OSDN Git Service

smb3: Add defines for new information level, FileIdInformation
[tomoyo/tomoyo-test1.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...)   NULL
34 #define arm_iommu_attach_device(...)    -ENODEV
35 #define arm_iommu_release_mapping(...)  do {} while (0)
36 #define arm_iommu_detach_device(...)    do {} while (0)
37 #endif
38
39 #define IPMMU_CTX_MAX           8U
40 #define IPMMU_CTX_INVALID       -1
41
42 #define IPMMU_UTLB_MAX          48U
43
44 struct ipmmu_features {
45         bool use_ns_alias_offset;
46         bool has_cache_leaf_nodes;
47         unsigned int number_of_contexts;
48         unsigned int num_utlbs;
49         bool setup_imbuscr;
50         bool twobit_imttbcr_sl0;
51         bool reserved_context;
52         bool cache_snoop;
53         unsigned int ctx_offset_base;
54         unsigned int ctx_offset_stride;
55         unsigned int utlb_offset_base;
56 };
57
58 struct ipmmu_vmsa_device {
59         struct device *dev;
60         void __iomem *base;
61         struct iommu_device iommu;
62         struct ipmmu_vmsa_device *root;
63         const struct ipmmu_features *features;
64         unsigned int num_ctx;
65         spinlock_t lock;                        /* Protects ctx and domains[] */
66         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
67         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
68         s8 utlb_ctx[IPMMU_UTLB_MAX];
69
70         struct iommu_group *group;
71         struct dma_iommu_mapping *mapping;
72 };
73
74 struct ipmmu_vmsa_domain {
75         struct ipmmu_vmsa_device *mmu;
76         struct iommu_domain io_domain;
77
78         struct io_pgtable_cfg cfg;
79         struct io_pgtable_ops *iop;
80
81         unsigned int context_id;
82         struct mutex mutex;                     /* Protects mappings */
83 };
84
85 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
86 {
87         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
88 }
89
90 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
91 {
92         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
93
94         return fwspec ? fwspec->iommu_priv : NULL;
95 }
96
97 #define TLB_LOOP_TIMEOUT                100     /* 100us */
98
99 /* -----------------------------------------------------------------------------
100  * Registers Definition
101  */
102
103 #define IM_NS_ALIAS_OFFSET              0x800
104
105 /* MMU "context" registers */
106 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
107 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
108 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
109 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
110
111 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
112 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
113 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
114 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
115 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
116 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
117 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
118
119 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
120 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
121 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
122
123 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
124 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
125
126 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
127 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
128 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
129 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
130 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
131
132 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
133
134 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
135 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
136
137 /* uTLB registers */
138 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
139 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
140 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
141 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
142 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
143 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
144
145 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
146 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
147 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
148
149 /* -----------------------------------------------------------------------------
150  * Root device handling
151  */
152
153 static struct platform_driver ipmmu_driver;
154
155 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
156 {
157         return mmu->root == mmu;
158 }
159
160 static int __ipmmu_check_device(struct device *dev, void *data)
161 {
162         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
163         struct ipmmu_vmsa_device **rootp = data;
164
165         if (ipmmu_is_root(mmu))
166                 *rootp = mmu;
167
168         return 0;
169 }
170
171 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
172 {
173         struct ipmmu_vmsa_device *root = NULL;
174
175         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
176                                       __ipmmu_check_device) == 0 ? root : NULL;
177 }
178
179 /* -----------------------------------------------------------------------------
180  * Read/Write Access
181  */
182
183 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
184 {
185         return ioread32(mmu->base + offset);
186 }
187
188 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
189                         u32 data)
190 {
191         iowrite32(data, mmu->base + offset);
192 }
193
194 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
195                                   unsigned int context_id, unsigned int reg)
196 {
197         return mmu->features->ctx_offset_base +
198                context_id * mmu->features->ctx_offset_stride + reg;
199 }
200
201 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
202                           unsigned int context_id, unsigned int reg)
203 {
204         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
205 }
206
207 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
208                             unsigned int context_id, unsigned int reg, u32 data)
209 {
210         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
211 }
212
213 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
214                                unsigned int reg)
215 {
216         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
217 }
218
219 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
220                                  unsigned int reg, u32 data)
221 {
222         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
223 }
224
225 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
226                                 unsigned int reg, u32 data)
227 {
228         if (domain->mmu != domain->mmu->root)
229                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
230
231         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
232 }
233
234 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
235 {
236         return mmu->features->utlb_offset_base + reg;
237 }
238
239 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
240                                 unsigned int utlb, u32 data)
241 {
242         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
243 }
244
245 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
246                                unsigned int utlb, u32 data)
247 {
248         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
249 }
250
251 /* -----------------------------------------------------------------------------
252  * TLB and microTLB Management
253  */
254
255 /* Wait for any pending TLB invalidations to complete */
256 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
257 {
258         unsigned int count = 0;
259
260         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
261                 cpu_relax();
262                 if (++count == TLB_LOOP_TIMEOUT) {
263                         dev_err_ratelimited(domain->mmu->dev,
264                         "TLB sync timed out -- MMU may be deadlocked\n");
265                         return;
266                 }
267                 udelay(1);
268         }
269 }
270
271 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
272 {
273         u32 reg;
274
275         reg = ipmmu_ctx_read_root(domain, IMCTR);
276         reg |= IMCTR_FLUSH;
277         ipmmu_ctx_write_all(domain, IMCTR, reg);
278
279         ipmmu_tlb_sync(domain);
280 }
281
282 /*
283  * Enable MMU translation for the microTLB.
284  */
285 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
286                               unsigned int utlb)
287 {
288         struct ipmmu_vmsa_device *mmu = domain->mmu;
289
290         /*
291          * TODO: Reference-count the microTLB as several bus masters can be
292          * connected to the same microTLB.
293          */
294
295         /* TODO: What should we set the ASID to ? */
296         ipmmu_imuasid_write(mmu, utlb, 0);
297         /* TODO: Do we need to flush the microTLB ? */
298         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
299                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
300         mmu->utlb_ctx[utlb] = domain->context_id;
301 }
302
303 /*
304  * Disable MMU translation for the microTLB.
305  */
306 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
307                                unsigned int utlb)
308 {
309         struct ipmmu_vmsa_device *mmu = domain->mmu;
310
311         ipmmu_imuctr_write(mmu, utlb, 0);
312         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
313 }
314
315 static void ipmmu_tlb_flush_all(void *cookie)
316 {
317         struct ipmmu_vmsa_domain *domain = cookie;
318
319         ipmmu_tlb_invalidate(domain);
320 }
321
322 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
323                                 size_t granule, void *cookie)
324 {
325         ipmmu_tlb_flush_all(cookie);
326 }
327
328 static const struct iommu_flush_ops ipmmu_flush_ops = {
329         .tlb_flush_all = ipmmu_tlb_flush_all,
330         .tlb_flush_walk = ipmmu_tlb_flush,
331         .tlb_flush_leaf = ipmmu_tlb_flush,
332 };
333
334 /* -----------------------------------------------------------------------------
335  * Domain/Context Management
336  */
337
338 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
339                                          struct ipmmu_vmsa_domain *domain)
340 {
341         unsigned long flags;
342         int ret;
343
344         spin_lock_irqsave(&mmu->lock, flags);
345
346         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
347         if (ret != mmu->num_ctx) {
348                 mmu->domains[ret] = domain;
349                 set_bit(ret, mmu->ctx);
350         } else
351                 ret = -EBUSY;
352
353         spin_unlock_irqrestore(&mmu->lock, flags);
354
355         return ret;
356 }
357
358 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
359                                       unsigned int context_id)
360 {
361         unsigned long flags;
362
363         spin_lock_irqsave(&mmu->lock, flags);
364
365         clear_bit(context_id, mmu->ctx);
366         mmu->domains[context_id] = NULL;
367
368         spin_unlock_irqrestore(&mmu->lock, flags);
369 }
370
371 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
372 {
373         u64 ttbr;
374         u32 tmp;
375
376         /* TTBR0 */
377         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
378         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
379         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
380
381         /*
382          * TTBCR
383          * We use long descriptors and allocate the whole 32-bit VA space to
384          * TTBR0.
385          */
386         if (domain->mmu->features->twobit_imttbcr_sl0)
387                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
388         else
389                 tmp = IMTTBCR_SL0_LVL_1;
390
391         if (domain->mmu->features->cache_snoop)
392                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
393                        IMTTBCR_IRGN0_WB_WA;
394
395         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
396
397         /* MAIR0 */
398         ipmmu_ctx_write_root(domain, IMMAIR0,
399                              domain->cfg.arm_lpae_s1_cfg.mair);
400
401         /* IMBUSCR */
402         if (domain->mmu->features->setup_imbuscr)
403                 ipmmu_ctx_write_root(domain, IMBUSCR,
404                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
405                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
406
407         /*
408          * IMSTR
409          * Clear all interrupt flags.
410          */
411         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
412
413         /*
414          * IMCTR
415          * Enable the MMU and interrupt generation. The long-descriptor
416          * translation table format doesn't use TEX remapping. Don't enable AF
417          * software management as we have no use for it. Flush the TLB as
418          * required when modifying the context registers.
419          */
420         ipmmu_ctx_write_all(domain, IMCTR,
421                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
422 }
423
424 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
425 {
426         int ret;
427
428         /*
429          * Allocate the page table operations.
430          *
431          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
432          * access, Long-descriptor format" that the NStable bit being set in a
433          * table descriptor will result in the NStable and NS bits of all child
434          * entries being ignored and considered as being set. The IPMMU seems
435          * not to comply with this, as it generates a secure access page fault
436          * if any of the NStable and NS bits isn't set when running in
437          * non-secure mode.
438          */
439         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
440         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
441         domain->cfg.ias = 32;
442         domain->cfg.oas = 40;
443         domain->cfg.tlb = &ipmmu_flush_ops;
444         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
445         domain->io_domain.geometry.force_aperture = true;
446         /*
447          * TODO: Add support for coherent walk through CCI with DVM and remove
448          * cache handling. For now, delegate it to the io-pgtable code.
449          */
450         domain->cfg.coherent_walk = false;
451         domain->cfg.iommu_dev = domain->mmu->root->dev;
452
453         /*
454          * Find an unused context.
455          */
456         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
457         if (ret < 0)
458                 return ret;
459
460         domain->context_id = ret;
461
462         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
463                                            domain);
464         if (!domain->iop) {
465                 ipmmu_domain_free_context(domain->mmu->root,
466                                           domain->context_id);
467                 return -EINVAL;
468         }
469
470         ipmmu_domain_setup_context(domain);
471         return 0;
472 }
473
474 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
475 {
476         if (!domain->mmu)
477                 return;
478
479         /*
480          * Disable the context. Flush the TLB as required when modifying the
481          * context registers.
482          *
483          * TODO: Is TLB flush really needed ?
484          */
485         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
486         ipmmu_tlb_sync(domain);
487         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
488 }
489
490 /* -----------------------------------------------------------------------------
491  * Fault Handling
492  */
493
494 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
495 {
496         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
497         struct ipmmu_vmsa_device *mmu = domain->mmu;
498         unsigned long iova;
499         u32 status;
500
501         status = ipmmu_ctx_read_root(domain, IMSTR);
502         if (!(status & err_mask))
503                 return IRQ_NONE;
504
505         iova = ipmmu_ctx_read_root(domain, IMELAR);
506         if (IS_ENABLED(CONFIG_64BIT))
507                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
508
509         /*
510          * Clear the error status flags. Unlike traditional interrupt flag
511          * registers that must be cleared by writing 1, this status register
512          * seems to require 0. The error address register must be read before,
513          * otherwise its value will be 0.
514          */
515         ipmmu_ctx_write_root(domain, IMSTR, 0);
516
517         /* Log fatal errors. */
518         if (status & IMSTR_MHIT)
519                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
520                                     iova);
521         if (status & IMSTR_ABORT)
522                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
523                                     iova);
524
525         if (!(status & (IMSTR_PF | IMSTR_TF)))
526                 return IRQ_NONE;
527
528         /*
529          * Try to handle page faults and translation faults.
530          *
531          * TODO: We need to look up the faulty device based on the I/O VA. Use
532          * the IOMMU device for now.
533          */
534         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
535                 return IRQ_HANDLED;
536
537         dev_err_ratelimited(mmu->dev,
538                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
539                             status, iova);
540
541         return IRQ_HANDLED;
542 }
543
544 static irqreturn_t ipmmu_irq(int irq, void *dev)
545 {
546         struct ipmmu_vmsa_device *mmu = dev;
547         irqreturn_t status = IRQ_NONE;
548         unsigned int i;
549         unsigned long flags;
550
551         spin_lock_irqsave(&mmu->lock, flags);
552
553         /*
554          * Check interrupts for all active contexts.
555          */
556         for (i = 0; i < mmu->num_ctx; i++) {
557                 if (!mmu->domains[i])
558                         continue;
559                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
560                         status = IRQ_HANDLED;
561         }
562
563         spin_unlock_irqrestore(&mmu->lock, flags);
564
565         return status;
566 }
567
568 /* -----------------------------------------------------------------------------
569  * IOMMU Operations
570  */
571
572 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
573 {
574         struct ipmmu_vmsa_domain *domain;
575
576         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
577         if (!domain)
578                 return NULL;
579
580         mutex_init(&domain->mutex);
581
582         return &domain->io_domain;
583 }
584
585 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
586 {
587         struct iommu_domain *io_domain = NULL;
588
589         switch (type) {
590         case IOMMU_DOMAIN_UNMANAGED:
591                 io_domain = __ipmmu_domain_alloc(type);
592                 break;
593
594         case IOMMU_DOMAIN_DMA:
595                 io_domain = __ipmmu_domain_alloc(type);
596                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
597                         kfree(io_domain);
598                         io_domain = NULL;
599                 }
600                 break;
601         }
602
603         return io_domain;
604 }
605
606 static void ipmmu_domain_free(struct iommu_domain *io_domain)
607 {
608         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
609
610         /*
611          * Free the domain resources. We assume that all devices have already
612          * been detached.
613          */
614         iommu_put_dma_cookie(io_domain);
615         ipmmu_domain_destroy_context(domain);
616         free_io_pgtable_ops(domain->iop);
617         kfree(domain);
618 }
619
620 static int ipmmu_attach_device(struct iommu_domain *io_domain,
621                                struct device *dev)
622 {
623         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
624         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
625         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
626         unsigned int i;
627         int ret = 0;
628
629         if (!mmu) {
630                 dev_err(dev, "Cannot attach to IPMMU\n");
631                 return -ENXIO;
632         }
633
634         mutex_lock(&domain->mutex);
635
636         if (!domain->mmu) {
637                 /* The domain hasn't been used yet, initialize it. */
638                 domain->mmu = mmu;
639                 ret = ipmmu_domain_init_context(domain);
640                 if (ret < 0) {
641                         dev_err(dev, "Unable to initialize IPMMU context\n");
642                         domain->mmu = NULL;
643                 } else {
644                         dev_info(dev, "Using IPMMU context %u\n",
645                                  domain->context_id);
646                 }
647         } else if (domain->mmu != mmu) {
648                 /*
649                  * Something is wrong, we can't attach two devices using
650                  * different IOMMUs to the same domain.
651                  */
652                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
653                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
654                 ret = -EINVAL;
655         } else
656                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
657
658         mutex_unlock(&domain->mutex);
659
660         if (ret < 0)
661                 return ret;
662
663         for (i = 0; i < fwspec->num_ids; ++i)
664                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
665
666         return 0;
667 }
668
669 static void ipmmu_detach_device(struct iommu_domain *io_domain,
670                                 struct device *dev)
671 {
672         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
673         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
674         unsigned int i;
675
676         for (i = 0; i < fwspec->num_ids; ++i)
677                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
678
679         /*
680          * TODO: Optimize by disabling the context when no device is attached.
681          */
682 }
683
684 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
685                      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
686 {
687         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
688
689         if (!domain)
690                 return -ENODEV;
691
692         return domain->iop->map(domain->iop, iova, paddr, size, prot);
693 }
694
695 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
696                           size_t size, struct iommu_iotlb_gather *gather)
697 {
698         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
699
700         return domain->iop->unmap(domain->iop, iova, size, gather);
701 }
702
703 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
704 {
705         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
706
707         if (domain->mmu)
708                 ipmmu_tlb_flush_all(domain);
709 }
710
711 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
712                              struct iommu_iotlb_gather *gather)
713 {
714         ipmmu_flush_iotlb_all(io_domain);
715 }
716
717 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
718                                       dma_addr_t iova)
719 {
720         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
721
722         /* TODO: Is locking needed ? */
723
724         return domain->iop->iova_to_phys(domain->iop, iova);
725 }
726
727 static int ipmmu_init_platform_device(struct device *dev,
728                                       struct of_phandle_args *args)
729 {
730         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
731         struct platform_device *ipmmu_pdev;
732
733         ipmmu_pdev = of_find_device_by_node(args->np);
734         if (!ipmmu_pdev)
735                 return -ENODEV;
736
737         fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
738
739         return 0;
740 }
741
742 static const struct soc_device_attribute soc_rcar_gen3[] = {
743         { .soc_id = "r8a774a1", },
744         { .soc_id = "r8a774b1", },
745         { .soc_id = "r8a774c0", },
746         { .soc_id = "r8a7795", },
747         { .soc_id = "r8a7796", },
748         { .soc_id = "r8a77965", },
749         { .soc_id = "r8a77970", },
750         { .soc_id = "r8a77990", },
751         { .soc_id = "r8a77995", },
752         { /* sentinel */ }
753 };
754
755 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
756         { .soc_id = "r8a774b1", },
757         { .soc_id = "r8a774c0", },
758         { .soc_id = "r8a7795", .revision = "ES3.*" },
759         { .soc_id = "r8a77965", },
760         { .soc_id = "r8a77990", },
761         { .soc_id = "r8a77995", },
762         { /* sentinel */ }
763 };
764
765 static const char * const rcar_gen3_slave_whitelist[] = {
766 };
767
768 static bool ipmmu_slave_whitelist(struct device *dev)
769 {
770         unsigned int i;
771
772         /*
773          * For R-Car Gen3 use a white list to opt-in slave devices.
774          * For Other SoCs, this returns true anyway.
775          */
776         if (!soc_device_match(soc_rcar_gen3))
777                 return true;
778
779         /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
780         if (!soc_device_match(soc_rcar_gen3_whitelist))
781                 return false;
782
783         /* Check whether this slave device can work with the IPMMU */
784         for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
785                 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
786                         return true;
787         }
788
789         /* Otherwise, do not allow use of IPMMU */
790         return false;
791 }
792
793 static int ipmmu_of_xlate(struct device *dev,
794                           struct of_phandle_args *spec)
795 {
796         if (!ipmmu_slave_whitelist(dev))
797                 return -ENODEV;
798
799         iommu_fwspec_add_ids(dev, spec->args, 1);
800
801         /* Initialize once - xlate() will call multiple times */
802         if (to_ipmmu(dev))
803                 return 0;
804
805         return ipmmu_init_platform_device(dev, spec);
806 }
807
808 static int ipmmu_init_arm_mapping(struct device *dev)
809 {
810         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
811         struct iommu_group *group;
812         int ret;
813
814         /* Create a device group and add the device to it. */
815         group = iommu_group_alloc();
816         if (IS_ERR(group)) {
817                 dev_err(dev, "Failed to allocate IOMMU group\n");
818                 return PTR_ERR(group);
819         }
820
821         ret = iommu_group_add_device(group, dev);
822         iommu_group_put(group);
823
824         if (ret < 0) {
825                 dev_err(dev, "Failed to add device to IPMMU group\n");
826                 return ret;
827         }
828
829         /*
830          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
831          * VAs. This will allocate a corresponding IOMMU domain.
832          *
833          * TODO:
834          * - Create one mapping per context (TLB).
835          * - Make the mapping size configurable ? We currently use a 2GB mapping
836          *   at a 1GB offset to ensure that NULL VAs will fault.
837          */
838         if (!mmu->mapping) {
839                 struct dma_iommu_mapping *mapping;
840
841                 mapping = arm_iommu_create_mapping(&platform_bus_type,
842                                                    SZ_1G, SZ_2G);
843                 if (IS_ERR(mapping)) {
844                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
845                         ret = PTR_ERR(mapping);
846                         goto error;
847                 }
848
849                 mmu->mapping = mapping;
850         }
851
852         /* Attach the ARM VA mapping to the device. */
853         ret = arm_iommu_attach_device(dev, mmu->mapping);
854         if (ret < 0) {
855                 dev_err(dev, "Failed to attach device to VA mapping\n");
856                 goto error;
857         }
858
859         return 0;
860
861 error:
862         iommu_group_remove_device(dev);
863         if (mmu->mapping)
864                 arm_iommu_release_mapping(mmu->mapping);
865
866         return ret;
867 }
868
869 static int ipmmu_add_device(struct device *dev)
870 {
871         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
872         struct iommu_group *group;
873         int ret;
874
875         /*
876          * Only let through devices that have been verified in xlate()
877          */
878         if (!mmu)
879                 return -ENODEV;
880
881         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
882                 ret = ipmmu_init_arm_mapping(dev);
883                 if (ret)
884                         return ret;
885         } else {
886                 group = iommu_group_get_for_dev(dev);
887                 if (IS_ERR(group))
888                         return PTR_ERR(group);
889
890                 iommu_group_put(group);
891         }
892
893         iommu_device_link(&mmu->iommu, dev);
894         return 0;
895 }
896
897 static void ipmmu_remove_device(struct device *dev)
898 {
899         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
900
901         iommu_device_unlink(&mmu->iommu, dev);
902         arm_iommu_detach_device(dev);
903         iommu_group_remove_device(dev);
904 }
905
906 static struct iommu_group *ipmmu_find_group(struct device *dev)
907 {
908         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
909         struct iommu_group *group;
910
911         if (mmu->group)
912                 return iommu_group_ref_get(mmu->group);
913
914         group = iommu_group_alloc();
915         if (!IS_ERR(group))
916                 mmu->group = group;
917
918         return group;
919 }
920
921 static const struct iommu_ops ipmmu_ops = {
922         .domain_alloc = ipmmu_domain_alloc,
923         .domain_free = ipmmu_domain_free,
924         .attach_dev = ipmmu_attach_device,
925         .detach_dev = ipmmu_detach_device,
926         .map = ipmmu_map,
927         .unmap = ipmmu_unmap,
928         .flush_iotlb_all = ipmmu_flush_iotlb_all,
929         .iotlb_sync = ipmmu_iotlb_sync,
930         .iova_to_phys = ipmmu_iova_to_phys,
931         .add_device = ipmmu_add_device,
932         .remove_device = ipmmu_remove_device,
933         .device_group = ipmmu_find_group,
934         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
935         .of_xlate = ipmmu_of_xlate,
936 };
937
938 /* -----------------------------------------------------------------------------
939  * Probe/remove and init
940  */
941
942 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
943 {
944         unsigned int i;
945
946         /* Disable all contexts. */
947         for (i = 0; i < mmu->num_ctx; ++i)
948                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
949 }
950
951 static const struct ipmmu_features ipmmu_features_default = {
952         .use_ns_alias_offset = true,
953         .has_cache_leaf_nodes = false,
954         .number_of_contexts = 1, /* software only tested with one context */
955         .num_utlbs = 32,
956         .setup_imbuscr = true,
957         .twobit_imttbcr_sl0 = false,
958         .reserved_context = false,
959         .cache_snoop = true,
960         .ctx_offset_base = 0,
961         .ctx_offset_stride = 0x40,
962         .utlb_offset_base = 0,
963 };
964
965 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
966         .use_ns_alias_offset = false,
967         .has_cache_leaf_nodes = true,
968         .number_of_contexts = 8,
969         .num_utlbs = 48,
970         .setup_imbuscr = false,
971         .twobit_imttbcr_sl0 = true,
972         .reserved_context = true,
973         .cache_snoop = false,
974         .ctx_offset_base = 0,
975         .ctx_offset_stride = 0x40,
976         .utlb_offset_base = 0,
977 };
978
979 static const struct of_device_id ipmmu_of_ids[] = {
980         {
981                 .compatible = "renesas,ipmmu-vmsa",
982                 .data = &ipmmu_features_default,
983         }, {
984                 .compatible = "renesas,ipmmu-r8a774a1",
985                 .data = &ipmmu_features_rcar_gen3,
986         }, {
987                 .compatible = "renesas,ipmmu-r8a774b1",
988                 .data = &ipmmu_features_rcar_gen3,
989         }, {
990                 .compatible = "renesas,ipmmu-r8a774c0",
991                 .data = &ipmmu_features_rcar_gen3,
992         }, {
993                 .compatible = "renesas,ipmmu-r8a7795",
994                 .data = &ipmmu_features_rcar_gen3,
995         }, {
996                 .compatible = "renesas,ipmmu-r8a7796",
997                 .data = &ipmmu_features_rcar_gen3,
998         }, {
999                 .compatible = "renesas,ipmmu-r8a77965",
1000                 .data = &ipmmu_features_rcar_gen3,
1001         }, {
1002                 .compatible = "renesas,ipmmu-r8a77970",
1003                 .data = &ipmmu_features_rcar_gen3,
1004         }, {
1005                 .compatible = "renesas,ipmmu-r8a77990",
1006                 .data = &ipmmu_features_rcar_gen3,
1007         }, {
1008                 .compatible = "renesas,ipmmu-r8a77995",
1009                 .data = &ipmmu_features_rcar_gen3,
1010         }, {
1011                 /* Terminator */
1012         },
1013 };
1014
1015 static int ipmmu_probe(struct platform_device *pdev)
1016 {
1017         struct ipmmu_vmsa_device *mmu;
1018         struct resource *res;
1019         int irq;
1020         int ret;
1021
1022         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1023         if (!mmu) {
1024                 dev_err(&pdev->dev, "cannot allocate device data\n");
1025                 return -ENOMEM;
1026         }
1027
1028         mmu->dev = &pdev->dev;
1029         spin_lock_init(&mmu->lock);
1030         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1031         mmu->features = of_device_get_match_data(&pdev->dev);
1032         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1033         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1034
1035         /* Map I/O memory and request IRQ. */
1036         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1037         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1038         if (IS_ERR(mmu->base))
1039                 return PTR_ERR(mmu->base);
1040
1041         /*
1042          * The IPMMU has two register banks, for secure and non-secure modes.
1043          * The bank mapped at the beginning of the IPMMU address space
1044          * corresponds to the running mode of the CPU. When running in secure
1045          * mode the non-secure register bank is also available at an offset.
1046          *
1047          * Secure mode operation isn't clearly documented and is thus currently
1048          * not implemented in the driver. Furthermore, preliminary tests of
1049          * non-secure operation with the main register bank were not successful.
1050          * Offset the registers base unconditionally to point to the non-secure
1051          * alias space for now.
1052          */
1053         if (mmu->features->use_ns_alias_offset)
1054                 mmu->base += IM_NS_ALIAS_OFFSET;
1055
1056         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1057
1058         /*
1059          * Determine if this IPMMU instance is a root device by checking for
1060          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1061          */
1062         if (!mmu->features->has_cache_leaf_nodes ||
1063             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1064                 mmu->root = mmu;
1065         else
1066                 mmu->root = ipmmu_find_root();
1067
1068         /*
1069          * Wait until the root device has been registered for sure.
1070          */
1071         if (!mmu->root)
1072                 return -EPROBE_DEFER;
1073
1074         /* Root devices have mandatory IRQs */
1075         if (ipmmu_is_root(mmu)) {
1076                 irq = platform_get_irq(pdev, 0);
1077                 if (irq < 0)
1078                         return irq;
1079
1080                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1081                                        dev_name(&pdev->dev), mmu);
1082                 if (ret < 0) {
1083                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1084                         return ret;
1085                 }
1086
1087                 ipmmu_device_reset(mmu);
1088
1089                 if (mmu->features->reserved_context) {
1090                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1091                         set_bit(0, mmu->ctx);
1092                 }
1093         }
1094
1095         /*
1096          * Register the IPMMU to the IOMMU subsystem in the following cases:
1097          * - R-Car Gen2 IPMMU (all devices registered)
1098          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1099          */
1100         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1101                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1102                                              dev_name(&pdev->dev));
1103                 if (ret)
1104                         return ret;
1105
1106                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1107                 iommu_device_set_fwnode(&mmu->iommu,
1108                                         &pdev->dev.of_node->fwnode);
1109
1110                 ret = iommu_device_register(&mmu->iommu);
1111                 if (ret)
1112                         return ret;
1113
1114 #if defined(CONFIG_IOMMU_DMA)
1115                 if (!iommu_present(&platform_bus_type))
1116                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1117 #endif
1118         }
1119
1120         /*
1121          * We can't create the ARM mapping here as it requires the bus to have
1122          * an IOMMU, which only happens when bus_set_iommu() is called in
1123          * ipmmu_init() after the probe function returns.
1124          */
1125
1126         platform_set_drvdata(pdev, mmu);
1127
1128         return 0;
1129 }
1130
1131 static int ipmmu_remove(struct platform_device *pdev)
1132 {
1133         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1134
1135         iommu_device_sysfs_remove(&mmu->iommu);
1136         iommu_device_unregister(&mmu->iommu);
1137
1138         arm_iommu_release_mapping(mmu->mapping);
1139
1140         ipmmu_device_reset(mmu);
1141
1142         return 0;
1143 }
1144
1145 #ifdef CONFIG_PM_SLEEP
1146 static int ipmmu_resume_noirq(struct device *dev)
1147 {
1148         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1149         unsigned int i;
1150
1151         /* Reset root MMU and restore contexts */
1152         if (ipmmu_is_root(mmu)) {
1153                 ipmmu_device_reset(mmu);
1154
1155                 for (i = 0; i < mmu->num_ctx; i++) {
1156                         if (!mmu->domains[i])
1157                                 continue;
1158
1159                         ipmmu_domain_setup_context(mmu->domains[i]);
1160                 }
1161         }
1162
1163         /* Re-enable active micro-TLBs */
1164         for (i = 0; i < mmu->features->num_utlbs; i++) {
1165                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1166                         continue;
1167
1168                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1169         }
1170
1171         return 0;
1172 }
1173
1174 static const struct dev_pm_ops ipmmu_pm  = {
1175         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1176 };
1177 #define DEV_PM_OPS      &ipmmu_pm
1178 #else
1179 #define DEV_PM_OPS      NULL
1180 #endif /* CONFIG_PM_SLEEP */
1181
1182 static struct platform_driver ipmmu_driver = {
1183         .driver = {
1184                 .name = "ipmmu-vmsa",
1185                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1186                 .pm = DEV_PM_OPS,
1187         },
1188         .probe = ipmmu_probe,
1189         .remove = ipmmu_remove,
1190 };
1191
1192 static int __init ipmmu_init(void)
1193 {
1194         struct device_node *np;
1195         static bool setup_done;
1196         int ret;
1197
1198         if (setup_done)
1199                 return 0;
1200
1201         np = of_find_matching_node(NULL, ipmmu_of_ids);
1202         if (!np)
1203                 return 0;
1204
1205         of_node_put(np);
1206
1207         ret = platform_driver_register(&ipmmu_driver);
1208         if (ret < 0)
1209                 return ret;
1210
1211 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1212         if (!iommu_present(&platform_bus_type))
1213                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1214 #endif
1215
1216         setup_done = true;
1217         return 0;
1218 }
1219 subsys_initcall(ipmmu_init);