OSDN Git Service

9ebb18d07bde8086b8a8423b53b2c858be8a16c1
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 static struct page *vmx_io_bitmap_a;
38 static struct page *vmx_io_bitmap_b;
39
40 #ifdef CONFIG_X86_64
41 #define HOST_IS_64 1
42 #else
43 #define HOST_IS_64 0
44 #endif
45
46 static struct vmcs_descriptor {
47         int size;
48         int order;
49         u32 revision_id;
50 } vmcs_descriptor;
51
52 #define VMX_SEGMENT_FIELD(seg)                                  \
53         [VCPU_SREG_##seg] = {                                   \
54                 .selector = GUEST_##seg##_SELECTOR,             \
55                 .base = GUEST_##seg##_BASE,                     \
56                 .limit = GUEST_##seg##_LIMIT,                   \
57                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
58         }
59
60 static struct kvm_vmx_segment_field {
61         unsigned selector;
62         unsigned base;
63         unsigned limit;
64         unsigned ar_bytes;
65 } kvm_vmx_segment_fields[] = {
66         VMX_SEGMENT_FIELD(CS),
67         VMX_SEGMENT_FIELD(DS),
68         VMX_SEGMENT_FIELD(ES),
69         VMX_SEGMENT_FIELD(FS),
70         VMX_SEGMENT_FIELD(GS),
71         VMX_SEGMENT_FIELD(SS),
72         VMX_SEGMENT_FIELD(TR),
73         VMX_SEGMENT_FIELD(LDTR),
74 };
75
76 /*
77  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
78  * away by decrementing the array size.
79  */
80 static const u32 vmx_msr_index[] = {
81 #ifdef CONFIG_X86_64
82         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
83 #endif
84         MSR_EFER, MSR_K6_STAR,
85 };
86 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
87
88 #ifdef CONFIG_X86_64
89 static unsigned msr_offset_kernel_gs_base;
90 #define NR_64BIT_MSRS 4
91 /*
92  * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
93  * mechanism (cpu bug AA24)
94  */
95 #define NR_BAD_MSRS 2
96 #else
97 #define NR_64BIT_MSRS 0
98 #define NR_BAD_MSRS 0
99 #endif
100
101 static inline int is_page_fault(u32 intr_info)
102 {
103         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
104                              INTR_INFO_VALID_MASK)) ==
105                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
106 }
107
108 static inline int is_no_device(u32 intr_info)
109 {
110         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
111                              INTR_INFO_VALID_MASK)) ==
112                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
113 }
114
115 static inline int is_external_interrupt(u32 intr_info)
116 {
117         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
118                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
119 }
120
121 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
122 {
123         int i;
124
125         for (i = 0; i < vcpu->nmsrs; ++i)
126                 if (vcpu->guest_msrs[i].index == msr)
127                         return &vcpu->guest_msrs[i];
128         return NULL;
129 }
130
131 static void vmcs_clear(struct vmcs *vmcs)
132 {
133         u64 phys_addr = __pa(vmcs);
134         u8 error;
135
136         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
137                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
138                       : "cc", "memory");
139         if (error)
140                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
141                        vmcs, phys_addr);
142 }
143
144 static void __vcpu_clear(void *arg)
145 {
146         struct kvm_vcpu *vcpu = arg;
147         int cpu = raw_smp_processor_id();
148
149         if (vcpu->cpu == cpu)
150                 vmcs_clear(vcpu->vmcs);
151         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
152                 per_cpu(current_vmcs, cpu) = NULL;
153 }
154
155 static void vcpu_clear(struct kvm_vcpu *vcpu)
156 {
157         if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
158                 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
159         else
160                 __vcpu_clear(vcpu);
161         vcpu->launched = 0;
162 }
163
164 static unsigned long vmcs_readl(unsigned long field)
165 {
166         unsigned long value;
167
168         asm volatile (ASM_VMX_VMREAD_RDX_RAX
169                       : "=a"(value) : "d"(field) : "cc");
170         return value;
171 }
172
173 static u16 vmcs_read16(unsigned long field)
174 {
175         return vmcs_readl(field);
176 }
177
178 static u32 vmcs_read32(unsigned long field)
179 {
180         return vmcs_readl(field);
181 }
182
183 static u64 vmcs_read64(unsigned long field)
184 {
185 #ifdef CONFIG_X86_64
186         return vmcs_readl(field);
187 #else
188         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
189 #endif
190 }
191
192 static noinline void vmwrite_error(unsigned long field, unsigned long value)
193 {
194         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
195                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
196         dump_stack();
197 }
198
199 static void vmcs_writel(unsigned long field, unsigned long value)
200 {
201         u8 error;
202
203         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
204                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
205         if (unlikely(error))
206                 vmwrite_error(field, value);
207 }
208
209 static void vmcs_write16(unsigned long field, u16 value)
210 {
211         vmcs_writel(field, value);
212 }
213
214 static void vmcs_write32(unsigned long field, u32 value)
215 {
216         vmcs_writel(field, value);
217 }
218
219 static void vmcs_write64(unsigned long field, u64 value)
220 {
221 #ifdef CONFIG_X86_64
222         vmcs_writel(field, value);
223 #else
224         vmcs_writel(field, value);
225         asm volatile ("");
226         vmcs_writel(field+1, value >> 32);
227 #endif
228 }
229
230 static void vmcs_clear_bits(unsigned long field, u32 mask)
231 {
232         vmcs_writel(field, vmcs_readl(field) & ~mask);
233 }
234
235 static void vmcs_set_bits(unsigned long field, u32 mask)
236 {
237         vmcs_writel(field, vmcs_readl(field) | mask);
238 }
239
240 /*
241  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
242  * vcpu mutex is already taken.
243  */
244 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
245 {
246         u64 phys_addr = __pa(vcpu->vmcs);
247         int cpu;
248
249         cpu = get_cpu();
250
251         if (vcpu->cpu != cpu)
252                 vcpu_clear(vcpu);
253
254         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
255                 u8 error;
256
257                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
258                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
259                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
260                               : "cc");
261                 if (error)
262                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
263                                vcpu->vmcs, phys_addr);
264         }
265
266         if (vcpu->cpu != cpu) {
267                 struct descriptor_table dt;
268                 unsigned long sysenter_esp;
269
270                 vcpu->cpu = cpu;
271                 /*
272                  * Linux uses per-cpu TSS and GDT, so set these when switching
273                  * processors.
274                  */
275                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
276                 get_gdt(&dt);
277                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
278
279                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
280                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
281         }
282 }
283
284 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
285 {
286         kvm_put_guest_fpu(vcpu);
287         put_cpu();
288 }
289
290 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
291 {
292         vcpu_clear(vcpu);
293 }
294
295 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
296 {
297         return vmcs_readl(GUEST_RFLAGS);
298 }
299
300 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
301 {
302         vmcs_writel(GUEST_RFLAGS, rflags);
303 }
304
305 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
306 {
307         unsigned long rip;
308         u32 interruptibility;
309
310         rip = vmcs_readl(GUEST_RIP);
311         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
312         vmcs_writel(GUEST_RIP, rip);
313
314         /*
315          * We emulated an instruction, so temporary interrupt blocking
316          * should be removed, if set.
317          */
318         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
319         if (interruptibility & 3)
320                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
321                              interruptibility & ~3);
322         vcpu->interrupt_window_open = 1;
323 }
324
325 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
326 {
327         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
328                vmcs_readl(GUEST_RIP));
329         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
330         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
331                      GP_VECTOR |
332                      INTR_TYPE_EXCEPTION |
333                      INTR_INFO_DELIEVER_CODE_MASK |
334                      INTR_INFO_VALID_MASK);
335 }
336
337 /*
338  * Set up the vmcs to automatically save and restore system
339  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
340  * mode, as fiddling with msrs is very expensive.
341  */
342 static void setup_msrs(struct kvm_vcpu *vcpu)
343 {
344         int nr_skip, nr_good_msrs;
345
346         if (is_long_mode(vcpu))
347                 nr_skip = NR_BAD_MSRS;
348         else
349                 nr_skip = NR_64BIT_MSRS;
350         nr_good_msrs = vcpu->nmsrs - nr_skip;
351
352         /*
353          * MSR_K6_STAR is only needed on long mode guests, and only
354          * if efer.sce is enabled.
355          */
356         if (find_msr_entry(vcpu, MSR_K6_STAR)) {
357                 --nr_good_msrs;
358 #ifdef CONFIG_X86_64
359                 if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
360                         ++nr_good_msrs;
361 #endif
362         }
363
364         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
365                     virt_to_phys(vcpu->guest_msrs + nr_skip));
366         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
367                     virt_to_phys(vcpu->guest_msrs + nr_skip));
368         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
369                     virt_to_phys(vcpu->host_msrs + nr_skip));
370         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
371         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
372         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
373 }
374
375 /*
376  * reads and returns guest's timestamp counter "register"
377  * guest_tsc = host_tsc + tsc_offset    -- 21.3
378  */
379 static u64 guest_read_tsc(void)
380 {
381         u64 host_tsc, tsc_offset;
382
383         rdtscll(host_tsc);
384         tsc_offset = vmcs_read64(TSC_OFFSET);
385         return host_tsc + tsc_offset;
386 }
387
388 /*
389  * writes 'guest_tsc' into guest's timestamp counter "register"
390  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
391  */
392 static void guest_write_tsc(u64 guest_tsc)
393 {
394         u64 host_tsc;
395
396         rdtscll(host_tsc);
397         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
398 }
399
400 static void reload_tss(void)
401 {
402 #ifndef CONFIG_X86_64
403
404         /*
405          * VT restores TR but not its size.  Useless.
406          */
407         struct descriptor_table gdt;
408         struct segment_descriptor *descs;
409
410         get_gdt(&gdt);
411         descs = (void *)gdt.base;
412         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
413         load_TR_desc();
414 #endif
415 }
416
417 /*
418  * Reads an msr value (of 'msr_index') into 'pdata'.
419  * Returns 0 on success, non-0 otherwise.
420  * Assumes vcpu_load() was already called.
421  */
422 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
423 {
424         u64 data;
425         struct vmx_msr_entry *msr;
426
427         if (!pdata) {
428                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
429                 return -EINVAL;
430         }
431
432         switch (msr_index) {
433 #ifdef CONFIG_X86_64
434         case MSR_FS_BASE:
435                 data = vmcs_readl(GUEST_FS_BASE);
436                 break;
437         case MSR_GS_BASE:
438                 data = vmcs_readl(GUEST_GS_BASE);
439                 break;
440         case MSR_EFER:
441                 return kvm_get_msr_common(vcpu, msr_index, pdata);
442 #endif
443         case MSR_IA32_TIME_STAMP_COUNTER:
444                 data = guest_read_tsc();
445                 break;
446         case MSR_IA32_SYSENTER_CS:
447                 data = vmcs_read32(GUEST_SYSENTER_CS);
448                 break;
449         case MSR_IA32_SYSENTER_EIP:
450                 data = vmcs_readl(GUEST_SYSENTER_EIP);
451                 break;
452         case MSR_IA32_SYSENTER_ESP:
453                 data = vmcs_readl(GUEST_SYSENTER_ESP);
454                 break;
455         default:
456                 msr = find_msr_entry(vcpu, msr_index);
457                 if (msr) {
458                         data = msr->data;
459                         break;
460                 }
461                 return kvm_get_msr_common(vcpu, msr_index, pdata);
462         }
463
464         *pdata = data;
465         return 0;
466 }
467
468 /*
469  * Writes msr value into into the appropriate "register".
470  * Returns 0 on success, non-0 otherwise.
471  * Assumes vcpu_load() was already called.
472  */
473 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
474 {
475         struct vmx_msr_entry *msr;
476         switch (msr_index) {
477 #ifdef CONFIG_X86_64
478         case MSR_EFER:
479                 return kvm_set_msr_common(vcpu, msr_index, data);
480         case MSR_FS_BASE:
481                 vmcs_writel(GUEST_FS_BASE, data);
482                 break;
483         case MSR_GS_BASE:
484                 vmcs_writel(GUEST_GS_BASE, data);
485                 break;
486         case MSR_LSTAR:
487         case MSR_SYSCALL_MASK:
488                 msr = find_msr_entry(vcpu, msr_index);
489                 if (msr)
490                         msr->data = data;
491                 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
492                 break;
493 #endif
494         case MSR_IA32_SYSENTER_CS:
495                 vmcs_write32(GUEST_SYSENTER_CS, data);
496                 break;
497         case MSR_IA32_SYSENTER_EIP:
498                 vmcs_writel(GUEST_SYSENTER_EIP, data);
499                 break;
500         case MSR_IA32_SYSENTER_ESP:
501                 vmcs_writel(GUEST_SYSENTER_ESP, data);
502                 break;
503         case MSR_IA32_TIME_STAMP_COUNTER:
504                 guest_write_tsc(data);
505                 break;
506         default:
507                 msr = find_msr_entry(vcpu, msr_index);
508                 if (msr) {
509                         msr->data = data;
510                         break;
511                 }
512                 return kvm_set_msr_common(vcpu, msr_index, data);
513                 msr->data = data;
514                 break;
515         }
516
517         return 0;
518 }
519
520 /*
521  * Sync the rsp and rip registers into the vcpu structure.  This allows
522  * registers to be accessed by indexing vcpu->regs.
523  */
524 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
525 {
526         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
527         vcpu->rip = vmcs_readl(GUEST_RIP);
528 }
529
530 /*
531  * Syncs rsp and rip back into the vmcs.  Should be called after possible
532  * modification.
533  */
534 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
535 {
536         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
537         vmcs_writel(GUEST_RIP, vcpu->rip);
538 }
539
540 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
541 {
542         unsigned long dr7 = 0x400;
543         u32 exception_bitmap;
544         int old_singlestep;
545
546         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
547         old_singlestep = vcpu->guest_debug.singlestep;
548
549         vcpu->guest_debug.enabled = dbg->enabled;
550         if (vcpu->guest_debug.enabled) {
551                 int i;
552
553                 dr7 |= 0x200;  /* exact */
554                 for (i = 0; i < 4; ++i) {
555                         if (!dbg->breakpoints[i].enabled)
556                                 continue;
557                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
558                         dr7 |= 2 << (i*2);    /* global enable */
559                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
560                 }
561
562                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
563
564                 vcpu->guest_debug.singlestep = dbg->singlestep;
565         } else {
566                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
567                 vcpu->guest_debug.singlestep = 0;
568         }
569
570         if (old_singlestep && !vcpu->guest_debug.singlestep) {
571                 unsigned long flags;
572
573                 flags = vmcs_readl(GUEST_RFLAGS);
574                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
575                 vmcs_writel(GUEST_RFLAGS, flags);
576         }
577
578         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
579         vmcs_writel(GUEST_DR7, dr7);
580
581         return 0;
582 }
583
584 static __init int cpu_has_kvm_support(void)
585 {
586         unsigned long ecx = cpuid_ecx(1);
587         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
588 }
589
590 static __init int vmx_disabled_by_bios(void)
591 {
592         u64 msr;
593
594         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
595         return (msr & 5) == 1; /* locked but not enabled */
596 }
597
598 static void hardware_enable(void *garbage)
599 {
600         int cpu = raw_smp_processor_id();
601         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
602         u64 old;
603
604         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
605         if ((old & 5) != 5)
606                 /* enable and lock */
607                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
608         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
609         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
610                       : "memory", "cc");
611 }
612
613 static void hardware_disable(void *garbage)
614 {
615         asm volatile (ASM_VMX_VMXOFF : : : "cc");
616 }
617
618 static __init void setup_vmcs_descriptor(void)
619 {
620         u32 vmx_msr_low, vmx_msr_high;
621
622         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
623         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
624         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
625         vmcs_descriptor.revision_id = vmx_msr_low;
626 }
627
628 static struct vmcs *alloc_vmcs_cpu(int cpu)
629 {
630         int node = cpu_to_node(cpu);
631         struct page *pages;
632         struct vmcs *vmcs;
633
634         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
635         if (!pages)
636                 return NULL;
637         vmcs = page_address(pages);
638         memset(vmcs, 0, vmcs_descriptor.size);
639         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
640         return vmcs;
641 }
642
643 static struct vmcs *alloc_vmcs(void)
644 {
645         return alloc_vmcs_cpu(raw_smp_processor_id());
646 }
647
648 static void free_vmcs(struct vmcs *vmcs)
649 {
650         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
651 }
652
653 static void free_kvm_area(void)
654 {
655         int cpu;
656
657         for_each_online_cpu(cpu)
658                 free_vmcs(per_cpu(vmxarea, cpu));
659 }
660
661 extern struct vmcs *alloc_vmcs_cpu(int cpu);
662
663 static __init int alloc_kvm_area(void)
664 {
665         int cpu;
666
667         for_each_online_cpu(cpu) {
668                 struct vmcs *vmcs;
669
670                 vmcs = alloc_vmcs_cpu(cpu);
671                 if (!vmcs) {
672                         free_kvm_area();
673                         return -ENOMEM;
674                 }
675
676                 per_cpu(vmxarea, cpu) = vmcs;
677         }
678         return 0;
679 }
680
681 static __init int hardware_setup(void)
682 {
683         setup_vmcs_descriptor();
684         return alloc_kvm_area();
685 }
686
687 static __exit void hardware_unsetup(void)
688 {
689         free_kvm_area();
690 }
691
692 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
693 {
694         if (vcpu->rmode.active)
695                 vmcs_write32(EXCEPTION_BITMAP, ~0);
696         else
697                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
698 }
699
700 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
701 {
702         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
703
704         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
705                 vmcs_write16(sf->selector, save->selector);
706                 vmcs_writel(sf->base, save->base);
707                 vmcs_write32(sf->limit, save->limit);
708                 vmcs_write32(sf->ar_bytes, save->ar);
709         } else {
710                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
711                         << AR_DPL_SHIFT;
712                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
713         }
714 }
715
716 static void enter_pmode(struct kvm_vcpu *vcpu)
717 {
718         unsigned long flags;
719
720         vcpu->rmode.active = 0;
721
722         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
723         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
724         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
725
726         flags = vmcs_readl(GUEST_RFLAGS);
727         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
728         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
729         vmcs_writel(GUEST_RFLAGS, flags);
730
731         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
732                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
733
734         update_exception_bitmap(vcpu);
735
736         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
737         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
738         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
739         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
740
741         vmcs_write16(GUEST_SS_SELECTOR, 0);
742         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
743
744         vmcs_write16(GUEST_CS_SELECTOR,
745                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
746         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
747 }
748
749 static int rmode_tss_base(struct kvm* kvm)
750 {
751         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
752         return base_gfn << PAGE_SHIFT;
753 }
754
755 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
756 {
757         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
758
759         save->selector = vmcs_read16(sf->selector);
760         save->base = vmcs_readl(sf->base);
761         save->limit = vmcs_read32(sf->limit);
762         save->ar = vmcs_read32(sf->ar_bytes);
763         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
764         vmcs_write32(sf->limit, 0xffff);
765         vmcs_write32(sf->ar_bytes, 0xf3);
766 }
767
768 static void enter_rmode(struct kvm_vcpu *vcpu)
769 {
770         unsigned long flags;
771
772         vcpu->rmode.active = 1;
773
774         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
775         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
776
777         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
778         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
779
780         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
781         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
782
783         flags = vmcs_readl(GUEST_RFLAGS);
784         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
785
786         flags |= IOPL_MASK | X86_EFLAGS_VM;
787
788         vmcs_writel(GUEST_RFLAGS, flags);
789         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
790         update_exception_bitmap(vcpu);
791
792         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
793         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
794         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
795
796         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
797         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
798         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
799                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
800         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
801
802         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
803         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
804         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
805         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
806 }
807
808 #ifdef CONFIG_X86_64
809
810 static void enter_lmode(struct kvm_vcpu *vcpu)
811 {
812         u32 guest_tr_ar;
813
814         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
815         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
816                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
817                        __FUNCTION__);
818                 vmcs_write32(GUEST_TR_AR_BYTES,
819                              (guest_tr_ar & ~AR_TYPE_MASK)
820                              | AR_TYPE_BUSY_64_TSS);
821         }
822
823         vcpu->shadow_efer |= EFER_LMA;
824
825         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
826         vmcs_write32(VM_ENTRY_CONTROLS,
827                      vmcs_read32(VM_ENTRY_CONTROLS)
828                      | VM_ENTRY_CONTROLS_IA32E_MASK);
829 }
830
831 static void exit_lmode(struct kvm_vcpu *vcpu)
832 {
833         vcpu->shadow_efer &= ~EFER_LMA;
834
835         vmcs_write32(VM_ENTRY_CONTROLS,
836                      vmcs_read32(VM_ENTRY_CONTROLS)
837                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
838 }
839
840 #endif
841
842 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
843 {
844         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
845         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
846 }
847
848 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
849 {
850         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
851                 enter_pmode(vcpu);
852
853         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
854                 enter_rmode(vcpu);
855
856 #ifdef CONFIG_X86_64
857         if (vcpu->shadow_efer & EFER_LME) {
858                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
859                         enter_lmode(vcpu);
860                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
861                         exit_lmode(vcpu);
862         }
863 #endif
864
865         if (!(cr0 & CR0_TS_MASK)) {
866                 vcpu->fpu_active = 1;
867                 vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
868         }
869
870         vmcs_writel(CR0_READ_SHADOW, cr0);
871         vmcs_writel(GUEST_CR0,
872                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
873         vcpu->cr0 = cr0;
874 }
875
876 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
877 {
878         vmcs_writel(GUEST_CR3, cr3);
879
880         if (!(vcpu->cr0 & CR0_TS_MASK)) {
881                 vcpu->fpu_active = 0;
882                 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
883                 vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
884         }
885 }
886
887 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
888 {
889         vmcs_writel(CR4_READ_SHADOW, cr4);
890         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
891                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
892         vcpu->cr4 = cr4;
893 }
894
895 #ifdef CONFIG_X86_64
896
897 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
898 {
899         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
900
901         vcpu->shadow_efer = efer;
902         if (efer & EFER_LMA) {
903                 vmcs_write32(VM_ENTRY_CONTROLS,
904                                      vmcs_read32(VM_ENTRY_CONTROLS) |
905                                      VM_ENTRY_CONTROLS_IA32E_MASK);
906                 msr->data = efer;
907
908         } else {
909                 vmcs_write32(VM_ENTRY_CONTROLS,
910                                      vmcs_read32(VM_ENTRY_CONTROLS) &
911                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
912
913                 msr->data = efer & ~EFER_LME;
914         }
915         setup_msrs(vcpu);
916 }
917
918 #endif
919
920 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
921 {
922         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
923
924         return vmcs_readl(sf->base);
925 }
926
927 static void vmx_get_segment(struct kvm_vcpu *vcpu,
928                             struct kvm_segment *var, int seg)
929 {
930         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
931         u32 ar;
932
933         var->base = vmcs_readl(sf->base);
934         var->limit = vmcs_read32(sf->limit);
935         var->selector = vmcs_read16(sf->selector);
936         ar = vmcs_read32(sf->ar_bytes);
937         if (ar & AR_UNUSABLE_MASK)
938                 ar = 0;
939         var->type = ar & 15;
940         var->s = (ar >> 4) & 1;
941         var->dpl = (ar >> 5) & 3;
942         var->present = (ar >> 7) & 1;
943         var->avl = (ar >> 12) & 1;
944         var->l = (ar >> 13) & 1;
945         var->db = (ar >> 14) & 1;
946         var->g = (ar >> 15) & 1;
947         var->unusable = (ar >> 16) & 1;
948 }
949
950 static void vmx_set_segment(struct kvm_vcpu *vcpu,
951                             struct kvm_segment *var, int seg)
952 {
953         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
954         u32 ar;
955
956         vmcs_writel(sf->base, var->base);
957         vmcs_write32(sf->limit, var->limit);
958         vmcs_write16(sf->selector, var->selector);
959         if (vcpu->rmode.active && var->s) {
960                 /*
961                  * Hack real-mode segments into vm86 compatibility.
962                  */
963                 if (var->base == 0xffff0000 && var->selector == 0xf000)
964                         vmcs_writel(sf->base, 0xf0000);
965                 ar = 0xf3;
966         } else if (var->unusable)
967                 ar = 1 << 16;
968         else {
969                 ar = var->type & 15;
970                 ar |= (var->s & 1) << 4;
971                 ar |= (var->dpl & 3) << 5;
972                 ar |= (var->present & 1) << 7;
973                 ar |= (var->avl & 1) << 12;
974                 ar |= (var->l & 1) << 13;
975                 ar |= (var->db & 1) << 14;
976                 ar |= (var->g & 1) << 15;
977         }
978         if (ar == 0) /* a 0 value means unusable */
979                 ar = AR_UNUSABLE_MASK;
980         vmcs_write32(sf->ar_bytes, ar);
981 }
982
983 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
984 {
985         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
986
987         *db = (ar >> 14) & 1;
988         *l = (ar >> 13) & 1;
989 }
990
991 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
992 {
993         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
994         dt->base = vmcs_readl(GUEST_IDTR_BASE);
995 }
996
997 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
998 {
999         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1000         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1001 }
1002
1003 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1004 {
1005         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1006         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1007 }
1008
1009 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1010 {
1011         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1012         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1013 }
1014
1015 static int init_rmode_tss(struct kvm* kvm)
1016 {
1017         struct page *p1, *p2, *p3;
1018         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1019         char *page;
1020
1021         p1 = gfn_to_page(kvm, fn++);
1022         p2 = gfn_to_page(kvm, fn++);
1023         p3 = gfn_to_page(kvm, fn);
1024
1025         if (!p1 || !p2 || !p3) {
1026                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1027                 return 0;
1028         }
1029
1030         page = kmap_atomic(p1, KM_USER0);
1031         memset(page, 0, PAGE_SIZE);
1032         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1033         kunmap_atomic(page, KM_USER0);
1034
1035         page = kmap_atomic(p2, KM_USER0);
1036         memset(page, 0, PAGE_SIZE);
1037         kunmap_atomic(page, KM_USER0);
1038
1039         page = kmap_atomic(p3, KM_USER0);
1040         memset(page, 0, PAGE_SIZE);
1041         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1042         kunmap_atomic(page, KM_USER0);
1043
1044         return 1;
1045 }
1046
1047 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1048 {
1049         u32 msr_high, msr_low;
1050
1051         rdmsr(msr, msr_low, msr_high);
1052
1053         val &= msr_high;
1054         val |= msr_low;
1055         vmcs_write32(vmcs_field, val);
1056 }
1057
1058 static void seg_setup(int seg)
1059 {
1060         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1061
1062         vmcs_write16(sf->selector, 0);
1063         vmcs_writel(sf->base, 0);
1064         vmcs_write32(sf->limit, 0xffff);
1065         vmcs_write32(sf->ar_bytes, 0x93);
1066 }
1067
1068 /*
1069  * Sets up the vmcs for emulated real mode.
1070  */
1071 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1072 {
1073         u32 host_sysenter_cs;
1074         u32 junk;
1075         unsigned long a;
1076         struct descriptor_table dt;
1077         int i;
1078         int ret = 0;
1079         extern asmlinkage void kvm_vmx_return(void);
1080
1081         if (!init_rmode_tss(vcpu->kvm)) {
1082                 ret = -ENOMEM;
1083                 goto out;
1084         }
1085
1086         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1087         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1088         vcpu->cr8 = 0;
1089         vcpu->apic_base = 0xfee00000 |
1090                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1091                         MSR_IA32_APICBASE_ENABLE;
1092
1093         fx_init(vcpu);
1094
1095         /*
1096          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1097          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1098          */
1099         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1100         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1101         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1102         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1103
1104         seg_setup(VCPU_SREG_DS);
1105         seg_setup(VCPU_SREG_ES);
1106         seg_setup(VCPU_SREG_FS);
1107         seg_setup(VCPU_SREG_GS);
1108         seg_setup(VCPU_SREG_SS);
1109
1110         vmcs_write16(GUEST_TR_SELECTOR, 0);
1111         vmcs_writel(GUEST_TR_BASE, 0);
1112         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1113         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1114
1115         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1116         vmcs_writel(GUEST_LDTR_BASE, 0);
1117         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1118         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1119
1120         vmcs_write32(GUEST_SYSENTER_CS, 0);
1121         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1122         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1123
1124         vmcs_writel(GUEST_RFLAGS, 0x02);
1125         vmcs_writel(GUEST_RIP, 0xfff0);
1126         vmcs_writel(GUEST_RSP, 0);
1127
1128         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1129         vmcs_writel(GUEST_DR7, 0x400);
1130
1131         vmcs_writel(GUEST_GDTR_BASE, 0);
1132         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1133
1134         vmcs_writel(GUEST_IDTR_BASE, 0);
1135         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1136
1137         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1138         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1139         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1140
1141         /* I/O */
1142         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1143         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1144
1145         guest_write_tsc(0);
1146
1147         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1148
1149         /* Special registers */
1150         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1151
1152         /* Control */
1153         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1154                                PIN_BASED_VM_EXEC_CONTROL,
1155                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1156                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1157                         );
1158         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1159                                CPU_BASED_VM_EXEC_CONTROL,
1160                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1161                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1162                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1163                                | CPU_BASED_ACTIVATE_IO_BITMAP  /* 20.6.2 */
1164                                | CPU_BASED_MOV_DR_EXITING
1165                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1166                         );
1167
1168         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1169         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1170         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1171         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1172
1173         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1174         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1175         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1176
1177         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1178         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1179         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1180         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1181         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1182         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1183 #ifdef CONFIG_X86_64
1184         rdmsrl(MSR_FS_BASE, a);
1185         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1186         rdmsrl(MSR_GS_BASE, a);
1187         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1188 #else
1189         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1190         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1191 #endif
1192
1193         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1194
1195         get_idt(&dt);
1196         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1197
1198
1199         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1200
1201         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1202         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1203         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1204         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1205         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1206         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1207
1208         for (i = 0; i < NR_VMX_MSR; ++i) {
1209                 u32 index = vmx_msr_index[i];
1210                 u32 data_low, data_high;
1211                 u64 data;
1212                 int j = vcpu->nmsrs;
1213
1214                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1215                         continue;
1216                 if (wrmsr_safe(index, data_low, data_high) < 0)
1217                         continue;
1218                 data = data_low | ((u64)data_high << 32);
1219                 vcpu->host_msrs[j].index = index;
1220                 vcpu->host_msrs[j].reserved = 0;
1221                 vcpu->host_msrs[j].data = data;
1222                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1223 #ifdef CONFIG_X86_64
1224                 if (index == MSR_KERNEL_GS_BASE)
1225                         msr_offset_kernel_gs_base = j;
1226 #endif
1227                 ++vcpu->nmsrs;
1228         }
1229
1230         setup_msrs(vcpu);
1231
1232         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1233                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1234
1235         /* 22.2.1, 20.8.1 */
1236         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1237                                VM_ENTRY_CONTROLS, 0);
1238         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1239
1240 #ifdef CONFIG_X86_64
1241         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1242         vmcs_writel(TPR_THRESHOLD, 0);
1243 #endif
1244
1245         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1246         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1247
1248         vcpu->cr0 = 0x60000010;
1249         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1250         vmx_set_cr4(vcpu, 0);
1251 #ifdef CONFIG_X86_64
1252         vmx_set_efer(vcpu, 0);
1253 #endif
1254
1255         return 0;
1256
1257 out:
1258         return ret;
1259 }
1260
1261 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1262 {
1263         u16 ent[2];
1264         u16 cs;
1265         u16 ip;
1266         unsigned long flags;
1267         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1268         u16 sp =  vmcs_readl(GUEST_RSP);
1269         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1270
1271         if (sp > ss_limit || sp < 6 ) {
1272                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1273                             __FUNCTION__,
1274                             vmcs_readl(GUEST_RSP),
1275                             vmcs_readl(GUEST_SS_BASE),
1276                             vmcs_read32(GUEST_SS_LIMIT));
1277                 return;
1278         }
1279
1280         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1281                                                                 sizeof(ent)) {
1282                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1283                 return;
1284         }
1285
1286         flags =  vmcs_readl(GUEST_RFLAGS);
1287         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1288         ip =  vmcs_readl(GUEST_RIP);
1289
1290
1291         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1292             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1293             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1294                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1295                 return;
1296         }
1297
1298         vmcs_writel(GUEST_RFLAGS, flags &
1299                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1300         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1301         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1302         vmcs_writel(GUEST_RIP, ent[0]);
1303         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1304 }
1305
1306 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1307 {
1308         int word_index = __ffs(vcpu->irq_summary);
1309         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1310         int irq = word_index * BITS_PER_LONG + bit_index;
1311
1312         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1313         if (!vcpu->irq_pending[word_index])
1314                 clear_bit(word_index, &vcpu->irq_summary);
1315
1316         if (vcpu->rmode.active) {
1317                 inject_rmode_irq(vcpu, irq);
1318                 return;
1319         }
1320         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1321                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1322 }
1323
1324
1325 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1326                                        struct kvm_run *kvm_run)
1327 {
1328         u32 cpu_based_vm_exec_control;
1329
1330         vcpu->interrupt_window_open =
1331                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1332                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1333
1334         if (vcpu->interrupt_window_open &&
1335             vcpu->irq_summary &&
1336             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1337                 /*
1338                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1339                  */
1340                 kvm_do_inject_irq(vcpu);
1341
1342         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1343         if (!vcpu->interrupt_window_open &&
1344             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1345                 /*
1346                  * Interrupts blocked.  Wait for unblock.
1347                  */
1348                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1349         else
1350                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1351         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1352 }
1353
1354 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1355 {
1356         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1357
1358         set_debugreg(dbg->bp[0], 0);
1359         set_debugreg(dbg->bp[1], 1);
1360         set_debugreg(dbg->bp[2], 2);
1361         set_debugreg(dbg->bp[3], 3);
1362
1363         if (dbg->singlestep) {
1364                 unsigned long flags;
1365
1366                 flags = vmcs_readl(GUEST_RFLAGS);
1367                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1368                 vmcs_writel(GUEST_RFLAGS, flags);
1369         }
1370 }
1371
1372 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1373                                   int vec, u32 err_code)
1374 {
1375         if (!vcpu->rmode.active)
1376                 return 0;
1377
1378         if (vec == GP_VECTOR && err_code == 0)
1379                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1380                         return 1;
1381         return 0;
1382 }
1383
1384 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1385 {
1386         u32 intr_info, error_code;
1387         unsigned long cr2, rip;
1388         u32 vect_info;
1389         enum emulation_result er;
1390         int r;
1391
1392         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1393         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1394
1395         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1396                                                 !is_page_fault(intr_info)) {
1397                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1398                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1399         }
1400
1401         if (is_external_interrupt(vect_info)) {
1402                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1403                 set_bit(irq, vcpu->irq_pending);
1404                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1405         }
1406
1407         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1408                 asm ("int $2");
1409                 return 1;
1410         }
1411
1412         if (is_no_device(intr_info)) {
1413                 vcpu->fpu_active = 1;
1414                 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1415                 if (!(vcpu->cr0 & CR0_TS_MASK))
1416                         vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1417                 return 1;
1418         }
1419
1420         error_code = 0;
1421         rip = vmcs_readl(GUEST_RIP);
1422         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1423                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1424         if (is_page_fault(intr_info)) {
1425                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1426
1427                 spin_lock(&vcpu->kvm->lock);
1428                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1429                 if (r < 0) {
1430                         spin_unlock(&vcpu->kvm->lock);
1431                         return r;
1432                 }
1433                 if (!r) {
1434                         spin_unlock(&vcpu->kvm->lock);
1435                         return 1;
1436                 }
1437
1438                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1439                 spin_unlock(&vcpu->kvm->lock);
1440
1441                 switch (er) {
1442                 case EMULATE_DONE:
1443                         return 1;
1444                 case EMULATE_DO_MMIO:
1445                         ++vcpu->stat.mmio_exits;
1446                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1447                         return 0;
1448                  case EMULATE_FAIL:
1449                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1450                         break;
1451                 default:
1452                         BUG();
1453                 }
1454         }
1455
1456         if (vcpu->rmode.active &&
1457             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1458                                                                 error_code))
1459                 return 1;
1460
1461         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1462                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1463                 return 0;
1464         }
1465         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1466         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1467         kvm_run->ex.error_code = error_code;
1468         return 0;
1469 }
1470
1471 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1472                                      struct kvm_run *kvm_run)
1473 {
1474         ++vcpu->stat.irq_exits;
1475         return 1;
1476 }
1477
1478 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1479 {
1480         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1481         return 0;
1482 }
1483
1484 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1485 {
1486         u64 inst;
1487         gva_t rip;
1488         int countr_size;
1489         int i, n;
1490
1491         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1492                 countr_size = 2;
1493         } else {
1494                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1495
1496                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1497                               (cs_ar & AR_DB_MASK) ? 4: 2;
1498         }
1499
1500         rip =  vmcs_readl(GUEST_RIP);
1501         if (countr_size != 8)
1502                 rip += vmcs_readl(GUEST_CS_BASE);
1503
1504         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1505
1506         for (i = 0; i < n; i++) {
1507                 switch (((u8*)&inst)[i]) {
1508                 case 0xf0:
1509                 case 0xf2:
1510                 case 0xf3:
1511                 case 0x2e:
1512                 case 0x36:
1513                 case 0x3e:
1514                 case 0x26:
1515                 case 0x64:
1516                 case 0x65:
1517                 case 0x66:
1518                         break;
1519                 case 0x67:
1520                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1521                 default:
1522                         goto done;
1523                 }
1524         }
1525         return 0;
1526 done:
1527         countr_size *= 8;
1528         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1529         //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1530         return 1;
1531 }
1532
1533 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1534 {
1535         u64 exit_qualification;
1536         int size, down, in, string, rep;
1537         unsigned port;
1538         unsigned long count;
1539         gva_t address;
1540
1541         ++vcpu->stat.io_exits;
1542         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1543         in = (exit_qualification & 8) != 0;
1544         size = (exit_qualification & 7) + 1;
1545         string = (exit_qualification & 16) != 0;
1546         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1547         count = 1;
1548         rep = (exit_qualification & 32) != 0;
1549         port = exit_qualification >> 16;
1550         address = 0;
1551         if (string) {
1552                 if (rep && !get_io_count(vcpu, &count))
1553                         return 1;
1554                 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1555         }
1556         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1557                              address, rep, port);
1558 }
1559
1560 static void
1561 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1562 {
1563         /*
1564          * Patch in the VMCALL instruction:
1565          */
1566         hypercall[0] = 0x0f;
1567         hypercall[1] = 0x01;
1568         hypercall[2] = 0xc1;
1569         hypercall[3] = 0xc3;
1570 }
1571
1572 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1573 {
1574         u64 exit_qualification;
1575         int cr;
1576         int reg;
1577
1578         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1579         cr = exit_qualification & 15;
1580         reg = (exit_qualification >> 8) & 15;
1581         switch ((exit_qualification >> 4) & 3) {
1582         case 0: /* mov to cr */
1583                 switch (cr) {
1584                 case 0:
1585                         vcpu_load_rsp_rip(vcpu);
1586                         set_cr0(vcpu, vcpu->regs[reg]);
1587                         skip_emulated_instruction(vcpu);
1588                         return 1;
1589                 case 3:
1590                         vcpu_load_rsp_rip(vcpu);
1591                         set_cr3(vcpu, vcpu->regs[reg]);
1592                         skip_emulated_instruction(vcpu);
1593                         return 1;
1594                 case 4:
1595                         vcpu_load_rsp_rip(vcpu);
1596                         set_cr4(vcpu, vcpu->regs[reg]);
1597                         skip_emulated_instruction(vcpu);
1598                         return 1;
1599                 case 8:
1600                         vcpu_load_rsp_rip(vcpu);
1601                         set_cr8(vcpu, vcpu->regs[reg]);
1602                         skip_emulated_instruction(vcpu);
1603                         return 1;
1604                 };
1605                 break;
1606         case 2: /* clts */
1607                 vcpu_load_rsp_rip(vcpu);
1608                 vcpu->fpu_active = 1;
1609                 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1610                 vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1611                 vcpu->cr0 &= ~CR0_TS_MASK;
1612                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1613                 skip_emulated_instruction(vcpu);
1614                 return 1;
1615         case 1: /*mov from cr*/
1616                 switch (cr) {
1617                 case 3:
1618                         vcpu_load_rsp_rip(vcpu);
1619                         vcpu->regs[reg] = vcpu->cr3;
1620                         vcpu_put_rsp_rip(vcpu);
1621                         skip_emulated_instruction(vcpu);
1622                         return 1;
1623                 case 8:
1624                         vcpu_load_rsp_rip(vcpu);
1625                         vcpu->regs[reg] = vcpu->cr8;
1626                         vcpu_put_rsp_rip(vcpu);
1627                         skip_emulated_instruction(vcpu);
1628                         return 1;
1629                 }
1630                 break;
1631         case 3: /* lmsw */
1632                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1633
1634                 skip_emulated_instruction(vcpu);
1635                 return 1;
1636         default:
1637                 break;
1638         }
1639         kvm_run->exit_reason = 0;
1640         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1641                (int)(exit_qualification >> 4) & 3, cr);
1642         return 0;
1643 }
1644
1645 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1646 {
1647         u64 exit_qualification;
1648         unsigned long val;
1649         int dr, reg;
1650
1651         /*
1652          * FIXME: this code assumes the host is debugging the guest.
1653          *        need to deal with guest debugging itself too.
1654          */
1655         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1656         dr = exit_qualification & 7;
1657         reg = (exit_qualification >> 8) & 15;
1658         vcpu_load_rsp_rip(vcpu);
1659         if (exit_qualification & 16) {
1660                 /* mov from dr */
1661                 switch (dr) {
1662                 case 6:
1663                         val = 0xffff0ff0;
1664                         break;
1665                 case 7:
1666                         val = 0x400;
1667                         break;
1668                 default:
1669                         val = 0;
1670                 }
1671                 vcpu->regs[reg] = val;
1672         } else {
1673                 /* mov to dr */
1674         }
1675         vcpu_put_rsp_rip(vcpu);
1676         skip_emulated_instruction(vcpu);
1677         return 1;
1678 }
1679
1680 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1681 {
1682         kvm_emulate_cpuid(vcpu);
1683         return 1;
1684 }
1685
1686 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1687 {
1688         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1689         u64 data;
1690
1691         if (vmx_get_msr(vcpu, ecx, &data)) {
1692                 vmx_inject_gp(vcpu, 0);
1693                 return 1;
1694         }
1695
1696         /* FIXME: handling of bits 32:63 of rax, rdx */
1697         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1698         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1699         skip_emulated_instruction(vcpu);
1700         return 1;
1701 }
1702
1703 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1704 {
1705         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1706         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1707                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1708
1709         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1710                 vmx_inject_gp(vcpu, 0);
1711                 return 1;
1712         }
1713
1714         skip_emulated_instruction(vcpu);
1715         return 1;
1716 }
1717
1718 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1719                               struct kvm_run *kvm_run)
1720 {
1721         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1722         kvm_run->cr8 = vcpu->cr8;
1723         kvm_run->apic_base = vcpu->apic_base;
1724         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1725                                                   vcpu->irq_summary == 0);
1726 }
1727
1728 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1729                                    struct kvm_run *kvm_run)
1730 {
1731         /*
1732          * If the user space waits to inject interrupts, exit as soon as
1733          * possible
1734          */
1735         if (kvm_run->request_interrupt_window &&
1736             !vcpu->irq_summary) {
1737                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1738                 ++vcpu->stat.irq_window_exits;
1739                 return 0;
1740         }
1741         return 1;
1742 }
1743
1744 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1745 {
1746         skip_emulated_instruction(vcpu);
1747         if (vcpu->irq_summary)
1748                 return 1;
1749
1750         kvm_run->exit_reason = KVM_EXIT_HLT;
1751         ++vcpu->stat.halt_exits;
1752         return 0;
1753 }
1754
1755 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1756 {
1757         skip_emulated_instruction(vcpu);
1758         return kvm_hypercall(vcpu, kvm_run);
1759 }
1760
1761 /*
1762  * The exit handlers return 1 if the exit was handled fully and guest execution
1763  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1764  * to be done to userspace and return 0.
1765  */
1766 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1767                                       struct kvm_run *kvm_run) = {
1768         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1769         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1770         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
1771         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1772         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1773         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1774         [EXIT_REASON_CPUID]                   = handle_cpuid,
1775         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1776         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1777         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1778         [EXIT_REASON_HLT]                     = handle_halt,
1779         [EXIT_REASON_VMCALL]                  = handle_vmcall,
1780 };
1781
1782 static const int kvm_vmx_max_exit_handlers =
1783         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1784
1785 /*
1786  * The guest has exited.  See if we can fix it or if we need userspace
1787  * assistance.
1788  */
1789 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1790 {
1791         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1792         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1793
1794         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1795                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1796                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1797                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1798         if (exit_reason < kvm_vmx_max_exit_handlers
1799             && kvm_vmx_exit_handlers[exit_reason])
1800                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1801         else {
1802                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1803                 kvm_run->hw.hardware_exit_reason = exit_reason;
1804         }
1805         return 0;
1806 }
1807
1808 /*
1809  * Check if userspace requested an interrupt window, and that the
1810  * interrupt window is open.
1811  *
1812  * No need to exit to userspace if we already have an interrupt queued.
1813  */
1814 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1815                                           struct kvm_run *kvm_run)
1816 {
1817         return (!vcpu->irq_summary &&
1818                 kvm_run->request_interrupt_window &&
1819                 vcpu->interrupt_window_open &&
1820                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1821 }
1822
1823 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1824 {
1825         u8 fail;
1826         u16 fs_sel, gs_sel, ldt_sel;
1827         int fs_gs_ldt_reload_needed;
1828         int r;
1829
1830 preempted:
1831         /*
1832          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1833          * allow segment selectors with cpl > 0 or ti == 1.
1834          */
1835         fs_sel = read_fs();
1836         gs_sel = read_gs();
1837         ldt_sel = read_ldt();
1838         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1839         if (!fs_gs_ldt_reload_needed) {
1840                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1841                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1842         } else {
1843                 vmcs_write16(HOST_FS_SELECTOR, 0);
1844                 vmcs_write16(HOST_GS_SELECTOR, 0);
1845         }
1846
1847 #ifdef CONFIG_X86_64
1848         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1849         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1850 #else
1851         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1852         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1853 #endif
1854
1855         if (!vcpu->mmio_read_completed)
1856                 do_interrupt_requests(vcpu, kvm_run);
1857
1858         if (vcpu->guest_debug.enabled)
1859                 kvm_guest_debug_pre(vcpu);
1860
1861 #ifdef CONFIG_X86_64
1862         if (is_long_mode(vcpu)) {
1863                 save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
1864                 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1865         }
1866 #endif
1867
1868 again:
1869         kvm_load_guest_fpu(vcpu);
1870
1871         /*
1872          * Loading guest fpu may have cleared host cr0.ts
1873          */
1874         vmcs_writel(HOST_CR0, read_cr0());
1875
1876         asm (
1877                 /* Store host registers */
1878                 "pushf \n\t"
1879 #ifdef CONFIG_X86_64
1880                 "push %%rax; push %%rbx; push %%rdx;"
1881                 "push %%rsi; push %%rdi; push %%rbp;"
1882                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1883                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1884                 "push %%rcx \n\t"
1885                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1886 #else
1887                 "pusha; push %%ecx \n\t"
1888                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1889 #endif
1890                 /* Check if vmlaunch of vmresume is needed */
1891                 "cmp $0, %1 \n\t"
1892                 /* Load guest registers.  Don't clobber flags. */
1893 #ifdef CONFIG_X86_64
1894                 "mov %c[cr2](%3), %%rax \n\t"
1895                 "mov %%rax, %%cr2 \n\t"
1896                 "mov %c[rax](%3), %%rax \n\t"
1897                 "mov %c[rbx](%3), %%rbx \n\t"
1898                 "mov %c[rdx](%3), %%rdx \n\t"
1899                 "mov %c[rsi](%3), %%rsi \n\t"
1900                 "mov %c[rdi](%3), %%rdi \n\t"
1901                 "mov %c[rbp](%3), %%rbp \n\t"
1902                 "mov %c[r8](%3),  %%r8  \n\t"
1903                 "mov %c[r9](%3),  %%r9  \n\t"
1904                 "mov %c[r10](%3), %%r10 \n\t"
1905                 "mov %c[r11](%3), %%r11 \n\t"
1906                 "mov %c[r12](%3), %%r12 \n\t"
1907                 "mov %c[r13](%3), %%r13 \n\t"
1908                 "mov %c[r14](%3), %%r14 \n\t"
1909                 "mov %c[r15](%3), %%r15 \n\t"
1910                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1911 #else
1912                 "mov %c[cr2](%3), %%eax \n\t"
1913                 "mov %%eax,   %%cr2 \n\t"
1914                 "mov %c[rax](%3), %%eax \n\t"
1915                 "mov %c[rbx](%3), %%ebx \n\t"
1916                 "mov %c[rdx](%3), %%edx \n\t"
1917                 "mov %c[rsi](%3), %%esi \n\t"
1918                 "mov %c[rdi](%3), %%edi \n\t"
1919                 "mov %c[rbp](%3), %%ebp \n\t"
1920                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1921 #endif
1922                 /* Enter guest mode */
1923                 "jne launched \n\t"
1924                 ASM_VMX_VMLAUNCH "\n\t"
1925                 "jmp kvm_vmx_return \n\t"
1926                 "launched: " ASM_VMX_VMRESUME "\n\t"
1927                 ".globl kvm_vmx_return \n\t"
1928                 "kvm_vmx_return: "
1929                 /* Save guest registers, load host registers, keep flags */
1930 #ifdef CONFIG_X86_64
1931                 "xchg %3,     (%%rsp) \n\t"
1932                 "mov %%rax, %c[rax](%3) \n\t"
1933                 "mov %%rbx, %c[rbx](%3) \n\t"
1934                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1935                 "mov %%rdx, %c[rdx](%3) \n\t"
1936                 "mov %%rsi, %c[rsi](%3) \n\t"
1937                 "mov %%rdi, %c[rdi](%3) \n\t"
1938                 "mov %%rbp, %c[rbp](%3) \n\t"
1939                 "mov %%r8,  %c[r8](%3) \n\t"
1940                 "mov %%r9,  %c[r9](%3) \n\t"
1941                 "mov %%r10, %c[r10](%3) \n\t"
1942                 "mov %%r11, %c[r11](%3) \n\t"
1943                 "mov %%r12, %c[r12](%3) \n\t"
1944                 "mov %%r13, %c[r13](%3) \n\t"
1945                 "mov %%r14, %c[r14](%3) \n\t"
1946                 "mov %%r15, %c[r15](%3) \n\t"
1947                 "mov %%cr2, %%rax   \n\t"
1948                 "mov %%rax, %c[cr2](%3) \n\t"
1949                 "mov (%%rsp), %3 \n\t"
1950
1951                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1952                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1953                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1954                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1955 #else
1956                 "xchg %3, (%%esp) \n\t"
1957                 "mov %%eax, %c[rax](%3) \n\t"
1958                 "mov %%ebx, %c[rbx](%3) \n\t"
1959                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1960                 "mov %%edx, %c[rdx](%3) \n\t"
1961                 "mov %%esi, %c[rsi](%3) \n\t"
1962                 "mov %%edi, %c[rdi](%3) \n\t"
1963                 "mov %%ebp, %c[rbp](%3) \n\t"
1964                 "mov %%cr2, %%eax  \n\t"
1965                 "mov %%eax, %c[cr2](%3) \n\t"
1966                 "mov (%%esp), %3 \n\t"
1967
1968                 "pop %%ecx; popa \n\t"
1969 #endif
1970                 "setbe %0 \n\t"
1971                 "popf \n\t"
1972               : "=q" (fail)
1973               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1974                 "c"(vcpu),
1975                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1976                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1977                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1978                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1979                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1980                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1981                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1982 #ifdef CONFIG_X86_64
1983                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1984                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1985                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1986                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1987                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1988                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1989                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1990                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1991 #endif
1992                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1993               : "cc", "memory" );
1994
1995         ++vcpu->stat.exits;
1996
1997         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1998
1999         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2000
2001         if (unlikely(fail)) {
2002                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2003                 kvm_run->fail_entry.hardware_entry_failure_reason
2004                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2005                 r = 0;
2006                 goto out;
2007         }
2008         /*
2009          * Profile KVM exit RIPs:
2010          */
2011         if (unlikely(prof_on == KVM_PROFILING))
2012                 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2013
2014         vcpu->launched = 1;
2015         r = kvm_handle_exit(kvm_run, vcpu);
2016         if (r > 0) {
2017                 /* Give scheduler a change to reschedule. */
2018                 if (signal_pending(current)) {
2019                         r = -EINTR;
2020                         kvm_run->exit_reason = KVM_EXIT_INTR;
2021                         ++vcpu->stat.signal_exits;
2022                         goto out;
2023                 }
2024
2025                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2026                         r = -EINTR;
2027                         kvm_run->exit_reason = KVM_EXIT_INTR;
2028                         ++vcpu->stat.request_irq_exits;
2029                         goto out;
2030                 }
2031                 if (!need_resched()) {
2032                         ++vcpu->stat.light_exits;
2033                         goto again;
2034                 }
2035         }
2036
2037 out:
2038         /*
2039          * Reload segment selectors ASAP. (it's needed for a functional
2040          * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
2041          * relies on having 0 in %gs for the CPU PDA to work.)
2042          */
2043         if (fs_gs_ldt_reload_needed) {
2044                 load_ldt(ldt_sel);
2045                 load_fs(fs_sel);
2046                 /*
2047                  * If we have to reload gs, we must take care to
2048                  * preserve our gs base.
2049                  */
2050                 local_irq_disable();
2051                 load_gs(gs_sel);
2052 #ifdef CONFIG_X86_64
2053                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
2054 #endif
2055                 local_irq_enable();
2056
2057                 reload_tss();
2058         }
2059 #ifdef CONFIG_X86_64
2060         if (is_long_mode(vcpu)) {
2061                 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
2062                 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
2063         }
2064 #endif
2065
2066         if (r > 0) {
2067                 kvm_resched(vcpu);
2068                 goto preempted;
2069         }
2070
2071         post_kvm_run_save(vcpu, kvm_run);
2072         return r;
2073 }
2074
2075 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2076 {
2077         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2078 }
2079
2080 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2081                                   unsigned long addr,
2082                                   u32 err_code)
2083 {
2084         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2085
2086         ++vcpu->stat.pf_guest;
2087
2088         if (is_page_fault(vect_info)) {
2089                 printk(KERN_DEBUG "inject_page_fault: "
2090                        "double fault 0x%lx @ 0x%lx\n",
2091                        addr, vmcs_readl(GUEST_RIP));
2092                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2093                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2094                              DF_VECTOR |
2095                              INTR_TYPE_EXCEPTION |
2096                              INTR_INFO_DELIEVER_CODE_MASK |
2097                              INTR_INFO_VALID_MASK);
2098                 return;
2099         }
2100         vcpu->cr2 = addr;
2101         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2102         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2103                      PF_VECTOR |
2104                      INTR_TYPE_EXCEPTION |
2105                      INTR_INFO_DELIEVER_CODE_MASK |
2106                      INTR_INFO_VALID_MASK);
2107
2108 }
2109
2110 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2111 {
2112         if (vcpu->vmcs) {
2113                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2114                 free_vmcs(vcpu->vmcs);
2115                 vcpu->vmcs = NULL;
2116         }
2117 }
2118
2119 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2120 {
2121         vmx_free_vmcs(vcpu);
2122 }
2123
2124 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2125 {
2126         struct vmcs *vmcs;
2127
2128         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2129         if (!vcpu->guest_msrs)
2130                 return -ENOMEM;
2131
2132         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2133         if (!vcpu->host_msrs)
2134                 goto out_free_guest_msrs;
2135
2136         vmcs = alloc_vmcs();
2137         if (!vmcs)
2138                 goto out_free_msrs;
2139
2140         vmcs_clear(vmcs);
2141         vcpu->vmcs = vmcs;
2142         vcpu->launched = 0;
2143         vcpu->fpu_active = 1;
2144
2145         return 0;
2146
2147 out_free_msrs:
2148         kfree(vcpu->host_msrs);
2149         vcpu->host_msrs = NULL;
2150
2151 out_free_guest_msrs:
2152         kfree(vcpu->guest_msrs);
2153         vcpu->guest_msrs = NULL;
2154
2155         return -ENOMEM;
2156 }
2157
2158 static struct kvm_arch_ops vmx_arch_ops = {
2159         .cpu_has_kvm_support = cpu_has_kvm_support,
2160         .disabled_by_bios = vmx_disabled_by_bios,
2161         .hardware_setup = hardware_setup,
2162         .hardware_unsetup = hardware_unsetup,
2163         .hardware_enable = hardware_enable,
2164         .hardware_disable = hardware_disable,
2165
2166         .vcpu_create = vmx_create_vcpu,
2167         .vcpu_free = vmx_free_vcpu,
2168
2169         .vcpu_load = vmx_vcpu_load,
2170         .vcpu_put = vmx_vcpu_put,
2171         .vcpu_decache = vmx_vcpu_decache,
2172
2173         .set_guest_debug = set_guest_debug,
2174         .get_msr = vmx_get_msr,
2175         .set_msr = vmx_set_msr,
2176         .get_segment_base = vmx_get_segment_base,
2177         .get_segment = vmx_get_segment,
2178         .set_segment = vmx_set_segment,
2179         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2180         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2181         .set_cr0 = vmx_set_cr0,
2182         .set_cr3 = vmx_set_cr3,
2183         .set_cr4 = vmx_set_cr4,
2184 #ifdef CONFIG_X86_64
2185         .set_efer = vmx_set_efer,
2186 #endif
2187         .get_idt = vmx_get_idt,
2188         .set_idt = vmx_set_idt,
2189         .get_gdt = vmx_get_gdt,
2190         .set_gdt = vmx_set_gdt,
2191         .cache_regs = vcpu_load_rsp_rip,
2192         .decache_regs = vcpu_put_rsp_rip,
2193         .get_rflags = vmx_get_rflags,
2194         .set_rflags = vmx_set_rflags,
2195
2196         .tlb_flush = vmx_flush_tlb,
2197         .inject_page_fault = vmx_inject_page_fault,
2198
2199         .inject_gp = vmx_inject_gp,
2200
2201         .run = vmx_vcpu_run,
2202         .skip_emulated_instruction = skip_emulated_instruction,
2203         .vcpu_setup = vmx_vcpu_setup,
2204         .patch_hypercall = vmx_patch_hypercall,
2205 };
2206
2207 static int __init vmx_init(void)
2208 {
2209         void *iova;
2210         int r;
2211
2212         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2213         if (!vmx_io_bitmap_a)
2214                 return -ENOMEM;
2215
2216         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2217         if (!vmx_io_bitmap_b) {
2218                 r = -ENOMEM;
2219                 goto out;
2220         }
2221
2222         /*
2223          * Allow direct access to the PC debug port (it is often used for I/O
2224          * delays, but the vmexits simply slow things down).
2225          */
2226         iova = kmap(vmx_io_bitmap_a);
2227         memset(iova, 0xff, PAGE_SIZE);
2228         clear_bit(0x80, iova);
2229         kunmap(iova);
2230
2231         iova = kmap(vmx_io_bitmap_b);
2232         memset(iova, 0xff, PAGE_SIZE);
2233         kunmap(iova);
2234
2235         r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2236         if (r)
2237                 goto out1;
2238
2239         return 0;
2240
2241 out1:
2242         __free_page(vmx_io_bitmap_b);
2243 out:
2244         __free_page(vmx_io_bitmap_a);
2245         return r;
2246 }
2247
2248 static void __exit vmx_exit(void)
2249 {
2250         __free_page(vmx_io_bitmap_b);
2251         __free_page(vmx_io_bitmap_a);
2252
2253         kvm_exit_arch();
2254 }
2255
2256 module_init(vmx_init)
2257 module_exit(vmx_exit)