OSDN Git Service

Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[uclinux-h8/linux.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...)   NULL
34 #define arm_iommu_attach_device(...)    -ENODEV
35 #define arm_iommu_release_mapping(...)  do {} while (0)
36 #define arm_iommu_detach_device(...)    do {} while (0)
37 #endif
38
39 #define IPMMU_CTX_MAX 8
40
41 struct ipmmu_features {
42         bool use_ns_alias_offset;
43         bool has_cache_leaf_nodes;
44         unsigned int number_of_contexts;
45         bool setup_imbuscr;
46         bool twobit_imttbcr_sl0;
47         bool reserved_context;
48 };
49
50 struct ipmmu_vmsa_device {
51         struct device *dev;
52         void __iomem *base;
53         struct iommu_device iommu;
54         struct ipmmu_vmsa_device *root;
55         const struct ipmmu_features *features;
56         unsigned int num_utlbs;
57         unsigned int num_ctx;
58         spinlock_t lock;                        /* Protects ctx and domains[] */
59         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
60         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
61
62         struct iommu_group *group;
63         struct dma_iommu_mapping *mapping;
64 };
65
66 struct ipmmu_vmsa_domain {
67         struct ipmmu_vmsa_device *mmu;
68         struct iommu_domain io_domain;
69
70         struct io_pgtable_cfg cfg;
71         struct io_pgtable_ops *iop;
72
73         unsigned int context_id;
74         struct mutex mutex;                     /* Protects mappings */
75 };
76
77 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
78 {
79         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
80 }
81
82 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
83 {
84         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
85
86         return fwspec ? fwspec->iommu_priv : NULL;
87 }
88
89 #define TLB_LOOP_TIMEOUT                100     /* 100us */
90
91 /* -----------------------------------------------------------------------------
92  * Registers Definition
93  */
94
95 #define IM_NS_ALIAS_OFFSET              0x800
96
97 #define IM_CTX_SIZE                     0x40
98
99 #define IMCTR                           0x0000
100 #define IMCTR_TRE                       (1 << 17)
101 #define IMCTR_AFE                       (1 << 16)
102 #define IMCTR_RTSEL_MASK                (3 << 4)
103 #define IMCTR_RTSEL_SHIFT               4
104 #define IMCTR_TREN                      (1 << 3)
105 #define IMCTR_INTEN                     (1 << 2)
106 #define IMCTR_FLUSH                     (1 << 1)
107 #define IMCTR_MMUEN                     (1 << 0)
108
109 #define IMCAAR                          0x0004
110
111 #define IMTTBCR                         0x0008
112 #define IMTTBCR_EAE                     (1 << 31)
113 #define IMTTBCR_PMB                     (1 << 30)
114 #define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)
115 #define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)
116 #define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)
117 #define IMTTBCR_SH1_MASK                (3 << 28)
118 #define IMTTBCR_ORGN1_NC                (0 << 26)
119 #define IMTTBCR_ORGN1_WB_WA             (1 << 26)
120 #define IMTTBCR_ORGN1_WT                (2 << 26)
121 #define IMTTBCR_ORGN1_WB                (3 << 26)
122 #define IMTTBCR_ORGN1_MASK              (3 << 26)
123 #define IMTTBCR_IRGN1_NC                (0 << 24)
124 #define IMTTBCR_IRGN1_WB_WA             (1 << 24)
125 #define IMTTBCR_IRGN1_WT                (2 << 24)
126 #define IMTTBCR_IRGN1_WB                (3 << 24)
127 #define IMTTBCR_IRGN1_MASK              (3 << 24)
128 #define IMTTBCR_TSZ1_MASK               (7 << 16)
129 #define IMTTBCR_TSZ1_SHIFT              16
130 #define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)
131 #define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)
132 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)
133 #define IMTTBCR_SH0_MASK                (3 << 12)
134 #define IMTTBCR_ORGN0_NC                (0 << 10)
135 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)
136 #define IMTTBCR_ORGN0_WT                (2 << 10)
137 #define IMTTBCR_ORGN0_WB                (3 << 10)
138 #define IMTTBCR_ORGN0_MASK              (3 << 10)
139 #define IMTTBCR_IRGN0_NC                (0 << 8)
140 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)
141 #define IMTTBCR_IRGN0_WT                (2 << 8)
142 #define IMTTBCR_IRGN0_WB                (3 << 8)
143 #define IMTTBCR_IRGN0_MASK              (3 << 8)
144 #define IMTTBCR_SL0_LVL_2               (0 << 4)
145 #define IMTTBCR_SL0_LVL_1               (1 << 4)
146 #define IMTTBCR_TSZ0_MASK               (7 << 0)
147 #define IMTTBCR_TSZ0_SHIFT              O
148
149 #define IMTTBCR_SL0_TWOBIT_LVL_3        (0 << 6)
150 #define IMTTBCR_SL0_TWOBIT_LVL_2        (1 << 6)
151 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)
152
153 #define IMBUSCR                         0x000c
154 #define IMBUSCR_DVM                     (1 << 2)
155 #define IMBUSCR_BUSSEL_SYS              (0 << 0)
156 #define IMBUSCR_BUSSEL_CCI              (1 << 0)
157 #define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
158 #define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
159 #define IMBUSCR_BUSSEL_MASK             (3 << 0)
160
161 #define IMTTLBR0                        0x0010
162 #define IMTTUBR0                        0x0014
163 #define IMTTLBR1                        0x0018
164 #define IMTTUBR1                        0x001c
165
166 #define IMSTR                           0x0020
167 #define IMSTR_ERRLVL_MASK               (3 << 12)
168 #define IMSTR_ERRLVL_SHIFT              12
169 #define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
170 #define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
171 #define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
172 #define IMSTR_ERRCODE_MASK              (7 << 8)
173 #define IMSTR_MHIT                      (1 << 4)
174 #define IMSTR_ABORT                     (1 << 2)
175 #define IMSTR_PF                        (1 << 1)
176 #define IMSTR_TF                        (1 << 0)
177
178 #define IMMAIR0                         0x0028
179 #define IMMAIR1                         0x002c
180 #define IMMAIR_ATTR_MASK                0xff
181 #define IMMAIR_ATTR_DEVICE              0x04
182 #define IMMAIR_ATTR_NC                  0x44
183 #define IMMAIR_ATTR_WBRWA               0xff
184 #define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
185 #define IMMAIR_ATTR_IDX_NC              0
186 #define IMMAIR_ATTR_IDX_WBRWA           1
187 #define IMMAIR_ATTR_IDX_DEV             2
188
189 #define IMEAR                           0x0030
190
191 #define IMPCTR                          0x0200
192 #define IMPSTR                          0x0208
193 #define IMPEAR                          0x020c
194 #define IMPMBA(n)                       (0x0280 + ((n) * 4))
195 #define IMPMBD(n)                       (0x02c0 + ((n) * 4))
196
197 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
198 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))
199 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))
200 #define IMUCTR_FIXADDEN                 (1 << 31)
201 #define IMUCTR_FIXADD_MASK              (0xff << 16)
202 #define IMUCTR_FIXADD_SHIFT             16
203 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
204 #define IMUCTR_TTSEL_PMB                (8 << 4)
205 #define IMUCTR_TTSEL_MASK               (15 << 4)
206 #define IMUCTR_FLUSH                    (1 << 1)
207 #define IMUCTR_MMUEN                    (1 << 0)
208
209 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
210 #define IMUASID0(n)                     (0x0308 + ((n) * 16))
211 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))
212 #define IMUASID_ASID8_MASK              (0xff << 8)
213 #define IMUASID_ASID8_SHIFT             8
214 #define IMUASID_ASID0_MASK              (0xff << 0)
215 #define IMUASID_ASID0_SHIFT             0
216
217 /* -----------------------------------------------------------------------------
218  * Root device handling
219  */
220
221 static struct platform_driver ipmmu_driver;
222
223 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
224 {
225         return mmu->root == mmu;
226 }
227
228 static int __ipmmu_check_device(struct device *dev, void *data)
229 {
230         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
231         struct ipmmu_vmsa_device **rootp = data;
232
233         if (ipmmu_is_root(mmu))
234                 *rootp = mmu;
235
236         return 0;
237 }
238
239 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
240 {
241         struct ipmmu_vmsa_device *root = NULL;
242
243         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
244                                       __ipmmu_check_device) == 0 ? root : NULL;
245 }
246
247 /* -----------------------------------------------------------------------------
248  * Read/Write Access
249  */
250
251 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
252 {
253         return ioread32(mmu->base + offset);
254 }
255
256 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
257                         u32 data)
258 {
259         iowrite32(data, mmu->base + offset);
260 }
261
262 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
263                                unsigned int reg)
264 {
265         return ipmmu_read(domain->mmu->root,
266                           domain->context_id * IM_CTX_SIZE + reg);
267 }
268
269 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
270                                  unsigned int reg, u32 data)
271 {
272         ipmmu_write(domain->mmu->root,
273                     domain->context_id * IM_CTX_SIZE + reg, data);
274 }
275
276 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
277                                 unsigned int reg, u32 data)
278 {
279         if (domain->mmu != domain->mmu->root)
280                 ipmmu_write(domain->mmu,
281                             domain->context_id * IM_CTX_SIZE + reg, data);
282
283         ipmmu_write(domain->mmu->root,
284                     domain->context_id * IM_CTX_SIZE + reg, data);
285 }
286
287 /* -----------------------------------------------------------------------------
288  * TLB and microTLB Management
289  */
290
291 /* Wait for any pending TLB invalidations to complete */
292 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
293 {
294         unsigned int count = 0;
295
296         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
297                 cpu_relax();
298                 if (++count == TLB_LOOP_TIMEOUT) {
299                         dev_err_ratelimited(domain->mmu->dev,
300                         "TLB sync timed out -- MMU may be deadlocked\n");
301                         return;
302                 }
303                 udelay(1);
304         }
305 }
306
307 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
308 {
309         u32 reg;
310
311         reg = ipmmu_ctx_read_root(domain, IMCTR);
312         reg |= IMCTR_FLUSH;
313         ipmmu_ctx_write_all(domain, IMCTR, reg);
314
315         ipmmu_tlb_sync(domain);
316 }
317
318 /*
319  * Enable MMU translation for the microTLB.
320  */
321 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
322                               unsigned int utlb)
323 {
324         struct ipmmu_vmsa_device *mmu = domain->mmu;
325
326         /*
327          * TODO: Reference-count the microTLB as several bus masters can be
328          * connected to the same microTLB.
329          */
330
331         /* TODO: What should we set the ASID to ? */
332         ipmmu_write(mmu, IMUASID(utlb), 0);
333         /* TODO: Do we need to flush the microTLB ? */
334         ipmmu_write(mmu, IMUCTR(utlb),
335                     IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
336                     IMUCTR_MMUEN);
337 }
338
339 /*
340  * Disable MMU translation for the microTLB.
341  */
342 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
343                                unsigned int utlb)
344 {
345         struct ipmmu_vmsa_device *mmu = domain->mmu;
346
347         ipmmu_write(mmu, IMUCTR(utlb), 0);
348 }
349
350 static void ipmmu_tlb_flush_all(void *cookie)
351 {
352         struct ipmmu_vmsa_domain *domain = cookie;
353
354         ipmmu_tlb_invalidate(domain);
355 }
356
357 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
358                                 size_t granule, bool leaf, void *cookie)
359 {
360         /* The hardware doesn't support selective TLB flush. */
361 }
362
363 static const struct iommu_gather_ops ipmmu_gather_ops = {
364         .tlb_flush_all = ipmmu_tlb_flush_all,
365         .tlb_add_flush = ipmmu_tlb_add_flush,
366         .tlb_sync = ipmmu_tlb_flush_all,
367 };
368
369 /* -----------------------------------------------------------------------------
370  * Domain/Context Management
371  */
372
373 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
374                                          struct ipmmu_vmsa_domain *domain)
375 {
376         unsigned long flags;
377         int ret;
378
379         spin_lock_irqsave(&mmu->lock, flags);
380
381         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
382         if (ret != mmu->num_ctx) {
383                 mmu->domains[ret] = domain;
384                 set_bit(ret, mmu->ctx);
385         } else
386                 ret = -EBUSY;
387
388         spin_unlock_irqrestore(&mmu->lock, flags);
389
390         return ret;
391 }
392
393 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
394                                       unsigned int context_id)
395 {
396         unsigned long flags;
397
398         spin_lock_irqsave(&mmu->lock, flags);
399
400         clear_bit(context_id, mmu->ctx);
401         mmu->domains[context_id] = NULL;
402
403         spin_unlock_irqrestore(&mmu->lock, flags);
404 }
405
406 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
407 {
408         u64 ttbr;
409         u32 tmp;
410         int ret;
411
412         /*
413          * Allocate the page table operations.
414          *
415          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
416          * access, Long-descriptor format" that the NStable bit being set in a
417          * table descriptor will result in the NStable and NS bits of all child
418          * entries being ignored and considered as being set. The IPMMU seems
419          * not to comply with this, as it generates a secure access page fault
420          * if any of the NStable and NS bits isn't set when running in
421          * non-secure mode.
422          */
423         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
424         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
425         domain->cfg.ias = 32;
426         domain->cfg.oas = 40;
427         domain->cfg.tlb = &ipmmu_gather_ops;
428         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
429         domain->io_domain.geometry.force_aperture = true;
430         /*
431          * TODO: Add support for coherent walk through CCI with DVM and remove
432          * cache handling. For now, delegate it to the io-pgtable code.
433          */
434         domain->cfg.iommu_dev = domain->mmu->root->dev;
435
436         /*
437          * Find an unused context.
438          */
439         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
440         if (ret < 0)
441                 return ret;
442
443         domain->context_id = ret;
444
445         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
446                                            domain);
447         if (!domain->iop) {
448                 ipmmu_domain_free_context(domain->mmu->root,
449                                           domain->context_id);
450                 return -EINVAL;
451         }
452
453         /* TTBR0 */
454         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
455         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
456         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
457
458         /*
459          * TTBCR
460          * We use long descriptors with inner-shareable WBWA tables and allocate
461          * the whole 32-bit VA space to TTBR0.
462          */
463         if (domain->mmu->features->twobit_imttbcr_sl0)
464                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
465         else
466                 tmp = IMTTBCR_SL0_LVL_1;
467
468         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
469                              IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
470                              IMTTBCR_IRGN0_WB_WA | tmp);
471
472         /* MAIR0 */
473         ipmmu_ctx_write_root(domain, IMMAIR0,
474                              domain->cfg.arm_lpae_s1_cfg.mair[0]);
475
476         /* IMBUSCR */
477         if (domain->mmu->features->setup_imbuscr)
478                 ipmmu_ctx_write_root(domain, IMBUSCR,
479                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
480                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
481
482         /*
483          * IMSTR
484          * Clear all interrupt flags.
485          */
486         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
487
488         /*
489          * IMCTR
490          * Enable the MMU and interrupt generation. The long-descriptor
491          * translation table format doesn't use TEX remapping. Don't enable AF
492          * software management as we have no use for it. Flush the TLB as
493          * required when modifying the context registers.
494          */
495         ipmmu_ctx_write_all(domain, IMCTR,
496                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
497
498         return 0;
499 }
500
501 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
502 {
503         if (!domain->mmu)
504                 return;
505
506         /*
507          * Disable the context. Flush the TLB as required when modifying the
508          * context registers.
509          *
510          * TODO: Is TLB flush really needed ?
511          */
512         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
513         ipmmu_tlb_sync(domain);
514         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
515 }
516
517 /* -----------------------------------------------------------------------------
518  * Fault Handling
519  */
520
521 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
522 {
523         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
524         struct ipmmu_vmsa_device *mmu = domain->mmu;
525         u32 status;
526         u32 iova;
527
528         status = ipmmu_ctx_read_root(domain, IMSTR);
529         if (!(status & err_mask))
530                 return IRQ_NONE;
531
532         iova = ipmmu_ctx_read_root(domain, IMEAR);
533
534         /*
535          * Clear the error status flags. Unlike traditional interrupt flag
536          * registers that must be cleared by writing 1, this status register
537          * seems to require 0. The error address register must be read before,
538          * otherwise its value will be 0.
539          */
540         ipmmu_ctx_write_root(domain, IMSTR, 0);
541
542         /* Log fatal errors. */
543         if (status & IMSTR_MHIT)
544                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
545                                     iova);
546         if (status & IMSTR_ABORT)
547                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
548                                     iova);
549
550         if (!(status & (IMSTR_PF | IMSTR_TF)))
551                 return IRQ_NONE;
552
553         /*
554          * Try to handle page faults and translation faults.
555          *
556          * TODO: We need to look up the faulty device based on the I/O VA. Use
557          * the IOMMU device for now.
558          */
559         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
560                 return IRQ_HANDLED;
561
562         dev_err_ratelimited(mmu->dev,
563                             "Unhandled fault: status 0x%08x iova 0x%08x\n",
564                             status, iova);
565
566         return IRQ_HANDLED;
567 }
568
569 static irqreturn_t ipmmu_irq(int irq, void *dev)
570 {
571         struct ipmmu_vmsa_device *mmu = dev;
572         irqreturn_t status = IRQ_NONE;
573         unsigned int i;
574         unsigned long flags;
575
576         spin_lock_irqsave(&mmu->lock, flags);
577
578         /*
579          * Check interrupts for all active contexts.
580          */
581         for (i = 0; i < mmu->num_ctx; i++) {
582                 if (!mmu->domains[i])
583                         continue;
584                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
585                         status = IRQ_HANDLED;
586         }
587
588         spin_unlock_irqrestore(&mmu->lock, flags);
589
590         return status;
591 }
592
593 /* -----------------------------------------------------------------------------
594  * IOMMU Operations
595  */
596
597 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
598 {
599         struct ipmmu_vmsa_domain *domain;
600
601         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
602         if (!domain)
603                 return NULL;
604
605         mutex_init(&domain->mutex);
606
607         return &domain->io_domain;
608 }
609
610 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
611 {
612         struct iommu_domain *io_domain = NULL;
613
614         switch (type) {
615         case IOMMU_DOMAIN_UNMANAGED:
616                 io_domain = __ipmmu_domain_alloc(type);
617                 break;
618
619         case IOMMU_DOMAIN_DMA:
620                 io_domain = __ipmmu_domain_alloc(type);
621                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
622                         kfree(io_domain);
623                         io_domain = NULL;
624                 }
625                 break;
626         }
627
628         return io_domain;
629 }
630
631 static void ipmmu_domain_free(struct iommu_domain *io_domain)
632 {
633         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
634
635         /*
636          * Free the domain resources. We assume that all devices have already
637          * been detached.
638          */
639         iommu_put_dma_cookie(io_domain);
640         ipmmu_domain_destroy_context(domain);
641         free_io_pgtable_ops(domain->iop);
642         kfree(domain);
643 }
644
645 static int ipmmu_attach_device(struct iommu_domain *io_domain,
646                                struct device *dev)
647 {
648         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
649         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
650         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
651         unsigned int i;
652         int ret = 0;
653
654         if (!mmu) {
655                 dev_err(dev, "Cannot attach to IPMMU\n");
656                 return -ENXIO;
657         }
658
659         mutex_lock(&domain->mutex);
660
661         if (!domain->mmu) {
662                 /* The domain hasn't been used yet, initialize it. */
663                 domain->mmu = mmu;
664                 ret = ipmmu_domain_init_context(domain);
665                 if (ret < 0) {
666                         dev_err(dev, "Unable to initialize IPMMU context\n");
667                         domain->mmu = NULL;
668                 } else {
669                         dev_info(dev, "Using IPMMU context %u\n",
670                                  domain->context_id);
671                 }
672         } else if (domain->mmu != mmu) {
673                 /*
674                  * Something is wrong, we can't attach two devices using
675                  * different IOMMUs to the same domain.
676                  */
677                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
678                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
679                 ret = -EINVAL;
680         } else
681                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
682
683         mutex_unlock(&domain->mutex);
684
685         if (ret < 0)
686                 return ret;
687
688         for (i = 0; i < fwspec->num_ids; ++i)
689                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
690
691         return 0;
692 }
693
694 static void ipmmu_detach_device(struct iommu_domain *io_domain,
695                                 struct device *dev)
696 {
697         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
698         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
699         unsigned int i;
700
701         for (i = 0; i < fwspec->num_ids; ++i)
702                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
703
704         /*
705          * TODO: Optimize by disabling the context when no device is attached.
706          */
707 }
708
709 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
710                      phys_addr_t paddr, size_t size, int prot)
711 {
712         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
713
714         if (!domain)
715                 return -ENODEV;
716
717         return domain->iop->map(domain->iop, iova, paddr, size, prot);
718 }
719
720 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
721                           size_t size)
722 {
723         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
724
725         return domain->iop->unmap(domain->iop, iova, size);
726 }
727
728 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
729 {
730         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
731
732         if (domain->mmu)
733                 ipmmu_tlb_flush_all(domain);
734 }
735
736 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
737                                       dma_addr_t iova)
738 {
739         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
740
741         /* TODO: Is locking needed ? */
742
743         return domain->iop->iova_to_phys(domain->iop, iova);
744 }
745
746 static int ipmmu_init_platform_device(struct device *dev,
747                                       struct of_phandle_args *args)
748 {
749         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
750         struct platform_device *ipmmu_pdev;
751
752         ipmmu_pdev = of_find_device_by_node(args->np);
753         if (!ipmmu_pdev)
754                 return -ENODEV;
755
756         fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
757
758         return 0;
759 }
760
761 static const struct soc_device_attribute soc_rcar_gen3[] = {
762         { .soc_id = "r8a774a1", },
763         { .soc_id = "r8a774c0", },
764         { .soc_id = "r8a7795", },
765         { .soc_id = "r8a7796", },
766         { .soc_id = "r8a77965", },
767         { .soc_id = "r8a77970", },
768         { .soc_id = "r8a77990", },
769         { .soc_id = "r8a77995", },
770         { /* sentinel */ }
771 };
772
773 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
774         { .soc_id = "r8a774c0", },
775         { .soc_id = "r8a7795", .revision = "ES3.*" },
776         { .soc_id = "r8a77965", },
777         { .soc_id = "r8a77990", },
778         { .soc_id = "r8a77995", },
779         { /* sentinel */ }
780 };
781
782 static const char * const rcar_gen3_slave_whitelist[] = {
783 };
784
785 static bool ipmmu_slave_whitelist(struct device *dev)
786 {
787         unsigned int i;
788
789         /*
790          * For R-Car Gen3 use a white list to opt-in slave devices.
791          * For Other SoCs, this returns true anyway.
792          */
793         if (!soc_device_match(soc_rcar_gen3))
794                 return true;
795
796         /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
797         if (!soc_device_match(soc_rcar_gen3_whitelist))
798                 return false;
799
800         /* Check whether this slave device can work with the IPMMU */
801         for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
802                 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
803                         return true;
804         }
805
806         /* Otherwise, do not allow use of IPMMU */
807         return false;
808 }
809
810 static int ipmmu_of_xlate(struct device *dev,
811                           struct of_phandle_args *spec)
812 {
813         if (!ipmmu_slave_whitelist(dev))
814                 return -ENODEV;
815
816         iommu_fwspec_add_ids(dev, spec->args, 1);
817
818         /* Initialize once - xlate() will call multiple times */
819         if (to_ipmmu(dev))
820                 return 0;
821
822         return ipmmu_init_platform_device(dev, spec);
823 }
824
825 static int ipmmu_init_arm_mapping(struct device *dev)
826 {
827         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
828         struct iommu_group *group;
829         int ret;
830
831         /* Create a device group and add the device to it. */
832         group = iommu_group_alloc();
833         if (IS_ERR(group)) {
834                 dev_err(dev, "Failed to allocate IOMMU group\n");
835                 return PTR_ERR(group);
836         }
837
838         ret = iommu_group_add_device(group, dev);
839         iommu_group_put(group);
840
841         if (ret < 0) {
842                 dev_err(dev, "Failed to add device to IPMMU group\n");
843                 return ret;
844         }
845
846         /*
847          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
848          * VAs. This will allocate a corresponding IOMMU domain.
849          *
850          * TODO:
851          * - Create one mapping per context (TLB).
852          * - Make the mapping size configurable ? We currently use a 2GB mapping
853          *   at a 1GB offset to ensure that NULL VAs will fault.
854          */
855         if (!mmu->mapping) {
856                 struct dma_iommu_mapping *mapping;
857
858                 mapping = arm_iommu_create_mapping(&platform_bus_type,
859                                                    SZ_1G, SZ_2G);
860                 if (IS_ERR(mapping)) {
861                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
862                         ret = PTR_ERR(mapping);
863                         goto error;
864                 }
865
866                 mmu->mapping = mapping;
867         }
868
869         /* Attach the ARM VA mapping to the device. */
870         ret = arm_iommu_attach_device(dev, mmu->mapping);
871         if (ret < 0) {
872                 dev_err(dev, "Failed to attach device to VA mapping\n");
873                 goto error;
874         }
875
876         return 0;
877
878 error:
879         iommu_group_remove_device(dev);
880         if (mmu->mapping)
881                 arm_iommu_release_mapping(mmu->mapping);
882
883         return ret;
884 }
885
886 static int ipmmu_add_device(struct device *dev)
887 {
888         struct iommu_group *group;
889
890         /*
891          * Only let through devices that have been verified in xlate()
892          */
893         if (!to_ipmmu(dev))
894                 return -ENODEV;
895
896         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
897                 return ipmmu_init_arm_mapping(dev);
898
899         group = iommu_group_get_for_dev(dev);
900         if (IS_ERR(group))
901                 return PTR_ERR(group);
902
903         iommu_group_put(group);
904         return 0;
905 }
906
907 static void ipmmu_remove_device(struct device *dev)
908 {
909         arm_iommu_detach_device(dev);
910         iommu_group_remove_device(dev);
911 }
912
913 static struct iommu_group *ipmmu_find_group(struct device *dev)
914 {
915         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
916         struct iommu_group *group;
917
918         if (mmu->group)
919                 return iommu_group_ref_get(mmu->group);
920
921         group = iommu_group_alloc();
922         if (!IS_ERR(group))
923                 mmu->group = group;
924
925         return group;
926 }
927
928 static const struct iommu_ops ipmmu_ops = {
929         .domain_alloc = ipmmu_domain_alloc,
930         .domain_free = ipmmu_domain_free,
931         .attach_dev = ipmmu_attach_device,
932         .detach_dev = ipmmu_detach_device,
933         .map = ipmmu_map,
934         .unmap = ipmmu_unmap,
935         .flush_iotlb_all = ipmmu_iotlb_sync,
936         .iotlb_sync = ipmmu_iotlb_sync,
937         .iova_to_phys = ipmmu_iova_to_phys,
938         .add_device = ipmmu_add_device,
939         .remove_device = ipmmu_remove_device,
940         .device_group = ipmmu_find_group,
941         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
942         .of_xlate = ipmmu_of_xlate,
943 };
944
945 /* -----------------------------------------------------------------------------
946  * Probe/remove and init
947  */
948
949 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
950 {
951         unsigned int i;
952
953         /* Disable all contexts. */
954         for (i = 0; i < mmu->num_ctx; ++i)
955                 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
956 }
957
958 static const struct ipmmu_features ipmmu_features_default = {
959         .use_ns_alias_offset = true,
960         .has_cache_leaf_nodes = false,
961         .number_of_contexts = 1, /* software only tested with one context */
962         .setup_imbuscr = true,
963         .twobit_imttbcr_sl0 = false,
964         .reserved_context = false,
965 };
966
967 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
968         .use_ns_alias_offset = false,
969         .has_cache_leaf_nodes = true,
970         .number_of_contexts = 8,
971         .setup_imbuscr = false,
972         .twobit_imttbcr_sl0 = true,
973         .reserved_context = true,
974 };
975
976 static const struct of_device_id ipmmu_of_ids[] = {
977         {
978                 .compatible = "renesas,ipmmu-vmsa",
979                 .data = &ipmmu_features_default,
980         }, {
981                 .compatible = "renesas,ipmmu-r8a774a1",
982                 .data = &ipmmu_features_rcar_gen3,
983         }, {
984                 .compatible = "renesas,ipmmu-r8a774c0",
985                 .data = &ipmmu_features_rcar_gen3,
986         }, {
987                 .compatible = "renesas,ipmmu-r8a7795",
988                 .data = &ipmmu_features_rcar_gen3,
989         }, {
990                 .compatible = "renesas,ipmmu-r8a7796",
991                 .data = &ipmmu_features_rcar_gen3,
992         }, {
993                 .compatible = "renesas,ipmmu-r8a77965",
994                 .data = &ipmmu_features_rcar_gen3,
995         }, {
996                 .compatible = "renesas,ipmmu-r8a77970",
997                 .data = &ipmmu_features_rcar_gen3,
998         }, {
999                 .compatible = "renesas,ipmmu-r8a77990",
1000                 .data = &ipmmu_features_rcar_gen3,
1001         }, {
1002                 .compatible = "renesas,ipmmu-r8a77995",
1003                 .data = &ipmmu_features_rcar_gen3,
1004         }, {
1005                 /* Terminator */
1006         },
1007 };
1008
1009 static int ipmmu_probe(struct platform_device *pdev)
1010 {
1011         struct ipmmu_vmsa_device *mmu;
1012         struct resource *res;
1013         int irq;
1014         int ret;
1015
1016         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1017         if (!mmu) {
1018                 dev_err(&pdev->dev, "cannot allocate device data\n");
1019                 return -ENOMEM;
1020         }
1021
1022         mmu->dev = &pdev->dev;
1023         mmu->num_utlbs = 48;
1024         spin_lock_init(&mmu->lock);
1025         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1026         mmu->features = of_device_get_match_data(&pdev->dev);
1027         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1028
1029         /* Map I/O memory and request IRQ. */
1030         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1031         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1032         if (IS_ERR(mmu->base))
1033                 return PTR_ERR(mmu->base);
1034
1035         /*
1036          * The IPMMU has two register banks, for secure and non-secure modes.
1037          * The bank mapped at the beginning of the IPMMU address space
1038          * corresponds to the running mode of the CPU. When running in secure
1039          * mode the non-secure register bank is also available at an offset.
1040          *
1041          * Secure mode operation isn't clearly documented and is thus currently
1042          * not implemented in the driver. Furthermore, preliminary tests of
1043          * non-secure operation with the main register bank were not successful.
1044          * Offset the registers base unconditionally to point to the non-secure
1045          * alias space for now.
1046          */
1047         if (mmu->features->use_ns_alias_offset)
1048                 mmu->base += IM_NS_ALIAS_OFFSET;
1049
1050         mmu->num_ctx = min_t(unsigned int, IPMMU_CTX_MAX,
1051                              mmu->features->number_of_contexts);
1052
1053         irq = platform_get_irq(pdev, 0);
1054
1055         /*
1056          * Determine if this IPMMU instance is a root device by checking for
1057          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1058          */
1059         if (!mmu->features->has_cache_leaf_nodes ||
1060             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1061                 mmu->root = mmu;
1062         else
1063                 mmu->root = ipmmu_find_root();
1064
1065         /*
1066          * Wait until the root device has been registered for sure.
1067          */
1068         if (!mmu->root)
1069                 return -EPROBE_DEFER;
1070
1071         /* Root devices have mandatory IRQs */
1072         if (ipmmu_is_root(mmu)) {
1073                 if (irq < 0) {
1074                         dev_err(&pdev->dev, "no IRQ found\n");
1075                         return irq;
1076                 }
1077
1078                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1079                                        dev_name(&pdev->dev), mmu);
1080                 if (ret < 0) {
1081                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1082                         return ret;
1083                 }
1084
1085                 ipmmu_device_reset(mmu);
1086
1087                 if (mmu->features->reserved_context) {
1088                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1089                         set_bit(0, mmu->ctx);
1090                 }
1091         }
1092
1093         /*
1094          * Register the IPMMU to the IOMMU subsystem in the following cases:
1095          * - R-Car Gen2 IPMMU (all devices registered)
1096          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1097          */
1098         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1099                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1100                                              dev_name(&pdev->dev));
1101                 if (ret)
1102                         return ret;
1103
1104                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1105                 iommu_device_set_fwnode(&mmu->iommu,
1106                                         &pdev->dev.of_node->fwnode);
1107
1108                 ret = iommu_device_register(&mmu->iommu);
1109                 if (ret)
1110                         return ret;
1111
1112 #if defined(CONFIG_IOMMU_DMA)
1113                 if (!iommu_present(&platform_bus_type))
1114                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1115 #endif
1116         }
1117
1118         /*
1119          * We can't create the ARM mapping here as it requires the bus to have
1120          * an IOMMU, which only happens when bus_set_iommu() is called in
1121          * ipmmu_init() after the probe function returns.
1122          */
1123
1124         platform_set_drvdata(pdev, mmu);
1125
1126         return 0;
1127 }
1128
1129 static int ipmmu_remove(struct platform_device *pdev)
1130 {
1131         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1132
1133         iommu_device_sysfs_remove(&mmu->iommu);
1134         iommu_device_unregister(&mmu->iommu);
1135
1136         arm_iommu_release_mapping(mmu->mapping);
1137
1138         ipmmu_device_reset(mmu);
1139
1140         return 0;
1141 }
1142
1143 static struct platform_driver ipmmu_driver = {
1144         .driver = {
1145                 .name = "ipmmu-vmsa",
1146                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1147         },
1148         .probe = ipmmu_probe,
1149         .remove = ipmmu_remove,
1150 };
1151
1152 static int __init ipmmu_init(void)
1153 {
1154         struct device_node *np;
1155         static bool setup_done;
1156         int ret;
1157
1158         if (setup_done)
1159                 return 0;
1160
1161         np = of_find_matching_node(NULL, ipmmu_of_ids);
1162         if (!np)
1163                 return 0;
1164
1165         of_node_put(np);
1166
1167         ret = platform_driver_register(&ipmmu_driver);
1168         if (ret < 0)
1169                 return ret;
1170
1171 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1172         if (!iommu_present(&platform_bus_type))
1173                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1174 #endif
1175
1176         setup_done = true;
1177         return 0;
1178 }
1179 subsys_initcall(ipmmu_init);