2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
24 #define DM_MSG_PREFIX "table"
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32 struct mapped_device *md;
37 unsigned int counts[MAX_DEPTH]; /* in nodes */
38 sector_t *index[MAX_DEPTH];
40 unsigned int num_targets;
41 unsigned int num_allocated;
43 struct dm_target *targets;
45 struct target_type *immutable_target_type;
46 unsigned integrity_supported:1;
50 * Indicates the rw permissions for the new logical
51 * device. This should be a combination of FMODE_READ
56 /* a list of devices used by this table */
57 struct list_head devices;
59 /* events get handed up using this callback */
60 void (*event_fn)(void *);
63 struct dm_md_mempools *mempools;
65 struct list_head target_callbacks;
69 * Similar to ceiling(log_size(n))
71 static unsigned int int_log(unsigned int n, unsigned int base)
76 n = dm_div_up(n, base);
84 * Calculate the index of the child node of the n'th node k'th key.
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
88 return (n * CHILDREN_PER_NODE) + k;
92 * Return the n'th node of level l from table t.
94 static inline sector_t *get_node(struct dm_table *t,
95 unsigned int l, unsigned int n)
97 return t->index[l] + (n * KEYS_PER_NODE);
101 * Return the highest key that you could lookup from the n'th
102 * node on level l of the btree.
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
106 for (; l < t->depth - 1; l++)
107 n = get_child(n, CHILDREN_PER_NODE - 1);
109 if (n >= t->counts[l])
110 return (sector_t) - 1;
112 return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 * Fills in a level of the btree based on the highs of the level
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 for (n = 0U; n < t->counts[l]; n++) {
125 node = get_node(t, l, n);
127 for (k = 0U; k < KEYS_PER_NODE; k++)
128 node[k] = high(t, l + 1, get_child(n, k));
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
140 * Check that we're not going to overflow.
142 if (nmemb > (ULONG_MAX / elem_size))
145 size = nmemb * elem_size;
146 addr = vzalloc(size);
150 EXPORT_SYMBOL(dm_vcalloc);
153 * highs, and targets are managed as dynamic arrays during a
156 static int alloc_targets(struct dm_table *t, unsigned int num)
159 struct dm_target *n_targets;
162 * Allocate both the target array and offset array at once.
163 * Append an empty entry to catch sectors beyond the end of
166 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 n_targets = (struct dm_target *) (n_highs + num);
173 memset(n_highs, -1, sizeof(*n_highs) * num);
176 t->num_allocated = num;
178 t->targets = n_targets;
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184 unsigned num_targets, struct mapped_device *md)
186 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191 INIT_LIST_HEAD(&t->devices);
192 INIT_LIST_HEAD(&t->target_callbacks);
195 num_targets = KEYS_PER_NODE;
197 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
204 if (alloc_targets(t, num_targets)) {
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
217 struct list_head *tmp, *next;
219 list_for_each_safe(tmp, next, devices) {
220 struct dm_dev_internal *dd =
221 list_entry(tmp, struct dm_dev_internal, list);
222 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 dm_device_name(md), dd->dm_dev->name);
224 dm_put_table_device(md, dd->dm_dev);
229 void dm_table_destroy(struct dm_table *t)
236 /* free the indexes */
238 vfree(t->index[t->depth - 2]);
240 /* free the targets */
241 for (i = 0; i < t->num_targets; i++) {
242 struct dm_target *tgt = t->targets + i;
247 dm_put_target_type(tgt->type);
252 /* free the device list */
253 free_devices(&t->devices, t->md);
255 dm_free_md_mempools(t->mempools);
261 * See if we've already got a device in the list.
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
265 struct dm_dev_internal *dd;
267 list_for_each_entry (dd, l, list)
268 if (dd->dm_dev->bdev->bd_dev == dev)
275 * If possible, this checks an area of a destination device is invalid.
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278 sector_t start, sector_t len, void *data)
280 struct request_queue *q;
281 struct queue_limits *limits = data;
282 struct block_device *bdev = dev->bdev;
284 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285 unsigned short logical_block_size_sectors =
286 limits->logical_block_size >> SECTOR_SHIFT;
287 char b[BDEVNAME_SIZE];
290 * Some devices exist without request functions,
291 * such as loop devices not yet bound to backing files.
292 * Forbid the use of such devices.
294 q = bdev_get_queue(bdev);
295 if (!q || !q->make_request_fn) {
296 DMWARN("%s: %s is not yet initialised: "
297 "start=%llu, len=%llu, dev_size=%llu",
298 dm_device_name(ti->table->md), bdevname(bdev, b),
299 (unsigned long long)start,
300 (unsigned long long)len,
301 (unsigned long long)dev_size);
308 if ((start >= dev_size) || (start + len > dev_size)) {
309 DMWARN("%s: %s too small for target: "
310 "start=%llu, len=%llu, dev_size=%llu",
311 dm_device_name(ti->table->md), bdevname(bdev, b),
312 (unsigned long long)start,
313 (unsigned long long)len,
314 (unsigned long long)dev_size);
318 if (logical_block_size_sectors <= 1)
321 if (start & (logical_block_size_sectors - 1)) {
322 DMWARN("%s: start=%llu not aligned to h/w "
323 "logical block size %u of %s",
324 dm_device_name(ti->table->md),
325 (unsigned long long)start,
326 limits->logical_block_size, bdevname(bdev, b));
330 if (len & (logical_block_size_sectors - 1)) {
331 DMWARN("%s: len=%llu not aligned to h/w "
332 "logical block size %u of %s",
333 dm_device_name(ti->table->md),
334 (unsigned long long)len,
335 limits->logical_block_size, bdevname(bdev, b));
343 * This upgrades the mode on an already open dm_dev, being
344 * careful to leave things as they were if we fail to reopen the
345 * device and not to touch the existing bdev field in case
346 * it is accessed concurrently inside dm_table_any_congested().
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349 struct mapped_device *md)
352 struct dm_dev *old_dev, *new_dev;
354 old_dev = dd->dm_dev;
356 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357 dd->dm_dev->mode | new_mode, &new_dev);
361 dd->dm_dev = new_dev;
362 dm_put_table_device(md, old_dev);
368 * Add a device to the list, or just increment the usage count if
369 * it's already present.
371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
372 struct dm_dev **result)
375 dev_t uninitialized_var(dev);
376 struct dm_dev_internal *dd;
377 struct dm_table *t = ti->table;
378 struct block_device *bdev;
382 /* convert the path to a device */
383 bdev = lookup_bdev(path);
385 dev = name_to_dev_t(path);
393 dd = find_device(&t->devices, dev);
395 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
399 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
404 atomic_set(&dd->count, 0);
405 list_add(&dd->list, &t->devices);
407 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
408 r = upgrade_mode(dd, mode, t->md);
412 atomic_inc(&dd->count);
414 *result = dd->dm_dev;
417 EXPORT_SYMBOL(dm_get_device);
419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
420 sector_t start, sector_t len, void *data)
422 struct queue_limits *limits = data;
423 struct block_device *bdev = dev->bdev;
424 struct request_queue *q = bdev_get_queue(bdev);
425 char b[BDEVNAME_SIZE];
428 DMWARN("%s: Cannot set limits for nonexistent device %s",
429 dm_device_name(ti->table->md), bdevname(bdev, b));
433 if (bdev_stack_limits(limits, bdev, start) < 0)
434 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435 "physical_block_size=%u, logical_block_size=%u, "
436 "alignment_offset=%u, start=%llu",
437 dm_device_name(ti->table->md), bdevname(bdev, b),
438 q->limits.physical_block_size,
439 q->limits.logical_block_size,
440 q->limits.alignment_offset,
441 (unsigned long long) start << SECTOR_SHIFT);
444 * Check if merge fn is supported.
445 * If not we'll force DM to use PAGE_SIZE or
446 * smaller I/O, just to be safe.
448 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
449 blk_limits_max_hw_sectors(limits,
450 (unsigned int) (PAGE_SIZE >> 9));
455 * Decrement a device's use count and remove it if necessary.
457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
460 struct list_head *devices = &ti->table->devices;
461 struct dm_dev_internal *dd;
463 list_for_each_entry(dd, devices, list) {
464 if (dd->dm_dev == d) {
470 DMWARN("%s: device %s not in table devices list",
471 dm_device_name(ti->table->md), d->name);
474 if (atomic_dec_and_test(&dd->count)) {
475 dm_put_table_device(ti->table->md, d);
480 EXPORT_SYMBOL(dm_put_device);
483 * Checks to see if the target joins onto the end of the table.
485 static int adjoin(struct dm_table *table, struct dm_target *ti)
487 struct dm_target *prev;
489 if (!table->num_targets)
492 prev = &table->targets[table->num_targets - 1];
493 return (ti->begin == (prev->begin + prev->len));
497 * Used to dynamically allocate the arg array.
499 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
500 * process messages even if some device is suspended. These messages have a
501 * small fixed number of arguments.
503 * On the other hand, dm-switch needs to process bulk data using messages and
504 * excessive use of GFP_NOIO could cause trouble.
506 static char **realloc_argv(unsigned *array_size, char **old_argv)
513 new_size = *array_size * 2;
519 argv = kmalloc(new_size * sizeof(*argv), gfp);
521 memcpy(argv, old_argv, *array_size * sizeof(*argv));
522 *array_size = new_size;
530 * Destructively splits up the argument list to pass to ctr.
532 int dm_split_args(int *argc, char ***argvp, char *input)
534 char *start, *end = input, *out, **argv = NULL;
535 unsigned array_size = 0;
544 argv = realloc_argv(&array_size, argv);
549 /* Skip whitespace */
550 start = skip_spaces(end);
553 break; /* success, we hit the end */
555 /* 'out' is used to remove any back-quotes */
558 /* Everything apart from '\0' can be quoted */
559 if (*end == '\\' && *(end + 1)) {
566 break; /* end of token */
571 /* have we already filled the array ? */
572 if ((*argc + 1) > array_size) {
573 argv = realloc_argv(&array_size, argv);
578 /* we know this is whitespace */
582 /* terminate the string and put it in the array */
593 * Impose necessary and sufficient conditions on a devices's table such
594 * that any incoming bio which respects its logical_block_size can be
595 * processed successfully. If it falls across the boundary between
596 * two or more targets, the size of each piece it gets split into must
597 * be compatible with the logical_block_size of the target processing it.
599 static int validate_hardware_logical_block_alignment(struct dm_table *table,
600 struct queue_limits *limits)
603 * This function uses arithmetic modulo the logical_block_size
604 * (in units of 512-byte sectors).
606 unsigned short device_logical_block_size_sects =
607 limits->logical_block_size >> SECTOR_SHIFT;
610 * Offset of the start of the next table entry, mod logical_block_size.
612 unsigned short next_target_start = 0;
615 * Given an aligned bio that extends beyond the end of a
616 * target, how many sectors must the next target handle?
618 unsigned short remaining = 0;
620 struct dm_target *uninitialized_var(ti);
621 struct queue_limits ti_limits;
625 * Check each entry in the table in turn.
627 while (i < dm_table_get_num_targets(table)) {
628 ti = dm_table_get_target(table, i++);
630 blk_set_stacking_limits(&ti_limits);
632 /* combine all target devices' limits */
633 if (ti->type->iterate_devices)
634 ti->type->iterate_devices(ti, dm_set_device_limits,
638 * If the remaining sectors fall entirely within this
639 * table entry are they compatible with its logical_block_size?
641 if (remaining < ti->len &&
642 remaining & ((ti_limits.logical_block_size >>
647 (unsigned short) ((next_target_start + ti->len) &
648 (device_logical_block_size_sects - 1));
649 remaining = next_target_start ?
650 device_logical_block_size_sects - next_target_start : 0;
654 DMWARN("%s: table line %u (start sect %llu len %llu) "
655 "not aligned to h/w logical block size %u",
656 dm_device_name(table->md), i,
657 (unsigned long long) ti->begin,
658 (unsigned long long) ti->len,
659 limits->logical_block_size);
666 int dm_table_add_target(struct dm_table *t, const char *type,
667 sector_t start, sector_t len, char *params)
669 int r = -EINVAL, argc;
671 struct dm_target *tgt;
674 DMERR("%s: target type %s must appear alone in table",
675 dm_device_name(t->md), t->targets->type->name);
679 BUG_ON(t->num_targets >= t->num_allocated);
681 tgt = t->targets + t->num_targets;
682 memset(tgt, 0, sizeof(*tgt));
685 DMERR("%s: zero-length target", dm_device_name(t->md));
689 tgt->type = dm_get_target_type(type);
691 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
696 if (dm_target_needs_singleton(tgt->type)) {
697 if (t->num_targets) {
698 DMERR("%s: target type %s must appear alone in table",
699 dm_device_name(t->md), type);
705 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
706 DMERR("%s: target type %s may not be included in read-only tables",
707 dm_device_name(t->md), type);
711 if (t->immutable_target_type) {
712 if (t->immutable_target_type != tgt->type) {
713 DMERR("%s: immutable target type %s cannot be mixed with other target types",
714 dm_device_name(t->md), t->immutable_target_type->name);
717 } else if (dm_target_is_immutable(tgt->type)) {
718 if (t->num_targets) {
719 DMERR("%s: immutable target type %s cannot be mixed with other target types",
720 dm_device_name(t->md), tgt->type->name);
723 t->immutable_target_type = tgt->type;
729 tgt->error = "Unknown error";
732 * Does this target adjoin the previous one ?
734 if (!adjoin(t, tgt)) {
735 tgt->error = "Gap in table";
740 r = dm_split_args(&argc, &argv, params);
742 tgt->error = "couldn't split parameters (insufficient memory)";
746 r = tgt->type->ctr(tgt, argc, argv);
751 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
753 if (!tgt->num_discard_bios && tgt->discards_supported)
754 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
755 dm_device_name(t->md), type);
760 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
761 dm_put_target_type(tgt->type);
766 * Target argument parsing helpers.
768 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
769 unsigned *value, char **error, unsigned grouped)
771 const char *arg_str = dm_shift_arg(arg_set);
775 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
776 (*value < arg->min) ||
777 (*value > arg->max) ||
778 (grouped && arg_set->argc < *value)) {
786 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
787 unsigned *value, char **error)
789 return validate_next_arg(arg, arg_set, value, error, 0);
791 EXPORT_SYMBOL(dm_read_arg);
793 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
794 unsigned *value, char **error)
796 return validate_next_arg(arg, arg_set, value, error, 1);
798 EXPORT_SYMBOL(dm_read_arg_group);
800 const char *dm_shift_arg(struct dm_arg_set *as)
813 EXPORT_SYMBOL(dm_shift_arg);
815 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
817 BUG_ON(as->argc < num_args);
818 as->argc -= num_args;
819 as->argv += num_args;
821 EXPORT_SYMBOL(dm_consume_args);
823 static bool __table_type_request_based(unsigned table_type)
825 return (table_type == DM_TYPE_REQUEST_BASED ||
826 table_type == DM_TYPE_MQ_REQUEST_BASED);
829 static int dm_table_set_type(struct dm_table *t)
832 unsigned bio_based = 0, request_based = 0, hybrid = 0;
833 bool use_blk_mq = false;
834 struct dm_target *tgt;
835 struct dm_dev_internal *dd;
836 struct list_head *devices;
837 unsigned live_md_type = dm_get_md_type(t->md);
839 for (i = 0; i < t->num_targets; i++) {
840 tgt = t->targets + i;
841 if (dm_target_hybrid(tgt))
843 else if (dm_target_request_based(tgt))
848 if (bio_based && request_based) {
849 DMWARN("Inconsistent table: different target types"
850 " can't be mixed up");
855 if (hybrid && !bio_based && !request_based) {
857 * The targets can work either way.
858 * Determine the type from the live device.
859 * Default to bio-based if device is new.
861 if (__table_type_request_based(live_md_type))
868 /* We must use this table as bio-based */
869 t->type = DM_TYPE_BIO_BASED;
873 BUG_ON(!request_based); /* No targets in this table */
876 * Request-based dm supports only tables that have a single target now.
877 * To support multiple targets, request splitting support is needed,
878 * and that needs lots of changes in the block-layer.
879 * (e.g. request completion process for partial completion.)
881 if (t->num_targets > 1) {
882 DMWARN("Request-based dm doesn't support multiple targets yet");
886 /* Non-request-stackable devices can't be used for request-based dm */
887 devices = dm_table_get_devices(t);
888 list_for_each_entry(dd, devices, list) {
889 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
891 if (!blk_queue_stackable(q)) {
892 DMERR("table load rejected: including"
893 " non-request-stackable devices");
902 /* verify _all_ devices in the table are blk-mq devices */
903 list_for_each_entry(dd, devices, list)
904 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
905 DMERR("table load rejected: not all devices"
906 " are blk-mq request-stackable");
909 t->type = DM_TYPE_MQ_REQUEST_BASED;
911 } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
912 /* inherit live MD type */
913 t->type = live_md_type;
916 t->type = DM_TYPE_REQUEST_BASED;
921 unsigned dm_table_get_type(struct dm_table *t)
926 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
928 return t->immutable_target_type;
931 bool dm_table_request_based(struct dm_table *t)
933 return __table_type_request_based(dm_table_get_type(t));
936 bool dm_table_mq_request_based(struct dm_table *t)
938 return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
941 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
943 unsigned type = dm_table_get_type(t);
944 unsigned per_bio_data_size = 0;
948 case DM_TYPE_BIO_BASED:
949 for (i = 0; i < t->num_targets; i++) {
950 struct dm_target *tgt = t->targets + i;
952 per_bio_data_size = max(per_bio_data_size,
953 tgt->per_bio_data_size);
955 t->mempools = dm_alloc_bio_mempools(t->integrity_supported,
958 case DM_TYPE_REQUEST_BASED:
959 case DM_TYPE_MQ_REQUEST_BASED:
960 t->mempools = dm_alloc_rq_mempools(md, type);
963 DMWARN("no table type is set, can't allocate mempools");
973 void dm_table_free_md_mempools(struct dm_table *t)
975 dm_free_md_mempools(t->mempools);
979 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
984 static int setup_indexes(struct dm_table *t)
987 unsigned int total = 0;
990 /* allocate the space for *all* the indexes */
991 for (i = t->depth - 2; i >= 0; i--) {
992 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
993 total += t->counts[i];
996 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1000 /* set up internal nodes, bottom-up */
1001 for (i = t->depth - 2; i >= 0; i--) {
1002 t->index[i] = indexes;
1003 indexes += (KEYS_PER_NODE * t->counts[i]);
1004 setup_btree_index(i, t);
1011 * Builds the btree to index the map.
1013 static int dm_table_build_index(struct dm_table *t)
1016 unsigned int leaf_nodes;
1018 /* how many indexes will the btree have ? */
1019 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1020 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1022 /* leaf layer has already been set up */
1023 t->counts[t->depth - 1] = leaf_nodes;
1024 t->index[t->depth - 1] = t->highs;
1027 r = setup_indexes(t);
1033 * Get a disk whose integrity profile reflects the table's profile.
1034 * If %match_all is true, all devices' profiles must match.
1035 * If %match_all is false, all devices must at least have an
1036 * allocated integrity profile; but uninitialized is ok.
1037 * Returns NULL if integrity support was inconsistent or unavailable.
1039 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1042 struct list_head *devices = dm_table_get_devices(t);
1043 struct dm_dev_internal *dd = NULL;
1044 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1046 list_for_each_entry(dd, devices, list) {
1047 template_disk = dd->dm_dev->bdev->bd_disk;
1048 if (!blk_get_integrity(template_disk))
1050 if (!match_all && !blk_integrity_is_initialized(template_disk))
1051 continue; /* skip uninitialized profiles */
1052 else if (prev_disk &&
1053 blk_integrity_compare(prev_disk, template_disk) < 0)
1055 prev_disk = template_disk;
1058 return template_disk;
1062 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063 dm_device_name(t->md),
1064 prev_disk->disk_name,
1065 template_disk->disk_name);
1070 * Register the mapped device for blk_integrity support if
1071 * the underlying devices have an integrity profile. But all devices
1072 * may not have matching profiles (checking all devices isn't reliable
1073 * during table load because this table may use other DM device(s) which
1074 * must be resumed before they will have an initialized integity profile).
1075 * Stacked DM devices force a 2 stage integrity profile validation:
1076 * 1 - during load, validate all initialized integrity profiles match
1077 * 2 - during resume, validate all integrity profiles match
1079 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1081 struct gendisk *template_disk = NULL;
1083 template_disk = dm_table_get_integrity_disk(t, false);
1087 if (!blk_integrity_is_initialized(dm_disk(md))) {
1088 t->integrity_supported = 1;
1089 return blk_integrity_register(dm_disk(md), NULL);
1093 * If DM device already has an initalized integrity
1094 * profile the new profile should not conflict.
1096 if (blk_integrity_is_initialized(template_disk) &&
1097 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1098 DMWARN("%s: conflict with existing integrity profile: "
1099 "%s profile mismatch",
1100 dm_device_name(t->md),
1101 template_disk->disk_name);
1105 /* Preserve existing initialized integrity profile */
1106 t->integrity_supported = 1;
1111 * Prepares the table for use by building the indices,
1112 * setting the type, and allocating mempools.
1114 int dm_table_complete(struct dm_table *t)
1118 r = dm_table_set_type(t);
1120 DMERR("unable to set table type");
1124 r = dm_table_build_index(t);
1126 DMERR("unable to build btrees");
1130 r = dm_table_prealloc_integrity(t, t->md);
1132 DMERR("could not register integrity profile.");
1136 r = dm_table_alloc_md_mempools(t, t->md);
1138 DMERR("unable to allocate mempools");
1143 static DEFINE_MUTEX(_event_lock);
1144 void dm_table_event_callback(struct dm_table *t,
1145 void (*fn)(void *), void *context)
1147 mutex_lock(&_event_lock);
1149 t->event_context = context;
1150 mutex_unlock(&_event_lock);
1153 void dm_table_event(struct dm_table *t)
1156 * You can no longer call dm_table_event() from interrupt
1157 * context, use a bottom half instead.
1159 BUG_ON(in_interrupt());
1161 mutex_lock(&_event_lock);
1163 t->event_fn(t->event_context);
1164 mutex_unlock(&_event_lock);
1166 EXPORT_SYMBOL(dm_table_event);
1168 sector_t dm_table_get_size(struct dm_table *t)
1170 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1172 EXPORT_SYMBOL(dm_table_get_size);
1174 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1176 if (index >= t->num_targets)
1179 return t->targets + index;
1183 * Search the btree for the correct target.
1185 * Caller should check returned pointer with dm_target_is_valid()
1186 * to trap I/O beyond end of device.
1188 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1190 unsigned int l, n = 0, k = 0;
1193 for (l = 0; l < t->depth; l++) {
1194 n = get_child(n, k);
1195 node = get_node(t, l, n);
1197 for (k = 0; k < KEYS_PER_NODE; k++)
1198 if (node[k] >= sector)
1202 return &t->targets[(KEYS_PER_NODE * n) + k];
1205 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1206 sector_t start, sector_t len, void *data)
1208 unsigned *num_devices = data;
1216 * Check whether a table has no data devices attached using each
1217 * target's iterate_devices method.
1218 * Returns false if the result is unknown because a target doesn't
1219 * support iterate_devices.
1221 bool dm_table_has_no_data_devices(struct dm_table *table)
1223 struct dm_target *uninitialized_var(ti);
1224 unsigned i = 0, num_devices = 0;
1226 while (i < dm_table_get_num_targets(table)) {
1227 ti = dm_table_get_target(table, i++);
1229 if (!ti->type->iterate_devices)
1232 ti->type->iterate_devices(ti, count_device, &num_devices);
1241 * Establish the new table's queue_limits and validate them.
1243 int dm_calculate_queue_limits(struct dm_table *table,
1244 struct queue_limits *limits)
1246 struct dm_target *uninitialized_var(ti);
1247 struct queue_limits ti_limits;
1250 blk_set_stacking_limits(limits);
1252 while (i < dm_table_get_num_targets(table)) {
1253 blk_set_stacking_limits(&ti_limits);
1255 ti = dm_table_get_target(table, i++);
1257 if (!ti->type->iterate_devices)
1258 goto combine_limits;
1261 * Combine queue limits of all the devices this target uses.
1263 ti->type->iterate_devices(ti, dm_set_device_limits,
1266 /* Set I/O hints portion of queue limits */
1267 if (ti->type->io_hints)
1268 ti->type->io_hints(ti, &ti_limits);
1271 * Check each device area is consistent with the target's
1272 * overall queue limits.
1274 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1280 * Merge this target's queue limits into the overall limits
1283 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1284 DMWARN("%s: adding target device "
1285 "(start sect %llu len %llu) "
1286 "caused an alignment inconsistency",
1287 dm_device_name(table->md),
1288 (unsigned long long) ti->begin,
1289 (unsigned long long) ti->len);
1292 return validate_hardware_logical_block_alignment(table, limits);
1296 * Set the integrity profile for this device if all devices used have
1297 * matching profiles. We're quite deep in the resume path but still
1298 * don't know if all devices (particularly DM devices this device
1299 * may be stacked on) have matching profiles. Even if the profiles
1300 * don't match we have no way to fail (to resume) at this point.
1302 static void dm_table_set_integrity(struct dm_table *t)
1304 struct gendisk *template_disk = NULL;
1306 if (!blk_get_integrity(dm_disk(t->md)))
1309 template_disk = dm_table_get_integrity_disk(t, true);
1311 blk_integrity_register(dm_disk(t->md),
1312 blk_get_integrity(template_disk));
1313 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1314 DMWARN("%s: device no longer has a valid integrity profile",
1315 dm_device_name(t->md));
1317 DMWARN("%s: unable to establish an integrity profile",
1318 dm_device_name(t->md));
1321 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1322 sector_t start, sector_t len, void *data)
1324 unsigned flush = (*(unsigned *)data);
1325 struct request_queue *q = bdev_get_queue(dev->bdev);
1327 return q && (q->flush_flags & flush);
1330 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1332 struct dm_target *ti;
1336 * Require at least one underlying device to support flushes.
1337 * t->devices includes internal dm devices such as mirror logs
1338 * so we need to use iterate_devices here, which targets
1339 * supporting flushes must provide.
1341 while (i < dm_table_get_num_targets(t)) {
1342 ti = dm_table_get_target(t, i++);
1344 if (!ti->num_flush_bios)
1347 if (ti->flush_supported)
1350 if (ti->type->iterate_devices &&
1351 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1358 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1360 struct dm_target *ti;
1363 /* Ensure that all targets supports discard_zeroes_data. */
1364 while (i < dm_table_get_num_targets(t)) {
1365 ti = dm_table_get_target(t, i++);
1367 if (ti->discard_zeroes_data_unsupported)
1374 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1375 sector_t start, sector_t len, void *data)
1377 struct request_queue *q = bdev_get_queue(dev->bdev);
1379 return q && blk_queue_nonrot(q);
1382 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1383 sector_t start, sector_t len, void *data)
1385 struct request_queue *q = bdev_get_queue(dev->bdev);
1387 return q && !blk_queue_add_random(q);
1390 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1391 sector_t start, sector_t len, void *data)
1393 struct request_queue *q = bdev_get_queue(dev->bdev);
1395 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1398 static int queue_supports_sg_gaps(struct dm_target *ti, struct dm_dev *dev,
1399 sector_t start, sector_t len, void *data)
1401 struct request_queue *q = bdev_get_queue(dev->bdev);
1403 return q && !test_bit(QUEUE_FLAG_SG_GAPS, &q->queue_flags);
1406 static bool dm_table_all_devices_attribute(struct dm_table *t,
1407 iterate_devices_callout_fn func)
1409 struct dm_target *ti;
1412 while (i < dm_table_get_num_targets(t)) {
1413 ti = dm_table_get_target(t, i++);
1415 if (!ti->type->iterate_devices ||
1416 !ti->type->iterate_devices(ti, func, NULL))
1423 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1424 sector_t start, sector_t len, void *data)
1426 struct request_queue *q = bdev_get_queue(dev->bdev);
1428 return q && !q->limits.max_write_same_sectors;
1431 static bool dm_table_supports_write_same(struct dm_table *t)
1433 struct dm_target *ti;
1436 while (i < dm_table_get_num_targets(t)) {
1437 ti = dm_table_get_target(t, i++);
1439 if (!ti->num_write_same_bios)
1442 if (!ti->type->iterate_devices ||
1443 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1450 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1451 sector_t start, sector_t len, void *data)
1453 struct request_queue *q = bdev_get_queue(dev->bdev);
1455 return q && blk_queue_discard(q);
1458 static bool dm_table_supports_discards(struct dm_table *t)
1460 struct dm_target *ti;
1464 * Unless any target used by the table set discards_supported,
1465 * require at least one underlying device to support discards.
1466 * t->devices includes internal dm devices such as mirror logs
1467 * so we need to use iterate_devices here, which targets
1468 * supporting discard selectively must provide.
1470 while (i < dm_table_get_num_targets(t)) {
1471 ti = dm_table_get_target(t, i++);
1473 if (!ti->num_discard_bios)
1476 if (ti->discards_supported)
1479 if (ti->type->iterate_devices &&
1480 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1487 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1488 struct queue_limits *limits)
1493 * Copy table's limits to the DM device's request_queue
1495 q->limits = *limits;
1497 if (!dm_table_supports_discards(t))
1498 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1500 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1502 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1504 if (dm_table_supports_flush(t, REQ_FUA))
1507 blk_queue_flush(q, flush);
1509 if (!dm_table_discard_zeroes_data(t))
1510 q->limits.discard_zeroes_data = 0;
1512 /* Ensure that all underlying devices are non-rotational. */
1513 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1514 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1516 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1518 if (!dm_table_supports_write_same(t))
1519 q->limits.max_write_same_sectors = 0;
1521 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1522 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1524 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1526 if (dm_table_all_devices_attribute(t, queue_supports_sg_gaps))
1527 queue_flag_clear_unlocked(QUEUE_FLAG_SG_GAPS, q);
1529 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, q);
1531 dm_table_set_integrity(t);
1534 * Determine whether or not this queue's I/O timings contribute
1535 * to the entropy pool, Only request-based targets use this.
1536 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1539 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1540 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1543 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1544 * visible to other CPUs because, once the flag is set, incoming bios
1545 * are processed by request-based dm, which refers to the queue
1547 * Until the flag set, bios are passed to bio-based dm and queued to
1548 * md->deferred where queue settings are not needed yet.
1549 * Those bios are passed to request-based dm at the resume time.
1552 if (dm_table_request_based(t))
1553 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1556 unsigned int dm_table_get_num_targets(struct dm_table *t)
1558 return t->num_targets;
1561 struct list_head *dm_table_get_devices(struct dm_table *t)
1566 fmode_t dm_table_get_mode(struct dm_table *t)
1570 EXPORT_SYMBOL(dm_table_get_mode);
1578 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1580 int i = t->num_targets;
1581 struct dm_target *ti = t->targets;
1586 if (ti->type->presuspend)
1587 ti->type->presuspend(ti);
1589 case PRESUSPEND_UNDO:
1590 if (ti->type->presuspend_undo)
1591 ti->type->presuspend_undo(ti);
1594 if (ti->type->postsuspend)
1595 ti->type->postsuspend(ti);
1602 void dm_table_presuspend_targets(struct dm_table *t)
1607 suspend_targets(t, PRESUSPEND);
1610 void dm_table_presuspend_undo_targets(struct dm_table *t)
1615 suspend_targets(t, PRESUSPEND_UNDO);
1618 void dm_table_postsuspend_targets(struct dm_table *t)
1623 suspend_targets(t, POSTSUSPEND);
1626 int dm_table_resume_targets(struct dm_table *t)
1630 for (i = 0; i < t->num_targets; i++) {
1631 struct dm_target *ti = t->targets + i;
1633 if (!ti->type->preresume)
1636 r = ti->type->preresume(ti);
1638 DMERR("%s: %s: preresume failed, error = %d",
1639 dm_device_name(t->md), ti->type->name, r);
1644 for (i = 0; i < t->num_targets; i++) {
1645 struct dm_target *ti = t->targets + i;
1647 if (ti->type->resume)
1648 ti->type->resume(ti);
1654 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1656 list_add(&cb->list, &t->target_callbacks);
1658 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1660 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1662 struct dm_dev_internal *dd;
1663 struct list_head *devices = dm_table_get_devices(t);
1664 struct dm_target_callbacks *cb;
1667 list_for_each_entry(dd, devices, list) {
1668 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1669 char b[BDEVNAME_SIZE];
1672 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1674 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1675 dm_device_name(t->md),
1676 bdevname(dd->dm_dev->bdev, b));
1679 list_for_each_entry(cb, &t->target_callbacks, list)
1680 if (cb->congested_fn)
1681 r |= cb->congested_fn(cb, bdi_bits);
1686 struct mapped_device *dm_table_get_md(struct dm_table *t)
1690 EXPORT_SYMBOL(dm_table_get_md);
1692 void dm_table_run_md_queue_async(struct dm_table *t)
1694 struct mapped_device *md;
1695 struct request_queue *queue;
1696 unsigned long flags;
1698 if (!dm_table_request_based(t))
1701 md = dm_table_get_md(t);
1702 queue = dm_get_md_queue(md);
1705 blk_mq_run_hw_queues(queue, true);
1707 spin_lock_irqsave(queue->queue_lock, flags);
1708 blk_run_queue_async(queue);
1709 spin_unlock_irqrestore(queue->queue_lock, flags);
1713 EXPORT_SYMBOL(dm_table_run_md_queue_async);