OSDN Git Service

Merge tag 'x86_tdx_for_6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[tomoyo/tomoyo-test1.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/io-pgtable.h>
18 #include <linux/iommu.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
26
27 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
28 #include <asm/dma-iommu.h>
29 #else
30 #define arm_iommu_create_mapping(...)   NULL
31 #define arm_iommu_attach_device(...)    -ENODEV
32 #define arm_iommu_release_mapping(...)  do {} while (0)
33 #define arm_iommu_detach_device(...)    do {} while (0)
34 #endif
35
36 #define IPMMU_CTX_MAX           16U
37 #define IPMMU_CTX_INVALID       -1
38
39 #define IPMMU_UTLB_MAX          64U
40
41 struct ipmmu_features {
42         bool use_ns_alias_offset;
43         bool has_cache_leaf_nodes;
44         unsigned int number_of_contexts;
45         unsigned int num_utlbs;
46         bool setup_imbuscr;
47         bool twobit_imttbcr_sl0;
48         bool reserved_context;
49         bool cache_snoop;
50         unsigned int ctx_offset_base;
51         unsigned int ctx_offset_stride;
52         unsigned int utlb_offset_base;
53 };
54
55 struct ipmmu_vmsa_device {
56         struct device *dev;
57         void __iomem *base;
58         struct iommu_device iommu;
59         struct ipmmu_vmsa_device *root;
60         const struct ipmmu_features *features;
61         unsigned int num_ctx;
62         spinlock_t lock;                        /* Protects ctx and domains[] */
63         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65         s8 utlb_ctx[IPMMU_UTLB_MAX];
66
67         struct iommu_group *group;
68         struct dma_iommu_mapping *mapping;
69 };
70
71 struct ipmmu_vmsa_domain {
72         struct ipmmu_vmsa_device *mmu;
73         struct iommu_domain io_domain;
74
75         struct io_pgtable_cfg cfg;
76         struct io_pgtable_ops *iop;
77
78         unsigned int context_id;
79         struct mutex mutex;                     /* Protects mappings */
80 };
81
82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86
87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89         return dev_iommu_priv_get(dev);
90 }
91
92 #define TLB_LOOP_TIMEOUT                100     /* 100us */
93
94 /* -----------------------------------------------------------------------------
95  * Registers Definition
96  */
97
98 #define IM_NS_ALIAS_OFFSET              0x800
99
100 /* MMU "context" registers */
101 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
102 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
103 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
104 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
105
106 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
107 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
108 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
109 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
110 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
111 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
112 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
113
114 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
115 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
116 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
117
118 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
119 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
120
121 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
122 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
123 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
124 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
125 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
126
127 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
128
129 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
130 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
131
132 /* uTLB registers */
133 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
134 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
135 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
136 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
137 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
138 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
139
140 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
141 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
142 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
143
144 /* -----------------------------------------------------------------------------
145  * Root device handling
146  */
147
148 static struct platform_driver ipmmu_driver;
149
150 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
151 {
152         return mmu->root == mmu;
153 }
154
155 static int __ipmmu_check_device(struct device *dev, void *data)
156 {
157         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
158         struct ipmmu_vmsa_device **rootp = data;
159
160         if (ipmmu_is_root(mmu))
161                 *rootp = mmu;
162
163         return 0;
164 }
165
166 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
167 {
168         struct ipmmu_vmsa_device *root = NULL;
169
170         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
171                                       __ipmmu_check_device) == 0 ? root : NULL;
172 }
173
174 /* -----------------------------------------------------------------------------
175  * Read/Write Access
176  */
177
178 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
179 {
180         return ioread32(mmu->base + offset);
181 }
182
183 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
184                         u32 data)
185 {
186         iowrite32(data, mmu->base + offset);
187 }
188
189 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
190                                   unsigned int context_id, unsigned int reg)
191 {
192         unsigned int base = mmu->features->ctx_offset_base;
193
194         if (context_id > 7)
195                 base += 0x800 - 8 * 0x40;
196
197         return base + context_id * mmu->features->ctx_offset_stride + reg;
198 }
199
200 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
201                           unsigned int context_id, unsigned int reg)
202 {
203         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
204 }
205
206 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
207                             unsigned int context_id, unsigned int reg, u32 data)
208 {
209         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
210 }
211
212 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
213                                unsigned int reg)
214 {
215         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
216 }
217
218 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
219                                  unsigned int reg, u32 data)
220 {
221         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
222 }
223
224 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
225                                 unsigned int reg, u32 data)
226 {
227         if (domain->mmu != domain->mmu->root)
228                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
229
230         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
231 }
232
233 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
234 {
235         return mmu->features->utlb_offset_base + reg;
236 }
237
238 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
239                                 unsigned int utlb, u32 data)
240 {
241         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
242 }
243
244 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
245                                unsigned int utlb, u32 data)
246 {
247         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
248 }
249
250 /* -----------------------------------------------------------------------------
251  * TLB and microTLB Management
252  */
253
254 /* Wait for any pending TLB invalidations to complete */
255 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
256 {
257         unsigned int count = 0;
258
259         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
260                 cpu_relax();
261                 if (++count == TLB_LOOP_TIMEOUT) {
262                         dev_err_ratelimited(domain->mmu->dev,
263                         "TLB sync timed out -- MMU may be deadlocked\n");
264                         return;
265                 }
266                 udelay(1);
267         }
268 }
269
270 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
271 {
272         u32 reg;
273
274         reg = ipmmu_ctx_read_root(domain, IMCTR);
275         reg |= IMCTR_FLUSH;
276         ipmmu_ctx_write_all(domain, IMCTR, reg);
277
278         ipmmu_tlb_sync(domain);
279 }
280
281 /*
282  * Enable MMU translation for the microTLB.
283  */
284 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
285                               unsigned int utlb)
286 {
287         struct ipmmu_vmsa_device *mmu = domain->mmu;
288
289         /*
290          * TODO: Reference-count the microTLB as several bus masters can be
291          * connected to the same microTLB.
292          */
293
294         /* TODO: What should we set the ASID to ? */
295         ipmmu_imuasid_write(mmu, utlb, 0);
296         /* TODO: Do we need to flush the microTLB ? */
297         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
298                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
299         mmu->utlb_ctx[utlb] = domain->context_id;
300 }
301
302 static void ipmmu_tlb_flush_all(void *cookie)
303 {
304         struct ipmmu_vmsa_domain *domain = cookie;
305
306         ipmmu_tlb_invalidate(domain);
307 }
308
309 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
310                                 size_t granule, void *cookie)
311 {
312         ipmmu_tlb_flush_all(cookie);
313 }
314
315 static const struct iommu_flush_ops ipmmu_flush_ops = {
316         .tlb_flush_all = ipmmu_tlb_flush_all,
317         .tlb_flush_walk = ipmmu_tlb_flush,
318 };
319
320 /* -----------------------------------------------------------------------------
321  * Domain/Context Management
322  */
323
324 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
325                                          struct ipmmu_vmsa_domain *domain)
326 {
327         unsigned long flags;
328         int ret;
329
330         spin_lock_irqsave(&mmu->lock, flags);
331
332         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
333         if (ret != mmu->num_ctx) {
334                 mmu->domains[ret] = domain;
335                 set_bit(ret, mmu->ctx);
336         } else
337                 ret = -EBUSY;
338
339         spin_unlock_irqrestore(&mmu->lock, flags);
340
341         return ret;
342 }
343
344 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
345                                       unsigned int context_id)
346 {
347         unsigned long flags;
348
349         spin_lock_irqsave(&mmu->lock, flags);
350
351         clear_bit(context_id, mmu->ctx);
352         mmu->domains[context_id] = NULL;
353
354         spin_unlock_irqrestore(&mmu->lock, flags);
355 }
356
357 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
358 {
359         u64 ttbr;
360         u32 tmp;
361
362         /* TTBR0 */
363         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
364         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
365         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
366
367         /*
368          * TTBCR
369          * We use long descriptors and allocate the whole 32-bit VA space to
370          * TTBR0.
371          */
372         if (domain->mmu->features->twobit_imttbcr_sl0)
373                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
374         else
375                 tmp = IMTTBCR_SL0_LVL_1;
376
377         if (domain->mmu->features->cache_snoop)
378                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
379                        IMTTBCR_IRGN0_WB_WA;
380
381         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
382
383         /* MAIR0 */
384         ipmmu_ctx_write_root(domain, IMMAIR0,
385                              domain->cfg.arm_lpae_s1_cfg.mair);
386
387         /* IMBUSCR */
388         if (domain->mmu->features->setup_imbuscr)
389                 ipmmu_ctx_write_root(domain, IMBUSCR,
390                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
391                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
392
393         /*
394          * IMSTR
395          * Clear all interrupt flags.
396          */
397         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
398
399         /*
400          * IMCTR
401          * Enable the MMU and interrupt generation. The long-descriptor
402          * translation table format doesn't use TEX remapping. Don't enable AF
403          * software management as we have no use for it. Flush the TLB as
404          * required when modifying the context registers.
405          */
406         ipmmu_ctx_write_all(domain, IMCTR,
407                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
408 }
409
410 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
411 {
412         int ret;
413
414         /*
415          * Allocate the page table operations.
416          *
417          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
418          * access, Long-descriptor format" that the NStable bit being set in a
419          * table descriptor will result in the NStable and NS bits of all child
420          * entries being ignored and considered as being set. The IPMMU seems
421          * not to comply with this, as it generates a secure access page fault
422          * if any of the NStable and NS bits isn't set when running in
423          * non-secure mode.
424          */
425         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
426         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
427         domain->cfg.ias = 32;
428         domain->cfg.oas = 40;
429         domain->cfg.tlb = &ipmmu_flush_ops;
430         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
431         domain->io_domain.geometry.force_aperture = true;
432         /*
433          * TODO: Add support for coherent walk through CCI with DVM and remove
434          * cache handling. For now, delegate it to the io-pgtable code.
435          */
436         domain->cfg.coherent_walk = false;
437         domain->cfg.iommu_dev = domain->mmu->root->dev;
438
439         /*
440          * Find an unused context.
441          */
442         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
443         if (ret < 0)
444                 return ret;
445
446         domain->context_id = ret;
447
448         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
449                                            domain);
450         if (!domain->iop) {
451                 ipmmu_domain_free_context(domain->mmu->root,
452                                           domain->context_id);
453                 return -EINVAL;
454         }
455
456         ipmmu_domain_setup_context(domain);
457         return 0;
458 }
459
460 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
461 {
462         if (!domain->mmu)
463                 return;
464
465         /*
466          * Disable the context. Flush the TLB as required when modifying the
467          * context registers.
468          *
469          * TODO: Is TLB flush really needed ?
470          */
471         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
472         ipmmu_tlb_sync(domain);
473         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
474 }
475
476 /* -----------------------------------------------------------------------------
477  * Fault Handling
478  */
479
480 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
481 {
482         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
483         struct ipmmu_vmsa_device *mmu = domain->mmu;
484         unsigned long iova;
485         u32 status;
486
487         status = ipmmu_ctx_read_root(domain, IMSTR);
488         if (!(status & err_mask))
489                 return IRQ_NONE;
490
491         iova = ipmmu_ctx_read_root(domain, IMELAR);
492         if (IS_ENABLED(CONFIG_64BIT))
493                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
494
495         /*
496          * Clear the error status flags. Unlike traditional interrupt flag
497          * registers that must be cleared by writing 1, this status register
498          * seems to require 0. The error address register must be read before,
499          * otherwise its value will be 0.
500          */
501         ipmmu_ctx_write_root(domain, IMSTR, 0);
502
503         /* Log fatal errors. */
504         if (status & IMSTR_MHIT)
505                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
506                                     iova);
507         if (status & IMSTR_ABORT)
508                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
509                                     iova);
510
511         if (!(status & (IMSTR_PF | IMSTR_TF)))
512                 return IRQ_NONE;
513
514         /*
515          * Try to handle page faults and translation faults.
516          *
517          * TODO: We need to look up the faulty device based on the I/O VA. Use
518          * the IOMMU device for now.
519          */
520         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
521                 return IRQ_HANDLED;
522
523         dev_err_ratelimited(mmu->dev,
524                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
525                             status, iova);
526
527         return IRQ_HANDLED;
528 }
529
530 static irqreturn_t ipmmu_irq(int irq, void *dev)
531 {
532         struct ipmmu_vmsa_device *mmu = dev;
533         irqreturn_t status = IRQ_NONE;
534         unsigned int i;
535         unsigned long flags;
536
537         spin_lock_irqsave(&mmu->lock, flags);
538
539         /*
540          * Check interrupts for all active contexts.
541          */
542         for (i = 0; i < mmu->num_ctx; i++) {
543                 if (!mmu->domains[i])
544                         continue;
545                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
546                         status = IRQ_HANDLED;
547         }
548
549         spin_unlock_irqrestore(&mmu->lock, flags);
550
551         return status;
552 }
553
554 /* -----------------------------------------------------------------------------
555  * IOMMU Operations
556  */
557
558 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
559 {
560         struct ipmmu_vmsa_domain *domain;
561
562         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
563                 return NULL;
564
565         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
566         if (!domain)
567                 return NULL;
568
569         mutex_init(&domain->mutex);
570
571         return &domain->io_domain;
572 }
573
574 static void ipmmu_domain_free(struct iommu_domain *io_domain)
575 {
576         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
577
578         /*
579          * Free the domain resources. We assume that all devices have already
580          * been detached.
581          */
582         ipmmu_domain_destroy_context(domain);
583         free_io_pgtable_ops(domain->iop);
584         kfree(domain);
585 }
586
587 static int ipmmu_attach_device(struct iommu_domain *io_domain,
588                                struct device *dev)
589 {
590         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
591         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
592         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
593         unsigned int i;
594         int ret = 0;
595
596         if (!mmu) {
597                 dev_err(dev, "Cannot attach to IPMMU\n");
598                 return -ENXIO;
599         }
600
601         mutex_lock(&domain->mutex);
602
603         if (!domain->mmu) {
604                 /* The domain hasn't been used yet, initialize it. */
605                 domain->mmu = mmu;
606                 ret = ipmmu_domain_init_context(domain);
607                 if (ret < 0) {
608                         dev_err(dev, "Unable to initialize IPMMU context\n");
609                         domain->mmu = NULL;
610                 } else {
611                         dev_info(dev, "Using IPMMU context %u\n",
612                                  domain->context_id);
613                 }
614         } else if (domain->mmu != mmu) {
615                 /*
616                  * Something is wrong, we can't attach two devices using
617                  * different IOMMUs to the same domain.
618                  */
619                 ret = -EINVAL;
620         } else
621                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
622
623         mutex_unlock(&domain->mutex);
624
625         if (ret < 0)
626                 return ret;
627
628         for (i = 0; i < fwspec->num_ids; ++i)
629                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
630
631         return 0;
632 }
633
634 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
635                      phys_addr_t paddr, size_t pgsize, size_t pgcount,
636                      int prot, gfp_t gfp, size_t *mapped)
637 {
638         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
639
640         return domain->iop->map_pages(domain->iop, iova, paddr, pgsize, pgcount,
641                                       prot, gfp, mapped);
642 }
643
644 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
645                           size_t pgsize, size_t pgcount,
646                           struct iommu_iotlb_gather *gather)
647 {
648         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
649
650         return domain->iop->unmap_pages(domain->iop, iova, pgsize, pgcount, gather);
651 }
652
653 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
654 {
655         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
656
657         if (domain->mmu)
658                 ipmmu_tlb_flush_all(domain);
659 }
660
661 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
662                              struct iommu_iotlb_gather *gather)
663 {
664         ipmmu_flush_iotlb_all(io_domain);
665 }
666
667 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
668                                       dma_addr_t iova)
669 {
670         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
671
672         /* TODO: Is locking needed ? */
673
674         return domain->iop->iova_to_phys(domain->iop, iova);
675 }
676
677 static int ipmmu_init_platform_device(struct device *dev,
678                                       struct of_phandle_args *args)
679 {
680         struct platform_device *ipmmu_pdev;
681
682         ipmmu_pdev = of_find_device_by_node(args->np);
683         if (!ipmmu_pdev)
684                 return -ENODEV;
685
686         dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
687
688         return 0;
689 }
690
691 static const struct soc_device_attribute soc_needs_opt_in[] = {
692         { .family = "R-Car Gen3", },
693         { .family = "R-Car Gen4", },
694         { .family = "RZ/G2", },
695         { /* sentinel */ }
696 };
697
698 static const struct soc_device_attribute soc_denylist[] = {
699         { .soc_id = "r8a774a1", },
700         { .soc_id = "r8a7795", .revision = "ES1.*" },
701         { .soc_id = "r8a7795", .revision = "ES2.*" },
702         { .soc_id = "r8a7796", },
703         { /* sentinel */ }
704 };
705
706 static const char * const devices_allowlist[] = {
707         "ee100000.mmc",
708         "ee120000.mmc",
709         "ee140000.mmc",
710         "ee160000.mmc"
711 };
712
713 static bool ipmmu_device_is_allowed(struct device *dev)
714 {
715         unsigned int i;
716
717         /*
718          * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices.
719          * For Other SoCs, this returns true anyway.
720          */
721         if (!soc_device_match(soc_needs_opt_in))
722                 return true;
723
724         /* Check whether this SoC can use the IPMMU correctly or not */
725         if (soc_device_match(soc_denylist))
726                 return false;
727
728         /* Check whether this device can work with the IPMMU */
729         for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
730                 if (!strcmp(dev_name(dev), devices_allowlist[i]))
731                         return true;
732         }
733
734         /* Otherwise, do not allow use of IPMMU */
735         return false;
736 }
737
738 static int ipmmu_of_xlate(struct device *dev,
739                           struct of_phandle_args *spec)
740 {
741         if (!ipmmu_device_is_allowed(dev))
742                 return -ENODEV;
743
744         iommu_fwspec_add_ids(dev, spec->args, 1);
745
746         /* Initialize once - xlate() will call multiple times */
747         if (to_ipmmu(dev))
748                 return 0;
749
750         return ipmmu_init_platform_device(dev, spec);
751 }
752
753 static int ipmmu_init_arm_mapping(struct device *dev)
754 {
755         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
756         int ret;
757
758         /*
759          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
760          * VAs. This will allocate a corresponding IOMMU domain.
761          *
762          * TODO:
763          * - Create one mapping per context (TLB).
764          * - Make the mapping size configurable ? We currently use a 2GB mapping
765          *   at a 1GB offset to ensure that NULL VAs will fault.
766          */
767         if (!mmu->mapping) {
768                 struct dma_iommu_mapping *mapping;
769
770                 mapping = arm_iommu_create_mapping(&platform_bus_type,
771                                                    SZ_1G, SZ_2G);
772                 if (IS_ERR(mapping)) {
773                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
774                         ret = PTR_ERR(mapping);
775                         goto error;
776                 }
777
778                 mmu->mapping = mapping;
779         }
780
781         /* Attach the ARM VA mapping to the device. */
782         ret = arm_iommu_attach_device(dev, mmu->mapping);
783         if (ret < 0) {
784                 dev_err(dev, "Failed to attach device to VA mapping\n");
785                 goto error;
786         }
787
788         return 0;
789
790 error:
791         if (mmu->mapping)
792                 arm_iommu_release_mapping(mmu->mapping);
793
794         return ret;
795 }
796
797 static struct iommu_device *ipmmu_probe_device(struct device *dev)
798 {
799         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
800
801         /*
802          * Only let through devices that have been verified in xlate()
803          */
804         if (!mmu)
805                 return ERR_PTR(-ENODEV);
806
807         return &mmu->iommu;
808 }
809
810 static void ipmmu_probe_finalize(struct device *dev)
811 {
812         int ret = 0;
813
814         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
815                 ret = ipmmu_init_arm_mapping(dev);
816
817         if (ret)
818                 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
819 }
820
821 static void ipmmu_release_device(struct device *dev)
822 {
823         arm_iommu_detach_device(dev);
824 }
825
826 static struct iommu_group *ipmmu_find_group(struct device *dev)
827 {
828         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
829         struct iommu_group *group;
830
831         if (mmu->group)
832                 return iommu_group_ref_get(mmu->group);
833
834         group = iommu_group_alloc();
835         if (!IS_ERR(group))
836                 mmu->group = group;
837
838         return group;
839 }
840
841 static const struct iommu_ops ipmmu_ops = {
842         .domain_alloc = ipmmu_domain_alloc,
843         .probe_device = ipmmu_probe_device,
844         .release_device = ipmmu_release_device,
845         .probe_finalize = ipmmu_probe_finalize,
846         .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
847                         ? generic_device_group : ipmmu_find_group,
848         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
849         .of_xlate = ipmmu_of_xlate,
850         .default_domain_ops = &(const struct iommu_domain_ops) {
851                 .attach_dev     = ipmmu_attach_device,
852                 .map_pages      = ipmmu_map,
853                 .unmap_pages    = ipmmu_unmap,
854                 .flush_iotlb_all = ipmmu_flush_iotlb_all,
855                 .iotlb_sync     = ipmmu_iotlb_sync,
856                 .iova_to_phys   = ipmmu_iova_to_phys,
857                 .free           = ipmmu_domain_free,
858         }
859 };
860
861 /* -----------------------------------------------------------------------------
862  * Probe/remove and init
863  */
864
865 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
866 {
867         unsigned int i;
868
869         /* Disable all contexts. */
870         for (i = 0; i < mmu->num_ctx; ++i)
871                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
872 }
873
874 static const struct ipmmu_features ipmmu_features_default = {
875         .use_ns_alias_offset = true,
876         .has_cache_leaf_nodes = false,
877         .number_of_contexts = 1, /* software only tested with one context */
878         .num_utlbs = 32,
879         .setup_imbuscr = true,
880         .twobit_imttbcr_sl0 = false,
881         .reserved_context = false,
882         .cache_snoop = true,
883         .ctx_offset_base = 0,
884         .ctx_offset_stride = 0x40,
885         .utlb_offset_base = 0,
886 };
887
888 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
889         .use_ns_alias_offset = false,
890         .has_cache_leaf_nodes = true,
891         .number_of_contexts = 8,
892         .num_utlbs = 48,
893         .setup_imbuscr = false,
894         .twobit_imttbcr_sl0 = true,
895         .reserved_context = true,
896         .cache_snoop = false,
897         .ctx_offset_base = 0,
898         .ctx_offset_stride = 0x40,
899         .utlb_offset_base = 0,
900 };
901
902 static const struct ipmmu_features ipmmu_features_rcar_gen4 = {
903         .use_ns_alias_offset = false,
904         .has_cache_leaf_nodes = true,
905         .number_of_contexts = 16,
906         .num_utlbs = 64,
907         .setup_imbuscr = false,
908         .twobit_imttbcr_sl0 = true,
909         .reserved_context = true,
910         .cache_snoop = false,
911         .ctx_offset_base = 0x10000,
912         .ctx_offset_stride = 0x1040,
913         .utlb_offset_base = 0x3000,
914 };
915
916 static const struct of_device_id ipmmu_of_ids[] = {
917         {
918                 .compatible = "renesas,ipmmu-vmsa",
919                 .data = &ipmmu_features_default,
920         }, {
921                 .compatible = "renesas,ipmmu-r8a774a1",
922                 .data = &ipmmu_features_rcar_gen3,
923         }, {
924                 .compatible = "renesas,ipmmu-r8a774b1",
925                 .data = &ipmmu_features_rcar_gen3,
926         }, {
927                 .compatible = "renesas,ipmmu-r8a774c0",
928                 .data = &ipmmu_features_rcar_gen3,
929         }, {
930                 .compatible = "renesas,ipmmu-r8a774e1",
931                 .data = &ipmmu_features_rcar_gen3,
932         }, {
933                 .compatible = "renesas,ipmmu-r8a7795",
934                 .data = &ipmmu_features_rcar_gen3,
935         }, {
936                 .compatible = "renesas,ipmmu-r8a7796",
937                 .data = &ipmmu_features_rcar_gen3,
938         }, {
939                 .compatible = "renesas,ipmmu-r8a77961",
940                 .data = &ipmmu_features_rcar_gen3,
941         }, {
942                 .compatible = "renesas,ipmmu-r8a77965",
943                 .data = &ipmmu_features_rcar_gen3,
944         }, {
945                 .compatible = "renesas,ipmmu-r8a77970",
946                 .data = &ipmmu_features_rcar_gen3,
947         }, {
948                 .compatible = "renesas,ipmmu-r8a77980",
949                 .data = &ipmmu_features_rcar_gen3,
950         }, {
951                 .compatible = "renesas,ipmmu-r8a77990",
952                 .data = &ipmmu_features_rcar_gen3,
953         }, {
954                 .compatible = "renesas,ipmmu-r8a77995",
955                 .data = &ipmmu_features_rcar_gen3,
956         }, {
957                 .compatible = "renesas,ipmmu-r8a779a0",
958                 .data = &ipmmu_features_rcar_gen4,
959         }, {
960                 .compatible = "renesas,rcar-gen4-ipmmu-vmsa",
961                 .data = &ipmmu_features_rcar_gen4,
962         }, {
963                 /* Terminator */
964         },
965 };
966
967 static int ipmmu_probe(struct platform_device *pdev)
968 {
969         struct ipmmu_vmsa_device *mmu;
970         struct resource *res;
971         int irq;
972         int ret;
973
974         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
975         if (!mmu) {
976                 dev_err(&pdev->dev, "cannot allocate device data\n");
977                 return -ENOMEM;
978         }
979
980         mmu->dev = &pdev->dev;
981         spin_lock_init(&mmu->lock);
982         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
983         mmu->features = of_device_get_match_data(&pdev->dev);
984         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
985         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
986         if (ret)
987                 return ret;
988
989         /* Map I/O memory and request IRQ. */
990         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
991         mmu->base = devm_ioremap_resource(&pdev->dev, res);
992         if (IS_ERR(mmu->base))
993                 return PTR_ERR(mmu->base);
994
995         /*
996          * The IPMMU has two register banks, for secure and non-secure modes.
997          * The bank mapped at the beginning of the IPMMU address space
998          * corresponds to the running mode of the CPU. When running in secure
999          * mode the non-secure register bank is also available at an offset.
1000          *
1001          * Secure mode operation isn't clearly documented and is thus currently
1002          * not implemented in the driver. Furthermore, preliminary tests of
1003          * non-secure operation with the main register bank were not successful.
1004          * Offset the registers base unconditionally to point to the non-secure
1005          * alias space for now.
1006          */
1007         if (mmu->features->use_ns_alias_offset)
1008                 mmu->base += IM_NS_ALIAS_OFFSET;
1009
1010         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1011
1012         /*
1013          * Determine if this IPMMU instance is a root device by checking for
1014          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1015          */
1016         if (!mmu->features->has_cache_leaf_nodes ||
1017             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1018                 mmu->root = mmu;
1019         else
1020                 mmu->root = ipmmu_find_root();
1021
1022         /*
1023          * Wait until the root device has been registered for sure.
1024          */
1025         if (!mmu->root)
1026                 return -EPROBE_DEFER;
1027
1028         /* Root devices have mandatory IRQs */
1029         if (ipmmu_is_root(mmu)) {
1030                 irq = platform_get_irq(pdev, 0);
1031                 if (irq < 0)
1032                         return irq;
1033
1034                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1035                                        dev_name(&pdev->dev), mmu);
1036                 if (ret < 0) {
1037                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1038                         return ret;
1039                 }
1040
1041                 ipmmu_device_reset(mmu);
1042
1043                 if (mmu->features->reserved_context) {
1044                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1045                         set_bit(0, mmu->ctx);
1046                 }
1047         }
1048
1049         /*
1050          * Register the IPMMU to the IOMMU subsystem in the following cases:
1051          * - R-Car Gen2 IPMMU (all devices registered)
1052          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1053          */
1054         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1055                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1056                                              dev_name(&pdev->dev));
1057                 if (ret)
1058                         return ret;
1059
1060                 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1061                 if (ret)
1062                         return ret;
1063         }
1064
1065         /*
1066          * We can't create the ARM mapping here as it requires the bus to have
1067          * an IOMMU, which only happens when bus_set_iommu() is called in
1068          * ipmmu_init() after the probe function returns.
1069          */
1070
1071         platform_set_drvdata(pdev, mmu);
1072
1073         return 0;
1074 }
1075
1076 static int ipmmu_remove(struct platform_device *pdev)
1077 {
1078         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1079
1080         iommu_device_sysfs_remove(&mmu->iommu);
1081         iommu_device_unregister(&mmu->iommu);
1082
1083         arm_iommu_release_mapping(mmu->mapping);
1084
1085         ipmmu_device_reset(mmu);
1086
1087         return 0;
1088 }
1089
1090 #ifdef CONFIG_PM_SLEEP
1091 static int ipmmu_resume_noirq(struct device *dev)
1092 {
1093         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1094         unsigned int i;
1095
1096         /* Reset root MMU and restore contexts */
1097         if (ipmmu_is_root(mmu)) {
1098                 ipmmu_device_reset(mmu);
1099
1100                 for (i = 0; i < mmu->num_ctx; i++) {
1101                         if (!mmu->domains[i])
1102                                 continue;
1103
1104                         ipmmu_domain_setup_context(mmu->domains[i]);
1105                 }
1106         }
1107
1108         /* Re-enable active micro-TLBs */
1109         for (i = 0; i < mmu->features->num_utlbs; i++) {
1110                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1111                         continue;
1112
1113                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1114         }
1115
1116         return 0;
1117 }
1118
1119 static const struct dev_pm_ops ipmmu_pm  = {
1120         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1121 };
1122 #define DEV_PM_OPS      &ipmmu_pm
1123 #else
1124 #define DEV_PM_OPS      NULL
1125 #endif /* CONFIG_PM_SLEEP */
1126
1127 static struct platform_driver ipmmu_driver = {
1128         .driver = {
1129                 .name = "ipmmu-vmsa",
1130                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1131                 .pm = DEV_PM_OPS,
1132         },
1133         .probe = ipmmu_probe,
1134         .remove = ipmmu_remove,
1135 };
1136 builtin_platform_driver(ipmmu_driver);