OSDN Git Service

KVM: Dynamically allocate vcpus
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/vmalloc.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define KVM_EFER_LMA (1 << 10)
46 #define KVM_EFER_LME (1 << 8)
47
48 #define SVM_FEATURE_NPT  (1 << 0)
49 #define SVM_FEATURE_LBRV (1 << 1)
50 #define SVM_DEATURE_SVML (1 << 2)
51
52 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
53 {
54         return container_of(vcpu, struct vcpu_svm, vcpu);
55 }
56
57 unsigned long iopm_base;
58 unsigned long msrpm_base;
59
60 struct kvm_ldttss_desc {
61         u16 limit0;
62         u16 base0;
63         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
64         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
65         u32 base3;
66         u32 zero1;
67 } __attribute__((packed));
68
69 struct svm_cpu_data {
70         int cpu;
71
72         u64 asid_generation;
73         u32 max_asid;
74         u32 next_asid;
75         struct kvm_ldttss_desc *tss_desc;
76
77         struct page *save_area;
78 };
79
80 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
81 static uint32_t svm_features;
82
83 struct svm_init_data {
84         int cpu;
85         int r;
86 };
87
88 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
89
90 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
91 #define MSRS_RANGE_SIZE 2048
92 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
93
94 #define MAX_INST_SIZE 15
95
96 static inline u32 svm_has(u32 feat)
97 {
98         return svm_features & feat;
99 }
100
101 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
102 {
103         struct vmcb_save_area *sa = &to_svm(vcpu)->vmcb->save;
104         u16 cs_attrib;
105
106         if (!(sa->cr0 & X86_CR0_PE) || (sa->rflags & X86_EFLAGS_VM))
107                 return 2;
108
109         cs_attrib = sa->cs.attrib;
110
111         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
112                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
113 }
114
115 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
116 {
117         int word_index = __ffs(vcpu->irq_summary);
118         int bit_index = __ffs(vcpu->irq_pending[word_index]);
119         int irq = word_index * BITS_PER_LONG + bit_index;
120
121         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
122         if (!vcpu->irq_pending[word_index])
123                 clear_bit(word_index, &vcpu->irq_summary);
124         return irq;
125 }
126
127 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
128 {
129         set_bit(irq, vcpu->irq_pending);
130         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
131 }
132
133 static inline void clgi(void)
134 {
135         asm volatile (SVM_CLGI);
136 }
137
138 static inline void stgi(void)
139 {
140         asm volatile (SVM_STGI);
141 }
142
143 static inline void invlpga(unsigned long addr, u32 asid)
144 {
145         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
146 }
147
148 static inline unsigned long kvm_read_cr2(void)
149 {
150         unsigned long cr2;
151
152         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
153         return cr2;
154 }
155
156 static inline void kvm_write_cr2(unsigned long val)
157 {
158         asm volatile ("mov %0, %%cr2" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr6(void)
162 {
163         unsigned long dr6;
164
165         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
166         return dr6;
167 }
168
169 static inline void write_dr6(unsigned long val)
170 {
171         asm volatile ("mov %0, %%dr6" :: "r" (val));
172 }
173
174 static inline unsigned long read_dr7(void)
175 {
176         unsigned long dr7;
177
178         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
179         return dr7;
180 }
181
182 static inline void write_dr7(unsigned long val)
183 {
184         asm volatile ("mov %0, %%dr7" :: "r" (val));
185 }
186
187 static inline void force_new_asid(struct kvm_vcpu *vcpu)
188 {
189         to_svm(vcpu)->asid_generation--;
190 }
191
192 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
193 {
194         force_new_asid(vcpu);
195 }
196
197 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
198 {
199         if (!(efer & KVM_EFER_LMA))
200                 efer &= ~KVM_EFER_LME;
201
202         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
203         vcpu->shadow_efer = efer;
204 }
205
206 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
207 {
208         struct vcpu_svm *svm = to_svm(vcpu);
209
210         svm->vmcb->control.event_inj =          SVM_EVTINJ_VALID |
211                                                 SVM_EVTINJ_VALID_ERR |
212                                                 SVM_EVTINJ_TYPE_EXEPT |
213                                                 GP_VECTOR;
214         svm->vmcb->control.event_inj_err = error_code;
215 }
216
217 static void inject_ud(struct kvm_vcpu *vcpu)
218 {
219         to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
220                                                 SVM_EVTINJ_TYPE_EXEPT |
221                                                 UD_VECTOR;
222 }
223
224 static int is_page_fault(uint32_t info)
225 {
226         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
227         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
228 }
229
230 static int is_external_interrupt(u32 info)
231 {
232         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
233         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
234 }
235
236 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
237 {
238         struct vcpu_svm *svm = to_svm(vcpu);
239
240         if (!svm->next_rip) {
241                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
242                 return;
243         }
244         if (svm->next_rip - svm->vmcb->save.rip > 15) {
245                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
246                        __FUNCTION__,
247                        svm->vmcb->save.rip,
248                        svm->next_rip);
249         }
250
251         vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
252         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
253
254         vcpu->interrupt_window_open = 1;
255 }
256
257 static int has_svm(void)
258 {
259         uint32_t eax, ebx, ecx, edx;
260
261         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
262                 printk(KERN_INFO "has_svm: not amd\n");
263                 return 0;
264         }
265
266         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
267         if (eax < SVM_CPUID_FUNC) {
268                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
269                 return 0;
270         }
271
272         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
273         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
274                 printk(KERN_DEBUG "has_svm: svm not available\n");
275                 return 0;
276         }
277         return 1;
278 }
279
280 static void svm_hardware_disable(void *garbage)
281 {
282         struct svm_cpu_data *svm_data
283                 = per_cpu(svm_data, raw_smp_processor_id());
284
285         if (svm_data) {
286                 uint64_t efer;
287
288                 wrmsrl(MSR_VM_HSAVE_PA, 0);
289                 rdmsrl(MSR_EFER, efer);
290                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
291                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
292                 __free_page(svm_data->save_area);
293                 kfree(svm_data);
294         }
295 }
296
297 static void svm_hardware_enable(void *garbage)
298 {
299
300         struct svm_cpu_data *svm_data;
301         uint64_t efer;
302 #ifdef CONFIG_X86_64
303         struct desc_ptr gdt_descr;
304 #else
305         struct Xgt_desc_struct gdt_descr;
306 #endif
307         struct desc_struct *gdt;
308         int me = raw_smp_processor_id();
309
310         if (!has_svm()) {
311                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
312                 return;
313         }
314         svm_data = per_cpu(svm_data, me);
315
316         if (!svm_data) {
317                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
318                        me);
319                 return;
320         }
321
322         svm_data->asid_generation = 1;
323         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
324         svm_data->next_asid = svm_data->max_asid + 1;
325         svm_features = cpuid_edx(SVM_CPUID_FUNC);
326
327         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
328         gdt = (struct desc_struct *)gdt_descr.address;
329         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
330
331         rdmsrl(MSR_EFER, efer);
332         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
333
334         wrmsrl(MSR_VM_HSAVE_PA,
335                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
336 }
337
338 static int svm_cpu_init(int cpu)
339 {
340         struct svm_cpu_data *svm_data;
341         int r;
342
343         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
344         if (!svm_data)
345                 return -ENOMEM;
346         svm_data->cpu = cpu;
347         svm_data->save_area = alloc_page(GFP_KERNEL);
348         r = -ENOMEM;
349         if (!svm_data->save_area)
350                 goto err_1;
351
352         per_cpu(svm_data, cpu) = svm_data;
353
354         return 0;
355
356 err_1:
357         kfree(svm_data);
358         return r;
359
360 }
361
362 static int set_msr_interception(u32 *msrpm, unsigned msr,
363                                 int read, int write)
364 {
365         int i;
366
367         for (i = 0; i < NUM_MSR_MAPS; i++) {
368                 if (msr >= msrpm_ranges[i] &&
369                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
370                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
371                                           msrpm_ranges[i]) * 2;
372
373                         u32 *base = msrpm + (msr_offset / 32);
374                         u32 msr_shift = msr_offset % 32;
375                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
376                         *base = (*base & ~(0x3 << msr_shift)) |
377                                 (mask << msr_shift);
378                         return 1;
379                 }
380         }
381         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
382         return 0;
383 }
384
385 static __init int svm_hardware_setup(void)
386 {
387         int cpu;
388         struct page *iopm_pages;
389         struct page *msrpm_pages;
390         void *iopm_va, *msrpm_va;
391         int r;
392
393         kvm_emulator_want_group7_invlpg();
394
395         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
396
397         if (!iopm_pages)
398                 return -ENOMEM;
399
400         iopm_va = page_address(iopm_pages);
401         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
402         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
403         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
404
405
406         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
407
408         r = -ENOMEM;
409         if (!msrpm_pages)
410                 goto err_1;
411
412         msrpm_va = page_address(msrpm_pages);
413         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
414         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
415
416 #ifdef CONFIG_X86_64
417         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
418         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
419         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
420         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
421         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
422         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
423 #endif
424         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
425         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
426         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
427         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
428
429         for_each_online_cpu(cpu) {
430                 r = svm_cpu_init(cpu);
431                 if (r)
432                         goto err_2;
433         }
434         return 0;
435
436 err_2:
437         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
438         msrpm_base = 0;
439 err_1:
440         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
441         iopm_base = 0;
442         return r;
443 }
444
445 static __exit void svm_hardware_unsetup(void)
446 {
447         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
448         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
449         iopm_base = msrpm_base = 0;
450 }
451
452 static void init_seg(struct vmcb_seg *seg)
453 {
454         seg->selector = 0;
455         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
456                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
457         seg->limit = 0xffff;
458         seg->base = 0;
459 }
460
461 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
462 {
463         seg->selector = 0;
464         seg->attrib = SVM_SELECTOR_P_MASK | type;
465         seg->limit = 0xffff;
466         seg->base = 0;
467 }
468
469 static void init_vmcb(struct vmcb *vmcb)
470 {
471         struct vmcb_control_area *control = &vmcb->control;
472         struct vmcb_save_area *save = &vmcb->save;
473
474         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
475                                         INTERCEPT_CR3_MASK |
476                                         INTERCEPT_CR4_MASK;
477
478         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
479                                         INTERCEPT_CR3_MASK |
480                                         INTERCEPT_CR4_MASK;
481
482         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
483                                         INTERCEPT_DR1_MASK |
484                                         INTERCEPT_DR2_MASK |
485                                         INTERCEPT_DR3_MASK;
486
487         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
488                                         INTERCEPT_DR1_MASK |
489                                         INTERCEPT_DR2_MASK |
490                                         INTERCEPT_DR3_MASK |
491                                         INTERCEPT_DR5_MASK |
492                                         INTERCEPT_DR7_MASK;
493
494         control->intercept_exceptions = 1 << PF_VECTOR;
495
496
497         control->intercept =    (1ULL << INTERCEPT_INTR) |
498                                 (1ULL << INTERCEPT_NMI) |
499                                 (1ULL << INTERCEPT_SMI) |
500                 /*
501                  * selective cr0 intercept bug?
502                  *      0:   0f 22 d8                mov    %eax,%cr3
503                  *      3:   0f 20 c0                mov    %cr0,%eax
504                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
505                  *      b:   0f 22 c0                mov    %eax,%cr0
506                  * set cr3 ->interception
507                  * get cr0 ->interception
508                  * set cr0 -> no interception
509                  */
510                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
511                                 (1ULL << INTERCEPT_CPUID) |
512                                 (1ULL << INTERCEPT_HLT) |
513                                 (1ULL << INTERCEPT_INVLPGA) |
514                                 (1ULL << INTERCEPT_IOIO_PROT) |
515                                 (1ULL << INTERCEPT_MSR_PROT) |
516                                 (1ULL << INTERCEPT_TASK_SWITCH) |
517                                 (1ULL << INTERCEPT_SHUTDOWN) |
518                                 (1ULL << INTERCEPT_VMRUN) |
519                                 (1ULL << INTERCEPT_VMMCALL) |
520                                 (1ULL << INTERCEPT_VMLOAD) |
521                                 (1ULL << INTERCEPT_VMSAVE) |
522                                 (1ULL << INTERCEPT_STGI) |
523                                 (1ULL << INTERCEPT_CLGI) |
524                                 (1ULL << INTERCEPT_SKINIT) |
525                                 (1ULL << INTERCEPT_MONITOR) |
526                                 (1ULL << INTERCEPT_MWAIT);
527
528         control->iopm_base_pa = iopm_base;
529         control->msrpm_base_pa = msrpm_base;
530         control->tsc_offset = 0;
531         control->int_ctl = V_INTR_MASKING_MASK;
532
533         init_seg(&save->es);
534         init_seg(&save->ss);
535         init_seg(&save->ds);
536         init_seg(&save->fs);
537         init_seg(&save->gs);
538
539         save->cs.selector = 0xf000;
540         /* Executable/Readable Code Segment */
541         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
542                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
543         save->cs.limit = 0xffff;
544         /*
545          * cs.base should really be 0xffff0000, but vmx can't handle that, so
546          * be consistent with it.
547          *
548          * Replace when we have real mode working for vmx.
549          */
550         save->cs.base = 0xf0000;
551
552         save->gdtr.limit = 0xffff;
553         save->idtr.limit = 0xffff;
554
555         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
556         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
557
558         save->efer = MSR_EFER_SVME_MASK;
559
560         save->dr6 = 0xffff0ff0;
561         save->dr7 = 0x400;
562         save->rflags = 2;
563         save->rip = 0x0000fff0;
564
565         /*
566          * cr0 val on cpu init should be 0x60000010, we enable cpu
567          * cache by default. the orderly way is to enable cache in bios.
568          */
569         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
570         save->cr4 = X86_CR4_PAE;
571         /* rdx = ?? */
572 }
573
574 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
575 {
576         struct vcpu_svm *svm;
577         struct page *page;
578         int err;
579
580         svm = kzalloc(sizeof *svm, GFP_KERNEL);
581         if (!svm) {
582                 err = -ENOMEM;
583                 goto out;
584         }
585
586         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
587         if (err)
588                 goto free_svm;
589
590         page = alloc_page(GFP_KERNEL);
591         if (!page) {
592                 err = -ENOMEM;
593                 goto uninit;
594         }
595
596         svm->vmcb = page_address(page);
597         clear_page(svm->vmcb);
598         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
599         svm->asid_generation = 0;
600         memset(svm->db_regs, 0, sizeof(svm->db_regs));
601         init_vmcb(svm->vmcb);
602
603         fx_init(&svm->vcpu);
604         svm->vcpu.fpu_active = 1;
605         svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
606         if (svm->vcpu.vcpu_id == 0)
607                 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
608
609         return &svm->vcpu;
610
611 uninit:
612         kvm_vcpu_uninit(&svm->vcpu);
613 free_svm:
614         kfree(svm);
615 out:
616         return ERR_PTR(err);
617 }
618
619 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
620 {
621         struct vcpu_svm *svm = to_svm(vcpu);
622
623         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
624         kvm_vcpu_uninit(vcpu);
625         kfree(svm);
626 }
627
628 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
629 {
630         struct vcpu_svm *svm = to_svm(vcpu);
631         int cpu, i;
632
633         cpu = get_cpu();
634         if (unlikely(cpu != vcpu->cpu)) {
635                 u64 tsc_this, delta;
636
637                 /*
638                  * Make sure that the guest sees a monotonically
639                  * increasing TSC.
640                  */
641                 rdtscll(tsc_this);
642                 delta = vcpu->host_tsc - tsc_this;
643                 svm->vmcb->control.tsc_offset += delta;
644                 vcpu->cpu = cpu;
645         }
646
647         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
648                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
649 }
650
651 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
652 {
653         struct vcpu_svm *svm = to_svm(vcpu);
654         int i;
655
656         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
657                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
658
659         rdtscll(vcpu->host_tsc);
660         put_cpu();
661 }
662
663 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
664 {
665 }
666
667 static void svm_cache_regs(struct kvm_vcpu *vcpu)
668 {
669         struct vcpu_svm *svm = to_svm(vcpu);
670
671         vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
672         vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
673         vcpu->rip = svm->vmcb->save.rip;
674 }
675
676 static void svm_decache_regs(struct kvm_vcpu *vcpu)
677 {
678         struct vcpu_svm *svm = to_svm(vcpu);
679         svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
680         svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
681         svm->vmcb->save.rip = vcpu->rip;
682 }
683
684 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
685 {
686         return to_svm(vcpu)->vmcb->save.rflags;
687 }
688
689 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
690 {
691         to_svm(vcpu)->vmcb->save.rflags = rflags;
692 }
693
694 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
695 {
696         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
697
698         switch (seg) {
699         case VCPU_SREG_CS: return &save->cs;
700         case VCPU_SREG_DS: return &save->ds;
701         case VCPU_SREG_ES: return &save->es;
702         case VCPU_SREG_FS: return &save->fs;
703         case VCPU_SREG_GS: return &save->gs;
704         case VCPU_SREG_SS: return &save->ss;
705         case VCPU_SREG_TR: return &save->tr;
706         case VCPU_SREG_LDTR: return &save->ldtr;
707         }
708         BUG();
709         return NULL;
710 }
711
712 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
713 {
714         struct vmcb_seg *s = svm_seg(vcpu, seg);
715
716         return s->base;
717 }
718
719 static void svm_get_segment(struct kvm_vcpu *vcpu,
720                             struct kvm_segment *var, int seg)
721 {
722         struct vmcb_seg *s = svm_seg(vcpu, seg);
723
724         var->base = s->base;
725         var->limit = s->limit;
726         var->selector = s->selector;
727         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
728         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
729         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
730         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
731         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
732         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
733         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
734         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
735         var->unusable = !var->present;
736 }
737
738 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
739 {
740         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
741
742         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
743         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
744 }
745
746 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
747 {
748         struct vcpu_svm *svm = to_svm(vcpu);
749
750         dt->limit = svm->vmcb->save.idtr.limit;
751         dt->base = svm->vmcb->save.idtr.base;
752 }
753
754 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
755 {
756         struct vcpu_svm *svm = to_svm(vcpu);
757
758         svm->vmcb->save.idtr.limit = dt->limit;
759         svm->vmcb->save.idtr.base = dt->base ;
760 }
761
762 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
763 {
764         struct vcpu_svm *svm = to_svm(vcpu);
765
766         dt->limit = svm->vmcb->save.gdtr.limit;
767         dt->base = svm->vmcb->save.gdtr.base;
768 }
769
770 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
771 {
772         struct vcpu_svm *svm = to_svm(vcpu);
773
774         svm->vmcb->save.gdtr.limit = dt->limit;
775         svm->vmcb->save.gdtr.base = dt->base ;
776 }
777
778 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
779 {
780 }
781
782 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
783 {
784         struct vcpu_svm *svm = to_svm(vcpu);
785
786 #ifdef CONFIG_X86_64
787         if (vcpu->shadow_efer & KVM_EFER_LME) {
788                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
789                         vcpu->shadow_efer |= KVM_EFER_LMA;
790                         svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
791                 }
792
793                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
794                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
795                         svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
796                 }
797         }
798 #endif
799         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
800                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
801                 vcpu->fpu_active = 1;
802         }
803
804         vcpu->cr0 = cr0;
805         cr0 |= X86_CR0_PG | X86_CR0_WP;
806         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
807         svm->vmcb->save.cr0 = cr0;
808 }
809
810 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
811 {
812        vcpu->cr4 = cr4;
813        to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
814 }
815
816 static void svm_set_segment(struct kvm_vcpu *vcpu,
817                             struct kvm_segment *var, int seg)
818 {
819         struct vcpu_svm *svm = to_svm(vcpu);
820         struct vmcb_seg *s = svm_seg(vcpu, seg);
821
822         s->base = var->base;
823         s->limit = var->limit;
824         s->selector = var->selector;
825         if (var->unusable)
826                 s->attrib = 0;
827         else {
828                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
829                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
830                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
831                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
832                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
833                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
834                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
835                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
836         }
837         if (seg == VCPU_SREG_CS)
838                 svm->vmcb->save.cpl
839                         = (svm->vmcb->save.cs.attrib
840                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
841
842 }
843
844 /* FIXME:
845
846         svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
847         svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
848
849 */
850
851 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
852 {
853         return -EOPNOTSUPP;
854 }
855
856 static void load_host_msrs(struct kvm_vcpu *vcpu)
857 {
858 #ifdef CONFIG_X86_64
859         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
860 #endif
861 }
862
863 static void save_host_msrs(struct kvm_vcpu *vcpu)
864 {
865 #ifdef CONFIG_X86_64
866         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
867 #endif
868 }
869
870 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
871 {
872         struct vcpu_svm *svm = to_svm(vcpu);
873
874         if (svm_data->next_asid > svm_data->max_asid) {
875                 ++svm_data->asid_generation;
876                 svm_data->next_asid = 1;
877                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
878         }
879
880         vcpu->cpu = svm_data->cpu;
881         svm->asid_generation = svm_data->asid_generation;
882         svm->vmcb->control.asid = svm_data->next_asid++;
883 }
884
885 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
886 {
887         invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed?
888 }
889
890 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
891 {
892         return to_svm(vcpu)->db_regs[dr];
893 }
894
895 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
896                        int *exception)
897 {
898         struct vcpu_svm *svm = to_svm(vcpu);
899
900         *exception = 0;
901
902         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
903                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
904                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
905                 *exception = DB_VECTOR;
906                 return;
907         }
908
909         switch (dr) {
910         case 0 ... 3:
911                 svm->db_regs[dr] = value;
912                 return;
913         case 4 ... 5:
914                 if (vcpu->cr4 & X86_CR4_DE) {
915                         *exception = UD_VECTOR;
916                         return;
917                 }
918         case 7: {
919                 if (value & ~((1ULL << 32) - 1)) {
920                         *exception = GP_VECTOR;
921                         return;
922                 }
923                 svm->vmcb->save.dr7 = value;
924                 return;
925         }
926         default:
927                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
928                        __FUNCTION__, dr);
929                 *exception = UD_VECTOR;
930                 return;
931         }
932 }
933
934 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
935 {
936         struct vcpu_svm *svm = to_svm(vcpu);
937         u32 exit_int_info = svm->vmcb->control.exit_int_info;
938         u64 fault_address;
939         u32 error_code;
940         enum emulation_result er;
941         int r;
942
943         if (is_external_interrupt(exit_int_info))
944                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
945
946         spin_lock(&vcpu->kvm->lock);
947
948         fault_address  = svm->vmcb->control.exit_info_2;
949         error_code = svm->vmcb->control.exit_info_1;
950         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
951         if (r < 0) {
952                 spin_unlock(&vcpu->kvm->lock);
953                 return r;
954         }
955         if (!r) {
956                 spin_unlock(&vcpu->kvm->lock);
957                 return 1;
958         }
959         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
960         spin_unlock(&vcpu->kvm->lock);
961
962         switch (er) {
963         case EMULATE_DONE:
964                 return 1;
965         case EMULATE_DO_MMIO:
966                 ++vcpu->stat.mmio_exits;
967                 return 0;
968         case EMULATE_FAIL:
969                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
970                 break;
971         default:
972                 BUG();
973         }
974
975         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
976         return 0;
977 }
978
979 static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
980 {
981         struct vcpu_svm *svm = to_svm(vcpu);
982
983         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
984         if (!(vcpu->cr0 & X86_CR0_TS))
985                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
986         vcpu->fpu_active = 1;
987
988         return 1;
989 }
990
991 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
992 {
993         struct vcpu_svm *svm = to_svm(vcpu);
994         /*
995          * VMCB is undefined after a SHUTDOWN intercept
996          * so reinitialize it.
997          */
998         clear_page(svm->vmcb);
999         init_vmcb(svm->vmcb);
1000
1001         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1002         return 0;
1003 }
1004
1005 static int io_get_override(struct kvm_vcpu *vcpu,
1006                           struct vmcb_seg **seg,
1007                           int *addr_override)
1008 {
1009         struct vcpu_svm *svm = to_svm(vcpu);
1010         u8 inst[MAX_INST_SIZE];
1011         unsigned ins_length;
1012         gva_t rip;
1013         int i;
1014
1015         rip =  svm->vmcb->save.rip;
1016         ins_length = svm->next_rip - rip;
1017         rip += svm->vmcb->save.cs.base;
1018
1019         if (ins_length > MAX_INST_SIZE)
1020                 printk(KERN_DEBUG
1021                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
1022                        "next rip 0x%llx ins_length %u\n",
1023                        __FUNCTION__,
1024                        svm->vmcb->save.cs.base,
1025                        svm->vmcb->save.rip,
1026                        svm->vmcb->control.exit_info_2,
1027                        ins_length);
1028
1029         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
1030                 /* #PF */
1031                 return 0;
1032
1033         *addr_override = 0;
1034         *seg = NULL;
1035         for (i = 0; i < ins_length; i++)
1036                 switch (inst[i]) {
1037                 case 0xf0:
1038                 case 0xf2:
1039                 case 0xf3:
1040                 case 0x66:
1041                         continue;
1042                 case 0x67:
1043                         *addr_override = 1;
1044                         continue;
1045                 case 0x2e:
1046                         *seg = &svm->vmcb->save.cs;
1047                         continue;
1048                 case 0x36:
1049                         *seg = &svm->vmcb->save.ss;
1050                         continue;
1051                 case 0x3e:
1052                         *seg = &svm->vmcb->save.ds;
1053                         continue;
1054                 case 0x26:
1055                         *seg = &svm->vmcb->save.es;
1056                         continue;
1057                 case 0x64:
1058                         *seg = &svm->vmcb->save.fs;
1059                         continue;
1060                 case 0x65:
1061                         *seg = &svm->vmcb->save.gs;
1062                         continue;
1063                 default:
1064                         return 1;
1065                 }
1066         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1067         return 0;
1068 }
1069
1070 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
1071 {
1072         unsigned long addr_mask;
1073         unsigned long *reg;
1074         struct vmcb_seg *seg;
1075         int addr_override;
1076         struct vcpu_svm *svm = to_svm(vcpu);
1077         struct vmcb_save_area *save_area = &svm->vmcb->save;
1078         u16 cs_attrib = save_area->cs.attrib;
1079         unsigned addr_size = get_addr_size(vcpu);
1080
1081         if (!io_get_override(vcpu, &seg, &addr_override))
1082                 return 0;
1083
1084         if (addr_override)
1085                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1086
1087         if (ins) {
1088                 reg = &vcpu->regs[VCPU_REGS_RDI];
1089                 seg = &svm->vmcb->save.es;
1090         } else {
1091                 reg = &vcpu->regs[VCPU_REGS_RSI];
1092                 seg = (seg) ? seg : &svm->vmcb->save.ds;
1093         }
1094
1095         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1096
1097         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1098             !(svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1099                 *address = (*reg & addr_mask);
1100                 return addr_mask;
1101         }
1102
1103         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1104                 svm_inject_gp(vcpu, 0);
1105                 return 0;
1106         }
1107
1108         *address = (*reg & addr_mask) + seg->base;
1109         return addr_mask;
1110 }
1111
1112 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1113 {
1114         struct vcpu_svm *svm = to_svm(vcpu);
1115         u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
1116         int size, down, in, string, rep;
1117         unsigned port;
1118         unsigned long count;
1119         gva_t address = 0;
1120
1121         ++vcpu->stat.io_exits;
1122
1123         svm->next_rip = svm->vmcb->control.exit_info_2;
1124
1125         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1126         port = io_info >> 16;
1127         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1128         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1129         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1130         count = 1;
1131         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1132
1133         if (string) {
1134                 unsigned addr_mask;
1135
1136                 addr_mask = io_adress(vcpu, in, &address);
1137                 if (!addr_mask) {
1138                         printk(KERN_DEBUG "%s: get io address failed\n",
1139                                __FUNCTION__);
1140                         return 1;
1141                 }
1142
1143                 if (rep)
1144                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1145         }
1146         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1147                              address, rep, port);
1148 }
1149
1150 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1151 {
1152         return 1;
1153 }
1154
1155 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1156 {
1157         struct vcpu_svm *svm = to_svm(vcpu);
1158
1159         svm->next_rip = svm->vmcb->save.rip + 1;
1160         skip_emulated_instruction(vcpu);
1161         return kvm_emulate_halt(vcpu);
1162 }
1163
1164 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1165 {
1166         struct vcpu_svm *svm = to_svm(vcpu);
1167
1168         svm->next_rip = svm->vmcb->save.rip + 3;
1169         skip_emulated_instruction(vcpu);
1170         return kvm_hypercall(vcpu, kvm_run);
1171 }
1172
1173 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1174 {
1175         inject_ud(vcpu);
1176         return 1;
1177 }
1178
1179 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1180 {
1181         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1182         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1183         return 0;
1184 }
1185
1186 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1187 {
1188         struct vcpu_svm *svm = to_svm(vcpu);
1189
1190         svm->next_rip = svm->vmcb->save.rip + 2;
1191         kvm_emulate_cpuid(vcpu);
1192         return 1;
1193 }
1194
1195 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1196 {
1197         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1198                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1199         return 1;
1200 }
1201
1202 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1203 {
1204         struct vcpu_svm *svm = to_svm(vcpu);
1205
1206         switch (ecx) {
1207         case MSR_IA32_TIME_STAMP_COUNTER: {
1208                 u64 tsc;
1209
1210                 rdtscll(tsc);
1211                 *data = svm->vmcb->control.tsc_offset + tsc;
1212                 break;
1213         }
1214         case MSR_K6_STAR:
1215                 *data = svm->vmcb->save.star;
1216                 break;
1217 #ifdef CONFIG_X86_64
1218         case MSR_LSTAR:
1219                 *data = svm->vmcb->save.lstar;
1220                 break;
1221         case MSR_CSTAR:
1222                 *data = svm->vmcb->save.cstar;
1223                 break;
1224         case MSR_KERNEL_GS_BASE:
1225                 *data = svm->vmcb->save.kernel_gs_base;
1226                 break;
1227         case MSR_SYSCALL_MASK:
1228                 *data = svm->vmcb->save.sfmask;
1229                 break;
1230 #endif
1231         case MSR_IA32_SYSENTER_CS:
1232                 *data = svm->vmcb->save.sysenter_cs;
1233                 break;
1234         case MSR_IA32_SYSENTER_EIP:
1235                 *data = svm->vmcb->save.sysenter_eip;
1236                 break;
1237         case MSR_IA32_SYSENTER_ESP:
1238                 *data = svm->vmcb->save.sysenter_esp;
1239                 break;
1240         default:
1241                 return kvm_get_msr_common(vcpu, ecx, data);
1242         }
1243         return 0;
1244 }
1245
1246 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1247 {
1248         struct vcpu_svm *svm = to_svm(vcpu);
1249         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1250         u64 data;
1251
1252         if (svm_get_msr(vcpu, ecx, &data))
1253                 svm_inject_gp(vcpu, 0);
1254         else {
1255                 svm->vmcb->save.rax = data & 0xffffffff;
1256                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1257                 svm->next_rip = svm->vmcb->save.rip + 2;
1258                 skip_emulated_instruction(vcpu);
1259         }
1260         return 1;
1261 }
1262
1263 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1264 {
1265         struct vcpu_svm *svm = to_svm(vcpu);
1266
1267         switch (ecx) {
1268         case MSR_IA32_TIME_STAMP_COUNTER: {
1269                 u64 tsc;
1270
1271                 rdtscll(tsc);
1272                 svm->vmcb->control.tsc_offset = data - tsc;
1273                 break;
1274         }
1275         case MSR_K6_STAR:
1276                 svm->vmcb->save.star = data;
1277                 break;
1278 #ifdef CONFIG_X86_64
1279         case MSR_LSTAR:
1280                 svm->vmcb->save.lstar = data;
1281                 break;
1282         case MSR_CSTAR:
1283                 svm->vmcb->save.cstar = data;
1284                 break;
1285         case MSR_KERNEL_GS_BASE:
1286                 svm->vmcb->save.kernel_gs_base = data;
1287                 break;
1288         case MSR_SYSCALL_MASK:
1289                 svm->vmcb->save.sfmask = data;
1290                 break;
1291 #endif
1292         case MSR_IA32_SYSENTER_CS:
1293                 svm->vmcb->save.sysenter_cs = data;
1294                 break;
1295         case MSR_IA32_SYSENTER_EIP:
1296                 svm->vmcb->save.sysenter_eip = data;
1297                 break;
1298         case MSR_IA32_SYSENTER_ESP:
1299                 svm->vmcb->save.sysenter_esp = data;
1300                 break;
1301         default:
1302                 return kvm_set_msr_common(vcpu, ecx, data);
1303         }
1304         return 0;
1305 }
1306
1307 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1308 {
1309         struct vcpu_svm *svm = to_svm(vcpu);
1310         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1311         u64 data = (svm->vmcb->save.rax & -1u)
1312                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1313         svm->next_rip = svm->vmcb->save.rip + 2;
1314         if (svm_set_msr(vcpu, ecx, data))
1315                 svm_inject_gp(vcpu, 0);
1316         else
1317                 skip_emulated_instruction(vcpu);
1318         return 1;
1319 }
1320
1321 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1322 {
1323         if (to_svm(vcpu)->vmcb->control.exit_info_1)
1324                 return wrmsr_interception(vcpu, kvm_run);
1325         else
1326                 return rdmsr_interception(vcpu, kvm_run);
1327 }
1328
1329 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1330                                    struct kvm_run *kvm_run)
1331 {
1332         /*
1333          * If the user space waits to inject interrupts, exit as soon as
1334          * possible
1335          */
1336         if (kvm_run->request_interrupt_window &&
1337             !vcpu->irq_summary) {
1338                 ++vcpu->stat.irq_window_exits;
1339                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1340                 return 0;
1341         }
1342
1343         return 1;
1344 }
1345
1346 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1347                                       struct kvm_run *kvm_run) = {
1348         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1349         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1350         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1351         /* for now: */
1352         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1353         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1354         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1355         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1356         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1357         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1358         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1359         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1360         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1361         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1362         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1363         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1364         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1365         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1366         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1367         [SVM_EXIT_INTR]                         = nop_on_interception,
1368         [SVM_EXIT_NMI]                          = nop_on_interception,
1369         [SVM_EXIT_SMI]                          = nop_on_interception,
1370         [SVM_EXIT_INIT]                         = nop_on_interception,
1371         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1372         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1373         [SVM_EXIT_CPUID]                        = cpuid_interception,
1374         [SVM_EXIT_HLT]                          = halt_interception,
1375         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1376         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1377         [SVM_EXIT_IOIO]                         = io_interception,
1378         [SVM_EXIT_MSR]                          = msr_interception,
1379         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1380         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1381         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1382         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1383         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1384         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1385         [SVM_EXIT_STGI]                         = invalid_op_interception,
1386         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1387         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1388         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1389         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1390 };
1391
1392
1393 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1394 {
1395         struct vcpu_svm *svm = to_svm(vcpu);
1396         u32 exit_code = svm->vmcb->control.exit_code;
1397
1398         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1399             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1400                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1401                        "exit_code 0x%x\n",
1402                        __FUNCTION__, svm->vmcb->control.exit_int_info,
1403                        exit_code);
1404
1405         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1406             || svm_exit_handlers[exit_code] == 0) {
1407                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1408                 kvm_run->hw.hardware_exit_reason = exit_code;
1409                 return 0;
1410         }
1411
1412         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1413 }
1414
1415 static void reload_tss(struct kvm_vcpu *vcpu)
1416 {
1417         int cpu = raw_smp_processor_id();
1418
1419         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1420         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1421         load_TR_desc();
1422 }
1423
1424 static void pre_svm_run(struct kvm_vcpu *vcpu)
1425 {
1426         struct vcpu_svm *svm = to_svm(vcpu);
1427         int cpu = raw_smp_processor_id();
1428
1429         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1430
1431         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1432         if (vcpu->cpu != cpu ||
1433             svm->asid_generation != svm_data->asid_generation)
1434                 new_asid(vcpu, svm_data);
1435 }
1436
1437
1438 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1439 {
1440         struct vmcb_control_area *control;
1441
1442         control = &to_svm(vcpu)->vmcb->control;
1443         control->int_vector = pop_irq(vcpu);
1444         control->int_ctl &= ~V_INTR_PRIO_MASK;
1445         control->int_ctl |= V_IRQ_MASK |
1446                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1447 }
1448
1449 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1450 {
1451         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
1452
1453         if (control->int_ctl & V_IRQ_MASK) {
1454                 control->int_ctl &= ~V_IRQ_MASK;
1455                 push_irq(vcpu, control->int_vector);
1456         }
1457
1458         vcpu->interrupt_window_open =
1459                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1460 }
1461
1462 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1463                                        struct kvm_run *kvm_run)
1464 {
1465         struct vcpu_svm *svm = to_svm(vcpu);
1466         struct vmcb_control_area *control = &svm->vmcb->control;
1467
1468         vcpu->interrupt_window_open =
1469                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1470                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1471
1472         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1473                 /*
1474                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1475                  */
1476                 kvm_do_inject_irq(vcpu);
1477
1478         /*
1479          * Interrupts blocked.  Wait for unblock.
1480          */
1481         if (!vcpu->interrupt_window_open &&
1482             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1483                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1484         } else
1485                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1486 }
1487
1488 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1489                               struct kvm_run *kvm_run)
1490 {
1491         struct vcpu_svm *svm = to_svm(vcpu);
1492
1493         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1494                                                   vcpu->irq_summary == 0);
1495         kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1496         kvm_run->cr8 = vcpu->cr8;
1497         kvm_run->apic_base = vcpu->apic_base;
1498 }
1499
1500 /*
1501  * Check if userspace requested an interrupt window, and that the
1502  * interrupt window is open.
1503  *
1504  * No need to exit to userspace if we already have an interrupt queued.
1505  */
1506 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1507                                           struct kvm_run *kvm_run)
1508 {
1509         return (!vcpu->irq_summary &&
1510                 kvm_run->request_interrupt_window &&
1511                 vcpu->interrupt_window_open &&
1512                 (to_svm(vcpu)->vmcb->save.rflags & X86_EFLAGS_IF));
1513 }
1514
1515 static void save_db_regs(unsigned long *db_regs)
1516 {
1517         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1518         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1519         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1520         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1521 }
1522
1523 static void load_db_regs(unsigned long *db_regs)
1524 {
1525         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1526         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1527         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1528         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1529 }
1530
1531 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1532 {
1533         force_new_asid(vcpu);
1534 }
1535
1536 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1537 {
1538         struct vcpu_svm *svm = to_svm(vcpu);
1539         u16 fs_selector;
1540         u16 gs_selector;
1541         u16 ldt_selector;
1542         int r;
1543
1544 again:
1545         r = kvm_mmu_reload(vcpu);
1546         if (unlikely(r))
1547                 return r;
1548
1549         if (!vcpu->mmio_read_completed)
1550                 do_interrupt_requests(vcpu, kvm_run);
1551
1552         clgi();
1553
1554         vcpu->guest_mode = 1;
1555         if (vcpu->requests)
1556                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1557                     svm_flush_tlb(vcpu);
1558
1559         pre_svm_run(vcpu);
1560
1561         save_host_msrs(vcpu);
1562         fs_selector = read_fs();
1563         gs_selector = read_gs();
1564         ldt_selector = read_ldt();
1565         svm->host_cr2 = kvm_read_cr2();
1566         svm->host_dr6 = read_dr6();
1567         svm->host_dr7 = read_dr7();
1568         svm->vmcb->save.cr2 = vcpu->cr2;
1569
1570         if (svm->vmcb->save.dr7 & 0xff) {
1571                 write_dr7(0);
1572                 save_db_regs(svm->host_db_regs);
1573                 load_db_regs(svm->db_regs);
1574         }
1575
1576         if (vcpu->fpu_active) {
1577                 fx_save(vcpu->host_fx_image);
1578                 fx_restore(vcpu->guest_fx_image);
1579         }
1580
1581         asm volatile (
1582 #ifdef CONFIG_X86_64
1583                 "push %%rbx; push %%rcx; push %%rdx;"
1584                 "push %%rsi; push %%rdi; push %%rbp;"
1585                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1586                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1587 #else
1588                 "push %%ebx; push %%ecx; push %%edx;"
1589                 "push %%esi; push %%edi; push %%ebp;"
1590 #endif
1591
1592 #ifdef CONFIG_X86_64
1593                 "mov %c[rbx](%[svm]), %%rbx \n\t"
1594                 "mov %c[rcx](%[svm]), %%rcx \n\t"
1595                 "mov %c[rdx](%[svm]), %%rdx \n\t"
1596                 "mov %c[rsi](%[svm]), %%rsi \n\t"
1597                 "mov %c[rdi](%[svm]), %%rdi \n\t"
1598                 "mov %c[rbp](%[svm]), %%rbp \n\t"
1599                 "mov %c[r8](%[svm]),  %%r8  \n\t"
1600                 "mov %c[r9](%[svm]),  %%r9  \n\t"
1601                 "mov %c[r10](%[svm]), %%r10 \n\t"
1602                 "mov %c[r11](%[svm]), %%r11 \n\t"
1603                 "mov %c[r12](%[svm]), %%r12 \n\t"
1604                 "mov %c[r13](%[svm]), %%r13 \n\t"
1605                 "mov %c[r14](%[svm]), %%r14 \n\t"
1606                 "mov %c[r15](%[svm]), %%r15 \n\t"
1607 #else
1608                 "mov %c[rbx](%[svm]), %%ebx \n\t"
1609                 "mov %c[rcx](%[svm]), %%ecx \n\t"
1610                 "mov %c[rdx](%[svm]), %%edx \n\t"
1611                 "mov %c[rsi](%[svm]), %%esi \n\t"
1612                 "mov %c[rdi](%[svm]), %%edi \n\t"
1613                 "mov %c[rbp](%[svm]), %%ebp \n\t"
1614 #endif
1615
1616 #ifdef CONFIG_X86_64
1617                 /* Enter guest mode */
1618                 "push %%rax \n\t"
1619                 "mov %c[vmcb](%[svm]), %%rax \n\t"
1620                 SVM_VMLOAD "\n\t"
1621                 SVM_VMRUN "\n\t"
1622                 SVM_VMSAVE "\n\t"
1623                 "pop %%rax \n\t"
1624 #else
1625                 /* Enter guest mode */
1626                 "push %%eax \n\t"
1627                 "mov %c[vmcb](%[svm]), %%eax \n\t"
1628                 SVM_VMLOAD "\n\t"
1629                 SVM_VMRUN "\n\t"
1630                 SVM_VMSAVE "\n\t"
1631                 "pop %%eax \n\t"
1632 #endif
1633
1634                 /* Save guest registers, load host registers */
1635 #ifdef CONFIG_X86_64
1636                 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1637                 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1638                 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1639                 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1640                 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1641                 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1642                 "mov %%r8,  %c[r8](%[svm]) \n\t"
1643                 "mov %%r9,  %c[r9](%[svm]) \n\t"
1644                 "mov %%r10, %c[r10](%[svm]) \n\t"
1645                 "mov %%r11, %c[r11](%[svm]) \n\t"
1646                 "mov %%r12, %c[r12](%[svm]) \n\t"
1647                 "mov %%r13, %c[r13](%[svm]) \n\t"
1648                 "mov %%r14, %c[r14](%[svm]) \n\t"
1649                 "mov %%r15, %c[r15](%[svm]) \n\t"
1650
1651                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1652                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1653                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1654                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1655 #else
1656                 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1657                 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1658                 "mov %%edx, %c[rdx](%[svm]) \n\t"
1659                 "mov %%esi, %c[rsi](%[svm]) \n\t"
1660                 "mov %%edi, %c[rdi](%[svm]) \n\t"
1661                 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1662
1663                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1664                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1665 #endif
1666                 :
1667                 : [svm]"a"(svm),
1668                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1669                   [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
1670                   [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
1671                   [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
1672                   [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
1673                   [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
1674                   [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
1675 #ifdef CONFIG_X86_64
1676                   ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
1677                   [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
1678                   [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
1679                   [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
1680                   [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
1681                   [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
1682                   [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
1683                   [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
1684 #endif
1685                 : "cc", "memory" );
1686
1687         vcpu->guest_mode = 0;
1688
1689         if (vcpu->fpu_active) {
1690                 fx_save(vcpu->guest_fx_image);
1691                 fx_restore(vcpu->host_fx_image);
1692         }
1693
1694         if ((svm->vmcb->save.dr7 & 0xff))
1695                 load_db_regs(svm->host_db_regs);
1696
1697         vcpu->cr2 = svm->vmcb->save.cr2;
1698
1699         write_dr6(svm->host_dr6);
1700         write_dr7(svm->host_dr7);
1701         kvm_write_cr2(svm->host_cr2);
1702
1703         load_fs(fs_selector);
1704         load_gs(gs_selector);
1705         load_ldt(ldt_selector);
1706         load_host_msrs(vcpu);
1707
1708         reload_tss(vcpu);
1709
1710         /*
1711          * Profile KVM exit RIPs:
1712          */
1713         if (unlikely(prof_on == KVM_PROFILING))
1714                 profile_hit(KVM_PROFILING,
1715                         (void *)(unsigned long)svm->vmcb->save.rip);
1716
1717         stgi();
1718
1719         kvm_reput_irq(vcpu);
1720
1721         svm->next_rip = 0;
1722
1723         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1724                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1725                 kvm_run->fail_entry.hardware_entry_failure_reason
1726                         = svm->vmcb->control.exit_code;
1727                 post_kvm_run_save(vcpu, kvm_run);
1728                 return 0;
1729         }
1730
1731         r = handle_exit(vcpu, kvm_run);
1732         if (r > 0) {
1733                 if (signal_pending(current)) {
1734                         ++vcpu->stat.signal_exits;
1735                         post_kvm_run_save(vcpu, kvm_run);
1736                         kvm_run->exit_reason = KVM_EXIT_INTR;
1737                         return -EINTR;
1738                 }
1739
1740                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1741                         ++vcpu->stat.request_irq_exits;
1742                         post_kvm_run_save(vcpu, kvm_run);
1743                         kvm_run->exit_reason = KVM_EXIT_INTR;
1744                         return -EINTR;
1745                 }
1746                 kvm_resched(vcpu);
1747                 goto again;
1748         }
1749         post_kvm_run_save(vcpu, kvm_run);
1750         return r;
1751 }
1752
1753 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1754 {
1755         struct vcpu_svm *svm = to_svm(vcpu);
1756
1757         svm->vmcb->save.cr3 = root;
1758         force_new_asid(vcpu);
1759
1760         if (vcpu->fpu_active) {
1761                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1762                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1763                 vcpu->fpu_active = 0;
1764         }
1765 }
1766
1767 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1768                                   unsigned long  addr,
1769                                   uint32_t err_code)
1770 {
1771         struct vcpu_svm *svm = to_svm(vcpu);
1772         uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1773
1774         ++vcpu->stat.pf_guest;
1775
1776         if (is_page_fault(exit_int_info)) {
1777
1778                 svm->vmcb->control.event_inj_err = 0;
1779                 svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1780                                                 SVM_EVTINJ_VALID_ERR |
1781                                                 SVM_EVTINJ_TYPE_EXEPT |
1782                                                 DF_VECTOR;
1783                 return;
1784         }
1785         vcpu->cr2 = addr;
1786         svm->vmcb->save.cr2 = addr;
1787         svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1788                                         SVM_EVTINJ_VALID_ERR |
1789                                         SVM_EVTINJ_TYPE_EXEPT |
1790                                         PF_VECTOR;
1791         svm->vmcb->control.event_inj_err = err_code;
1792 }
1793
1794
1795 static int is_disabled(void)
1796 {
1797         u64 vm_cr;
1798
1799         rdmsrl(MSR_VM_CR, vm_cr);
1800         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1801                 return 1;
1802
1803         return 0;
1804 }
1805
1806 static void
1807 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1808 {
1809         /*
1810          * Patch in the VMMCALL instruction:
1811          */
1812         hypercall[0] = 0x0f;
1813         hypercall[1] = 0x01;
1814         hypercall[2] = 0xd9;
1815         hypercall[3] = 0xc3;
1816 }
1817
1818 static struct kvm_arch_ops svm_arch_ops = {
1819         .cpu_has_kvm_support = has_svm,
1820         .disabled_by_bios = is_disabled,
1821         .hardware_setup = svm_hardware_setup,
1822         .hardware_unsetup = svm_hardware_unsetup,
1823         .hardware_enable = svm_hardware_enable,
1824         .hardware_disable = svm_hardware_disable,
1825
1826         .vcpu_create = svm_create_vcpu,
1827         .vcpu_free = svm_free_vcpu,
1828
1829         .vcpu_load = svm_vcpu_load,
1830         .vcpu_put = svm_vcpu_put,
1831         .vcpu_decache = svm_vcpu_decache,
1832
1833         .set_guest_debug = svm_guest_debug,
1834         .get_msr = svm_get_msr,
1835         .set_msr = svm_set_msr,
1836         .get_segment_base = svm_get_segment_base,
1837         .get_segment = svm_get_segment,
1838         .set_segment = svm_set_segment,
1839         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1840         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1841         .set_cr0 = svm_set_cr0,
1842         .set_cr3 = svm_set_cr3,
1843         .set_cr4 = svm_set_cr4,
1844         .set_efer = svm_set_efer,
1845         .get_idt = svm_get_idt,
1846         .set_idt = svm_set_idt,
1847         .get_gdt = svm_get_gdt,
1848         .set_gdt = svm_set_gdt,
1849         .get_dr = svm_get_dr,
1850         .set_dr = svm_set_dr,
1851         .cache_regs = svm_cache_regs,
1852         .decache_regs = svm_decache_regs,
1853         .get_rflags = svm_get_rflags,
1854         .set_rflags = svm_set_rflags,
1855
1856         .invlpg = svm_invlpg,
1857         .tlb_flush = svm_flush_tlb,
1858         .inject_page_fault = svm_inject_page_fault,
1859
1860         .inject_gp = svm_inject_gp,
1861
1862         .run = svm_vcpu_run,
1863         .skip_emulated_instruction = skip_emulated_instruction,
1864         .patch_hypercall = svm_patch_hypercall,
1865 };
1866
1867 static int __init svm_init(void)
1868 {
1869         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1870 }
1871
1872 static void __exit svm_exit(void)
1873 {
1874         kvm_exit_arch();
1875 }
1876
1877 module_init(svm_init)
1878 module_exit(svm_exit)