flags;
1990         u32 tag;
1991         u16 idx;
1992         int len, ret;
1993         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1994
1995         /*
1996          * The SCSI EH thread is the only context from which srp_queuecommand()
1997          * can get invoked for blocked devices (SDEV_BLOCK /
1998          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1999          * locking the rport mutex if invoked from inside the SCSI EH.
2000          */
2001         if (in_scsi_eh)
2002                 mutex_lock(&rport->mutex);
2003
2004         scmnd->result = srp_chkready(target->rport);
2005         if (unlikely(scmnd->result))
2006                 goto err;
2007
2008         WARN_ON_ONCE(scmnd->request->tag < 0);
2009         tag = blk_mq_unique_tag(scmnd->request);
2010         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2011         idx = blk_mq_unique_tag_to_tag(tag);
2012         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2013                   dev_name(&shost->shost_gendev), tag, idx,
2014                   target->req_ring_size);
2015
2016         spin_lock_irqsave(&ch->lock, flags);
2017         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2018         spin_unlock_irqrestore(&ch->lock, flags);
2019
2020         if (!iu)
2021                 goto err;
2022
2023         req = &ch->req_ring[idx];
2024         dev = target->srp_host->srp_dev->dev;
2025         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2026                                    DMA_TO_DEVICE);
2027
2028         scmnd->host_scribble = (void *) req;
2029
2030         cmd = iu->buf;
2031         memset(cmd, 0, sizeof *cmd);
2032
2033         cmd->opcode = SRP_CMD;
2034         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2035         cmd->tag    = tag;
2036         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2037
2038         req->scmnd    = scmnd;
2039         req->cmd      = iu;
2040
2041         len = srp_map_data(scmnd, ch, req);
2042         if (len < 0) {
2043                 shost_printk(KERN_ERR, target->scsi_host,
2044                              PFX "Failed to map data (%d)\n", len);
2045                 /*
2046                  * If we ran out of memory descriptors (-ENOMEM) because an
2047                  * application is queuing many requests with more than
2048                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2049                  * to reduce queue depth temporarily.
2050                  */
2051                 scmnd->result = len == -ENOMEM ?
2052                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2053                 goto err_iu;
2054         }
2055
2056         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2057                                       DMA_TO_DEVICE);
2058
2059         if (srp_post_send(ch, iu, len)) {
2060                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2061                 goto err_unmap;
2062         }
2063
2064         ret = 0;
2065
2066 unlock_rport:
2067         if (in_scsi_eh)
2068                 mutex_unlock(&rport->mutex);
2069
2070         return ret;
2071
2072 err_unmap:
2073         srp_unmap_data(scmnd, ch, req);
2074
2075 err_iu:
2076         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2077
2078         /*
2079          * Avoid that the loops that iterate over the request ring can
2080          * encounter a dangling SCSI command pointer.
2081          */
2082         req->scmnd = NULL;
2083
2084 err:
2085         if (scmnd->result) {
2086                 scmnd->scsi_done(scmnd);
2087                 ret = 0;
2088         } else {
2089                 ret = SCSI_MLQUEUE_HOST_BUSY;
2090         }
2091
2092         goto unlock_rport;
2093 }
2094
2095 /*
2096  * Note: the resources allocated in this function are freed in
2097  * srp_free_ch_ib().
2098  */
2099 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2100 {
2101         struct srp_target_port *target = ch->target;
2102         int i;
2103
2104         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2105                               GFP_KERNEL);
2106         if (!ch->rx_ring)
2107                 goto err_no_ring;
2108         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2109                               GFP_KERNEL);
2110         if (!ch->tx_ring)
2111                 goto err_no_ring;
2112
2113         for (i = 0; i < target->queue_size; ++i) {
2114                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2115                                               ch->max_ti_iu_len,
2116                                               GFP_KERNEL, DMA_FROM_DEVICE);
2117                 if (!ch->rx_ring[i])
2118                         goto err;
2119         }
2120
2121         for (i = 0; i < target->queue_size; ++i) {
2122                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2123                                               target->max_iu_len,
2124                                               GFP_KERNEL, DMA_TO_DEVICE);
2125                 if (!ch->tx_ring[i])
2126                         goto err;
2127
2128                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2129         }
2130
2131         return 0;
2132
2133 err:
2134         for (i = 0; i < target->queue_size; ++i) {
2135                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2136                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2137         }
2138
2139
2140 err_no_ring:
2141         kfree(ch->tx_ring);
2142         ch->tx_ring = NULL;
2143         kfree(ch->rx_ring);
2144         ch->rx_ring = NULL;
2145
2146         return -ENOMEM;
2147 }
2148
2149 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2150 {
2151         uint64_t T_tr_ns, max_compl_time_ms;
2152         uint32_t rq_tmo_jiffies;
2153
2154         /*
2155          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2156          * table 91), both the QP timeout and the retry count have to be set
2157          * for RC QP's during the RTR to RTS transition.
2158          */
2159         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2160                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2161
2162         /*
2163          * Set target->rq_tmo_jiffies to one second more than the largest time
2164          * it can take before an error completion is generated. See also
2165          * C9-140..142 in the IBTA spec for more information about how to
2166          * convert the QP Local ACK Timeout value to nanoseconds.
2167          */
2168         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2169         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2170         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2171         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2172
2173         return rq_tmo_jiffies;
2174 }
2175
2176 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2177                                struct srp_login_rsp *lrsp,
2178                                struct srp_rdma_ch *ch)
2179 {
2180         struct srp_target_port *target = ch->target;
2181         struct ib_qp_attr *qp_attr = NULL;
2182         int attr_mask = 0;
2183         int ret;
2184         int i;
2185
2186         if (lrsp->opcode == SRP_LOGIN_RSP) {
2187                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2188                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2189
2190                 /*
2191                  * Reserve credits for task management so we don't
2192                  * bounce requests back to the SCSI mid-layer.
2193                  */
2194                 target->scsi_host->can_queue
2195                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2196                               target->scsi_host->can_queue);
2197                 target->scsi_host->cmd_per_lun
2198                         = min_t(int, target->scsi_host->can_queue,
2199                                 target->scsi_host->cmd_per_lun);
2200         } else {
2201                 shost_printk(KERN_WARNING, target->scsi_host,
2202                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2203                 ret = -ECONNRESET;
2204                 goto error;
2205         }
2206
2207         if (!ch->rx_ring) {
2208                 ret = srp_alloc_iu_bufs(ch);
2209                 if (ret)
2210                         goto error;
2211         }
2212
2213         ret = -ENOMEM;
2214         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2215         if (!qp_attr)
2216                 goto error;
2217
2218         qp_attr->qp_state = IB_QPS_RTR;
2219         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2220         if (ret)
2221                 goto error_free;
2222
2223         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2224         if (ret)
2225                 goto error_free;
2226
2227         for (i = 0; i < target->queue_size; i++) {
2228                 struct srp_iu *iu = ch->rx_ring[i];
2229
2230                 ret = srp_post_recv(ch, iu);
2231                 if (ret)
2232                         goto error_free;
2233         }
2234
2235         qp_attr->qp_state = IB_QPS_RTS;
2236         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2237         if (ret)
2238                 goto error_free;
2239
2240         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2241
2242         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2243         if (ret)
2244                 goto error_free;
2245
2246         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2247
2248 error_free:
2249         kfree(qp_attr);
2250
2251 error:
2252         ch->status = ret;
2253 }
2254
2255 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2256                                struct ib_cm_event *event,
2257                                struct srp_rdma_ch *ch)
2258 {
2259         struct srp_target_port *target = ch->target;
2260         struct Scsi_Host *shost = target->scsi_host;
2261         struct ib_class_port_info *cpi;
2262         int opcode;
2263
2264         switch (event->param.rej_rcvd.reason) {
2265         case IB_CM_REJ_PORT_CM_REDIRECT:
2266                 cpi = event->param.rej_rcvd.ari;
2267                 ch->path.dlid = cpi->redirect_lid;
2268                 ch->path.pkey = cpi->redirect_pkey;
2269                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2270                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2271
2272                 ch->status = ch->path.dlid ?
2273                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2274                 break;
2275
2276         case IB_CM_REJ_PORT_REDIRECT:
2277                 if (srp_target_is_topspin(target)) {
2278                         /*
2279                          * Topspin/Cisco SRP gateways incorrectly send
2280                          * reject reason code 25 when they mean 24
2281                          * (port redirect).
2282                          */
2283                         memcpy(ch->path.dgid.raw,
2284                                event->param.rej_rcvd.ari, 16);
2285
2286                         shost_printk(KERN_DEBUG, shost,
2287                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2288                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2289                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2290
2291                         ch->status = SRP_PORT_REDIRECT;
2292                 } else {
2293                         shost_printk(KERN_WARNING, shost,
2294                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2295                         ch->status = -ECONNRESET;
2296                 }
2297                 break;
2298
2299         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2300                 shost_printk(KERN_WARNING, shost,
2301                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2302                 ch->status = -ECONNRESET;
2303                 break;
2304
2305         case IB_CM_REJ_CONSUMER_DEFINED:
2306                 opcode = *(u8 *) event->private_data;
2307                 if (opcode == SRP_LOGIN_REJ) {
2308                         struct srp_login_rej *rej = event->private_data;
2309                         u32 reason = be32_to_cpu(rej->reason);
2310
2311                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2312                                 shost_printk(KERN_WARNING, shost,
2313                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2314                         else
2315                                 shost_printk(KERN_WARNING, shost, PFX
2316                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2317                                              target->sgid.raw,
2318                                              target->orig_dgid.raw, reason);
2319                 } else
2320                         shost_printk(KERN_WARNING, shost,
2321                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2322                                      " opcode 0x%02x\n", opcode);
2323                 ch->status = -ECONNRESET;
2324                 break;
2325
2326         case IB_CM_REJ_STALE_CONN:
2327                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2328                 ch->status = SRP_STALE_CONN;
2329                 break;
2330
2331         default:
2332                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2333                              event->param.rej_rcvd.reason);
2334                 ch->status = -ECONNRESET;
2335         }
2336 }
2337
2338 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2339 {
2340         struct srp_rdma_ch *ch = cm_id->context;
2341         struct srp_target_port *target = ch->target;
2342         int comp = 0;
2343
2344         switch (event->event) {
2345         case IB_CM_REQ_ERROR:
2346                 shost_printk(KERN_DEBUG, target->scsi_host,
2347                              PFX "Sending CM REQ failed\n");
2348                 comp = 1;
2349                 ch->status = -ECONNRESET;
2350                 break;
2351
2352         case IB_CM_REP_RECEIVED:
2353                 comp = 1;
2354                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2355                 break;
2356
2357         case IB_CM_REJ_RECEIVED:
2358                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2359                 comp = 1;
2360
2361                 srp_cm_rej_handler(cm_id, event, ch);
2362                 break;
2363
2364         case IB_CM_DREQ_RECEIVED:
2365                 shost_printk(KERN_WARNING, target->scsi_host,
2366                              PFX "DREQ received - connection closed\n");
2367                 ch->connected = false;
2368                 if (ib_send_cm_drep(cm_id, NULL, 0))
2369                         shost_printk(KERN_ERR, target->scsi_host,
2370                                      PFX "Sending CM DREP failed\n");
2371                 queue_work(system_long_wq, &target->tl_err_work);
2372                 break;
2373
2374         case IB_CM_TIMEWAIT_EXIT:
2375                 shost_printk(KERN_ERR, target->scsi_host,
2376                              PFX "connection closed\n");
2377                 comp = 1;
2378
2379                 ch->status = 0;
2380                 break;
2381
2382         case IB_CM_MRA_RECEIVED:
2383         case IB_CM_DREQ_ERROR:
2384         case IB_CM_DREP_RECEIVED:
2385                 break;
2386
2387         default:
2388                 shost_printk(KERN_WARNING, target->scsi_host,
2389                              PFX "Unhandled CM event %d\n", event->event);
2390                 break;
2391         }
2392
2393         if (comp)
2394                 complete(&ch->done);
2395
2396         return 0;
2397 }
2398
2399 /**
2400  * srp_change_queue_depth - setting device queue depth
2401  * @sdev: scsi device struct
2402  * @qdepth: requested queue depth
2403  *
2404  * Returns queue depth.
2405  */
2406 static int
2407 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2408 {
2409         if (!sdev->tagged_supported)
2410                 qdepth = 1;
2411         return scsi_change_queue_depth(sdev, qdepth);
2412 }
2413
2414 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2415                              u8 func)
2416 {
2417         struct srp_target_port *target = ch->target;
2418         struct srp_rport *rport = target->rport;
2419         struct ib_device *dev = target->srp_host->srp_dev->dev;
2420         struct srp_iu *iu;
2421         struct srp_tsk_mgmt *tsk_mgmt;
2422
2423         if (!ch->connected || target->qp_in_error)
2424                 return -1;
2425
2426         init_completion(&ch->tsk_mgmt_done);
2427
2428         /*
2429          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2430          * invoked while a task management function is being sent.
2431          */
2432         mutex_lock(&rport->mutex);
2433         spin_lock_irq(&ch->lock);
2434         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2435         spin_unlock_irq(&ch->lock);
2436
2437         if (!iu) {
2438                 mutex_unlock(&rport->mutex);
2439
2440                 return -1;
2441         }
2442
2443         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2444                                    DMA_TO_DEVICE);
2445         tsk_mgmt = iu->buf;
2446         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2447
2448         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2449         int_to_scsilun(lun, &tsk_mgmt->lun);
2450         tsk_mgmt->tag           = req_tag | SRP_TAG_TSK_MGMT;
2451         tsk_mgmt->tsk_mgmt_func = func;
2452         tsk_mgmt->task_tag      = req_tag;
2453
2454         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2455                                       DMA_TO_DEVICE);
2456         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2457                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2458                 mutex_unlock(&rport->mutex);
2459
2460                 return -1;
2461         }
2462         mutex_unlock(&rport->mutex);
2463
2464         if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2465                                          msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2466                 return -1;
2467
2468         return 0;
2469 }
2470
2471 static int srp_abort(struct scsi_cmnd *scmnd)
2472 {
2473         struct srp_target_port *target = host_to_target(scmnd->device->host);
2474         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2475         u32 tag;
2476         u16 ch_idx;
2477         struct srp_rdma_ch *ch;
2478         int ret;
2479
2480         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2481
2482         if (!req)
2483                 return SUCCESS;
2484         tag = blk_mq_unique_tag(scmnd->request);
2485         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2486         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2487                 return SUCCESS;
2488         ch = &target->ch[ch_idx];
2489         if (!srp_claim_req(ch, req, NULL, scmnd))
2490                 return SUCCESS;
2491         shost_printk(KERN_ERR, target->scsi_host,
2492                      "Sending SRP abort for tag %#x\n", tag);
2493         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2494                               SRP_TSK_ABORT_TASK) == 0)
2495                 ret = SUCCESS;
2496         else if (target->rport->state == SRP_RPORT_LOST)
2497                 ret = FAST_IO_FAIL;
2498         else
2499                 ret = FAILED;
2500         srp_free_req(ch, req, scmnd, 0);
2501         scmnd->result = DID_ABORT << 16;
2502         scmnd->scsi_done(scmnd);
2503
2504         return ret;
2505 }
2506
2507 static int srp_reset_device(struct scsi_cmnd *scmnd)
2508 {
2509         struct srp_target_port *target = host_to_target(scmnd->device->host);
2510         struct srp_rdma_ch *ch;
2511         int i;
2512
2513         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2514
2515         ch = &target->ch[0];
2516         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2517                               SRP_TSK_LUN_RESET))
2518                 return FAILED;
2519         if (ch->tsk_mgmt_status)
2520                 return FAILED;
2521
2522         for (i = 0; i < target->ch_count; i++) {
2523                 ch = &target->ch[i];
2524                 for (i = 0; i < target->req_ring_size; ++i) {
2525                         struct srp_request *req = &ch->req_ring[i];
2526
2527                         srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2528                 }
2529         }
2530
2531         return SUCCESS;
2532 }
2533
2534 static int srp_reset_host(struct scsi_cmnd *scmnd)
2535 {
2536         struct srp_target_port *target = host_to_target(scmnd->device->host);
2537
2538         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2539
2540         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2541 }
2542
2543 static int srp_slave_configure(struct scsi_device *sdev)
2544 {
2545         struct Scsi_Host *shost = sdev->host;
2546         struct srp_target_port *target = host_to_target(shost);
2547         struct request_queue *q = sdev->request_queue;
2548         unsigned long timeout;
2549
2550         if (sdev->type == TYPE_DISK) {
2551                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2552                 blk_queue_rq_timeout(q, timeout);
2553         }
2554
2555         return 0;
2556 }
2557
2558 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2559                            char *buf)
2560 {
2561         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2562
2563         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2564 }
2565
2566 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2567                              char *buf)
2568 {
2569         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2570
2571         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2572 }
2573
2574 static ssize_t show_service_id(struct device *dev,
2575                                struct device_attribute *attr, char *buf)
2576 {
2577         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2578
2579         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2580 }
2581
2582 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2583                          char *buf)
2584 {
2585         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2586
2587         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2588 }
2589
2590 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2591                          char *buf)
2592 {
2593         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2594
2595         return sprintf(buf, "%pI6\n", target->sgid.raw);
2596 }
2597
2598 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2599                          char *buf)
2600 {
2601         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2602         struct srp_rdma_ch *ch = &target->ch[0];
2603
2604         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2605 }
2606
2607 static ssize_t show_orig_dgid(struct device *dev,
2608                               struct device_attribute *attr, char *buf)
2609 {
2610         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2611
2612         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2613 }
2614
2615 static ssize_t show_req_lim(struct device *dev,
2616                             struct device_attribute *attr, char *buf)
2617 {
2618         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2619         struct srp_rdma_ch *ch;
2620         int i, req_lim = INT_MAX;
2621
2622         for (i = 0; i < target->ch_count; i++) {
2623                 ch = &target->ch[i];
2624                 req_lim = min(req_lim, ch->req_lim);
2625         }
2626         return sprintf(buf, "%d\n", req_lim);
2627 }
2628
2629 static ssize_t show_zero_req_lim(struct device *dev,
2630                                  struct device_attribute *attr, char *buf)
2631 {
2632         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2633
2634         return sprintf(buf, "%d\n", target->zero_req_lim);
2635 }
2636
2637 static ssize_t show_local_ib_port(struct device *dev,
2638                                   struct device_attribute *attr, char *buf)
2639 {
2640         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2641
2642         return sprintf(buf, "%d\n", target->srp_host->port);
2643 }
2644
2645 static ssize_t show_local_ib_device(struct device *dev,
2646                                     struct device_attribute *attr, char *buf)
2647 {
2648         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2649
2650         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2651 }
2652
2653 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2654                              char *buf)
2655 {
2656         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2657
2658         return sprintf(buf, "%d\n", target->ch_count);
2659 }
2660
2661 static ssize_t show_comp_vector(struct device *dev,
2662                                 struct device_attribute *attr, char *buf)
2663 {
2664         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2665
2666         return sprintf(buf, "%d\n", target->comp_vector);
2667 }
2668
2669 static ssize_t show_tl_retry_count(struct device *dev,
2670                                    struct device_attribute *attr, char *buf)
2671 {
2672         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2673
2674         return sprintf(buf, "%d\n", target->tl_retry_count);
2675 }
2676
2677 static ssize_t show_cmd_sg_entries(struct device *dev,
2678                                    struct device_attribute *attr, char *buf)
2679 {
2680         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2681
2682         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2683 }
2684
2685 static ssize_t show_allow_ext_sg(struct device *dev,
2686                                  struct device_attribute *attr, char *buf)
2687 {
2688         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2689
2690         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2691 }
2692
2693 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2694 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2695 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2696 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2697 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2698 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2699 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2700 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2701 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2702 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2703 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2704 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2705 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2706 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2707 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2708 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2709
2710 static struct device_attribute *srp_host_attrs[] = {
2711         &dev_attr_id_ext,
2712         &dev_attr_ioc_guid,
2713         &dev_attr_service_id,
2714         &dev_attr_pkey,
2715         &dev_attr_sgid,
2716         &dev_attr_dgid,
2717         &dev_attr_orig_dgid,
2718         &dev_attr_req_lim,
2719         &dev_attr_zero_req_lim,
2720         &dev_attr_local_ib_port,
2721         &dev_attr_local_ib_device,
2722         &dev_attr_ch_count,
2723         &dev_attr_comp_vector,
2724         &dev_attr_tl_retry_count,
2725         &dev_attr_cmd_sg_entries,
2726         &dev_attr_allow_ext_sg,
2727         NULL
2728 };
2729
2730 static struct scsi_host_template srp_template = {
2731         .module                         = THIS_MODULE,
2732         .name                           = "InfiniBand SRP initiator",
2733         .proc_name                      = DRV_NAME,
2734         .slave_configure                = srp_slave_configure,
2735         .info                           = srp_target_info,
2736         .queuecommand                   = srp_queuecommand,
2737         .change_queue_depth             = srp_change_queue_depth,
2738         .eh_abort_handler               = srp_abort,
2739         .eh_device_reset_handler        = srp_reset_device,
2740         .eh_host_reset_handler          = srp_reset_host,
2741         .skip_settle_delay              = true,
2742         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2743         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2744         .this_id                        = -1,
2745         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2746         .use_clustering                 = ENABLE_CLUSTERING,
2747         .shost_attrs                    = srp_host_attrs,
2748         .use_blk_tags                   = 1,
2749         .track_queue_depth              = 1,
2750 };
2751
2752 static int srp_sdev_count(struct Scsi_Host *host)
2753 {
2754         struct scsi_device *sdev;
2755         int c = 0;
2756
2757         shost_for_each_device(sdev, host)
2758                 c++;
2759
2760         return c;
2761 }
2762
2763 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2764 {
2765         struct srp_rport_identifiers ids;
2766         struct srp_rport *rport;
2767
2768         target->state = SRP_TARGET_SCANNING;
2769         sprintf(target->target_name, "SRP.T10:%016llX",
2770                 be64_to_cpu(target->id_ext));
2771
2772         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2773                 return -ENODEV;
2774
2775         memcpy(ids.port_id, &target->id_ext, 8);
2776         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2777         ids.roles = SRP_RPORT_ROLE_TARGET;
2778         rport = srp_rport_add(target->scsi_host, &ids);
2779         if (IS_ERR(rport)) {
2780                 scsi_remove_host(target->scsi_host);
2781                 return PTR_ERR(rport);
2782         }
2783
2784         rport->lld_data = target;
2785         target->rport = rport;
2786
2787         spin_lock(&host->target_lock);
2788         list_add_tail(&target->list, &host->target_list);
2789         spin_unlock(&host->target_lock);
2790
2791         scsi_scan_target(&target->scsi_host->shost_gendev,
2792                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2793
2794         if (srp_connected_ch(target) < target->ch_count ||
2795             target->qp_in_error) {
2796                 shost_printk(KERN_INFO, target->scsi_host,
2797                              PFX "SCSI scan failed - removing SCSI host\n");
2798                 srp_queue_remove_work(target);
2799                 goto out;
2800         }
2801
2802         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2803                  dev_name(&target->scsi_host->shost_gendev),
2804                  srp_sdev_count(target->scsi_host));
2805
2806         spin_lock_irq(&target->lock);
2807         if (target->state == SRP_TARGET_SCANNING)
2808                 target->state = SRP_TARGET_LIVE;
2809         spin_unlock_irq(&target->lock);
2810
2811 out:
2812         return 0;
2813 }
2814
2815 static void srp_release_dev(struct device *dev)
2816 {
2817         struct srp_host *host =
2818                 container_of(dev, struct srp_host, dev);
2819
2820         complete(&host->released);
2821 }
2822
2823 static struct class srp_class = {
2824         .name    = "infiniband_srp",
2825         .dev_release = srp_release_dev
2826 };
2827
2828 /**
2829  * srp_conn_unique() - check whether the connection to a target is unique
2830  * @host:   SRP host.
2831  * @target: SRP target port.
2832  */
2833 static bool srp_conn_unique(struct srp_host *host,
2834                             struct srp_target_port *target)
2835 {
2836         struct srp_target_port *t;
2837         bool ret = false;
2838
2839         if (target->state == SRP_TARGET_REMOVED)
2840                 goto out;
2841
2842         ret = true;
2843
2844         spin_lock(&host->target_lock);
2845         list_for_each_entry(t, &host->target_list, list) {
2846                 if (t != target &&
2847                     target->id_ext == t->id_ext &&
2848                     target->ioc_guid == t->ioc_guid &&
2849                     target->initiator_ext == t->initiator_ext) {
2850                         ret = false;
2851                         break;
2852                 }
2853         }
2854         spin_unlock(&host->target_lock);
2855
2856 out:
2857         return ret;
2858 }
2859
2860 /*
2861  * Target ports are added by writing
2862  *
2863  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2864  *     pkey=<P_Key>,service_id=<service ID>
2865  *
2866  * to the add_target sysfs attribute.
2867  */
2868 enum {
2869         SRP_OPT_ERR             = 0,
2870         SRP_OPT_ID_EXT          = 1 << 0,
2871         SRP_OPT_IOC_GUID        = 1 << 1,
2872         SRP_OPT_DGID            = 1 << 2,
2873         SRP_OPT_PKEY            = 1 << 3,
2874         SRP_OPT_SERVICE_ID      = 1 << 4,
2875         SRP_OPT_MAX_SECT        = 1 << 5,
2876         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2877         SRP_OPT_IO_CLASS        = 1 << 7,
2878         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2879         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2880         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2881         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2882         SRP_OPT_COMP_VECTOR     = 1 << 12,
2883         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2884         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2885         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2886                                    SRP_OPT_IOC_GUID     |
2887                                    SRP_OPT_DGID         |
2888                                    SRP_OPT_PKEY         |
2889                                    SRP_OPT_SERVICE_ID),
2890 };
2891
2892 static const match_table_t srp_opt_tokens = {
2893         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2894         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2895         { SRP_OPT_DGID,                 "dgid=%s"               },
2896         { SRP_OPT_PKEY,                 "pkey=%x"               },
2897         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2898         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2899         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2900         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2901         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2902         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2903         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2904         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2905         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2906         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2907         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2908         { SRP_OPT_ERR,                  NULL                    }
2909 };
2910
2911 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2912 {
2913         char *options, *sep_opt;
2914         char *p;
2915         char dgid[3];
2916         substring_t args[MAX_OPT_ARGS];
2917         int opt_mask = 0;
2918         int token;
2919         int ret = -EINVAL;
2920         int i;
2921
2922         options = kstrdup(buf, GFP_KERNEL);
2923         if (!options)
2924                 return -ENOMEM;
2925
2926         sep_opt = options;
2927         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2928                 if (!*p)
2929                         continue;
2930
2931                 token = match_token(p, srp_opt_tokens, args);
2932                 opt_mask |= token;
2933
2934                 switch (token) {
2935                 case SRP_OPT_ID_EXT:
2936                         p = match_strdup(args);
2937                         if (!p) {
2938                                 ret = -ENOMEM;
2939                                 goto out;
2940                         }
2941                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2942                         kfree(p);
2943                         break;
2944
2945                 case SRP_OPT_IOC_GUID:
2946                         p = match_strdup(args);
2947                         if (!p) {
2948                                 ret = -ENOMEM;
2949                                 goto out;
2950                         }
2951                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2952                         kfree(p);
2953                         break;
2954
2955                 case SRP_OPT_DGID:
2956                         p = match_strdup(args);
2957                         if (!p) {
2958                                 ret = -ENOMEM;
2959                                 goto out;
2960                         }
2961                         if (strlen(p) != 32) {
2962                                 pr_warn("bad dest GID parameter '%s'\n", p);
2963                                 kfree(p);
2964                                 goto out;
2965                         }
2966
2967                         for (i = 0; i < 16; ++i) {
2968                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
2969                                 if (sscanf(dgid, "%hhx",
2970                                            &target->orig_dgid.raw[i]) < 1) {
2971                                         ret = -EINVAL;
2972                                         kfree(p);
2973                                         goto out;
2974                                 }
2975                         }
2976                         kfree(p);
2977                         break;
2978
2979                 case SRP_OPT_PKEY:
2980                         if (match_hex(args, &token)) {
2981                                 pr_warn("bad P_Key parameter '%s'\n", p);
2982                                 goto out;
2983                         }
2984                         target->pkey = cpu_to_be16(token);
2985                         break;
2986
2987                 case SRP_OPT_SERVICE_ID:
2988                         p = match_strdup(args);
2989                         if (!p) {
2990                                 ret = -ENOMEM;
2991                                 goto out;
2992                         }
2993                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
2994                         kfree(p);
2995                         break;
2996
2997                 case SRP_OPT_MAX_SECT:
2998                         if (match_int(args, &token)) {
2999                                 pr_warn("bad max sect parameter '%s'\n", p);
3000                                 goto out;
3001                         }
3002                         target->scsi_host->max_sectors = token;
3003                         break;
3004
3005                 case SRP_OPT_QUEUE_SIZE:
3006                         if (match_int(args, &token) || token < 1) {
3007                                 pr_warn("bad queue_size parameter '%s'\n", p);
3008                                 goto out;
3009                         }
3010                         target->scsi_host->can_queue = token;
3011                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3012                                              SRP_TSK_MGMT_SQ_SIZE;
3013                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3014                                 target->scsi_host->cmd_per_lun = token;
3015                         break;
3016
3017                 case SRP_OPT_MAX_CMD_PER_LUN:
3018                         if (match_int(args, &token) || token < 1) {
3019                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3020                                         p);
3021                                 goto out;
3022                         }
3023                         target->scsi_host->cmd_per_lun = token;
3024                         break;
3025
3026                 case SRP_OPT_IO_CLASS:
3027                         if (match_hex(args, &token)) {
3028                                 pr_warn("bad IO class parameter '%s'\n", p);
3029                                 goto out;
3030                         }
3031                         if (token != SRP_REV10_IB_IO_CLASS &&
3032                             token != SRP_REV16A_IB_IO_CLASS) {
3033                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3034                                         token, SRP_REV10_IB_IO_CLASS,
3035                                         SRP_REV16A_IB_IO_CLASS);
3036                                 goto out;
3037                         }
3038                         target->io_class = token;
3039                         break;
3040
3041                 case SRP_OPT_INITIATOR_EXT:
3042                         p = match_strdup(args);
3043                         if (!p) {
3044                                 ret = -ENOMEM;
3045                                 goto out;
3046                         }
3047                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3048                         kfree(p);
3049                         break;
3050
3051                 case SRP_OPT_CMD_SG_ENTRIES:
3052                         if (match_int(args, &token) || token < 1 || token > 255) {
3053                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3054                                         p);
3055                                 goto out;
3056                         }
3057                         target->cmd_sg_cnt = token;
3058                         break;
3059
3060                 case SRP_OPT_ALLOW_EXT_SG:
3061                         if (match_int(args, &token)) {
3062                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3063                                 goto out;
3064                         }
3065                         target->allow_ext_sg = !!token;
3066                         break;
3067
3068                 case SRP_OPT_SG_TABLESIZE:
3069                         if (match_int(args, &token) || token < 1 ||
3070                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3071                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3072                                         p);
3073                                 goto out;
3074                         }
3075                         target->sg_tablesize = token;
3076                         break;
3077
3078                 case SRP_OPT_COMP_VECTOR:
3079                         if (match_int(args, &token) || token < 0) {
3080                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3081                                 goto out;
3082                         }
3083                         target->comp_vector = token;
3084                         break;
3085
3086                 case SRP_OPT_TL_RETRY_COUNT:
3087                         if (match_int(args, &token) || token < 2 || token > 7) {
3088                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3089                                         p);
3090                                 goto out;
3091                         }
3092                         target->tl_retry_count = token;
3093                         break;
3094
3095                 default:
3096                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3097                                 p);
3098                         goto out;
3099                 }
3100         }
3101
3102         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3103                 ret = 0;
3104         else
3105                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3106                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3107                             !(srp_opt_tokens[i].token & opt_mask))
3108                                 pr_warn("target creation request is missing parameter '%s'\n",
3109                                         srp_opt_tokens[i].pattern);
3110
3111         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3112             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3113                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3114                         target->scsi_host->cmd_per_lun,
3115                         target->scsi_host->can_queue);
3116
3117 out:
3118         kfree(options);
3119         return ret;
3120 }
3121
3122 static ssize_t srp_create_target(struct device *dev,
3123                                  struct device_attribute *attr,
3124                                  const char *buf, size_t count)
3125 {
3126         struct srp_host *host =
3127                 container_of(dev, struct srp_host, dev);
3128         struct Scsi_Host *target_host;
3129         struct srp_target_port *target;
3130         struct srp_rdma_ch *ch;
3131         struct srp_device *srp_dev = host->srp_dev;
3132         struct ib_device *ibdev = srp_dev->dev;
3133         int ret, node_idx, node, cpu, i;
3134         bool multich = false;
3135
3136         target_host = scsi_host_alloc(&srp_template,
3137                                       sizeof (struct srp_target_port));
3138         if (!target_host)
3139                 return -ENOMEM;
3140
3141         target_host->transportt  = ib_srp_transport_template;
3142         target_host->max_channel = 0;
3143         target_host->max_id      = 1;
3144         target_host->max_lun     = -1LL;
3145         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3146
3147         target = host_to_target(target_host);
3148
3149         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3150         target->scsi_host       = target_host;
3151         target->srp_host        = host;
3152         target->lkey            = host->srp_dev->mr->lkey;
3153         target->rkey            = host->srp_dev->mr->rkey;
3154         target->cmd_sg_cnt      = cmd_sg_entries;
3155         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3156         target->allow_ext_sg    = allow_ext_sg;
3157         target->tl_retry_count  = 7;
3158         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3159
3160         /*
3161          * Avoid that the SCSI host can be removed by srp_remove_target()
3162          * before this function returns.
3163          */
3164         scsi_host_get(target->scsi_host);
3165
3166         mutex_lock(&host->add_target_mutex);
3167
3168         ret = srp_parse_options(buf, target);
3169         if (ret)
3170                 goto out;
3171
3172         ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3173         if (ret)
3174                 goto out;
3175
3176         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3177
3178         if (!srp_conn_unique(target->srp_host, target)) {
3179                 shost_printk(KERN_INFO, target->scsi_host,
3180                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3181                              be64_to_cpu(target->id_ext),
3182                              be64_to_cpu(target->ioc_guid),
3183                              be64_to_cpu(target->initiator_ext));
3184                 ret = -EEXIST;
3185                 goto out;
3186         }
3187
3188         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3189             target->cmd_sg_cnt < target->sg_tablesize) {
3190                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3191                 target->sg_tablesize = target->cmd_sg_cnt;
3192         }
3193
3194         target_host->sg_tablesize = target->sg_tablesize;
3195         target->indirect_size = target->sg_tablesize *
3196                                 sizeof (struct srp_direct_buf);
3197         target->max_iu_len = sizeof (struct srp_cmd) +
3198                              sizeof (struct srp_indirect_buf) +
3199                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3200
3201         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3202         INIT_WORK(&target->remove_work, srp_remove_work);
3203         spin_lock_init(&target->lock);
3204         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3205         if (ret)
3206                 goto out;
3207
3208         ret = -ENOMEM;
3209         target->ch_count = max_t(unsigned, num_online_nodes(),
3210                                  min(ch_count ? :
3211                                      min(4 * num_online_nodes(),
3212                                          ibdev->num_comp_vectors),
3213                                      num_online_cpus()));
3214         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3215                              GFP_KERNEL);
3216         if (!target->ch)
3217                 goto out;
3218
3219         node_idx = 0;
3220         for_each_online_node(node) {
3221                 const int ch_start = (node_idx * target->ch_count /
3222                                       num_online_nodes());
3223                 const int ch_end = ((node_idx + 1) * target->ch_count /
3224                                     num_online_nodes());
3225                 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3226                                       num_online_nodes() + target->comp_vector)
3227                                      % ibdev->num_comp_vectors;
3228                 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3229                                     num_online_nodes() + target->comp_vector)
3230                                    % ibdev->num_comp_vectors;
3231                 int cpu_idx = 0;
3232
3233                 for_each_online_cpu(cpu) {
3234                         if (cpu_to_node(cpu) != node)
3235                                 continue;
3236                         if (ch_start + cpu_idx >= ch_end)
3237                                 continue;
3238                         ch = &target->ch[ch_start + cpu_idx];
3239                         ch->target = target;
3240                         ch->comp_vector = cv_start == cv_end ? cv_start :
3241                                 cv_start + cpu_idx % (cv_end - cv_start);
3242                         spin_lock_init(&ch->lock);
3243                         INIT_LIST_HEAD(&ch->free_tx);
3244                         ret = srp_new_cm_id(ch);
3245                         if (ret)
3246                                 goto err_disconnect;
3247
3248                         ret = srp_create_ch_ib(ch);
3249                         if (ret)
3250                                 goto err_disconnect;
3251
3252                         ret = srp_alloc_req_data(ch);
3253                         if (ret)
3254                                 goto err_disconnect;
3255
3256                         ret = srp_connect_ch(ch, multich);
3257                         if (ret) {
3258                                 shost_printk(KERN_ERR, target->scsi_host,
3259                                              PFX "Connection %d/%d failed\n",
3260                                              ch_start + cpu_idx,
3261                                              target->ch_count);
3262                                 if (node_idx == 0 && cpu_idx == 0) {
3263                                         goto err_disconnect;
3264                                 } else {
3265                                         srp_free_ch_ib(target, ch);
3266                                         srp_free_req_data(target, ch);
3267                                         target->ch_count = ch - target->ch;
3268                                         break;
3269                                 }
3270                         }
3271
3272                         multich = true;
3273                         cpu_idx++;
3274                 }
3275                 node_idx++;
3276         }
3277
3278         target->scsi_host->nr_hw_queues = target->ch_count;
3279
3280         ret = srp_add_target(host, target);
3281         if (ret)
3282                 goto err_disconnect;
3283
3284         if (target->state != SRP_TARGET_REMOVED) {
3285                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3286                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3287                              be64_to_cpu(target->id_ext),
3288                              be64_to_cpu(target->ioc_guid),
3289                              be16_to_cpu(target->pkey),
3290                              be64_to_cpu(target->service_id),
3291                              target->sgid.raw, target->orig_dgid.raw);
3292         }
3293
3294         ret = count;
3295
3296 out:
3297         mutex_unlock(&host->add_target_mutex);
3298
3299         scsi_host_put(target->scsi_host);
3300
3301         return ret;
3302
3303 err_disconnect:
3304         srp_disconnect_target(target);
3305
3306         for (i = 0; i < target->ch_count; i++) {
3307                 ch = &target->ch[i];
3308                 srp_free_ch_ib(target, ch);
3309                 srp_free_req_data(target, ch);
3310         }
3311
3312         kfree(target->ch);
3313         goto out;
3314 }
3315
3316 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3317
3318 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3319                           char *buf)
3320 {
3321         struct srp_host *host = container_of(dev, struct srp_host, dev);
3322
3323         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3324 }
3325
3326 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3327
3328 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3329                          char *buf)
3330 {
3331         struct srp_host *host = container_of(dev, struct srp_host, dev);
3332
3333         return sprintf(buf, "%d\n", host->port);
3334 }
3335
3336 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3337
3338 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3339 {
3340         struct srp_host *host;
3341
3342         host = kzalloc(sizeof *host, GFP_KERNEL);
3343         if (!host)
3344                 return NULL;
3345
3346         INIT_LIST_HEAD(&host->target_list);
3347         spin_lock_init(&host->target_lock);
3348         init_completion(&host->released);
3349         mutex_init(&host->add_target_mutex);
3350         host->srp_dev = device;
3351         host->port = port;
3352
3353         host->dev.class = &srp_class;
3354         host->dev.parent = device->dev->dma_device;
3355         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3356
3357         if (device_register(&host->dev))
3358                 goto free_host;
3359         if (device_create_file(&host->dev, &dev_attr_add_target))
3360                 goto err_class;
3361         if (device_create_file(&host->dev, &dev_attr_ibdev))
3362                 goto err_class;
3363         if (device_create_file(&host->dev, &dev_attr_port))
3364                 goto err_class;
3365
3366         return host;
3367
3368 err_class:
3369         device_unregister(&host->dev);
3370
3371 free_host:
3372         kfree(host);
3373
3374         return NULL;
3375 }
3376
3377 static void srp_add_one(struct ib_device *device)
3378 {
3379         struct srp_device *srp_dev;
3380         struct ib_device_attr *dev_attr;
3381         struct srp_host *host;
3382         int mr_page_shift, s, e, p;
3383         u64 max_pages_per_mr;
3384
3385         dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3386         if (!dev_attr)
3387                 return;
3388
3389         if (ib_query_device(device, dev_attr)) {
3390                 pr_warn("Query device failed for %s\n", device->name);
3391                 goto free_attr;
3392         }
3393
3394         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3395         if (!srp_dev)
3396                 goto free_attr;
3397
3398         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3399                             device->map_phys_fmr && device->unmap_fmr);
3400         srp_dev->has_fr = (dev_attr->device_cap_flags &
3401                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3402         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3403                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3404
3405         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3406                                  (!srp_dev->has_fmr || prefer_fr));
3407
3408         /*
3409          * Use the smallest page size supported by the HCA, down to a
3410          * minimum of 4096 bytes. We're unlikely to build large sglists
3411          * out of smaller entries.
3412          */
3413         mr_page_shift           = max(12, ffs(dev_attr->page_size_cap) - 1);
3414         srp_dev->mr_page_size   = 1 << mr_page_shift;
3415         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3416         max_pages_per_mr        = dev_attr->max_mr_size;
3417         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3418         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3419                                           max_pages_per_mr);
3420         if (srp_dev->use_fast_reg) {
3421                 srp_dev->max_pages_per_mr =
3422                         min_t(u32, srp_dev->max_pages_per_mr,
3423                               dev_attr->max_fast_reg_page_list_len);
3424         }
3425         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3426                                    srp_dev->max_pages_per_mr;
3427         pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3428                  device->name, mr_page_shift, dev_attr->max_mr_size,
3429                  dev_attr->max_fast_reg_page_list_len,
3430                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3431
3432         INIT_LIST_HEAD(&srp_dev->dev_list);
3433
3434         srp_dev->dev = device;
3435         srp_dev->pd  = ib_alloc_pd(device);
3436         if (IS_ERR(srp_dev->pd))
3437                 goto free_dev;
3438
3439         srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
3440                                     IB_ACCESS_LOCAL_WRITE |
3441                                     IB_ACCESS_REMOTE_READ |
3442                                     IB_ACCESS_REMOTE_WRITE);
3443         if (IS_ERR(srp_dev->mr))
3444                 goto err_pd;
3445
3446         if (device->node_type == RDMA_NODE_IB_SWITCH) {
3447                 s = 0;
3448                 e = 0;
3449         } else {
3450                 s = 1;
3451                 e = device->phys_port_cnt;
3452         }
3453
3454         for (p = s; p <= e; ++p) {
3455                 host = srp_add_port(srp_dev, p);
3456                 if (host)
3457                         list_add_tail(&host->list, &srp_dev->dev_list);
3458         }
3459
3460         ib_set_client_data(device, &srp_client, srp_dev);
3461
3462         goto free_attr;
3463
3464 err_pd:
3465         ib_dealloc_pd(srp_dev->pd);
3466
3467 free_dev:
3468         kfree(srp_dev);
3469
3470 free_attr:
3471         kfree(dev_attr);
3472 }
3473
3474 static void srp_remove_one(struct ib_device *device)
3475 {
3476         struct srp_device *srp_dev;
3477         struct srp_host *host, *tmp_host;
3478         struct srp_target_port *target;
3479
3480         srp_dev = ib_get_client_data(device, &srp_client);
3481         if (!srp_dev)
3482                 return;
3483
3484         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3485                 device_unregister(&host->dev);
3486                 /*
3487                  * Wait for the sysfs entry to go away, so that no new
3488                  * target ports can be created.
3489                  */
3490                 wait_for_completion(&host->released);
3491
3492                 /*
3493                  * Remove all target ports.
3494                  */
3495                 spin_lock(&host->target_lock);
3496                 list_for_each_entry(target, &host->target_list, list)
3497                         srp_queue_remove_work(target);
3498                 spin_unlock(&host->target_lock);
3499
3500                 /*
3501                  * Wait for tl_err and target port removal tasks.
3502                  */
3503                 flush_workqueue(system_long_wq);
3504                 flush_workqueue(srp_remove_wq);
3505
3506                 kfree(host);
3507         }
3508
3509         ib_dereg_mr(srp_dev->mr);
3510         ib_dealloc_pd(srp_dev->pd);
3511
3512         kfree(srp_dev);
3513 }
3514
3515 static struct srp_function_template ib_srp_transport_functions = {
3516         .has_rport_state         = true,
3517         .reset_timer_if_blocked  = true,
3518         .reconnect_delay         = &srp_reconnect_delay,
3519         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3520         .dev_loss_tmo            = &srp_dev_loss_tmo,
3521         .reconnect               = srp_rport_reconnect,
3522         .rport_delete            = srp_rport_delete,
3523         .terminate_rport_io      = srp_terminate_io,
3524 };
3525
3526 static int __init srp_init_module(void)
3527 {
3528         int ret;
3529
3530         BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3531
3532         if (srp_sg_tablesize) {
3533                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3534                 if (!cmd_sg_entries)
3535                         cmd_sg_entries = srp_sg_tablesize;
3536         }
3537
3538         if (!cmd_sg_entries)
3539                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3540
3541         if (cmd_sg_entries > 255) {
3542                 pr_warn("Clamping cmd_sg_entries to 255\n");
3543                 cmd_sg_entries = 255;
3544         }
3545
3546         if (!indirect_sg_entries)
3547                 indirect_sg_entries = cmd_sg_entries;
3548         else if (indirect_sg_entries < cmd_sg_entries) {
3549                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3550                         cmd_sg_entries);
3551                 indirect_sg_entries = cmd_sg_entries;
3552         }
3553
3554         srp_remove_wq = create_workqueue("srp_remove");
3555         if (!srp_remove_wq) {
3556                 ret = -ENOMEM;
3557                 goto out;
3558         }
3559
3560         ret = -ENOMEM;
3561         ib_srp_transport_template =
3562                 srp_attach_transport(&ib_srp_transport_functions);
3563         if (!ib_srp_transport_template)
3564                 goto destroy_wq;
3565
3566         ret = class_register(&srp_class);
3567         if (ret) {
3568                 pr_err("couldn't register class infiniband_srp\n");
3569                 goto release_tr;
3570         }
3571
3572         ib_sa_register_client(&srp_sa_client);
3573
3574         ret = ib_register_client(&srp_client);
3575         if (ret) {
3576                 pr_err("couldn't register IB client\n");
3577                 goto unreg_sa;
3578         }
3579
3580 out:
3581         return ret;
3582
3583 unreg_sa:
3584         ib_sa_unregister_client(&srp_sa_client);
3585         class_unregister(&srp_class);
3586
3587 release_tr:
3588         srp_release_transport(ib_srp_transport_template);
3589
3590 destroy_wq:
3591         destroy_workqueue(srp_remove_wq);
3592         goto out;
3593 }
3594
3595 static void __exit srp_cleanup_module(void)
3596 {
3597         ib_unregister_client(&srp_client);
3598         ib_sa_unregister_client(&srp_sa_client);
3599         class_unregister(&srp_class);
3600         srp_release_transport(ib_srp_transport_template);
3601         destroy_workqueue(srp_remove_wq);
3602 }
3603
3604 module_init(srp_init_module);
3605 module_exit(srp_cleanup_module);