OSDN Git Service

Merge tag 'dmaengine-fix-5.0-rc6' of git://git.infradead.org/users/vkoul/slave-dma
[uclinux-h8/linux.git] / drivers / iommu / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #define pr_fmt(fmt)     "DMAR: " fmt
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
44
45 #include "irq_remapping.h"
46
47 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
48 struct dmar_res_callback {
49         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
50         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
51         bool                    ignore_unhandled;
52         bool                    print_entry;
53 };
54
55 /*
56  * Assumptions:
57  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
58  *    before IO devices managed by that unit.
59  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
60  *    after IO devices managed by that unit.
61  * 3) Hotplug events are rare.
62  *
63  * Locking rules for DMA and interrupt remapping related global data structures:
64  * 1) Use dmar_global_lock in process context
65  * 2) Use RCU in interrupt context
66  */
67 DECLARE_RWSEM(dmar_global_lock);
68 LIST_HEAD(dmar_drhd_units);
69
70 struct acpi_table_header * __initdata dmar_tbl;
71 static int dmar_dev_scope_status = 1;
72 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
73
74 static int alloc_iommu(struct dmar_drhd_unit *drhd);
75 static void free_iommu(struct intel_iommu *iommu);
76
77 extern const struct iommu_ops intel_iommu_ops;
78
79 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
80 {
81         /*
82          * add INCLUDE_ALL at the tail, so scan the list will find it at
83          * the very end.
84          */
85         if (drhd->include_all)
86                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
87         else
88                 list_add_rcu(&drhd->list, &dmar_drhd_units);
89 }
90
91 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
92 {
93         struct acpi_dmar_device_scope *scope;
94
95         *cnt = 0;
96         while (start < end) {
97                 scope = start;
98                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
99                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
100                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
101                         (*cnt)++;
102                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
103                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
104                         pr_warn("Unsupported device scope\n");
105                 }
106                 start += scope->length;
107         }
108         if (*cnt == 0)
109                 return NULL;
110
111         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
112 }
113
114 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
115 {
116         int i;
117         struct device *tmp_dev;
118
119         if (*devices && *cnt) {
120                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
121                         put_device(tmp_dev);
122                 kfree(*devices);
123         }
124
125         *devices = NULL;
126         *cnt = 0;
127 }
128
129 /* Optimize out kzalloc()/kfree() for normal cases */
130 static char dmar_pci_notify_info_buf[64];
131
132 static struct dmar_pci_notify_info *
133 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
134 {
135         int level = 0;
136         size_t size;
137         struct pci_dev *tmp;
138         struct dmar_pci_notify_info *info;
139
140         BUG_ON(dev->is_virtfn);
141
142         /* Only generate path[] for device addition event */
143         if (event == BUS_NOTIFY_ADD_DEVICE)
144                 for (tmp = dev; tmp; tmp = tmp->bus->self)
145                         level++;
146
147         size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
148         if (size <= sizeof(dmar_pci_notify_info_buf)) {
149                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
150         } else {
151                 info = kzalloc(size, GFP_KERNEL);
152                 if (!info) {
153                         pr_warn("Out of memory when allocating notify_info "
154                                 "for %s.\n", pci_name(dev));
155                         if (dmar_dev_scope_status == 0)
156                                 dmar_dev_scope_status = -ENOMEM;
157                         return NULL;
158                 }
159         }
160
161         info->event = event;
162         info->dev = dev;
163         info->seg = pci_domain_nr(dev->bus);
164         info->level = level;
165         if (event == BUS_NOTIFY_ADD_DEVICE) {
166                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
167                         level--;
168                         info->path[level].bus = tmp->bus->number;
169                         info->path[level].device = PCI_SLOT(tmp->devfn);
170                         info->path[level].function = PCI_FUNC(tmp->devfn);
171                         if (pci_is_root_bus(tmp->bus))
172                                 info->bus = tmp->bus->number;
173                 }
174         }
175
176         return info;
177 }
178
179 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
180 {
181         if ((void *)info != dmar_pci_notify_info_buf)
182                 kfree(info);
183 }
184
185 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
186                                 struct acpi_dmar_pci_path *path, int count)
187 {
188         int i;
189
190         if (info->bus != bus)
191                 goto fallback;
192         if (info->level != count)
193                 goto fallback;
194
195         for (i = 0; i < count; i++) {
196                 if (path[i].device != info->path[i].device ||
197                     path[i].function != info->path[i].function)
198                         goto fallback;
199         }
200
201         return true;
202
203 fallback:
204
205         if (count != 1)
206                 return false;
207
208         i = info->level - 1;
209         if (bus              == info->path[i].bus &&
210             path[0].device   == info->path[i].device &&
211             path[0].function == info->path[i].function) {
212                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
213                         bus, path[0].device, path[0].function);
214                 return true;
215         }
216
217         return false;
218 }
219
220 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
221 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
222                           void *start, void*end, u16 segment,
223                           struct dmar_dev_scope *devices,
224                           int devices_cnt)
225 {
226         int i, level;
227         struct device *tmp, *dev = &info->dev->dev;
228         struct acpi_dmar_device_scope *scope;
229         struct acpi_dmar_pci_path *path;
230
231         if (segment != info->seg)
232                 return 0;
233
234         for (; start < end; start += scope->length) {
235                 scope = start;
236                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
237                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
238                         continue;
239
240                 path = (struct acpi_dmar_pci_path *)(scope + 1);
241                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
242                 if (!dmar_match_pci_path(info, scope->bus, path, level))
243                         continue;
244
245                 /*
246                  * We expect devices with endpoint scope to have normal PCI
247                  * headers, and devices with bridge scope to have bridge PCI
248                  * headers.  However PCI NTB devices may be listed in the
249                  * DMAR table with bridge scope, even though they have a
250                  * normal PCI header.  NTB devices are identified by class
251                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
252                  * for this special case.
253                  */
254                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
255                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
256                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
257                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
258                       info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
259                         pr_warn("Device scope type does not match for %s\n",
260                                 pci_name(info->dev));
261                         return -EINVAL;
262                 }
263
264                 for_each_dev_scope(devices, devices_cnt, i, tmp)
265                         if (tmp == NULL) {
266                                 devices[i].bus = info->dev->bus->number;
267                                 devices[i].devfn = info->dev->devfn;
268                                 rcu_assign_pointer(devices[i].dev,
269                                                    get_device(dev));
270                                 return 1;
271                         }
272                 BUG_ON(i >= devices_cnt);
273         }
274
275         return 0;
276 }
277
278 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
279                           struct dmar_dev_scope *devices, int count)
280 {
281         int index;
282         struct device *tmp;
283
284         if (info->seg != segment)
285                 return 0;
286
287         for_each_active_dev_scope(devices, count, index, tmp)
288                 if (tmp == &info->dev->dev) {
289                         RCU_INIT_POINTER(devices[index].dev, NULL);
290                         synchronize_rcu();
291                         put_device(tmp);
292                         return 1;
293                 }
294
295         return 0;
296 }
297
298 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
299 {
300         int ret = 0;
301         struct dmar_drhd_unit *dmaru;
302         struct acpi_dmar_hardware_unit *drhd;
303
304         for_each_drhd_unit(dmaru) {
305                 if (dmaru->include_all)
306                         continue;
307
308                 drhd = container_of(dmaru->hdr,
309                                     struct acpi_dmar_hardware_unit, header);
310                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
311                                 ((void *)drhd) + drhd->header.length,
312                                 dmaru->segment,
313                                 dmaru->devices, dmaru->devices_cnt);
314                 if (ret)
315                         break;
316         }
317         if (ret >= 0)
318                 ret = dmar_iommu_notify_scope_dev(info);
319         if (ret < 0 && dmar_dev_scope_status == 0)
320                 dmar_dev_scope_status = ret;
321
322         return ret;
323 }
324
325 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
326 {
327         struct dmar_drhd_unit *dmaru;
328
329         for_each_drhd_unit(dmaru)
330                 if (dmar_remove_dev_scope(info, dmaru->segment,
331                         dmaru->devices, dmaru->devices_cnt))
332                         break;
333         dmar_iommu_notify_scope_dev(info);
334 }
335
336 static int dmar_pci_bus_notifier(struct notifier_block *nb,
337                                  unsigned long action, void *data)
338 {
339         struct pci_dev *pdev = to_pci_dev(data);
340         struct dmar_pci_notify_info *info;
341
342         /* Only care about add/remove events for physical functions.
343          * For VFs we actually do the lookup based on the corresponding
344          * PF in device_to_iommu() anyway. */
345         if (pdev->is_virtfn)
346                 return NOTIFY_DONE;
347         if (action != BUS_NOTIFY_ADD_DEVICE &&
348             action != BUS_NOTIFY_REMOVED_DEVICE)
349                 return NOTIFY_DONE;
350
351         info = dmar_alloc_pci_notify_info(pdev, action);
352         if (!info)
353                 return NOTIFY_DONE;
354
355         down_write(&dmar_global_lock);
356         if (action == BUS_NOTIFY_ADD_DEVICE)
357                 dmar_pci_bus_add_dev(info);
358         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
359                 dmar_pci_bus_del_dev(info);
360         up_write(&dmar_global_lock);
361
362         dmar_free_pci_notify_info(info);
363
364         return NOTIFY_OK;
365 }
366
367 static struct notifier_block dmar_pci_bus_nb = {
368         .notifier_call = dmar_pci_bus_notifier,
369         .priority = INT_MIN,
370 };
371
372 static struct dmar_drhd_unit *
373 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
374 {
375         struct dmar_drhd_unit *dmaru;
376
377         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
378                 if (dmaru->segment == drhd->segment &&
379                     dmaru->reg_base_addr == drhd->address)
380                         return dmaru;
381
382         return NULL;
383 }
384
385 /**
386  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
387  * structure which uniquely represent one DMA remapping hardware unit
388  * present in the platform
389  */
390 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
391 {
392         struct acpi_dmar_hardware_unit *drhd;
393         struct dmar_drhd_unit *dmaru;
394         int ret;
395
396         drhd = (struct acpi_dmar_hardware_unit *)header;
397         dmaru = dmar_find_dmaru(drhd);
398         if (dmaru)
399                 goto out;
400
401         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
402         if (!dmaru)
403                 return -ENOMEM;
404
405         /*
406          * If header is allocated from slab by ACPI _DSM method, we need to
407          * copy the content because the memory buffer will be freed on return.
408          */
409         dmaru->hdr = (void *)(dmaru + 1);
410         memcpy(dmaru->hdr, header, header->length);
411         dmaru->reg_base_addr = drhd->address;
412         dmaru->segment = drhd->segment;
413         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
414         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
415                                               ((void *)drhd) + drhd->header.length,
416                                               &dmaru->devices_cnt);
417         if (dmaru->devices_cnt && dmaru->devices == NULL) {
418                 kfree(dmaru);
419                 return -ENOMEM;
420         }
421
422         ret = alloc_iommu(dmaru);
423         if (ret) {
424                 dmar_free_dev_scope(&dmaru->devices,
425                                     &dmaru->devices_cnt);
426                 kfree(dmaru);
427                 return ret;
428         }
429         dmar_register_drhd_unit(dmaru);
430
431 out:
432         if (arg)
433                 (*(int *)arg)++;
434
435         return 0;
436 }
437
438 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
439 {
440         if (dmaru->devices && dmaru->devices_cnt)
441                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
442         if (dmaru->iommu)
443                 free_iommu(dmaru->iommu);
444         kfree(dmaru);
445 }
446
447 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
448                                       void *arg)
449 {
450         struct acpi_dmar_andd *andd = (void *)header;
451
452         /* Check for NUL termination within the designated length */
453         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
454                 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
455                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
456                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
457                            dmi_get_system_info(DMI_BIOS_VENDOR),
458                            dmi_get_system_info(DMI_BIOS_VERSION),
459                            dmi_get_system_info(DMI_PRODUCT_VERSION));
460                 return -EINVAL;
461         }
462         pr_info("ANDD device: %x name: %s\n", andd->device_number,
463                 andd->device_name);
464
465         return 0;
466 }
467
468 #ifdef CONFIG_ACPI_NUMA
469 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
470 {
471         struct acpi_dmar_rhsa *rhsa;
472         struct dmar_drhd_unit *drhd;
473
474         rhsa = (struct acpi_dmar_rhsa *)header;
475         for_each_drhd_unit(drhd) {
476                 if (drhd->reg_base_addr == rhsa->base_address) {
477                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
478
479                         if (!node_online(node))
480                                 node = -1;
481                         drhd->iommu->node = node;
482                         return 0;
483                 }
484         }
485         WARN_TAINT(
486                 1, TAINT_FIRMWARE_WORKAROUND,
487                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
488                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
489                 drhd->reg_base_addr,
490                 dmi_get_system_info(DMI_BIOS_VENDOR),
491                 dmi_get_system_info(DMI_BIOS_VERSION),
492                 dmi_get_system_info(DMI_PRODUCT_VERSION));
493
494         return 0;
495 }
496 #else
497 #define dmar_parse_one_rhsa             dmar_res_noop
498 #endif
499
500 static void
501 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
502 {
503         struct acpi_dmar_hardware_unit *drhd;
504         struct acpi_dmar_reserved_memory *rmrr;
505         struct acpi_dmar_atsr *atsr;
506         struct acpi_dmar_rhsa *rhsa;
507
508         switch (header->type) {
509         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
510                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
511                                     header);
512                 pr_info("DRHD base: %#016Lx flags: %#x\n",
513                         (unsigned long long)drhd->address, drhd->flags);
514                 break;
515         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
516                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
517                                     header);
518                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
519                         (unsigned long long)rmrr->base_address,
520                         (unsigned long long)rmrr->end_address);
521                 break;
522         case ACPI_DMAR_TYPE_ROOT_ATS:
523                 atsr = container_of(header, struct acpi_dmar_atsr, header);
524                 pr_info("ATSR flags: %#x\n", atsr->flags);
525                 break;
526         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
527                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
528                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
529                        (unsigned long long)rhsa->base_address,
530                        rhsa->proximity_domain);
531                 break;
532         case ACPI_DMAR_TYPE_NAMESPACE:
533                 /* We don't print this here because we need to sanity-check
534                    it first. So print it in dmar_parse_one_andd() instead. */
535                 break;
536         }
537 }
538
539 /**
540  * dmar_table_detect - checks to see if the platform supports DMAR devices
541  */
542 static int __init dmar_table_detect(void)
543 {
544         acpi_status status = AE_OK;
545
546         /* if we could find DMAR table, then there are DMAR devices */
547         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
548
549         if (ACPI_SUCCESS(status) && !dmar_tbl) {
550                 pr_warn("Unable to map DMAR\n");
551                 status = AE_NOT_FOUND;
552         }
553
554         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
555 }
556
557 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
558                                        size_t len, struct dmar_res_callback *cb)
559 {
560         struct acpi_dmar_header *iter, *next;
561         struct acpi_dmar_header *end = ((void *)start) + len;
562
563         for (iter = start; iter < end; iter = next) {
564                 next = (void *)iter + iter->length;
565                 if (iter->length == 0) {
566                         /* Avoid looping forever on bad ACPI tables */
567                         pr_debug(FW_BUG "Invalid 0-length structure\n");
568                         break;
569                 } else if (next > end) {
570                         /* Avoid passing table end */
571                         pr_warn(FW_BUG "Record passes table end\n");
572                         return -EINVAL;
573                 }
574
575                 if (cb->print_entry)
576                         dmar_table_print_dmar_entry(iter);
577
578                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
579                         /* continue for forward compatibility */
580                         pr_debug("Unknown DMAR structure type %d\n",
581                                  iter->type);
582                 } else if (cb->cb[iter->type]) {
583                         int ret;
584
585                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
586                         if (ret)
587                                 return ret;
588                 } else if (!cb->ignore_unhandled) {
589                         pr_warn("No handler for DMAR structure type %d\n",
590                                 iter->type);
591                         return -EINVAL;
592                 }
593         }
594
595         return 0;
596 }
597
598 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
599                                        struct dmar_res_callback *cb)
600 {
601         return dmar_walk_remapping_entries((void *)(dmar + 1),
602                         dmar->header.length - sizeof(*dmar), cb);
603 }
604
605 /**
606  * parse_dmar_table - parses the DMA reporting table
607  */
608 static int __init
609 parse_dmar_table(void)
610 {
611         struct acpi_table_dmar *dmar;
612         int drhd_count = 0;
613         int ret;
614         struct dmar_res_callback cb = {
615                 .print_entry = true,
616                 .ignore_unhandled = true,
617                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
618                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
619                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
620                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
621                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
622                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
623         };
624
625         /*
626          * Do it again, earlier dmar_tbl mapping could be mapped with
627          * fixed map.
628          */
629         dmar_table_detect();
630
631         /*
632          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
633          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
634          */
635         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
636
637         dmar = (struct acpi_table_dmar *)dmar_tbl;
638         if (!dmar)
639                 return -ENODEV;
640
641         if (dmar->width < PAGE_SHIFT - 1) {
642                 pr_warn("Invalid DMAR haw\n");
643                 return -EINVAL;
644         }
645
646         pr_info("Host address width %d\n", dmar->width + 1);
647         ret = dmar_walk_dmar_table(dmar, &cb);
648         if (ret == 0 && drhd_count == 0)
649                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
650
651         return ret;
652 }
653
654 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
655                                  int cnt, struct pci_dev *dev)
656 {
657         int index;
658         struct device *tmp;
659
660         while (dev) {
661                 for_each_active_dev_scope(devices, cnt, index, tmp)
662                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
663                                 return 1;
664
665                 /* Check our parent */
666                 dev = dev->bus->self;
667         }
668
669         return 0;
670 }
671
672 struct dmar_drhd_unit *
673 dmar_find_matched_drhd_unit(struct pci_dev *dev)
674 {
675         struct dmar_drhd_unit *dmaru;
676         struct acpi_dmar_hardware_unit *drhd;
677
678         dev = pci_physfn(dev);
679
680         rcu_read_lock();
681         for_each_drhd_unit(dmaru) {
682                 drhd = container_of(dmaru->hdr,
683                                     struct acpi_dmar_hardware_unit,
684                                     header);
685
686                 if (dmaru->include_all &&
687                     drhd->segment == pci_domain_nr(dev->bus))
688                         goto out;
689
690                 if (dmar_pci_device_match(dmaru->devices,
691                                           dmaru->devices_cnt, dev))
692                         goto out;
693         }
694         dmaru = NULL;
695 out:
696         rcu_read_unlock();
697
698         return dmaru;
699 }
700
701 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
702                                               struct acpi_device *adev)
703 {
704         struct dmar_drhd_unit *dmaru;
705         struct acpi_dmar_hardware_unit *drhd;
706         struct acpi_dmar_device_scope *scope;
707         struct device *tmp;
708         int i;
709         struct acpi_dmar_pci_path *path;
710
711         for_each_drhd_unit(dmaru) {
712                 drhd = container_of(dmaru->hdr,
713                                     struct acpi_dmar_hardware_unit,
714                                     header);
715
716                 for (scope = (void *)(drhd + 1);
717                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
718                      scope = ((void *)scope) + scope->length) {
719                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
720                                 continue;
721                         if (scope->enumeration_id != device_number)
722                                 continue;
723
724                         path = (void *)(scope + 1);
725                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
726                                 dev_name(&adev->dev), dmaru->reg_base_addr,
727                                 scope->bus, path->device, path->function);
728                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
729                                 if (tmp == NULL) {
730                                         dmaru->devices[i].bus = scope->bus;
731                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
732                                                                             path->function);
733                                         rcu_assign_pointer(dmaru->devices[i].dev,
734                                                            get_device(&adev->dev));
735                                         return;
736                                 }
737                         BUG_ON(i >= dmaru->devices_cnt);
738                 }
739         }
740         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
741                 device_number, dev_name(&adev->dev));
742 }
743
744 static int __init dmar_acpi_dev_scope_init(void)
745 {
746         struct acpi_dmar_andd *andd;
747
748         if (dmar_tbl == NULL)
749                 return -ENODEV;
750
751         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
752              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
753              andd = ((void *)andd) + andd->header.length) {
754                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
755                         acpi_handle h;
756                         struct acpi_device *adev;
757
758                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
759                                                           andd->device_name,
760                                                           &h))) {
761                                 pr_err("Failed to find handle for ACPI object %s\n",
762                                        andd->device_name);
763                                 continue;
764                         }
765                         if (acpi_bus_get_device(h, &adev)) {
766                                 pr_err("Failed to get device for ACPI object %s\n",
767                                        andd->device_name);
768                                 continue;
769                         }
770                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
771                 }
772         }
773         return 0;
774 }
775
776 int __init dmar_dev_scope_init(void)
777 {
778         struct pci_dev *dev = NULL;
779         struct dmar_pci_notify_info *info;
780
781         if (dmar_dev_scope_status != 1)
782                 return dmar_dev_scope_status;
783
784         if (list_empty(&dmar_drhd_units)) {
785                 dmar_dev_scope_status = -ENODEV;
786         } else {
787                 dmar_dev_scope_status = 0;
788
789                 dmar_acpi_dev_scope_init();
790
791                 for_each_pci_dev(dev) {
792                         if (dev->is_virtfn)
793                                 continue;
794
795                         info = dmar_alloc_pci_notify_info(dev,
796                                         BUS_NOTIFY_ADD_DEVICE);
797                         if (!info) {
798                                 return dmar_dev_scope_status;
799                         } else {
800                                 dmar_pci_bus_add_dev(info);
801                                 dmar_free_pci_notify_info(info);
802                         }
803                 }
804         }
805
806         return dmar_dev_scope_status;
807 }
808
809 void __init dmar_register_bus_notifier(void)
810 {
811         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
812 }
813
814
815 int __init dmar_table_init(void)
816 {
817         static int dmar_table_initialized;
818         int ret;
819
820         if (dmar_table_initialized == 0) {
821                 ret = parse_dmar_table();
822                 if (ret < 0) {
823                         if (ret != -ENODEV)
824                                 pr_info("Parse DMAR table failure.\n");
825                 } else  if (list_empty(&dmar_drhd_units)) {
826                         pr_info("No DMAR devices found\n");
827                         ret = -ENODEV;
828                 }
829
830                 if (ret < 0)
831                         dmar_table_initialized = ret;
832                 else
833                         dmar_table_initialized = 1;
834         }
835
836         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
837 }
838
839 static void warn_invalid_dmar(u64 addr, const char *message)
840 {
841         WARN_TAINT_ONCE(
842                 1, TAINT_FIRMWARE_WORKAROUND,
843                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
844                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
845                 addr, message,
846                 dmi_get_system_info(DMI_BIOS_VENDOR),
847                 dmi_get_system_info(DMI_BIOS_VERSION),
848                 dmi_get_system_info(DMI_PRODUCT_VERSION));
849 }
850
851 static int __ref
852 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
853 {
854         struct acpi_dmar_hardware_unit *drhd;
855         void __iomem *addr;
856         u64 cap, ecap;
857
858         drhd = (void *)entry;
859         if (!drhd->address) {
860                 warn_invalid_dmar(0, "");
861                 return -EINVAL;
862         }
863
864         if (arg)
865                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
866         else
867                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
868         if (!addr) {
869                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
870                 return -EINVAL;
871         }
872
873         cap = dmar_readq(addr + DMAR_CAP_REG);
874         ecap = dmar_readq(addr + DMAR_ECAP_REG);
875
876         if (arg)
877                 iounmap(addr);
878         else
879                 early_iounmap(addr, VTD_PAGE_SIZE);
880
881         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
882                 warn_invalid_dmar(drhd->address, " returns all ones");
883                 return -EINVAL;
884         }
885
886         return 0;
887 }
888
889 int __init detect_intel_iommu(void)
890 {
891         int ret;
892         struct dmar_res_callback validate_drhd_cb = {
893                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
894                 .ignore_unhandled = true,
895         };
896
897         down_write(&dmar_global_lock);
898         ret = dmar_table_detect();
899         if (!ret)
900                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
901                                            &validate_drhd_cb);
902         if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
903                 iommu_detected = 1;
904                 /* Make sure ACS will be enabled */
905                 pci_request_acs();
906         }
907
908 #ifdef CONFIG_X86
909         if (!ret)
910                 x86_init.iommu.iommu_init = intel_iommu_init;
911 #endif
912
913         if (dmar_tbl) {
914                 acpi_put_table(dmar_tbl);
915                 dmar_tbl = NULL;
916         }
917         up_write(&dmar_global_lock);
918
919         return ret ? ret : 1;
920 }
921
922 static void unmap_iommu(struct intel_iommu *iommu)
923 {
924         iounmap(iommu->reg);
925         release_mem_region(iommu->reg_phys, iommu->reg_size);
926 }
927
928 /**
929  * map_iommu: map the iommu's registers
930  * @iommu: the iommu to map
931  * @phys_addr: the physical address of the base resgister
932  *
933  * Memory map the iommu's registers.  Start w/ a single page, and
934  * possibly expand if that turns out to be insufficent.
935  */
936 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
937 {
938         int map_size, err=0;
939
940         iommu->reg_phys = phys_addr;
941         iommu->reg_size = VTD_PAGE_SIZE;
942
943         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
944                 pr_err("Can't reserve memory\n");
945                 err = -EBUSY;
946                 goto out;
947         }
948
949         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
950         if (!iommu->reg) {
951                 pr_err("Can't map the region\n");
952                 err = -ENOMEM;
953                 goto release;
954         }
955
956         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
957         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
958
959         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
960                 err = -EINVAL;
961                 warn_invalid_dmar(phys_addr, " returns all ones");
962                 goto unmap;
963         }
964
965         /* the registers might be more than one page */
966         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
967                          cap_max_fault_reg_offset(iommu->cap));
968         map_size = VTD_PAGE_ALIGN(map_size);
969         if (map_size > iommu->reg_size) {
970                 iounmap(iommu->reg);
971                 release_mem_region(iommu->reg_phys, iommu->reg_size);
972                 iommu->reg_size = map_size;
973                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
974                                         iommu->name)) {
975                         pr_err("Can't reserve memory\n");
976                         err = -EBUSY;
977                         goto out;
978                 }
979                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
980                 if (!iommu->reg) {
981                         pr_err("Can't map the region\n");
982                         err = -ENOMEM;
983                         goto release;
984                 }
985         }
986         err = 0;
987         goto out;
988
989 unmap:
990         iounmap(iommu->reg);
991 release:
992         release_mem_region(iommu->reg_phys, iommu->reg_size);
993 out:
994         return err;
995 }
996
997 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
998 {
999         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1000                                             DMAR_UNITS_SUPPORTED);
1001         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1002                 iommu->seq_id = -1;
1003         } else {
1004                 set_bit(iommu->seq_id, dmar_seq_ids);
1005                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1006         }
1007
1008         return iommu->seq_id;
1009 }
1010
1011 static void dmar_free_seq_id(struct intel_iommu *iommu)
1012 {
1013         if (iommu->seq_id >= 0) {
1014                 clear_bit(iommu->seq_id, dmar_seq_ids);
1015                 iommu->seq_id = -1;
1016         }
1017 }
1018
1019 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1020 {
1021         struct intel_iommu *iommu;
1022         u32 ver, sts;
1023         int agaw = 0;
1024         int msagaw = 0;
1025         int err;
1026
1027         if (!drhd->reg_base_addr) {
1028                 warn_invalid_dmar(0, "");
1029                 return -EINVAL;
1030         }
1031
1032         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1033         if (!iommu)
1034                 return -ENOMEM;
1035
1036         if (dmar_alloc_seq_id(iommu) < 0) {
1037                 pr_err("Failed to allocate seq_id\n");
1038                 err = -ENOSPC;
1039                 goto error;
1040         }
1041
1042         err = map_iommu(iommu, drhd->reg_base_addr);
1043         if (err) {
1044                 pr_err("Failed to map %s\n", iommu->name);
1045                 goto error_free_seq_id;
1046         }
1047
1048         err = -EINVAL;
1049         agaw = iommu_calculate_agaw(iommu);
1050         if (agaw < 0) {
1051                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1052                         iommu->seq_id);
1053                 goto err_unmap;
1054         }
1055         msagaw = iommu_calculate_max_sagaw(iommu);
1056         if (msagaw < 0) {
1057                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1058                         iommu->seq_id);
1059                 goto err_unmap;
1060         }
1061         iommu->agaw = agaw;
1062         iommu->msagaw = msagaw;
1063         iommu->segment = drhd->segment;
1064
1065         iommu->node = -1;
1066
1067         ver = readl(iommu->reg + DMAR_VER_REG);
1068         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1069                 iommu->name,
1070                 (unsigned long long)drhd->reg_base_addr,
1071                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1072                 (unsigned long long)iommu->cap,
1073                 (unsigned long long)iommu->ecap);
1074
1075         /* Reflect status in gcmd */
1076         sts = readl(iommu->reg + DMAR_GSTS_REG);
1077         if (sts & DMA_GSTS_IRES)
1078                 iommu->gcmd |= DMA_GCMD_IRE;
1079         if (sts & DMA_GSTS_TES)
1080                 iommu->gcmd |= DMA_GCMD_TE;
1081         if (sts & DMA_GSTS_QIES)
1082                 iommu->gcmd |= DMA_GCMD_QIE;
1083
1084         raw_spin_lock_init(&iommu->register_lock);
1085
1086         if (intel_iommu_enabled) {
1087                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1088                                              intel_iommu_groups,
1089                                              "%s", iommu->name);
1090                 if (err)
1091                         goto err_unmap;
1092
1093                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1094
1095                 err = iommu_device_register(&iommu->iommu);
1096                 if (err)
1097                         goto err_unmap;
1098         }
1099
1100         drhd->iommu = iommu;
1101
1102         return 0;
1103
1104 err_unmap:
1105         unmap_iommu(iommu);
1106 error_free_seq_id:
1107         dmar_free_seq_id(iommu);
1108 error:
1109         kfree(iommu);
1110         return err;
1111 }
1112
1113 static void free_iommu(struct intel_iommu *iommu)
1114 {
1115         if (intel_iommu_enabled) {
1116                 iommu_device_unregister(&iommu->iommu);
1117                 iommu_device_sysfs_remove(&iommu->iommu);
1118         }
1119
1120         if (iommu->irq) {
1121                 if (iommu->pr_irq) {
1122                         free_irq(iommu->pr_irq, iommu);
1123                         dmar_free_hwirq(iommu->pr_irq);
1124                         iommu->pr_irq = 0;
1125                 }
1126                 free_irq(iommu->irq, iommu);
1127                 dmar_free_hwirq(iommu->irq);
1128                 iommu->irq = 0;
1129         }
1130
1131         if (iommu->qi) {
1132                 free_page((unsigned long)iommu->qi->desc);
1133                 kfree(iommu->qi->desc_status);
1134                 kfree(iommu->qi);
1135         }
1136
1137         if (iommu->reg)
1138                 unmap_iommu(iommu);
1139
1140         dmar_free_seq_id(iommu);
1141         kfree(iommu);
1142 }
1143
1144 /*
1145  * Reclaim all the submitted descriptors which have completed its work.
1146  */
1147 static inline void reclaim_free_desc(struct q_inval *qi)
1148 {
1149         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1150                qi->desc_status[qi->free_tail] == QI_ABORT) {
1151                 qi->desc_status[qi->free_tail] = QI_FREE;
1152                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1153                 qi->free_cnt++;
1154         }
1155 }
1156
1157 static int qi_check_fault(struct intel_iommu *iommu, int index)
1158 {
1159         u32 fault;
1160         int head, tail;
1161         struct q_inval *qi = iommu->qi;
1162         int wait_index = (index + 1) % QI_LENGTH;
1163         int shift = qi_shift(iommu);
1164
1165         if (qi->desc_status[wait_index] == QI_ABORT)
1166                 return -EAGAIN;
1167
1168         fault = readl(iommu->reg + DMAR_FSTS_REG);
1169
1170         /*
1171          * If IQE happens, the head points to the descriptor associated
1172          * with the error. No new descriptors are fetched until the IQE
1173          * is cleared.
1174          */
1175         if (fault & DMA_FSTS_IQE) {
1176                 head = readl(iommu->reg + DMAR_IQH_REG);
1177                 if ((head >> shift) == index) {
1178                         struct qi_desc *desc = qi->desc + head;
1179
1180                         /*
1181                          * desc->qw2 and desc->qw3 are either reserved or
1182                          * used by software as private data. We won't print
1183                          * out these two qw's for security consideration.
1184                          */
1185                         pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1186                                (unsigned long long)desc->qw0,
1187                                (unsigned long long)desc->qw1);
1188                         memcpy(desc, qi->desc + (wait_index << shift),
1189                                1 << shift);
1190                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1191                         return -EINVAL;
1192                 }
1193         }
1194
1195         /*
1196          * If ITE happens, all pending wait_desc commands are aborted.
1197          * No new descriptors are fetched until the ITE is cleared.
1198          */
1199         if (fault & DMA_FSTS_ITE) {
1200                 head = readl(iommu->reg + DMAR_IQH_REG);
1201                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1202                 head |= 1;
1203                 tail = readl(iommu->reg + DMAR_IQT_REG);
1204                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1205
1206                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1207
1208                 do {
1209                         if (qi->desc_status[head] == QI_IN_USE)
1210                                 qi->desc_status[head] = QI_ABORT;
1211                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1212                 } while (head != tail);
1213
1214                 if (qi->desc_status[wait_index] == QI_ABORT)
1215                         return -EAGAIN;
1216         }
1217
1218         if (fault & DMA_FSTS_ICE)
1219                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1220
1221         return 0;
1222 }
1223
1224 /*
1225  * Submit the queued invalidation descriptor to the remapping
1226  * hardware unit and wait for its completion.
1227  */
1228 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1229 {
1230         int rc;
1231         struct q_inval *qi = iommu->qi;
1232         int offset, shift, length;
1233         struct qi_desc wait_desc;
1234         int wait_index, index;
1235         unsigned long flags;
1236
1237         if (!qi)
1238                 return 0;
1239
1240 restart:
1241         rc = 0;
1242
1243         raw_spin_lock_irqsave(&qi->q_lock, flags);
1244         while (qi->free_cnt < 3) {
1245                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1246                 cpu_relax();
1247                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1248         }
1249
1250         index = qi->free_head;
1251         wait_index = (index + 1) % QI_LENGTH;
1252         shift = qi_shift(iommu);
1253         length = 1 << shift;
1254
1255         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1256
1257         offset = index << shift;
1258         memcpy(qi->desc + offset, desc, length);
1259         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1260                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1261         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1262         wait_desc.qw2 = 0;
1263         wait_desc.qw3 = 0;
1264
1265         offset = wait_index << shift;
1266         memcpy(qi->desc + offset, &wait_desc, length);
1267
1268         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1269         qi->free_cnt -= 2;
1270
1271         /*
1272          * update the HW tail register indicating the presence of
1273          * new descriptors.
1274          */
1275         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1276
1277         while (qi->desc_status[wait_index] != QI_DONE) {
1278                 /*
1279                  * We will leave the interrupts disabled, to prevent interrupt
1280                  * context to queue another cmd while a cmd is already submitted
1281                  * and waiting for completion on this cpu. This is to avoid
1282                  * a deadlock where the interrupt context can wait indefinitely
1283                  * for free slots in the queue.
1284                  */
1285                 rc = qi_check_fault(iommu, index);
1286                 if (rc)
1287                         break;
1288
1289                 raw_spin_unlock(&qi->q_lock);
1290                 cpu_relax();
1291                 raw_spin_lock(&qi->q_lock);
1292         }
1293
1294         qi->desc_status[index] = QI_DONE;
1295
1296         reclaim_free_desc(qi);
1297         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1298
1299         if (rc == -EAGAIN)
1300                 goto restart;
1301
1302         return rc;
1303 }
1304
1305 /*
1306  * Flush the global interrupt entry cache.
1307  */
1308 void qi_global_iec(struct intel_iommu *iommu)
1309 {
1310         struct qi_desc desc;
1311
1312         desc.qw0 = QI_IEC_TYPE;
1313         desc.qw1 = 0;
1314         desc.qw2 = 0;
1315         desc.qw3 = 0;
1316
1317         /* should never fail */
1318         qi_submit_sync(&desc, iommu);
1319 }
1320
1321 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1322                       u64 type)
1323 {
1324         struct qi_desc desc;
1325
1326         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1327                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1328         desc.qw1 = 0;
1329         desc.qw2 = 0;
1330         desc.qw3 = 0;
1331
1332         qi_submit_sync(&desc, iommu);
1333 }
1334
1335 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1336                     unsigned int size_order, u64 type)
1337 {
1338         u8 dw = 0, dr = 0;
1339
1340         struct qi_desc desc;
1341         int ih = 0;
1342
1343         if (cap_write_drain(iommu->cap))
1344                 dw = 1;
1345
1346         if (cap_read_drain(iommu->cap))
1347                 dr = 1;
1348
1349         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1350                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1351         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1352                 | QI_IOTLB_AM(size_order);
1353         desc.qw2 = 0;
1354         desc.qw3 = 0;
1355
1356         qi_submit_sync(&desc, iommu);
1357 }
1358
1359 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1360                         u16 qdep, u64 addr, unsigned mask)
1361 {
1362         struct qi_desc desc;
1363
1364         if (mask) {
1365                 WARN_ON_ONCE(addr & ((1ULL << (VTD_PAGE_SHIFT + mask)) - 1));
1366                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1367                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1368         } else
1369                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1370
1371         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1372                 qdep = 0;
1373
1374         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1375                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1376         desc.qw2 = 0;
1377         desc.qw3 = 0;
1378
1379         qi_submit_sync(&desc, iommu);
1380 }
1381
1382 /*
1383  * Disable Queued Invalidation interface.
1384  */
1385 void dmar_disable_qi(struct intel_iommu *iommu)
1386 {
1387         unsigned long flags;
1388         u32 sts;
1389         cycles_t start_time = get_cycles();
1390
1391         if (!ecap_qis(iommu->ecap))
1392                 return;
1393
1394         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1395
1396         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1397         if (!(sts & DMA_GSTS_QIES))
1398                 goto end;
1399
1400         /*
1401          * Give a chance to HW to complete the pending invalidation requests.
1402          */
1403         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1404                 readl(iommu->reg + DMAR_IQH_REG)) &&
1405                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1406                 cpu_relax();
1407
1408         iommu->gcmd &= ~DMA_GCMD_QIE;
1409         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1410
1411         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1412                       !(sts & DMA_GSTS_QIES), sts);
1413 end:
1414         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1415 }
1416
1417 /*
1418  * Enable queued invalidation.
1419  */
1420 static void __dmar_enable_qi(struct intel_iommu *iommu)
1421 {
1422         u32 sts;
1423         unsigned long flags;
1424         struct q_inval *qi = iommu->qi;
1425         u64 val = virt_to_phys(qi->desc);
1426
1427         qi->free_head = qi->free_tail = 0;
1428         qi->free_cnt = QI_LENGTH;
1429
1430         /*
1431          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1432          * is present.
1433          */
1434         if (ecap_smts(iommu->ecap))
1435                 val |= (1 << 11) | 1;
1436
1437         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1438
1439         /* write zero to the tail reg */
1440         writel(0, iommu->reg + DMAR_IQT_REG);
1441
1442         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1443
1444         iommu->gcmd |= DMA_GCMD_QIE;
1445         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1446
1447         /* Make sure hardware complete it */
1448         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1449
1450         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1451 }
1452
1453 /*
1454  * Enable Queued Invalidation interface. This is a must to support
1455  * interrupt-remapping. Also used by DMA-remapping, which replaces
1456  * register based IOTLB invalidation.
1457  */
1458 int dmar_enable_qi(struct intel_iommu *iommu)
1459 {
1460         struct q_inval *qi;
1461         struct page *desc_page;
1462
1463         if (!ecap_qis(iommu->ecap))
1464                 return -ENOENT;
1465
1466         /*
1467          * queued invalidation is already setup and enabled.
1468          */
1469         if (iommu->qi)
1470                 return 0;
1471
1472         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1473         if (!iommu->qi)
1474                 return -ENOMEM;
1475
1476         qi = iommu->qi;
1477
1478         /*
1479          * Need two pages to accommodate 256 descriptors of 256 bits each
1480          * if the remapping hardware supports scalable mode translation.
1481          */
1482         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1483                                      !!ecap_smts(iommu->ecap));
1484         if (!desc_page) {
1485                 kfree(qi);
1486                 iommu->qi = NULL;
1487                 return -ENOMEM;
1488         }
1489
1490         qi->desc = page_address(desc_page);
1491
1492         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1493         if (!qi->desc_status) {
1494                 free_page((unsigned long) qi->desc);
1495                 kfree(qi);
1496                 iommu->qi = NULL;
1497                 return -ENOMEM;
1498         }
1499
1500         raw_spin_lock_init(&qi->q_lock);
1501
1502         __dmar_enable_qi(iommu);
1503
1504         return 0;
1505 }
1506
1507 /* iommu interrupt handling. Most stuff are MSI-like. */
1508
1509 enum faulttype {
1510         DMA_REMAP,
1511         INTR_REMAP,
1512         UNKNOWN,
1513 };
1514
1515 static const char *dma_remap_fault_reasons[] =
1516 {
1517         "Software",
1518         "Present bit in root entry is clear",
1519         "Present bit in context entry is clear",
1520         "Invalid context entry",
1521         "Access beyond MGAW",
1522         "PTE Write access is not set",
1523         "PTE Read access is not set",
1524         "Next page table ptr is invalid",
1525         "Root table address invalid",
1526         "Context table ptr is invalid",
1527         "non-zero reserved fields in RTP",
1528         "non-zero reserved fields in CTP",
1529         "non-zero reserved fields in PTE",
1530         "PCE for translation request specifies blocking",
1531 };
1532
1533 static const char *irq_remap_fault_reasons[] =
1534 {
1535         "Detected reserved fields in the decoded interrupt-remapped request",
1536         "Interrupt index exceeded the interrupt-remapping table size",
1537         "Present field in the IRTE entry is clear",
1538         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1539         "Detected reserved fields in the IRTE entry",
1540         "Blocked a compatibility format interrupt request",
1541         "Blocked an interrupt request due to source-id verification failure",
1542 };
1543
1544 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1545 {
1546         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1547                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1548                 *fault_type = INTR_REMAP;
1549                 return irq_remap_fault_reasons[fault_reason - 0x20];
1550         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1551                 *fault_type = DMA_REMAP;
1552                 return dma_remap_fault_reasons[fault_reason];
1553         } else {
1554                 *fault_type = UNKNOWN;
1555                 return "Unknown";
1556         }
1557 }
1558
1559
1560 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1561 {
1562         if (iommu->irq == irq)
1563                 return DMAR_FECTL_REG;
1564         else if (iommu->pr_irq == irq)
1565                 return DMAR_PECTL_REG;
1566         else
1567                 BUG();
1568 }
1569
1570 void dmar_msi_unmask(struct irq_data *data)
1571 {
1572         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1573         int reg = dmar_msi_reg(iommu, data->irq);
1574         unsigned long flag;
1575
1576         /* unmask it */
1577         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1578         writel(0, iommu->reg + reg);
1579         /* Read a reg to force flush the post write */
1580         readl(iommu->reg + reg);
1581         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1582 }
1583
1584 void dmar_msi_mask(struct irq_data *data)
1585 {
1586         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1587         int reg = dmar_msi_reg(iommu, data->irq);
1588         unsigned long flag;
1589
1590         /* mask it */
1591         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1592         writel(DMA_FECTL_IM, iommu->reg + reg);
1593         /* Read a reg to force flush the post write */
1594         readl(iommu->reg + reg);
1595         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1596 }
1597
1598 void dmar_msi_write(int irq, struct msi_msg *msg)
1599 {
1600         struct intel_iommu *iommu = irq_get_handler_data(irq);
1601         int reg = dmar_msi_reg(iommu, irq);
1602         unsigned long flag;
1603
1604         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1605         writel(msg->data, iommu->reg + reg + 4);
1606         writel(msg->address_lo, iommu->reg + reg + 8);
1607         writel(msg->address_hi, iommu->reg + reg + 12);
1608         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1609 }
1610
1611 void dmar_msi_read(int irq, struct msi_msg *msg)
1612 {
1613         struct intel_iommu *iommu = irq_get_handler_data(irq);
1614         int reg = dmar_msi_reg(iommu, irq);
1615         unsigned long flag;
1616
1617         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1618         msg->data = readl(iommu->reg + reg + 4);
1619         msg->address_lo = readl(iommu->reg + reg + 8);
1620         msg->address_hi = readl(iommu->reg + reg + 12);
1621         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1622 }
1623
1624 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1625                 u8 fault_reason, u16 source_id, unsigned long long addr)
1626 {
1627         const char *reason;
1628         int fault_type;
1629
1630         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1631
1632         if (fault_type == INTR_REMAP)
1633                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1634                         source_id >> 8, PCI_SLOT(source_id & 0xFF),
1635                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1636                         fault_reason, reason);
1637         else
1638                 pr_err("[%s] Request device [%02x:%02x.%d] fault addr %llx [fault reason %02d] %s\n",
1639                        type ? "DMA Read" : "DMA Write",
1640                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1641                        PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1642         return 0;
1643 }
1644
1645 #define PRIMARY_FAULT_REG_LEN (16)
1646 irqreturn_t dmar_fault(int irq, void *dev_id)
1647 {
1648         struct intel_iommu *iommu = dev_id;
1649         int reg, fault_index;
1650         u32 fault_status;
1651         unsigned long flag;
1652         static DEFINE_RATELIMIT_STATE(rs,
1653                                       DEFAULT_RATELIMIT_INTERVAL,
1654                                       DEFAULT_RATELIMIT_BURST);
1655
1656         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1657         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1658         if (fault_status && __ratelimit(&rs))
1659                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1660
1661         /* TBD: ignore advanced fault log currently */
1662         if (!(fault_status & DMA_FSTS_PPF))
1663                 goto unlock_exit;
1664
1665         fault_index = dma_fsts_fault_record_index(fault_status);
1666         reg = cap_fault_reg_offset(iommu->cap);
1667         while (1) {
1668                 /* Disable printing, simply clear the fault when ratelimited */
1669                 bool ratelimited = !__ratelimit(&rs);
1670                 u8 fault_reason;
1671                 u16 source_id;
1672                 u64 guest_addr;
1673                 int type;
1674                 u32 data;
1675
1676                 /* highest 32 bits */
1677                 data = readl(iommu->reg + reg +
1678                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1679                 if (!(data & DMA_FRCD_F))
1680                         break;
1681
1682                 if (!ratelimited) {
1683                         fault_reason = dma_frcd_fault_reason(data);
1684                         type = dma_frcd_type(data);
1685
1686                         data = readl(iommu->reg + reg +
1687                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1688                         source_id = dma_frcd_source_id(data);
1689
1690                         guest_addr = dmar_readq(iommu->reg + reg +
1691                                         fault_index * PRIMARY_FAULT_REG_LEN);
1692                         guest_addr = dma_frcd_page_addr(guest_addr);
1693                 }
1694
1695                 /* clear the fault */
1696                 writel(DMA_FRCD_F, iommu->reg + reg +
1697                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1698
1699                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1700
1701                 if (!ratelimited)
1702                         dmar_fault_do_one(iommu, type, fault_reason,
1703                                           source_id, guest_addr);
1704
1705                 fault_index++;
1706                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1707                         fault_index = 0;
1708                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1709         }
1710
1711         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1712                iommu->reg + DMAR_FSTS_REG);
1713
1714 unlock_exit:
1715         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1716         return IRQ_HANDLED;
1717 }
1718
1719 int dmar_set_interrupt(struct intel_iommu *iommu)
1720 {
1721         int irq, ret;
1722
1723         /*
1724          * Check if the fault interrupt is already initialized.
1725          */
1726         if (iommu->irq)
1727                 return 0;
1728
1729         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1730         if (irq > 0) {
1731                 iommu->irq = irq;
1732         } else {
1733                 pr_err("No free IRQ vectors\n");
1734                 return -EINVAL;
1735         }
1736
1737         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1738         if (ret)
1739                 pr_err("Can't request irq\n");
1740         return ret;
1741 }
1742
1743 int __init enable_drhd_fault_handling(void)
1744 {
1745         struct dmar_drhd_unit *drhd;
1746         struct intel_iommu *iommu;
1747
1748         /*
1749          * Enable fault control interrupt.
1750          */
1751         for_each_iommu(iommu, drhd) {
1752                 u32 fault_status;
1753                 int ret = dmar_set_interrupt(iommu);
1754
1755                 if (ret) {
1756                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1757                                (unsigned long long)drhd->reg_base_addr, ret);
1758                         return -1;
1759                 }
1760
1761                 /*
1762                  * Clear any previous faults.
1763                  */
1764                 dmar_fault(iommu->irq, iommu);
1765                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1766                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1767         }
1768
1769         return 0;
1770 }
1771
1772 /*
1773  * Re-enable Queued Invalidation interface.
1774  */
1775 int dmar_reenable_qi(struct intel_iommu *iommu)
1776 {
1777         if (!ecap_qis(iommu->ecap))
1778                 return -ENOENT;
1779
1780         if (!iommu->qi)
1781                 return -ENOENT;
1782
1783         /*
1784          * First disable queued invalidation.
1785          */
1786         dmar_disable_qi(iommu);
1787         /*
1788          * Then enable queued invalidation again. Since there is no pending
1789          * invalidation requests now, it's safe to re-enable queued
1790          * invalidation.
1791          */
1792         __dmar_enable_qi(iommu);
1793
1794         return 0;
1795 }
1796
1797 /*
1798  * Check interrupt remapping support in DMAR table description.
1799  */
1800 int __init dmar_ir_support(void)
1801 {
1802         struct acpi_table_dmar *dmar;
1803         dmar = (struct acpi_table_dmar *)dmar_tbl;
1804         if (!dmar)
1805                 return 0;
1806         return dmar->flags & 0x1;
1807 }
1808
1809 /* Check whether DMAR units are in use */
1810 static inline bool dmar_in_use(void)
1811 {
1812         return irq_remapping_enabled || intel_iommu_enabled;
1813 }
1814
1815 static int __init dmar_free_unused_resources(void)
1816 {
1817         struct dmar_drhd_unit *dmaru, *dmaru_n;
1818
1819         if (dmar_in_use())
1820                 return 0;
1821
1822         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1823                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1824
1825         down_write(&dmar_global_lock);
1826         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1827                 list_del(&dmaru->list);
1828                 dmar_free_drhd(dmaru);
1829         }
1830         up_write(&dmar_global_lock);
1831
1832         return 0;
1833 }
1834
1835 late_initcall(dmar_free_unused_resources);
1836 IOMMU_INIT_POST(detect_intel_iommu);
1837
1838 /*
1839  * DMAR Hotplug Support
1840  * For more details, please refer to Intel(R) Virtualization Technology
1841  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1842  * "Remapping Hardware Unit Hot Plug".
1843  */
1844 static guid_t dmar_hp_guid =
1845         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
1846                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
1847
1848 /*
1849  * Currently there's only one revision and BIOS will not check the revision id,
1850  * so use 0 for safety.
1851  */
1852 #define DMAR_DSM_REV_ID                 0
1853 #define DMAR_DSM_FUNC_DRHD              1
1854 #define DMAR_DSM_FUNC_ATSR              2
1855 #define DMAR_DSM_FUNC_RHSA              3
1856
1857 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1858 {
1859         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
1860 }
1861
1862 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1863                                   dmar_res_handler_t handler, void *arg)
1864 {
1865         int ret = -ENODEV;
1866         union acpi_object *obj;
1867         struct acpi_dmar_header *start;
1868         struct dmar_res_callback callback;
1869         static int res_type[] = {
1870                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1871                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1872                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1873         };
1874
1875         if (!dmar_detect_dsm(handle, func))
1876                 return 0;
1877
1878         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
1879                                       func, NULL, ACPI_TYPE_BUFFER);
1880         if (!obj)
1881                 return -ENODEV;
1882
1883         memset(&callback, 0, sizeof(callback));
1884         callback.cb[res_type[func]] = handler;
1885         callback.arg[res_type[func]] = arg;
1886         start = (struct acpi_dmar_header *)obj->buffer.pointer;
1887         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1888
1889         ACPI_FREE(obj);
1890
1891         return ret;
1892 }
1893
1894 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1895 {
1896         int ret;
1897         struct dmar_drhd_unit *dmaru;
1898
1899         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1900         if (!dmaru)
1901                 return -ENODEV;
1902
1903         ret = dmar_ir_hotplug(dmaru, true);
1904         if (ret == 0)
1905                 ret = dmar_iommu_hotplug(dmaru, true);
1906
1907         return ret;
1908 }
1909
1910 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1911 {
1912         int i, ret;
1913         struct device *dev;
1914         struct dmar_drhd_unit *dmaru;
1915
1916         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1917         if (!dmaru)
1918                 return 0;
1919
1920         /*
1921          * All PCI devices managed by this unit should have been destroyed.
1922          */
1923         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1924                 for_each_active_dev_scope(dmaru->devices,
1925                                           dmaru->devices_cnt, i, dev)
1926                         return -EBUSY;
1927         }
1928
1929         ret = dmar_ir_hotplug(dmaru, false);
1930         if (ret == 0)
1931                 ret = dmar_iommu_hotplug(dmaru, false);
1932
1933         return ret;
1934 }
1935
1936 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1937 {
1938         struct dmar_drhd_unit *dmaru;
1939
1940         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1941         if (dmaru) {
1942                 list_del_rcu(&dmaru->list);
1943                 synchronize_rcu();
1944                 dmar_free_drhd(dmaru);
1945         }
1946
1947         return 0;
1948 }
1949
1950 static int dmar_hotplug_insert(acpi_handle handle)
1951 {
1952         int ret;
1953         int drhd_count = 0;
1954
1955         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1956                                      &dmar_validate_one_drhd, (void *)1);
1957         if (ret)
1958                 goto out;
1959
1960         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1961                                      &dmar_parse_one_drhd, (void *)&drhd_count);
1962         if (ret == 0 && drhd_count == 0) {
1963                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1964                 goto out;
1965         } else if (ret) {
1966                 goto release_drhd;
1967         }
1968
1969         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1970                                      &dmar_parse_one_rhsa, NULL);
1971         if (ret)
1972                 goto release_drhd;
1973
1974         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1975                                      &dmar_parse_one_atsr, NULL);
1976         if (ret)
1977                 goto release_atsr;
1978
1979         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1980                                      &dmar_hp_add_drhd, NULL);
1981         if (!ret)
1982                 return 0;
1983
1984         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1985                                &dmar_hp_remove_drhd, NULL);
1986 release_atsr:
1987         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1988                                &dmar_release_one_atsr, NULL);
1989 release_drhd:
1990         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1991                                &dmar_hp_release_drhd, NULL);
1992 out:
1993         return ret;
1994 }
1995
1996 static int dmar_hotplug_remove(acpi_handle handle)
1997 {
1998         int ret;
1999
2000         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2001                                      &dmar_check_one_atsr, NULL);
2002         if (ret)
2003                 return ret;
2004
2005         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2006                                      &dmar_hp_remove_drhd, NULL);
2007         if (ret == 0) {
2008                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2009                                                &dmar_release_one_atsr, NULL));
2010                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2011                                                &dmar_hp_release_drhd, NULL));
2012         } else {
2013                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2014                                        &dmar_hp_add_drhd, NULL);
2015         }
2016
2017         return ret;
2018 }
2019
2020 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2021                                        void *context, void **retval)
2022 {
2023         acpi_handle *phdl = retval;
2024
2025         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2026                 *phdl = handle;
2027                 return AE_CTRL_TERMINATE;
2028         }
2029
2030         return AE_OK;
2031 }
2032
2033 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2034 {
2035         int ret;
2036         acpi_handle tmp = NULL;
2037         acpi_status status;
2038
2039         if (!dmar_in_use())
2040                 return 0;
2041
2042         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2043                 tmp = handle;
2044         } else {
2045                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2046                                              ACPI_UINT32_MAX,
2047                                              dmar_get_dsm_handle,
2048                                              NULL, NULL, &tmp);
2049                 if (ACPI_FAILURE(status)) {
2050                         pr_warn("Failed to locate _DSM method.\n");
2051                         return -ENXIO;
2052                 }
2053         }
2054         if (tmp == NULL)
2055                 return 0;
2056
2057         down_write(&dmar_global_lock);
2058         if (insert)
2059                 ret = dmar_hotplug_insert(tmp);
2060         else
2061                 ret = dmar_hotplug_remove(tmp);
2062         up_write(&dmar_global_lock);
2063
2064         return ret;
2065 }
2066
2067 int dmar_device_add(acpi_handle handle)
2068 {
2069         return dmar_device_hotplug(handle, true);
2070 }
2071
2072 int dmar_device_remove(acpi_handle handle)
2073 {
2074         return dmar_device_hotplug(handle, false);
2075 }
2076
2077 /*
2078  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2079  *
2080  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2081  * the ACPI DMAR table. This means that the platform boot firmware has made
2082  * sure no device can issue DMA outside of RMRR regions.
2083  */
2084 bool dmar_platform_optin(void)
2085 {
2086         struct acpi_table_dmar *dmar;
2087         acpi_status status;
2088         bool ret;
2089
2090         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2091                                 (struct acpi_table_header **)&dmar);
2092         if (ACPI_FAILURE(status))
2093                 return false;
2094
2095         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2096         acpi_put_table((struct acpi_table_header *)dmar);
2097
2098         return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(dmar_platform_optin);