OSDN Git Service

KVM: Trivial: Use standard CR0 flags macros from asm/cpu-features.h
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/vmalloc.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41 #define CR4_DE_MASK (1UL << 3)
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define KVM_EFER_LMA (1 << 10)
47 #define KVM_EFER_LME (1 << 8)
48
49 #define SVM_FEATURE_NPT  (1 << 0)
50 #define SVM_FEATURE_LBRV (1 << 1)
51 #define SVM_DEATURE_SVML (1 << 2)
52
53 unsigned long iopm_base;
54 unsigned long msrpm_base;
55
56 struct kvm_ldttss_desc {
57         u16 limit0;
58         u16 base0;
59         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
60         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
61         u32 base3;
62         u32 zero1;
63 } __attribute__((packed));
64
65 struct svm_cpu_data {
66         int cpu;
67
68         u64 asid_generation;
69         u32 max_asid;
70         u32 next_asid;
71         struct kvm_ldttss_desc *tss_desc;
72
73         struct page *save_area;
74 };
75
76 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
77 static uint32_t svm_features;
78
79 struct svm_init_data {
80         int cpu;
81         int r;
82 };
83
84 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
85
86 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
87 #define MSRS_RANGE_SIZE 2048
88 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
89
90 #define MAX_INST_SIZE 15
91
92 static inline u32 svm_has(u32 feat)
93 {
94         return svm_features & feat;
95 }
96
97 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
98 {
99         struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
100         u16 cs_attrib;
101
102         if (!(sa->cr0 & X86_CR0_PE) || (sa->rflags & X86_EFLAGS_VM))
103                 return 2;
104
105         cs_attrib = sa->cs.attrib;
106
107         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
108                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
109 }
110
111 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
112 {
113         int word_index = __ffs(vcpu->irq_summary);
114         int bit_index = __ffs(vcpu->irq_pending[word_index]);
115         int irq = word_index * BITS_PER_LONG + bit_index;
116
117         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
118         if (!vcpu->irq_pending[word_index])
119                 clear_bit(word_index, &vcpu->irq_summary);
120         return irq;
121 }
122
123 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
124 {
125         set_bit(irq, vcpu->irq_pending);
126         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
127 }
128
129 static inline void clgi(void)
130 {
131         asm volatile (SVM_CLGI);
132 }
133
134 static inline void stgi(void)
135 {
136         asm volatile (SVM_STGI);
137 }
138
139 static inline void invlpga(unsigned long addr, u32 asid)
140 {
141         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
142 }
143
144 static inline unsigned long kvm_read_cr2(void)
145 {
146         unsigned long cr2;
147
148         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
149         return cr2;
150 }
151
152 static inline void kvm_write_cr2(unsigned long val)
153 {
154         asm volatile ("mov %0, %%cr2" :: "r" (val));
155 }
156
157 static inline unsigned long read_dr6(void)
158 {
159         unsigned long dr6;
160
161         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
162         return dr6;
163 }
164
165 static inline void write_dr6(unsigned long val)
166 {
167         asm volatile ("mov %0, %%dr6" :: "r" (val));
168 }
169
170 static inline unsigned long read_dr7(void)
171 {
172         unsigned long dr7;
173
174         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
175         return dr7;
176 }
177
178 static inline void write_dr7(unsigned long val)
179 {
180         asm volatile ("mov %0, %%dr7" :: "r" (val));
181 }
182
183 static inline void force_new_asid(struct kvm_vcpu *vcpu)
184 {
185         vcpu->svm->asid_generation--;
186 }
187
188 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
189 {
190         force_new_asid(vcpu);
191 }
192
193 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
194 {
195         if (!(efer & KVM_EFER_LMA))
196                 efer &= ~KVM_EFER_LME;
197
198         vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
199         vcpu->shadow_efer = efer;
200 }
201
202 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
203 {
204         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
205                                                 SVM_EVTINJ_VALID_ERR |
206                                                 SVM_EVTINJ_TYPE_EXEPT |
207                                                 GP_VECTOR;
208         vcpu->svm->vmcb->control.event_inj_err = error_code;
209 }
210
211 static void inject_ud(struct kvm_vcpu *vcpu)
212 {
213         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
214                                                 SVM_EVTINJ_TYPE_EXEPT |
215                                                 UD_VECTOR;
216 }
217
218 static int is_page_fault(uint32_t info)
219 {
220         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
221         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
222 }
223
224 static int is_external_interrupt(u32 info)
225 {
226         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
227         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
228 }
229
230 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
231 {
232         if (!vcpu->svm->next_rip) {
233                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
234                 return;
235         }
236         if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
237                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
238                        __FUNCTION__,
239                        vcpu->svm->vmcb->save.rip,
240                        vcpu->svm->next_rip);
241         }
242
243         vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
244         vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
245
246         vcpu->interrupt_window_open = 1;
247 }
248
249 static int has_svm(void)
250 {
251         uint32_t eax, ebx, ecx, edx;
252
253         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
254                 printk(KERN_INFO "has_svm: not amd\n");
255                 return 0;
256         }
257
258         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
259         if (eax < SVM_CPUID_FUNC) {
260                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
261                 return 0;
262         }
263
264         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
265         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
266                 printk(KERN_DEBUG "has_svm: svm not available\n");
267                 return 0;
268         }
269         return 1;
270 }
271
272 static void svm_hardware_disable(void *garbage)
273 {
274         struct svm_cpu_data *svm_data
275                 = per_cpu(svm_data, raw_smp_processor_id());
276
277         if (svm_data) {
278                 uint64_t efer;
279
280                 wrmsrl(MSR_VM_HSAVE_PA, 0);
281                 rdmsrl(MSR_EFER, efer);
282                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
283                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
284                 __free_page(svm_data->save_area);
285                 kfree(svm_data);
286         }
287 }
288
289 static void svm_hardware_enable(void *garbage)
290 {
291
292         struct svm_cpu_data *svm_data;
293         uint64_t efer;
294 #ifdef CONFIG_X86_64
295         struct desc_ptr gdt_descr;
296 #else
297         struct Xgt_desc_struct gdt_descr;
298 #endif
299         struct desc_struct *gdt;
300         int me = raw_smp_processor_id();
301
302         if (!has_svm()) {
303                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
304                 return;
305         }
306         svm_data = per_cpu(svm_data, me);
307
308         if (!svm_data) {
309                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
310                        me);
311                 return;
312         }
313
314         svm_data->asid_generation = 1;
315         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
316         svm_data->next_asid = svm_data->max_asid + 1;
317         svm_features = cpuid_edx(SVM_CPUID_FUNC);
318
319         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
320         gdt = (struct desc_struct *)gdt_descr.address;
321         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
322
323         rdmsrl(MSR_EFER, efer);
324         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
325
326         wrmsrl(MSR_VM_HSAVE_PA,
327                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
328 }
329
330 static int svm_cpu_init(int cpu)
331 {
332         struct svm_cpu_data *svm_data;
333         int r;
334
335         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
336         if (!svm_data)
337                 return -ENOMEM;
338         svm_data->cpu = cpu;
339         svm_data->save_area = alloc_page(GFP_KERNEL);
340         r = -ENOMEM;
341         if (!svm_data->save_area)
342                 goto err_1;
343
344         per_cpu(svm_data, cpu) = svm_data;
345
346         return 0;
347
348 err_1:
349         kfree(svm_data);
350         return r;
351
352 }
353
354 static int set_msr_interception(u32 *msrpm, unsigned msr,
355                                 int read, int write)
356 {
357         int i;
358
359         for (i = 0; i < NUM_MSR_MAPS; i++) {
360                 if (msr >= msrpm_ranges[i] &&
361                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
362                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
363                                           msrpm_ranges[i]) * 2;
364
365                         u32 *base = msrpm + (msr_offset / 32);
366                         u32 msr_shift = msr_offset % 32;
367                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
368                         *base = (*base & ~(0x3 << msr_shift)) |
369                                 (mask << msr_shift);
370                         return 1;
371                 }
372         }
373         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
374         return 0;
375 }
376
377 static __init int svm_hardware_setup(void)
378 {
379         int cpu;
380         struct page *iopm_pages;
381         struct page *msrpm_pages;
382         void *iopm_va, *msrpm_va;
383         int r;
384
385         kvm_emulator_want_group7_invlpg();
386
387         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
388
389         if (!iopm_pages)
390                 return -ENOMEM;
391
392         iopm_va = page_address(iopm_pages);
393         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
394         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
395         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
396
397
398         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
399
400         r = -ENOMEM;
401         if (!msrpm_pages)
402                 goto err_1;
403
404         msrpm_va = page_address(msrpm_pages);
405         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
406         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
407
408 #ifdef CONFIG_X86_64
409         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
410         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
411         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
412         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
413         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
414         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
415 #endif
416         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
417         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
418         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
419         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
420
421         for_each_online_cpu(cpu) {
422                 r = svm_cpu_init(cpu);
423                 if (r)
424                         goto err_2;
425         }
426         return 0;
427
428 err_2:
429         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
430         msrpm_base = 0;
431 err_1:
432         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
433         iopm_base = 0;
434         return r;
435 }
436
437 static __exit void svm_hardware_unsetup(void)
438 {
439         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
440         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
441         iopm_base = msrpm_base = 0;
442 }
443
444 static void init_seg(struct vmcb_seg *seg)
445 {
446         seg->selector = 0;
447         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
448                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
449         seg->limit = 0xffff;
450         seg->base = 0;
451 }
452
453 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
454 {
455         seg->selector = 0;
456         seg->attrib = SVM_SELECTOR_P_MASK | type;
457         seg->limit = 0xffff;
458         seg->base = 0;
459 }
460
461 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
462 {
463         return 0;
464 }
465
466 static void init_vmcb(struct vmcb *vmcb)
467 {
468         struct vmcb_control_area *control = &vmcb->control;
469         struct vmcb_save_area *save = &vmcb->save;
470
471         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
472                                         INTERCEPT_CR3_MASK |
473                                         INTERCEPT_CR4_MASK;
474
475         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
476                                         INTERCEPT_CR3_MASK |
477                                         INTERCEPT_CR4_MASK;
478
479         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
480                                         INTERCEPT_DR1_MASK |
481                                         INTERCEPT_DR2_MASK |
482                                         INTERCEPT_DR3_MASK;
483
484         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
485                                         INTERCEPT_DR1_MASK |
486                                         INTERCEPT_DR2_MASK |
487                                         INTERCEPT_DR3_MASK |
488                                         INTERCEPT_DR5_MASK |
489                                         INTERCEPT_DR7_MASK;
490
491         control->intercept_exceptions = 1 << PF_VECTOR;
492
493
494         control->intercept =    (1ULL << INTERCEPT_INTR) |
495                                 (1ULL << INTERCEPT_NMI) |
496                                 (1ULL << INTERCEPT_SMI) |
497                 /*
498                  * selective cr0 intercept bug?
499                  *      0:   0f 22 d8                mov    %eax,%cr3
500                  *      3:   0f 20 c0                mov    %cr0,%eax
501                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
502                  *      b:   0f 22 c0                mov    %eax,%cr0
503                  * set cr3 ->interception
504                  * get cr0 ->interception
505                  * set cr0 -> no interception
506                  */
507                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
508                                 (1ULL << INTERCEPT_CPUID) |
509                                 (1ULL << INTERCEPT_HLT) |
510                                 (1ULL << INTERCEPT_INVLPGA) |
511                                 (1ULL << INTERCEPT_IOIO_PROT) |
512                                 (1ULL << INTERCEPT_MSR_PROT) |
513                                 (1ULL << INTERCEPT_TASK_SWITCH) |
514                                 (1ULL << INTERCEPT_SHUTDOWN) |
515                                 (1ULL << INTERCEPT_VMRUN) |
516                                 (1ULL << INTERCEPT_VMMCALL) |
517                                 (1ULL << INTERCEPT_VMLOAD) |
518                                 (1ULL << INTERCEPT_VMSAVE) |
519                                 (1ULL << INTERCEPT_STGI) |
520                                 (1ULL << INTERCEPT_CLGI) |
521                                 (1ULL << INTERCEPT_SKINIT) |
522                                 (1ULL << INTERCEPT_MONITOR) |
523                                 (1ULL << INTERCEPT_MWAIT);
524
525         control->iopm_base_pa = iopm_base;
526         control->msrpm_base_pa = msrpm_base;
527         control->tsc_offset = 0;
528         control->int_ctl = V_INTR_MASKING_MASK;
529
530         init_seg(&save->es);
531         init_seg(&save->ss);
532         init_seg(&save->ds);
533         init_seg(&save->fs);
534         init_seg(&save->gs);
535
536         save->cs.selector = 0xf000;
537         /* Executable/Readable Code Segment */
538         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
539                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
540         save->cs.limit = 0xffff;
541         /*
542          * cs.base should really be 0xffff0000, but vmx can't handle that, so
543          * be consistent with it.
544          *
545          * Replace when we have real mode working for vmx.
546          */
547         save->cs.base = 0xf0000;
548
549         save->gdtr.limit = 0xffff;
550         save->idtr.limit = 0xffff;
551
552         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
553         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
554
555         save->efer = MSR_EFER_SVME_MASK;
556
557         save->dr6 = 0xffff0ff0;
558         save->dr7 = 0x400;
559         save->rflags = 2;
560         save->rip = 0x0000fff0;
561
562         /*
563          * cr0 val on cpu init should be 0x60000010, we enable cpu
564          * cache by default. the orderly way is to enable cache in bios.
565          */
566         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
567         save->cr4 = CR4_PAE_MASK;
568         /* rdx = ?? */
569 }
570
571 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
572 {
573         struct page *page;
574         int r;
575
576         r = -ENOMEM;
577         vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
578         if (!vcpu->svm)
579                 goto out1;
580         page = alloc_page(GFP_KERNEL);
581         if (!page)
582                 goto out2;
583
584         vcpu->svm->vmcb = page_address(page);
585         clear_page(vcpu->svm->vmcb);
586         vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
587         vcpu->svm->asid_generation = 0;
588         memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
589         init_vmcb(vcpu->svm->vmcb);
590
591         fx_init(vcpu);
592         vcpu->fpu_active = 1;
593         vcpu->apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
594         if (vcpu->vcpu_id == 0)
595                 vcpu->apic_base |= MSR_IA32_APICBASE_BSP;
596
597         return 0;
598
599 out2:
600         kfree(vcpu->svm);
601 out1:
602         return r;
603 }
604
605 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
606 {
607         if (!vcpu->svm)
608                 return;
609         if (vcpu->svm->vmcb)
610                 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
611         kfree(vcpu->svm);
612 }
613
614 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
615 {
616         int cpu, i;
617
618         cpu = get_cpu();
619         if (unlikely(cpu != vcpu->cpu)) {
620                 u64 tsc_this, delta;
621
622                 /*
623                  * Make sure that the guest sees a monotonically
624                  * increasing TSC.
625                  */
626                 rdtscll(tsc_this);
627                 delta = vcpu->host_tsc - tsc_this;
628                 vcpu->svm->vmcb->control.tsc_offset += delta;
629                 vcpu->cpu = cpu;
630         }
631
632         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
633                 rdmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
634 }
635
636 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
637 {
638         int i;
639
640         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
641                 wrmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
642
643         rdtscll(vcpu->host_tsc);
644         put_cpu();
645 }
646
647 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
648 {
649 }
650
651 static void svm_cache_regs(struct kvm_vcpu *vcpu)
652 {
653         vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
654         vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
655         vcpu->rip = vcpu->svm->vmcb->save.rip;
656 }
657
658 static void svm_decache_regs(struct kvm_vcpu *vcpu)
659 {
660         vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
661         vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
662         vcpu->svm->vmcb->save.rip = vcpu->rip;
663 }
664
665 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
666 {
667         return vcpu->svm->vmcb->save.rflags;
668 }
669
670 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
671 {
672         vcpu->svm->vmcb->save.rflags = rflags;
673 }
674
675 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
676 {
677         struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
678
679         switch (seg) {
680         case VCPU_SREG_CS: return &save->cs;
681         case VCPU_SREG_DS: return &save->ds;
682         case VCPU_SREG_ES: return &save->es;
683         case VCPU_SREG_FS: return &save->fs;
684         case VCPU_SREG_GS: return &save->gs;
685         case VCPU_SREG_SS: return &save->ss;
686         case VCPU_SREG_TR: return &save->tr;
687         case VCPU_SREG_LDTR: return &save->ldtr;
688         }
689         BUG();
690         return NULL;
691 }
692
693 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
694 {
695         struct vmcb_seg *s = svm_seg(vcpu, seg);
696
697         return s->base;
698 }
699
700 static void svm_get_segment(struct kvm_vcpu *vcpu,
701                             struct kvm_segment *var, int seg)
702 {
703         struct vmcb_seg *s = svm_seg(vcpu, seg);
704
705         var->base = s->base;
706         var->limit = s->limit;
707         var->selector = s->selector;
708         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
709         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
710         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
711         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
712         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
713         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
714         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
715         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
716         var->unusable = !var->present;
717 }
718
719 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
720 {
721         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
722
723         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
724         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
725 }
726
727 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
728 {
729         dt->limit = vcpu->svm->vmcb->save.idtr.limit;
730         dt->base = vcpu->svm->vmcb->save.idtr.base;
731 }
732
733 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
734 {
735         vcpu->svm->vmcb->save.idtr.limit = dt->limit;
736         vcpu->svm->vmcb->save.idtr.base = dt->base ;
737 }
738
739 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
740 {
741         dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
742         dt->base = vcpu->svm->vmcb->save.gdtr.base;
743 }
744
745 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
746 {
747         vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
748         vcpu->svm->vmcb->save.gdtr.base = dt->base ;
749 }
750
751 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
752 {
753 }
754
755 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
756 {
757 #ifdef CONFIG_X86_64
758         if (vcpu->shadow_efer & KVM_EFER_LME) {
759                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
760                         vcpu->shadow_efer |= KVM_EFER_LMA;
761                         vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
762                 }
763
764                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
765                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
766                         vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
767                 }
768         }
769 #endif
770         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
771                 vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
772                 vcpu->fpu_active = 1;
773         }
774
775         vcpu->cr0 = cr0;
776         cr0 |= X86_CR0_PG | X86_CR0_WP;
777         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
778         vcpu->svm->vmcb->save.cr0 = cr0;
779 }
780
781 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
782 {
783        vcpu->cr4 = cr4;
784        vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
785 }
786
787 static void svm_set_segment(struct kvm_vcpu *vcpu,
788                             struct kvm_segment *var, int seg)
789 {
790         struct vmcb_seg *s = svm_seg(vcpu, seg);
791
792         s->base = var->base;
793         s->limit = var->limit;
794         s->selector = var->selector;
795         if (var->unusable)
796                 s->attrib = 0;
797         else {
798                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
799                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
800                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
801                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
802                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
803                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
804                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
805                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
806         }
807         if (seg == VCPU_SREG_CS)
808                 vcpu->svm->vmcb->save.cpl
809                         = (vcpu->svm->vmcb->save.cs.attrib
810                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
811
812 }
813
814 /* FIXME:
815
816         vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
817         vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
818
819 */
820
821 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
822 {
823         return -EOPNOTSUPP;
824 }
825
826 static void load_host_msrs(struct kvm_vcpu *vcpu)
827 {
828 #ifdef CONFIG_X86_64
829         wrmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
830 #endif
831 }
832
833 static void save_host_msrs(struct kvm_vcpu *vcpu)
834 {
835 #ifdef CONFIG_X86_64
836         rdmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
837 #endif
838 }
839
840 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
841 {
842         if (svm_data->next_asid > svm_data->max_asid) {
843                 ++svm_data->asid_generation;
844                 svm_data->next_asid = 1;
845                 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
846         }
847
848         vcpu->cpu = svm_data->cpu;
849         vcpu->svm->asid_generation = svm_data->asid_generation;
850         vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
851 }
852
853 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
854 {
855         invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
856 }
857
858 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
859 {
860         return vcpu->svm->db_regs[dr];
861 }
862
863 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
864                        int *exception)
865 {
866         *exception = 0;
867
868         if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
869                 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
870                 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
871                 *exception = DB_VECTOR;
872                 return;
873         }
874
875         switch (dr) {
876         case 0 ... 3:
877                 vcpu->svm->db_regs[dr] = value;
878                 return;
879         case 4 ... 5:
880                 if (vcpu->cr4 & CR4_DE_MASK) {
881                         *exception = UD_VECTOR;
882                         return;
883                 }
884         case 7: {
885                 if (value & ~((1ULL << 32) - 1)) {
886                         *exception = GP_VECTOR;
887                         return;
888                 }
889                 vcpu->svm->vmcb->save.dr7 = value;
890                 return;
891         }
892         default:
893                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
894                        __FUNCTION__, dr);
895                 *exception = UD_VECTOR;
896                 return;
897         }
898 }
899
900 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
901 {
902         u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
903         u64 fault_address;
904         u32 error_code;
905         enum emulation_result er;
906         int r;
907
908         if (is_external_interrupt(exit_int_info))
909                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
910
911         spin_lock(&vcpu->kvm->lock);
912
913         fault_address  = vcpu->svm->vmcb->control.exit_info_2;
914         error_code = vcpu->svm->vmcb->control.exit_info_1;
915         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
916         if (r < 0) {
917                 spin_unlock(&vcpu->kvm->lock);
918                 return r;
919         }
920         if (!r) {
921                 spin_unlock(&vcpu->kvm->lock);
922                 return 1;
923         }
924         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
925         spin_unlock(&vcpu->kvm->lock);
926
927         switch (er) {
928         case EMULATE_DONE:
929                 return 1;
930         case EMULATE_DO_MMIO:
931                 ++vcpu->stat.mmio_exits;
932                 kvm_run->exit_reason = KVM_EXIT_MMIO;
933                 return 0;
934         case EMULATE_FAIL:
935                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
936                 break;
937         default:
938                 BUG();
939         }
940
941         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
942         return 0;
943 }
944
945 static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
946 {
947        vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
948        if (!(vcpu->cr0 & X86_CR0_TS))
949                vcpu->svm->vmcb->save.cr0 &= ~X86_CR0_TS;
950        vcpu->fpu_active = 1;
951
952        return 1;
953 }
954
955 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
956 {
957         /*
958          * VMCB is undefined after a SHUTDOWN intercept
959          * so reinitialize it.
960          */
961         clear_page(vcpu->svm->vmcb);
962         init_vmcb(vcpu->svm->vmcb);
963
964         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
965         return 0;
966 }
967
968 static int io_get_override(struct kvm_vcpu *vcpu,
969                           struct vmcb_seg **seg,
970                           int *addr_override)
971 {
972         u8 inst[MAX_INST_SIZE];
973         unsigned ins_length;
974         gva_t rip;
975         int i;
976
977         rip =  vcpu->svm->vmcb->save.rip;
978         ins_length = vcpu->svm->next_rip - rip;
979         rip += vcpu->svm->vmcb->save.cs.base;
980
981         if (ins_length > MAX_INST_SIZE)
982                 printk(KERN_DEBUG
983                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
984                        "next rip 0x%llx ins_length %u\n",
985                        __FUNCTION__,
986                        vcpu->svm->vmcb->save.cs.base,
987                        vcpu->svm->vmcb->save.rip,
988                        vcpu->svm->vmcb->control.exit_info_2,
989                        ins_length);
990
991         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
992                 /* #PF */
993                 return 0;
994
995         *addr_override = 0;
996         *seg = NULL;
997         for (i = 0; i < ins_length; i++)
998                 switch (inst[i]) {
999                 case 0xf0:
1000                 case 0xf2:
1001                 case 0xf3:
1002                 case 0x66:
1003                         continue;
1004                 case 0x67:
1005                         *addr_override = 1;
1006                         continue;
1007                 case 0x2e:
1008                         *seg = &vcpu->svm->vmcb->save.cs;
1009                         continue;
1010                 case 0x36:
1011                         *seg = &vcpu->svm->vmcb->save.ss;
1012                         continue;
1013                 case 0x3e:
1014                         *seg = &vcpu->svm->vmcb->save.ds;
1015                         continue;
1016                 case 0x26:
1017                         *seg = &vcpu->svm->vmcb->save.es;
1018                         continue;
1019                 case 0x64:
1020                         *seg = &vcpu->svm->vmcb->save.fs;
1021                         continue;
1022                 case 0x65:
1023                         *seg = &vcpu->svm->vmcb->save.gs;
1024                         continue;
1025                 default:
1026                         return 1;
1027                 }
1028         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1029         return 0;
1030 }
1031
1032 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
1033 {
1034         unsigned long addr_mask;
1035         unsigned long *reg;
1036         struct vmcb_seg *seg;
1037         int addr_override;
1038         struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
1039         u16 cs_attrib = save_area->cs.attrib;
1040         unsigned addr_size = get_addr_size(vcpu);
1041
1042         if (!io_get_override(vcpu, &seg, &addr_override))
1043                 return 0;
1044
1045         if (addr_override)
1046                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1047
1048         if (ins) {
1049                 reg = &vcpu->regs[VCPU_REGS_RDI];
1050                 seg = &vcpu->svm->vmcb->save.es;
1051         } else {
1052                 reg = &vcpu->regs[VCPU_REGS_RSI];
1053                 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
1054         }
1055
1056         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1057
1058         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1059             !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1060                 *address = (*reg & addr_mask);
1061                 return addr_mask;
1062         }
1063
1064         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1065                 svm_inject_gp(vcpu, 0);
1066                 return 0;
1067         }
1068
1069         *address = (*reg & addr_mask) + seg->base;
1070         return addr_mask;
1071 }
1072
1073 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1074 {
1075         u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
1076         int size, down, in, string, rep;
1077         unsigned port;
1078         unsigned long count;
1079         gva_t address = 0;
1080
1081         ++vcpu->stat.io_exits;
1082
1083         vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
1084
1085         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1086         port = io_info >> 16;
1087         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1088         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1089         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1090         count = 1;
1091         down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1092
1093         if (string) {
1094                 unsigned addr_mask;
1095
1096                 addr_mask = io_adress(vcpu, in, &address);
1097                 if (!addr_mask) {
1098                         printk(KERN_DEBUG "%s: get io address failed\n",
1099                                __FUNCTION__);
1100                         return 1;
1101                 }
1102
1103                 if (rep)
1104                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1105         }
1106         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1107                              address, rep, port);
1108 }
1109
1110 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1111 {
1112         return 1;
1113 }
1114
1115 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1116 {
1117         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1118         skip_emulated_instruction(vcpu);
1119         return kvm_emulate_halt(vcpu);
1120 }
1121
1122 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1123 {
1124         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
1125         skip_emulated_instruction(vcpu);
1126         return kvm_hypercall(vcpu, kvm_run);
1127 }
1128
1129 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1130 {
1131         inject_ud(vcpu);
1132         return 1;
1133 }
1134
1135 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1136 {
1137         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1138         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1139         return 0;
1140 }
1141
1142 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1143 {
1144         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1145         kvm_emulate_cpuid(vcpu);
1146         return 1;
1147 }
1148
1149 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1150 {
1151         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1152                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1153         return 1;
1154 }
1155
1156 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1157 {
1158         switch (ecx) {
1159         case MSR_IA32_TIME_STAMP_COUNTER: {
1160                 u64 tsc;
1161
1162                 rdtscll(tsc);
1163                 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1164                 break;
1165         }
1166         case MSR_K6_STAR:
1167                 *data = vcpu->svm->vmcb->save.star;
1168                 break;
1169 #ifdef CONFIG_X86_64
1170         case MSR_LSTAR:
1171                 *data = vcpu->svm->vmcb->save.lstar;
1172                 break;
1173         case MSR_CSTAR:
1174                 *data = vcpu->svm->vmcb->save.cstar;
1175                 break;
1176         case MSR_KERNEL_GS_BASE:
1177                 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1178                 break;
1179         case MSR_SYSCALL_MASK:
1180                 *data = vcpu->svm->vmcb->save.sfmask;
1181                 break;
1182 #endif
1183         case MSR_IA32_SYSENTER_CS:
1184                 *data = vcpu->svm->vmcb->save.sysenter_cs;
1185                 break;
1186         case MSR_IA32_SYSENTER_EIP:
1187                 *data = vcpu->svm->vmcb->save.sysenter_eip;
1188                 break;
1189         case MSR_IA32_SYSENTER_ESP:
1190                 *data = vcpu->svm->vmcb->save.sysenter_esp;
1191                 break;
1192         default:
1193                 return kvm_get_msr_common(vcpu, ecx, data);
1194         }
1195         return 0;
1196 }
1197
1198 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1199 {
1200         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1201         u64 data;
1202
1203         if (svm_get_msr(vcpu, ecx, &data))
1204                 svm_inject_gp(vcpu, 0);
1205         else {
1206                 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1207                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1208                 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1209                 skip_emulated_instruction(vcpu);
1210         }
1211         return 1;
1212 }
1213
1214 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1215 {
1216         switch (ecx) {
1217         case MSR_IA32_TIME_STAMP_COUNTER: {
1218                 u64 tsc;
1219
1220                 rdtscll(tsc);
1221                 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1222                 break;
1223         }
1224         case MSR_K6_STAR:
1225                 vcpu->svm->vmcb->save.star = data;
1226                 break;
1227 #ifdef CONFIG_X86_64
1228         case MSR_LSTAR:
1229                 vcpu->svm->vmcb->save.lstar = data;
1230                 break;
1231         case MSR_CSTAR:
1232                 vcpu->svm->vmcb->save.cstar = data;
1233                 break;
1234         case MSR_KERNEL_GS_BASE:
1235                 vcpu->svm->vmcb->save.kernel_gs_base = data;
1236                 break;
1237         case MSR_SYSCALL_MASK:
1238                 vcpu->svm->vmcb->save.sfmask = data;
1239                 break;
1240 #endif
1241         case MSR_IA32_SYSENTER_CS:
1242                 vcpu->svm->vmcb->save.sysenter_cs = data;
1243                 break;
1244         case MSR_IA32_SYSENTER_EIP:
1245                 vcpu->svm->vmcb->save.sysenter_eip = data;
1246                 break;
1247         case MSR_IA32_SYSENTER_ESP:
1248                 vcpu->svm->vmcb->save.sysenter_esp = data;
1249                 break;
1250         default:
1251                 return kvm_set_msr_common(vcpu, ecx, data);
1252         }
1253         return 0;
1254 }
1255
1256 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1257 {
1258         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1259         u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1260                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1261         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1262         if (svm_set_msr(vcpu, ecx, data))
1263                 svm_inject_gp(vcpu, 0);
1264         else
1265                 skip_emulated_instruction(vcpu);
1266         return 1;
1267 }
1268
1269 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1270 {
1271         if (vcpu->svm->vmcb->control.exit_info_1)
1272                 return wrmsr_interception(vcpu, kvm_run);
1273         else
1274                 return rdmsr_interception(vcpu, kvm_run);
1275 }
1276
1277 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1278                                    struct kvm_run *kvm_run)
1279 {
1280         /*
1281          * If the user space waits to inject interrupts, exit as soon as
1282          * possible
1283          */
1284         if (kvm_run->request_interrupt_window &&
1285             !vcpu->irq_summary) {
1286                 ++vcpu->stat.irq_window_exits;
1287                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1288                 return 0;
1289         }
1290
1291         return 1;
1292 }
1293
1294 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1295                                       struct kvm_run *kvm_run) = {
1296         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1297         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1298         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1299         /* for now: */
1300         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1301         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1302         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1303         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1304         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1305         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1306         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1307         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1308         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1309         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1310         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1311         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1312         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1313         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1314         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1315         [SVM_EXIT_INTR]                         = nop_on_interception,
1316         [SVM_EXIT_NMI]                          = nop_on_interception,
1317         [SVM_EXIT_SMI]                          = nop_on_interception,
1318         [SVM_EXIT_INIT]                         = nop_on_interception,
1319         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1320         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1321         [SVM_EXIT_CPUID]                        = cpuid_interception,
1322         [SVM_EXIT_HLT]                          = halt_interception,
1323         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1324         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1325         [SVM_EXIT_IOIO]                         = io_interception,
1326         [SVM_EXIT_MSR]                          = msr_interception,
1327         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1328         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1329         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1330         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1331         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1332         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1333         [SVM_EXIT_STGI]                         = invalid_op_interception,
1334         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1335         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1336         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1337         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1338 };
1339
1340
1341 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1342 {
1343         u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1344
1345         if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1346             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1347                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1348                        "exit_code 0x%x\n",
1349                        __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1350                        exit_code);
1351
1352         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1353             || svm_exit_handlers[exit_code] == 0) {
1354                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1355                 kvm_run->hw.hardware_exit_reason = exit_code;
1356                 return 0;
1357         }
1358
1359         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1360 }
1361
1362 static void reload_tss(struct kvm_vcpu *vcpu)
1363 {
1364         int cpu = raw_smp_processor_id();
1365
1366         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1367         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1368         load_TR_desc();
1369 }
1370
1371 static void pre_svm_run(struct kvm_vcpu *vcpu)
1372 {
1373         int cpu = raw_smp_processor_id();
1374
1375         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1376
1377         vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1378         if (vcpu->cpu != cpu ||
1379             vcpu->svm->asid_generation != svm_data->asid_generation)
1380                 new_asid(vcpu, svm_data);
1381 }
1382
1383
1384 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1385 {
1386         struct vmcb_control_area *control;
1387
1388         control = &vcpu->svm->vmcb->control;
1389         control->int_vector = pop_irq(vcpu);
1390         control->int_ctl &= ~V_INTR_PRIO_MASK;
1391         control->int_ctl |= V_IRQ_MASK |
1392                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1393 }
1394
1395 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1396 {
1397         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1398
1399         if (control->int_ctl & V_IRQ_MASK) {
1400                 control->int_ctl &= ~V_IRQ_MASK;
1401                 push_irq(vcpu, control->int_vector);
1402         }
1403
1404         vcpu->interrupt_window_open =
1405                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1406 }
1407
1408 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1409                                        struct kvm_run *kvm_run)
1410 {
1411         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1412
1413         vcpu->interrupt_window_open =
1414                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1415                  (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1416
1417         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1418                 /*
1419                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1420                  */
1421                 kvm_do_inject_irq(vcpu);
1422
1423         /*
1424          * Interrupts blocked.  Wait for unblock.
1425          */
1426         if (!vcpu->interrupt_window_open &&
1427             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1428                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1429         } else
1430                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1431 }
1432
1433 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1434                               struct kvm_run *kvm_run)
1435 {
1436         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1437                                                   vcpu->irq_summary == 0);
1438         kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1439         kvm_run->cr8 = vcpu->cr8;
1440         kvm_run->apic_base = vcpu->apic_base;
1441 }
1442
1443 /*
1444  * Check if userspace requested an interrupt window, and that the
1445  * interrupt window is open.
1446  *
1447  * No need to exit to userspace if we already have an interrupt queued.
1448  */
1449 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1450                                           struct kvm_run *kvm_run)
1451 {
1452         return (!vcpu->irq_summary &&
1453                 kvm_run->request_interrupt_window &&
1454                 vcpu->interrupt_window_open &&
1455                 (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1456 }
1457
1458 static void save_db_regs(unsigned long *db_regs)
1459 {
1460         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1461         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1462         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1463         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1464 }
1465
1466 static void load_db_regs(unsigned long *db_regs)
1467 {
1468         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1469         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1470         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1471         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1472 }
1473
1474 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1475 {
1476         force_new_asid(vcpu);
1477 }
1478
1479 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1480 {
1481         u16 fs_selector;
1482         u16 gs_selector;
1483         u16 ldt_selector;
1484         int r;
1485
1486 again:
1487         r = kvm_mmu_reload(vcpu);
1488         if (unlikely(r))
1489                 return r;
1490
1491         if (!vcpu->mmio_read_completed)
1492                 do_interrupt_requests(vcpu, kvm_run);
1493
1494         clgi();
1495
1496         vcpu->guest_mode = 1;
1497         if (vcpu->requests)
1498                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1499                     svm_flush_tlb(vcpu);
1500
1501         pre_svm_run(vcpu);
1502
1503         save_host_msrs(vcpu);
1504         fs_selector = read_fs();
1505         gs_selector = read_gs();
1506         ldt_selector = read_ldt();
1507         vcpu->svm->host_cr2 = kvm_read_cr2();
1508         vcpu->svm->host_dr6 = read_dr6();
1509         vcpu->svm->host_dr7 = read_dr7();
1510         vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1511
1512         if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1513                 write_dr7(0);
1514                 save_db_regs(vcpu->svm->host_db_regs);
1515                 load_db_regs(vcpu->svm->db_regs);
1516         }
1517
1518         if (vcpu->fpu_active) {
1519                 fx_save(vcpu->host_fx_image);
1520                 fx_restore(vcpu->guest_fx_image);
1521         }
1522
1523         asm volatile (
1524 #ifdef CONFIG_X86_64
1525                 "push %%rbx; push %%rcx; push %%rdx;"
1526                 "push %%rsi; push %%rdi; push %%rbp;"
1527                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1528                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1529 #else
1530                 "push %%ebx; push %%ecx; push %%edx;"
1531                 "push %%esi; push %%edi; push %%ebp;"
1532 #endif
1533
1534 #ifdef CONFIG_X86_64
1535                 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1536                 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1537                 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1538                 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1539                 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1540                 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1541                 "mov %c[r8](%[vcpu]),  %%r8  \n\t"
1542                 "mov %c[r9](%[vcpu]),  %%r9  \n\t"
1543                 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1544                 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1545                 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1546                 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1547                 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1548                 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1549 #else
1550                 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1551                 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1552                 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1553                 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1554                 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1555                 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1556 #endif
1557
1558 #ifdef CONFIG_X86_64
1559                 /* Enter guest mode */
1560                 "push %%rax \n\t"
1561                 "mov %c[svm](%[vcpu]), %%rax \n\t"
1562                 "mov %c[vmcb](%%rax), %%rax \n\t"
1563                 SVM_VMLOAD "\n\t"
1564                 SVM_VMRUN "\n\t"
1565                 SVM_VMSAVE "\n\t"
1566                 "pop %%rax \n\t"
1567 #else
1568                 /* Enter guest mode */
1569                 "push %%eax \n\t"
1570                 "mov %c[svm](%[vcpu]), %%eax \n\t"
1571                 "mov %c[vmcb](%%eax), %%eax \n\t"
1572                 SVM_VMLOAD "\n\t"
1573                 SVM_VMRUN "\n\t"
1574                 SVM_VMSAVE "\n\t"
1575                 "pop %%eax \n\t"
1576 #endif
1577
1578                 /* Save guest registers, load host registers */
1579 #ifdef CONFIG_X86_64
1580                 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1581                 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1582                 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1583                 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1584                 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1585                 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1586                 "mov %%r8,  %c[r8](%[vcpu]) \n\t"
1587                 "mov %%r9,  %c[r9](%[vcpu]) \n\t"
1588                 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1589                 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1590                 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1591                 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1592                 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1593                 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1594
1595                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1596                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1597                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1598                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1599 #else
1600                 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1601                 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1602                 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1603                 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1604                 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1605                 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1606
1607                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1608                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1609 #endif
1610                 :
1611                 : [vcpu]"a"(vcpu),
1612                   [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1613                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1614                   [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1615                   [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1616                   [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1617                   [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1618                   [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1619                   [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1620 #ifdef CONFIG_X86_64
1621                   ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1622                   [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1623                   [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1624                   [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1625                   [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1626                   [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1627                   [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1628                   [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1629 #endif
1630                 : "cc", "memory" );
1631
1632         vcpu->guest_mode = 0;
1633
1634         if (vcpu->fpu_active) {
1635                 fx_save(vcpu->guest_fx_image);
1636                 fx_restore(vcpu->host_fx_image);
1637         }
1638
1639         if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1640                 load_db_regs(vcpu->svm->host_db_regs);
1641
1642         vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1643
1644         write_dr6(vcpu->svm->host_dr6);
1645         write_dr7(vcpu->svm->host_dr7);
1646         kvm_write_cr2(vcpu->svm->host_cr2);
1647
1648         load_fs(fs_selector);
1649         load_gs(gs_selector);
1650         load_ldt(ldt_selector);
1651         load_host_msrs(vcpu);
1652
1653         reload_tss(vcpu);
1654
1655         /*
1656          * Profile KVM exit RIPs:
1657          */
1658         if (unlikely(prof_on == KVM_PROFILING))
1659                 profile_hit(KVM_PROFILING,
1660                         (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
1661
1662         stgi();
1663
1664         kvm_reput_irq(vcpu);
1665
1666         vcpu->svm->next_rip = 0;
1667
1668         if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1669                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1670                 kvm_run->fail_entry.hardware_entry_failure_reason
1671                         = vcpu->svm->vmcb->control.exit_code;
1672                 post_kvm_run_save(vcpu, kvm_run);
1673                 return 0;
1674         }
1675
1676         r = handle_exit(vcpu, kvm_run);
1677         if (r > 0) {
1678                 if (signal_pending(current)) {
1679                         ++vcpu->stat.signal_exits;
1680                         post_kvm_run_save(vcpu, kvm_run);
1681                         kvm_run->exit_reason = KVM_EXIT_INTR;
1682                         return -EINTR;
1683                 }
1684
1685                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1686                         ++vcpu->stat.request_irq_exits;
1687                         post_kvm_run_save(vcpu, kvm_run);
1688                         kvm_run->exit_reason = KVM_EXIT_INTR;
1689                         return -EINTR;
1690                 }
1691                 kvm_resched(vcpu);
1692                 goto again;
1693         }
1694         post_kvm_run_save(vcpu, kvm_run);
1695         return r;
1696 }
1697
1698 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1699 {
1700         vcpu->svm->vmcb->save.cr3 = root;
1701         force_new_asid(vcpu);
1702
1703         if (vcpu->fpu_active) {
1704                 vcpu->svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1705                 vcpu->svm->vmcb->save.cr0 |= X86_CR0_TS;
1706                 vcpu->fpu_active = 0;
1707         }
1708 }
1709
1710 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1711                                   unsigned long  addr,
1712                                   uint32_t err_code)
1713 {
1714         uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1715
1716         ++vcpu->stat.pf_guest;
1717
1718         if (is_page_fault(exit_int_info)) {
1719
1720                 vcpu->svm->vmcb->control.event_inj_err = 0;
1721                 vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1722                                                         SVM_EVTINJ_VALID_ERR |
1723                                                         SVM_EVTINJ_TYPE_EXEPT |
1724                                                         DF_VECTOR;
1725                 return;
1726         }
1727         vcpu->cr2 = addr;
1728         vcpu->svm->vmcb->save.cr2 = addr;
1729         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1730                                                 SVM_EVTINJ_VALID_ERR |
1731                                                 SVM_EVTINJ_TYPE_EXEPT |
1732                                                 PF_VECTOR;
1733         vcpu->svm->vmcb->control.event_inj_err = err_code;
1734 }
1735
1736
1737 static int is_disabled(void)
1738 {
1739         u64 vm_cr;
1740
1741         rdmsrl(MSR_VM_CR, vm_cr);
1742         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1743                 return 1;
1744
1745         return 0;
1746 }
1747
1748 static void
1749 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1750 {
1751         /*
1752          * Patch in the VMMCALL instruction:
1753          */
1754         hypercall[0] = 0x0f;
1755         hypercall[1] = 0x01;
1756         hypercall[2] = 0xd9;
1757         hypercall[3] = 0xc3;
1758 }
1759
1760 static struct kvm_arch_ops svm_arch_ops = {
1761         .cpu_has_kvm_support = has_svm,
1762         .disabled_by_bios = is_disabled,
1763         .hardware_setup = svm_hardware_setup,
1764         .hardware_unsetup = svm_hardware_unsetup,
1765         .hardware_enable = svm_hardware_enable,
1766         .hardware_disable = svm_hardware_disable,
1767
1768         .vcpu_create = svm_create_vcpu,
1769         .vcpu_free = svm_free_vcpu,
1770
1771         .vcpu_load = svm_vcpu_load,
1772         .vcpu_put = svm_vcpu_put,
1773         .vcpu_decache = svm_vcpu_decache,
1774
1775         .set_guest_debug = svm_guest_debug,
1776         .get_msr = svm_get_msr,
1777         .set_msr = svm_set_msr,
1778         .get_segment_base = svm_get_segment_base,
1779         .get_segment = svm_get_segment,
1780         .set_segment = svm_set_segment,
1781         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1782         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1783         .set_cr0 = svm_set_cr0,
1784         .set_cr3 = svm_set_cr3,
1785         .set_cr4 = svm_set_cr4,
1786         .set_efer = svm_set_efer,
1787         .get_idt = svm_get_idt,
1788         .set_idt = svm_set_idt,
1789         .get_gdt = svm_get_gdt,
1790         .set_gdt = svm_set_gdt,
1791         .get_dr = svm_get_dr,
1792         .set_dr = svm_set_dr,
1793         .cache_regs = svm_cache_regs,
1794         .decache_regs = svm_decache_regs,
1795         .get_rflags = svm_get_rflags,
1796         .set_rflags = svm_set_rflags,
1797
1798         .invlpg = svm_invlpg,
1799         .tlb_flush = svm_flush_tlb,
1800         .inject_page_fault = svm_inject_page_fault,
1801
1802         .inject_gp = svm_inject_gp,
1803
1804         .run = svm_vcpu_run,
1805         .skip_emulated_instruction = skip_emulated_instruction,
1806         .vcpu_setup = svm_vcpu_setup,
1807         .patch_hypercall = svm_patch_hypercall,
1808 };
1809
1810 static int __init svm_init(void)
1811 {
1812         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1813 }
1814
1815 static void __exit svm_exit(void)
1816 {
1817         kvm_exit_arch();
1818 }
1819
1820 module_init(svm_init)
1821 module_exit(svm_exit)