OSDN Git Service

Merge branch 'for-4.2/core' of git://git.kernel.dk/linux-block
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23
24 #define DM_MSG_PREFIX "table"
25
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 struct dm_table {
32         struct mapped_device *md;
33         unsigned type;
34
35         /* btree table */
36         unsigned int depth;
37         unsigned int counts[MAX_DEPTH]; /* in nodes */
38         sector_t *index[MAX_DEPTH];
39
40         unsigned int num_targets;
41         unsigned int num_allocated;
42         sector_t *highs;
43         struct dm_target *targets;
44
45         struct target_type *immutable_target_type;
46         unsigned integrity_supported:1;
47         unsigned singleton:1;
48
49         /*
50          * Indicates the rw permissions for the new logical
51          * device.  This should be a combination of FMODE_READ
52          * and FMODE_WRITE.
53          */
54         fmode_t mode;
55
56         /* a list of devices used by this table */
57         struct list_head devices;
58
59         /* events get handed up using this callback */
60         void (*event_fn)(void *);
61         void *event_context;
62
63         struct dm_md_mempools *mempools;
64
65         struct list_head target_callbacks;
66 };
67
68 /*
69  * Similar to ceiling(log_size(n))
70  */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73         int result = 0;
74
75         while (n > 1) {
76                 n = dm_div_up(n, base);
77                 result++;
78         }
79
80         return result;
81 }
82
83 /*
84  * Calculate the index of the child node of the n'th node k'th key.
85  */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88         return (n * CHILDREN_PER_NODE) + k;
89 }
90
91 /*
92  * Return the n'th node of level l from table t.
93  */
94 static inline sector_t *get_node(struct dm_table *t,
95                                  unsigned int l, unsigned int n)
96 {
97         return t->index[l] + (n * KEYS_PER_NODE);
98 }
99
100 /*
101  * Return the highest key that you could lookup from the n'th
102  * node on level l of the btree.
103  */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106         for (; l < t->depth - 1; l++)
107                 n = get_child(n, CHILDREN_PER_NODE - 1);
108
109         if (n >= t->counts[l])
110                 return (sector_t) - 1;
111
112         return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114
115 /*
116  * Fills in a level of the btree based on the highs of the level
117  * below it.
118  */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121         unsigned int n, k;
122         sector_t *node;
123
124         for (n = 0U; n < t->counts[l]; n++) {
125                 node = get_node(t, l, n);
126
127                 for (k = 0U; k < KEYS_PER_NODE; k++)
128                         node[k] = high(t, l + 1, get_child(n, k));
129         }
130
131         return 0;
132 }
133
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136         unsigned long size;
137         void *addr;
138
139         /*
140          * Check that we're not going to overflow.
141          */
142         if (nmemb > (ULONG_MAX / elem_size))
143                 return NULL;
144
145         size = nmemb * elem_size;
146         addr = vzalloc(size);
147
148         return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151
152 /*
153  * highs, and targets are managed as dynamic arrays during a
154  * table load.
155  */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158         sector_t *n_highs;
159         struct dm_target *n_targets;
160
161         /*
162          * Allocate both the target array and offset array at once.
163          * Append an empty entry to catch sectors beyond the end of
164          * the device.
165          */
166         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167                                           sizeof(sector_t));
168         if (!n_highs)
169                 return -ENOMEM;
170
171         n_targets = (struct dm_target *) (n_highs + num);
172
173         memset(n_highs, -1, sizeof(*n_highs) * num);
174         vfree(t->highs);
175
176         t->num_allocated = num;
177         t->highs = n_highs;
178         t->targets = n_targets;
179
180         return 0;
181 }
182
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184                     unsigned num_targets, struct mapped_device *md)
185 {
186         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187
188         if (!t)
189                 return -ENOMEM;
190
191         INIT_LIST_HEAD(&t->devices);
192         INIT_LIST_HEAD(&t->target_callbacks);
193
194         if (!num_targets)
195                 num_targets = KEYS_PER_NODE;
196
197         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198
199         if (!num_targets) {
200                 kfree(t);
201                 return -ENOMEM;
202         }
203
204         if (alloc_targets(t, num_targets)) {
205                 kfree(t);
206                 return -ENOMEM;
207         }
208
209         t->mode = mode;
210         t->md = md;
211         *result = t;
212         return 0;
213 }
214
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217         struct list_head *tmp, *next;
218
219         list_for_each_safe(tmp, next, devices) {
220                 struct dm_dev_internal *dd =
221                     list_entry(tmp, struct dm_dev_internal, list);
222                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223                        dm_device_name(md), dd->dm_dev->name);
224                 dm_put_table_device(md, dd->dm_dev);
225                 kfree(dd);
226         }
227 }
228
229 void dm_table_destroy(struct dm_table *t)
230 {
231         unsigned int i;
232
233         if (!t)
234                 return;
235
236         /* free the indexes */
237         if (t->depth >= 2)
238                 vfree(t->index[t->depth - 2]);
239
240         /* free the targets */
241         for (i = 0; i < t->num_targets; i++) {
242                 struct dm_target *tgt = t->targets + i;
243
244                 if (tgt->type->dtr)
245                         tgt->type->dtr(tgt);
246
247                 dm_put_target_type(tgt->type);
248         }
249
250         vfree(t->highs);
251
252         /* free the device list */
253         free_devices(&t->devices, t->md);
254
255         dm_free_md_mempools(t->mempools);
256
257         kfree(t);
258 }
259
260 /*
261  * See if we've already got a device in the list.
262  */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265         struct dm_dev_internal *dd;
266
267         list_for_each_entry (dd, l, list)
268                 if (dd->dm_dev->bdev->bd_dev == dev)
269                         return dd;
270
271         return NULL;
272 }
273
274 /*
275  * If possible, this checks an area of a destination device is invalid.
276  */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278                                   sector_t start, sector_t len, void *data)
279 {
280         struct request_queue *q;
281         struct queue_limits *limits = data;
282         struct block_device *bdev = dev->bdev;
283         sector_t dev_size =
284                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285         unsigned short logical_block_size_sectors =
286                 limits->logical_block_size >> SECTOR_SHIFT;
287         char b[BDEVNAME_SIZE];
288
289         /*
290          * Some devices exist without request functions,
291          * such as loop devices not yet bound to backing files.
292          * Forbid the use of such devices.
293          */
294         q = bdev_get_queue(bdev);
295         if (!q || !q->make_request_fn) {
296                 DMWARN("%s: %s is not yet initialised: "
297                        "start=%llu, len=%llu, dev_size=%llu",
298                        dm_device_name(ti->table->md), bdevname(bdev, b),
299                        (unsigned long long)start,
300                        (unsigned long long)len,
301                        (unsigned long long)dev_size);
302                 return 1;
303         }
304
305         if (!dev_size)
306                 return 0;
307
308         if ((start >= dev_size) || (start + len > dev_size)) {
309                 DMWARN("%s: %s too small for target: "
310                        "start=%llu, len=%llu, dev_size=%llu",
311                        dm_device_name(ti->table->md), bdevname(bdev, b),
312                        (unsigned long long)start,
313                        (unsigned long long)len,
314                        (unsigned long long)dev_size);
315                 return 1;
316         }
317
318         if (logical_block_size_sectors <= 1)
319                 return 0;
320
321         if (start & (logical_block_size_sectors - 1)) {
322                 DMWARN("%s: start=%llu not aligned to h/w "
323                        "logical block size %u of %s",
324                        dm_device_name(ti->table->md),
325                        (unsigned long long)start,
326                        limits->logical_block_size, bdevname(bdev, b));
327                 return 1;
328         }
329
330         if (len & (logical_block_size_sectors - 1)) {
331                 DMWARN("%s: len=%llu not aligned to h/w "
332                        "logical block size %u of %s",
333                        dm_device_name(ti->table->md),
334                        (unsigned long long)len,
335                        limits->logical_block_size, bdevname(bdev, b));
336                 return 1;
337         }
338
339         return 0;
340 }
341
342 /*
343  * This upgrades the mode on an already open dm_dev, being
344  * careful to leave things as they were if we fail to reopen the
345  * device and not to touch the existing bdev field in case
346  * it is accessed concurrently inside dm_table_any_congested().
347  */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349                         struct mapped_device *md)
350 {
351         int r;
352         struct dm_dev *old_dev, *new_dev;
353
354         old_dev = dd->dm_dev;
355
356         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357                                 dd->dm_dev->mode | new_mode, &new_dev);
358         if (r)
359                 return r;
360
361         dd->dm_dev = new_dev;
362         dm_put_table_device(md, old_dev);
363
364         return 0;
365 }
366
367 /*
368  * Add a device to the list, or just increment the usage count if
369  * it's already present.
370  */
371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
372                   struct dm_dev **result)
373 {
374         int r;
375         dev_t uninitialized_var(dev);
376         struct dm_dev_internal *dd;
377         struct dm_table *t = ti->table;
378         struct block_device *bdev;
379
380         BUG_ON(!t);
381
382         /* convert the path to a device */
383         bdev = lookup_bdev(path);
384         if (IS_ERR(bdev)) {
385                 dev = name_to_dev_t(path);
386                 if (!dev)
387                         return -ENODEV;
388         } else {
389                 dev = bdev->bd_dev;
390                 bdput(bdev);
391         }
392
393         dd = find_device(&t->devices, dev);
394         if (!dd) {
395                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
396                 if (!dd)
397                         return -ENOMEM;
398
399                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
400                         kfree(dd);
401                         return r;
402                 }
403
404                 atomic_set(&dd->count, 0);
405                 list_add(&dd->list, &t->devices);
406
407         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
408                 r = upgrade_mode(dd, mode, t->md);
409                 if (r)
410                         return r;
411         }
412         atomic_inc(&dd->count);
413
414         *result = dd->dm_dev;
415         return 0;
416 }
417 EXPORT_SYMBOL(dm_get_device);
418
419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
420                                 sector_t start, sector_t len, void *data)
421 {
422         struct queue_limits *limits = data;
423         struct block_device *bdev = dev->bdev;
424         struct request_queue *q = bdev_get_queue(bdev);
425         char b[BDEVNAME_SIZE];
426
427         if (unlikely(!q)) {
428                 DMWARN("%s: Cannot set limits for nonexistent device %s",
429                        dm_device_name(ti->table->md), bdevname(bdev, b));
430                 return 0;
431         }
432
433         if (bdev_stack_limits(limits, bdev, start) < 0)
434                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435                        "physical_block_size=%u, logical_block_size=%u, "
436                        "alignment_offset=%u, start=%llu",
437                        dm_device_name(ti->table->md), bdevname(bdev, b),
438                        q->limits.physical_block_size,
439                        q->limits.logical_block_size,
440                        q->limits.alignment_offset,
441                        (unsigned long long) start << SECTOR_SHIFT);
442
443         /*
444          * Check if merge fn is supported.
445          * If not we'll force DM to use PAGE_SIZE or
446          * smaller I/O, just to be safe.
447          */
448         if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
449                 blk_limits_max_hw_sectors(limits,
450                                           (unsigned int) (PAGE_SIZE >> 9));
451         return 0;
452 }
453
454 /*
455  * Decrement a device's use count and remove it if necessary.
456  */
457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459         int found = 0;
460         struct list_head *devices = &ti->table->devices;
461         struct dm_dev_internal *dd;
462
463         list_for_each_entry(dd, devices, list) {
464                 if (dd->dm_dev == d) {
465                         found = 1;
466                         break;
467                 }
468         }
469         if (!found) {
470                 DMWARN("%s: device %s not in table devices list",
471                        dm_device_name(ti->table->md), d->name);
472                 return;
473         }
474         if (atomic_dec_and_test(&dd->count)) {
475                 dm_put_table_device(ti->table->md, d);
476                 list_del(&dd->list);
477                 kfree(dd);
478         }
479 }
480 EXPORT_SYMBOL(dm_put_device);
481
482 /*
483  * Checks to see if the target joins onto the end of the table.
484  */
485 static int adjoin(struct dm_table *table, struct dm_target *ti)
486 {
487         struct dm_target *prev;
488
489         if (!table->num_targets)
490                 return !ti->begin;
491
492         prev = &table->targets[table->num_targets - 1];
493         return (ti->begin == (prev->begin + prev->len));
494 }
495
496 /*
497  * Used to dynamically allocate the arg array.
498  *
499  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
500  * process messages even if some device is suspended. These messages have a
501  * small fixed number of arguments.
502  *
503  * On the other hand, dm-switch needs to process bulk data using messages and
504  * excessive use of GFP_NOIO could cause trouble.
505  */
506 static char **realloc_argv(unsigned *array_size, char **old_argv)
507 {
508         char **argv;
509         unsigned new_size;
510         gfp_t gfp;
511
512         if (*array_size) {
513                 new_size = *array_size * 2;
514                 gfp = GFP_KERNEL;
515         } else {
516                 new_size = 8;
517                 gfp = GFP_NOIO;
518         }
519         argv = kmalloc(new_size * sizeof(*argv), gfp);
520         if (argv) {
521                 memcpy(argv, old_argv, *array_size * sizeof(*argv));
522                 *array_size = new_size;
523         }
524
525         kfree(old_argv);
526         return argv;
527 }
528
529 /*
530  * Destructively splits up the argument list to pass to ctr.
531  */
532 int dm_split_args(int *argc, char ***argvp, char *input)
533 {
534         char *start, *end = input, *out, **argv = NULL;
535         unsigned array_size = 0;
536
537         *argc = 0;
538
539         if (!input) {
540                 *argvp = NULL;
541                 return 0;
542         }
543
544         argv = realloc_argv(&array_size, argv);
545         if (!argv)
546                 return -ENOMEM;
547
548         while (1) {
549                 /* Skip whitespace */
550                 start = skip_spaces(end);
551
552                 if (!*start)
553                         break;  /* success, we hit the end */
554
555                 /* 'out' is used to remove any back-quotes */
556                 end = out = start;
557                 while (*end) {
558                         /* Everything apart from '\0' can be quoted */
559                         if (*end == '\\' && *(end + 1)) {
560                                 *out++ = *(end + 1);
561                                 end += 2;
562                                 continue;
563                         }
564
565                         if (isspace(*end))
566                                 break;  /* end of token */
567
568                         *out++ = *end++;
569                 }
570
571                 /* have we already filled the array ? */
572                 if ((*argc + 1) > array_size) {
573                         argv = realloc_argv(&array_size, argv);
574                         if (!argv)
575                                 return -ENOMEM;
576                 }
577
578                 /* we know this is whitespace */
579                 if (*end)
580                         end++;
581
582                 /* terminate the string and put it in the array */
583                 *out = '\0';
584                 argv[*argc] = start;
585                 (*argc)++;
586         }
587
588         *argvp = argv;
589         return 0;
590 }
591
592 /*
593  * Impose necessary and sufficient conditions on a devices's table such
594  * that any incoming bio which respects its logical_block_size can be
595  * processed successfully.  If it falls across the boundary between
596  * two or more targets, the size of each piece it gets split into must
597  * be compatible with the logical_block_size of the target processing it.
598  */
599 static int validate_hardware_logical_block_alignment(struct dm_table *table,
600                                                  struct queue_limits *limits)
601 {
602         /*
603          * This function uses arithmetic modulo the logical_block_size
604          * (in units of 512-byte sectors).
605          */
606         unsigned short device_logical_block_size_sects =
607                 limits->logical_block_size >> SECTOR_SHIFT;
608
609         /*
610          * Offset of the start of the next table entry, mod logical_block_size.
611          */
612         unsigned short next_target_start = 0;
613
614         /*
615          * Given an aligned bio that extends beyond the end of a
616          * target, how many sectors must the next target handle?
617          */
618         unsigned short remaining = 0;
619
620         struct dm_target *uninitialized_var(ti);
621         struct queue_limits ti_limits;
622         unsigned i = 0;
623
624         /*
625          * Check each entry in the table in turn.
626          */
627         while (i < dm_table_get_num_targets(table)) {
628                 ti = dm_table_get_target(table, i++);
629
630                 blk_set_stacking_limits(&ti_limits);
631
632                 /* combine all target devices' limits */
633                 if (ti->type->iterate_devices)
634                         ti->type->iterate_devices(ti, dm_set_device_limits,
635                                                   &ti_limits);
636
637                 /*
638                  * If the remaining sectors fall entirely within this
639                  * table entry are they compatible with its logical_block_size?
640                  */
641                 if (remaining < ti->len &&
642                     remaining & ((ti_limits.logical_block_size >>
643                                   SECTOR_SHIFT) - 1))
644                         break;  /* Error */
645
646                 next_target_start =
647                     (unsigned short) ((next_target_start + ti->len) &
648                                       (device_logical_block_size_sects - 1));
649                 remaining = next_target_start ?
650                     device_logical_block_size_sects - next_target_start : 0;
651         }
652
653         if (remaining) {
654                 DMWARN("%s: table line %u (start sect %llu len %llu) "
655                        "not aligned to h/w logical block size %u",
656                        dm_device_name(table->md), i,
657                        (unsigned long long) ti->begin,
658                        (unsigned long long) ti->len,
659                        limits->logical_block_size);
660                 return -EINVAL;
661         }
662
663         return 0;
664 }
665
666 int dm_table_add_target(struct dm_table *t, const char *type,
667                         sector_t start, sector_t len, char *params)
668 {
669         int r = -EINVAL, argc;
670         char **argv;
671         struct dm_target *tgt;
672
673         if (t->singleton) {
674                 DMERR("%s: target type %s must appear alone in table",
675                       dm_device_name(t->md), t->targets->type->name);
676                 return -EINVAL;
677         }
678
679         BUG_ON(t->num_targets >= t->num_allocated);
680
681         tgt = t->targets + t->num_targets;
682         memset(tgt, 0, sizeof(*tgt));
683
684         if (!len) {
685                 DMERR("%s: zero-length target", dm_device_name(t->md));
686                 return -EINVAL;
687         }
688
689         tgt->type = dm_get_target_type(type);
690         if (!tgt->type) {
691                 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
692                       type);
693                 return -EINVAL;
694         }
695
696         if (dm_target_needs_singleton(tgt->type)) {
697                 if (t->num_targets) {
698                         DMERR("%s: target type %s must appear alone in table",
699                               dm_device_name(t->md), type);
700                         return -EINVAL;
701                 }
702                 t->singleton = 1;
703         }
704
705         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
706                 DMERR("%s: target type %s may not be included in read-only tables",
707                       dm_device_name(t->md), type);
708                 return -EINVAL;
709         }
710
711         if (t->immutable_target_type) {
712                 if (t->immutable_target_type != tgt->type) {
713                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
714                               dm_device_name(t->md), t->immutable_target_type->name);
715                         return -EINVAL;
716                 }
717         } else if (dm_target_is_immutable(tgt->type)) {
718                 if (t->num_targets) {
719                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
720                               dm_device_name(t->md), tgt->type->name);
721                         return -EINVAL;
722                 }
723                 t->immutable_target_type = tgt->type;
724         }
725
726         tgt->table = t;
727         tgt->begin = start;
728         tgt->len = len;
729         tgt->error = "Unknown error";
730
731         /*
732          * Does this target adjoin the previous one ?
733          */
734         if (!adjoin(t, tgt)) {
735                 tgt->error = "Gap in table";
736                 r = -EINVAL;
737                 goto bad;
738         }
739
740         r = dm_split_args(&argc, &argv, params);
741         if (r) {
742                 tgt->error = "couldn't split parameters (insufficient memory)";
743                 goto bad;
744         }
745
746         r = tgt->type->ctr(tgt, argc, argv);
747         kfree(argv);
748         if (r)
749                 goto bad;
750
751         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
752
753         if (!tgt->num_discard_bios && tgt->discards_supported)
754                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
755                        dm_device_name(t->md), type);
756
757         return 0;
758
759  bad:
760         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
761         dm_put_target_type(tgt->type);
762         return r;
763 }
764
765 /*
766  * Target argument parsing helpers.
767  */
768 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
769                              unsigned *value, char **error, unsigned grouped)
770 {
771         const char *arg_str = dm_shift_arg(arg_set);
772         char dummy;
773
774         if (!arg_str ||
775             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
776             (*value < arg->min) ||
777             (*value > arg->max) ||
778             (grouped && arg_set->argc < *value)) {
779                 *error = arg->error;
780                 return -EINVAL;
781         }
782
783         return 0;
784 }
785
786 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
787                 unsigned *value, char **error)
788 {
789         return validate_next_arg(arg, arg_set, value, error, 0);
790 }
791 EXPORT_SYMBOL(dm_read_arg);
792
793 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
794                       unsigned *value, char **error)
795 {
796         return validate_next_arg(arg, arg_set, value, error, 1);
797 }
798 EXPORT_SYMBOL(dm_read_arg_group);
799
800 const char *dm_shift_arg(struct dm_arg_set *as)
801 {
802         char *r;
803
804         if (as->argc) {
805                 as->argc--;
806                 r = *as->argv;
807                 as->argv++;
808                 return r;
809         }
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(dm_shift_arg);
814
815 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
816 {
817         BUG_ON(as->argc < num_args);
818         as->argc -= num_args;
819         as->argv += num_args;
820 }
821 EXPORT_SYMBOL(dm_consume_args);
822
823 static bool __table_type_request_based(unsigned table_type)
824 {
825         return (table_type == DM_TYPE_REQUEST_BASED ||
826                 table_type == DM_TYPE_MQ_REQUEST_BASED);
827 }
828
829 static int dm_table_set_type(struct dm_table *t)
830 {
831         unsigned i;
832         unsigned bio_based = 0, request_based = 0, hybrid = 0;
833         bool use_blk_mq = false;
834         struct dm_target *tgt;
835         struct dm_dev_internal *dd;
836         struct list_head *devices;
837         unsigned live_md_type = dm_get_md_type(t->md);
838
839         for (i = 0; i < t->num_targets; i++) {
840                 tgt = t->targets + i;
841                 if (dm_target_hybrid(tgt))
842                         hybrid = 1;
843                 else if (dm_target_request_based(tgt))
844                         request_based = 1;
845                 else
846                         bio_based = 1;
847
848                 if (bio_based && request_based) {
849                         DMWARN("Inconsistent table: different target types"
850                                " can't be mixed up");
851                         return -EINVAL;
852                 }
853         }
854
855         if (hybrid && !bio_based && !request_based) {
856                 /*
857                  * The targets can work either way.
858                  * Determine the type from the live device.
859                  * Default to bio-based if device is new.
860                  */
861                 if (__table_type_request_based(live_md_type))
862                         request_based = 1;
863                 else
864                         bio_based = 1;
865         }
866
867         if (bio_based) {
868                 /* We must use this table as bio-based */
869                 t->type = DM_TYPE_BIO_BASED;
870                 return 0;
871         }
872
873         BUG_ON(!request_based); /* No targets in this table */
874
875         /*
876          * Request-based dm supports only tables that have a single target now.
877          * To support multiple targets, request splitting support is needed,
878          * and that needs lots of changes in the block-layer.
879          * (e.g. request completion process for partial completion.)
880          */
881         if (t->num_targets > 1) {
882                 DMWARN("Request-based dm doesn't support multiple targets yet");
883                 return -EINVAL;
884         }
885
886         /* Non-request-stackable devices can't be used for request-based dm */
887         devices = dm_table_get_devices(t);
888         list_for_each_entry(dd, devices, list) {
889                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
890
891                 if (!blk_queue_stackable(q)) {
892                         DMERR("table load rejected: including"
893                               " non-request-stackable devices");
894                         return -EINVAL;
895                 }
896
897                 if (q->mq_ops)
898                         use_blk_mq = true;
899         }
900
901         if (use_blk_mq) {
902                 /* verify _all_ devices in the table are blk-mq devices */
903                 list_for_each_entry(dd, devices, list)
904                         if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
905                                 DMERR("table load rejected: not all devices"
906                                       " are blk-mq request-stackable");
907                                 return -EINVAL;
908                         }
909                 t->type = DM_TYPE_MQ_REQUEST_BASED;
910
911         } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
912                 /* inherit live MD type */
913                 t->type = live_md_type;
914
915         } else
916                 t->type = DM_TYPE_REQUEST_BASED;
917
918         return 0;
919 }
920
921 unsigned dm_table_get_type(struct dm_table *t)
922 {
923         return t->type;
924 }
925
926 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
927 {
928         return t->immutable_target_type;
929 }
930
931 bool dm_table_request_based(struct dm_table *t)
932 {
933         return __table_type_request_based(dm_table_get_type(t));
934 }
935
936 bool dm_table_mq_request_based(struct dm_table *t)
937 {
938         return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
939 }
940
941 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
942 {
943         unsigned type = dm_table_get_type(t);
944         unsigned per_bio_data_size = 0;
945         unsigned i;
946
947         switch (type) {
948         case DM_TYPE_BIO_BASED:
949                 for (i = 0; i < t->num_targets; i++) {
950                         struct dm_target *tgt = t->targets + i;
951
952                         per_bio_data_size = max(per_bio_data_size,
953                                                 tgt->per_bio_data_size);
954                 }
955                 t->mempools = dm_alloc_bio_mempools(t->integrity_supported,
956                                                     per_bio_data_size);
957                 break;
958         case DM_TYPE_REQUEST_BASED:
959         case DM_TYPE_MQ_REQUEST_BASED:
960                 t->mempools = dm_alloc_rq_mempools(md, type);
961                 break;
962         default:
963                 DMWARN("no table type is set, can't allocate mempools");
964                 return -EINVAL;
965         }
966
967         if (!t->mempools)
968                 return -ENOMEM;
969
970         return 0;
971 }
972
973 void dm_table_free_md_mempools(struct dm_table *t)
974 {
975         dm_free_md_mempools(t->mempools);
976         t->mempools = NULL;
977 }
978
979 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
980 {
981         return t->mempools;
982 }
983
984 static int setup_indexes(struct dm_table *t)
985 {
986         int i;
987         unsigned int total = 0;
988         sector_t *indexes;
989
990         /* allocate the space for *all* the indexes */
991         for (i = t->depth - 2; i >= 0; i--) {
992                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
993                 total += t->counts[i];
994         }
995
996         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
997         if (!indexes)
998                 return -ENOMEM;
999
1000         /* set up internal nodes, bottom-up */
1001         for (i = t->depth - 2; i >= 0; i--) {
1002                 t->index[i] = indexes;
1003                 indexes += (KEYS_PER_NODE * t->counts[i]);
1004                 setup_btree_index(i, t);
1005         }
1006
1007         return 0;
1008 }
1009
1010 /*
1011  * Builds the btree to index the map.
1012  */
1013 static int dm_table_build_index(struct dm_table *t)
1014 {
1015         int r = 0;
1016         unsigned int leaf_nodes;
1017
1018         /* how many indexes will the btree have ? */
1019         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1020         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1021
1022         /* leaf layer has already been set up */
1023         t->counts[t->depth - 1] = leaf_nodes;
1024         t->index[t->depth - 1] = t->highs;
1025
1026         if (t->depth >= 2)
1027                 r = setup_indexes(t);
1028
1029         return r;
1030 }
1031
1032 /*
1033  * Get a disk whose integrity profile reflects the table's profile.
1034  * If %match_all is true, all devices' profiles must match.
1035  * If %match_all is false, all devices must at least have an
1036  * allocated integrity profile; but uninitialized is ok.
1037  * Returns NULL if integrity support was inconsistent or unavailable.
1038  */
1039 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1040                                                     bool match_all)
1041 {
1042         struct list_head *devices = dm_table_get_devices(t);
1043         struct dm_dev_internal *dd = NULL;
1044         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1045
1046         list_for_each_entry(dd, devices, list) {
1047                 template_disk = dd->dm_dev->bdev->bd_disk;
1048                 if (!blk_get_integrity(template_disk))
1049                         goto no_integrity;
1050                 if (!match_all && !blk_integrity_is_initialized(template_disk))
1051                         continue; /* skip uninitialized profiles */
1052                 else if (prev_disk &&
1053                          blk_integrity_compare(prev_disk, template_disk) < 0)
1054                         goto no_integrity;
1055                 prev_disk = template_disk;
1056         }
1057
1058         return template_disk;
1059
1060 no_integrity:
1061         if (prev_disk)
1062                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063                        dm_device_name(t->md),
1064                        prev_disk->disk_name,
1065                        template_disk->disk_name);
1066         return NULL;
1067 }
1068
1069 /*
1070  * Register the mapped device for blk_integrity support if
1071  * the underlying devices have an integrity profile.  But all devices
1072  * may not have matching profiles (checking all devices isn't reliable
1073  * during table load because this table may use other DM device(s) which
1074  * must be resumed before they will have an initialized integity profile).
1075  * Stacked DM devices force a 2 stage integrity profile validation:
1076  * 1 - during load, validate all initialized integrity profiles match
1077  * 2 - during resume, validate all integrity profiles match
1078  */
1079 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1080 {
1081         struct gendisk *template_disk = NULL;
1082
1083         template_disk = dm_table_get_integrity_disk(t, false);
1084         if (!template_disk)
1085                 return 0;
1086
1087         if (!blk_integrity_is_initialized(dm_disk(md))) {
1088                 t->integrity_supported = 1;
1089                 return blk_integrity_register(dm_disk(md), NULL);
1090         }
1091
1092         /*
1093          * If DM device already has an initalized integrity
1094          * profile the new profile should not conflict.
1095          */
1096         if (blk_integrity_is_initialized(template_disk) &&
1097             blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1098                 DMWARN("%s: conflict with existing integrity profile: "
1099                        "%s profile mismatch",
1100                        dm_device_name(t->md),
1101                        template_disk->disk_name);
1102                 return 1;
1103         }
1104
1105         /* Preserve existing initialized integrity profile */
1106         t->integrity_supported = 1;
1107         return 0;
1108 }
1109
1110 /*
1111  * Prepares the table for use by building the indices,
1112  * setting the type, and allocating mempools.
1113  */
1114 int dm_table_complete(struct dm_table *t)
1115 {
1116         int r;
1117
1118         r = dm_table_set_type(t);
1119         if (r) {
1120                 DMERR("unable to set table type");
1121                 return r;
1122         }
1123
1124         r = dm_table_build_index(t);
1125         if (r) {
1126                 DMERR("unable to build btrees");
1127                 return r;
1128         }
1129
1130         r = dm_table_prealloc_integrity(t, t->md);
1131         if (r) {
1132                 DMERR("could not register integrity profile.");
1133                 return r;
1134         }
1135
1136         r = dm_table_alloc_md_mempools(t, t->md);
1137         if (r)
1138                 DMERR("unable to allocate mempools");
1139
1140         return r;
1141 }
1142
1143 static DEFINE_MUTEX(_event_lock);
1144 void dm_table_event_callback(struct dm_table *t,
1145                              void (*fn)(void *), void *context)
1146 {
1147         mutex_lock(&_event_lock);
1148         t->event_fn = fn;
1149         t->event_context = context;
1150         mutex_unlock(&_event_lock);
1151 }
1152
1153 void dm_table_event(struct dm_table *t)
1154 {
1155         /*
1156          * You can no longer call dm_table_event() from interrupt
1157          * context, use a bottom half instead.
1158          */
1159         BUG_ON(in_interrupt());
1160
1161         mutex_lock(&_event_lock);
1162         if (t->event_fn)
1163                 t->event_fn(t->event_context);
1164         mutex_unlock(&_event_lock);
1165 }
1166 EXPORT_SYMBOL(dm_table_event);
1167
1168 sector_t dm_table_get_size(struct dm_table *t)
1169 {
1170         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1171 }
1172 EXPORT_SYMBOL(dm_table_get_size);
1173
1174 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1175 {
1176         if (index >= t->num_targets)
1177                 return NULL;
1178
1179         return t->targets + index;
1180 }
1181
1182 /*
1183  * Search the btree for the correct target.
1184  *
1185  * Caller should check returned pointer with dm_target_is_valid()
1186  * to trap I/O beyond end of device.
1187  */
1188 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1189 {
1190         unsigned int l, n = 0, k = 0;
1191         sector_t *node;
1192
1193         for (l = 0; l < t->depth; l++) {
1194                 n = get_child(n, k);
1195                 node = get_node(t, l, n);
1196
1197                 for (k = 0; k < KEYS_PER_NODE; k++)
1198                         if (node[k] >= sector)
1199                                 break;
1200         }
1201
1202         return &t->targets[(KEYS_PER_NODE * n) + k];
1203 }
1204
1205 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1206                         sector_t start, sector_t len, void *data)
1207 {
1208         unsigned *num_devices = data;
1209
1210         (*num_devices)++;
1211
1212         return 0;
1213 }
1214
1215 /*
1216  * Check whether a table has no data devices attached using each
1217  * target's iterate_devices method.
1218  * Returns false if the result is unknown because a target doesn't
1219  * support iterate_devices.
1220  */
1221 bool dm_table_has_no_data_devices(struct dm_table *table)
1222 {
1223         struct dm_target *uninitialized_var(ti);
1224         unsigned i = 0, num_devices = 0;
1225
1226         while (i < dm_table_get_num_targets(table)) {
1227                 ti = dm_table_get_target(table, i++);
1228
1229                 if (!ti->type->iterate_devices)
1230                         return false;
1231
1232                 ti->type->iterate_devices(ti, count_device, &num_devices);
1233                 if (num_devices)
1234                         return false;
1235         }
1236
1237         return true;
1238 }
1239
1240 /*
1241  * Establish the new table's queue_limits and validate them.
1242  */
1243 int dm_calculate_queue_limits(struct dm_table *table,
1244                               struct queue_limits *limits)
1245 {
1246         struct dm_target *uninitialized_var(ti);
1247         struct queue_limits ti_limits;
1248         unsigned i = 0;
1249
1250         blk_set_stacking_limits(limits);
1251
1252         while (i < dm_table_get_num_targets(table)) {
1253                 blk_set_stacking_limits(&ti_limits);
1254
1255                 ti = dm_table_get_target(table, i++);
1256
1257                 if (!ti->type->iterate_devices)
1258                         goto combine_limits;
1259
1260                 /*
1261                  * Combine queue limits of all the devices this target uses.
1262                  */
1263                 ti->type->iterate_devices(ti, dm_set_device_limits,
1264                                           &ti_limits);
1265
1266                 /* Set I/O hints portion of queue limits */
1267                 if (ti->type->io_hints)
1268                         ti->type->io_hints(ti, &ti_limits);
1269
1270                 /*
1271                  * Check each device area is consistent with the target's
1272                  * overall queue limits.
1273                  */
1274                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1275                                               &ti_limits))
1276                         return -EINVAL;
1277
1278 combine_limits:
1279                 /*
1280                  * Merge this target's queue limits into the overall limits
1281                  * for the table.
1282                  */
1283                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1284                         DMWARN("%s: adding target device "
1285                                "(start sect %llu len %llu) "
1286                                "caused an alignment inconsistency",
1287                                dm_device_name(table->md),
1288                                (unsigned long long) ti->begin,
1289                                (unsigned long long) ti->len);
1290         }
1291
1292         return validate_hardware_logical_block_alignment(table, limits);
1293 }
1294
1295 /*
1296  * Set the integrity profile for this device if all devices used have
1297  * matching profiles.  We're quite deep in the resume path but still
1298  * don't know if all devices (particularly DM devices this device
1299  * may be stacked on) have matching profiles.  Even if the profiles
1300  * don't match we have no way to fail (to resume) at this point.
1301  */
1302 static void dm_table_set_integrity(struct dm_table *t)
1303 {
1304         struct gendisk *template_disk = NULL;
1305
1306         if (!blk_get_integrity(dm_disk(t->md)))
1307                 return;
1308
1309         template_disk = dm_table_get_integrity_disk(t, true);
1310         if (template_disk)
1311                 blk_integrity_register(dm_disk(t->md),
1312                                        blk_get_integrity(template_disk));
1313         else if (blk_integrity_is_initialized(dm_disk(t->md)))
1314                 DMWARN("%s: device no longer has a valid integrity profile",
1315                        dm_device_name(t->md));
1316         else
1317                 DMWARN("%s: unable to establish an integrity profile",
1318                        dm_device_name(t->md));
1319 }
1320
1321 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1322                                 sector_t start, sector_t len, void *data)
1323 {
1324         unsigned flush = (*(unsigned *)data);
1325         struct request_queue *q = bdev_get_queue(dev->bdev);
1326
1327         return q && (q->flush_flags & flush);
1328 }
1329
1330 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1331 {
1332         struct dm_target *ti;
1333         unsigned i = 0;
1334
1335         /*
1336          * Require at least one underlying device to support flushes.
1337          * t->devices includes internal dm devices such as mirror logs
1338          * so we need to use iterate_devices here, which targets
1339          * supporting flushes must provide.
1340          */
1341         while (i < dm_table_get_num_targets(t)) {
1342                 ti = dm_table_get_target(t, i++);
1343
1344                 if (!ti->num_flush_bios)
1345                         continue;
1346
1347                 if (ti->flush_supported)
1348                         return true;
1349
1350                 if (ti->type->iterate_devices &&
1351                     ti->type->iterate_devices(ti, device_flush_capable, &flush))
1352                         return true;
1353         }
1354
1355         return false;
1356 }
1357
1358 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1359 {
1360         struct dm_target *ti;
1361         unsigned i = 0;
1362
1363         /* Ensure that all targets supports discard_zeroes_data. */
1364         while (i < dm_table_get_num_targets(t)) {
1365                 ti = dm_table_get_target(t, i++);
1366
1367                 if (ti->discard_zeroes_data_unsupported)
1368                         return false;
1369         }
1370
1371         return true;
1372 }
1373
1374 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1375                             sector_t start, sector_t len, void *data)
1376 {
1377         struct request_queue *q = bdev_get_queue(dev->bdev);
1378
1379         return q && blk_queue_nonrot(q);
1380 }
1381
1382 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1383                              sector_t start, sector_t len, void *data)
1384 {
1385         struct request_queue *q = bdev_get_queue(dev->bdev);
1386
1387         return q && !blk_queue_add_random(q);
1388 }
1389
1390 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1391                                    sector_t start, sector_t len, void *data)
1392 {
1393         struct request_queue *q = bdev_get_queue(dev->bdev);
1394
1395         return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1396 }
1397
1398 static int queue_supports_sg_gaps(struct dm_target *ti, struct dm_dev *dev,
1399                                   sector_t start, sector_t len, void *data)
1400 {
1401         struct request_queue *q = bdev_get_queue(dev->bdev);
1402
1403         return q && !test_bit(QUEUE_FLAG_SG_GAPS, &q->queue_flags);
1404 }
1405
1406 static bool dm_table_all_devices_attribute(struct dm_table *t,
1407                                            iterate_devices_callout_fn func)
1408 {
1409         struct dm_target *ti;
1410         unsigned i = 0;
1411
1412         while (i < dm_table_get_num_targets(t)) {
1413                 ti = dm_table_get_target(t, i++);
1414
1415                 if (!ti->type->iterate_devices ||
1416                     !ti->type->iterate_devices(ti, func, NULL))
1417                         return false;
1418         }
1419
1420         return true;
1421 }
1422
1423 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1424                                          sector_t start, sector_t len, void *data)
1425 {
1426         struct request_queue *q = bdev_get_queue(dev->bdev);
1427
1428         return q && !q->limits.max_write_same_sectors;
1429 }
1430
1431 static bool dm_table_supports_write_same(struct dm_table *t)
1432 {
1433         struct dm_target *ti;
1434         unsigned i = 0;
1435
1436         while (i < dm_table_get_num_targets(t)) {
1437                 ti = dm_table_get_target(t, i++);
1438
1439                 if (!ti->num_write_same_bios)
1440                         return false;
1441
1442                 if (!ti->type->iterate_devices ||
1443                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1444                         return false;
1445         }
1446
1447         return true;
1448 }
1449
1450 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1451                                   sector_t start, sector_t len, void *data)
1452 {
1453         struct request_queue *q = bdev_get_queue(dev->bdev);
1454
1455         return q && blk_queue_discard(q);
1456 }
1457
1458 static bool dm_table_supports_discards(struct dm_table *t)
1459 {
1460         struct dm_target *ti;
1461         unsigned i = 0;
1462
1463         /*
1464          * Unless any target used by the table set discards_supported,
1465          * require at least one underlying device to support discards.
1466          * t->devices includes internal dm devices such as mirror logs
1467          * so we need to use iterate_devices here, which targets
1468          * supporting discard selectively must provide.
1469          */
1470         while (i < dm_table_get_num_targets(t)) {
1471                 ti = dm_table_get_target(t, i++);
1472
1473                 if (!ti->num_discard_bios)
1474                         continue;
1475
1476                 if (ti->discards_supported)
1477                         return true;
1478
1479                 if (ti->type->iterate_devices &&
1480                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1481                         return true;
1482         }
1483
1484         return false;
1485 }
1486
1487 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1488                                struct queue_limits *limits)
1489 {
1490         unsigned flush = 0;
1491
1492         /*
1493          * Copy table's limits to the DM device's request_queue
1494          */
1495         q->limits = *limits;
1496
1497         if (!dm_table_supports_discards(t))
1498                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1499         else
1500                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1501
1502         if (dm_table_supports_flush(t, REQ_FLUSH)) {
1503                 flush |= REQ_FLUSH;
1504                 if (dm_table_supports_flush(t, REQ_FUA))
1505                         flush |= REQ_FUA;
1506         }
1507         blk_queue_flush(q, flush);
1508
1509         if (!dm_table_discard_zeroes_data(t))
1510                 q->limits.discard_zeroes_data = 0;
1511
1512         /* Ensure that all underlying devices are non-rotational. */
1513         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1514                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1515         else
1516                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1517
1518         if (!dm_table_supports_write_same(t))
1519                 q->limits.max_write_same_sectors = 0;
1520
1521         if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1522                 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1523         else
1524                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1525
1526         if (dm_table_all_devices_attribute(t, queue_supports_sg_gaps))
1527                 queue_flag_clear_unlocked(QUEUE_FLAG_SG_GAPS, q);
1528         else
1529                 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, q);
1530
1531         dm_table_set_integrity(t);
1532
1533         /*
1534          * Determine whether or not this queue's I/O timings contribute
1535          * to the entropy pool, Only request-based targets use this.
1536          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1537          * have it set.
1538          */
1539         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1540                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1541
1542         /*
1543          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1544          * visible to other CPUs because, once the flag is set, incoming bios
1545          * are processed by request-based dm, which refers to the queue
1546          * settings.
1547          * Until the flag set, bios are passed to bio-based dm and queued to
1548          * md->deferred where queue settings are not needed yet.
1549          * Those bios are passed to request-based dm at the resume time.
1550          */
1551         smp_mb();
1552         if (dm_table_request_based(t))
1553                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1554 }
1555
1556 unsigned int dm_table_get_num_targets(struct dm_table *t)
1557 {
1558         return t->num_targets;
1559 }
1560
1561 struct list_head *dm_table_get_devices(struct dm_table *t)
1562 {
1563         return &t->devices;
1564 }
1565
1566 fmode_t dm_table_get_mode(struct dm_table *t)
1567 {
1568         return t->mode;
1569 }
1570 EXPORT_SYMBOL(dm_table_get_mode);
1571
1572 enum suspend_mode {
1573         PRESUSPEND,
1574         PRESUSPEND_UNDO,
1575         POSTSUSPEND,
1576 };
1577
1578 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1579 {
1580         int i = t->num_targets;
1581         struct dm_target *ti = t->targets;
1582
1583         while (i--) {
1584                 switch (mode) {
1585                 case PRESUSPEND:
1586                         if (ti->type->presuspend)
1587                                 ti->type->presuspend(ti);
1588                         break;
1589                 case PRESUSPEND_UNDO:
1590                         if (ti->type->presuspend_undo)
1591                                 ti->type->presuspend_undo(ti);
1592                         break;
1593                 case POSTSUSPEND:
1594                         if (ti->type->postsuspend)
1595                                 ti->type->postsuspend(ti);
1596                         break;
1597                 }
1598                 ti++;
1599         }
1600 }
1601
1602 void dm_table_presuspend_targets(struct dm_table *t)
1603 {
1604         if (!t)
1605                 return;
1606
1607         suspend_targets(t, PRESUSPEND);
1608 }
1609
1610 void dm_table_presuspend_undo_targets(struct dm_table *t)
1611 {
1612         if (!t)
1613                 return;
1614
1615         suspend_targets(t, PRESUSPEND_UNDO);
1616 }
1617
1618 void dm_table_postsuspend_targets(struct dm_table *t)
1619 {
1620         if (!t)
1621                 return;
1622
1623         suspend_targets(t, POSTSUSPEND);
1624 }
1625
1626 int dm_table_resume_targets(struct dm_table *t)
1627 {
1628         int i, r = 0;
1629
1630         for (i = 0; i < t->num_targets; i++) {
1631                 struct dm_target *ti = t->targets + i;
1632
1633                 if (!ti->type->preresume)
1634                         continue;
1635
1636                 r = ti->type->preresume(ti);
1637                 if (r) {
1638                         DMERR("%s: %s: preresume failed, error = %d",
1639                               dm_device_name(t->md), ti->type->name, r);
1640                         return r;
1641                 }
1642         }
1643
1644         for (i = 0; i < t->num_targets; i++) {
1645                 struct dm_target *ti = t->targets + i;
1646
1647                 if (ti->type->resume)
1648                         ti->type->resume(ti);
1649         }
1650
1651         return 0;
1652 }
1653
1654 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1655 {
1656         list_add(&cb->list, &t->target_callbacks);
1657 }
1658 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1659
1660 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1661 {
1662         struct dm_dev_internal *dd;
1663         struct list_head *devices = dm_table_get_devices(t);
1664         struct dm_target_callbacks *cb;
1665         int r = 0;
1666
1667         list_for_each_entry(dd, devices, list) {
1668                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1669                 char b[BDEVNAME_SIZE];
1670
1671                 if (likely(q))
1672                         r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1673                 else
1674                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1675                                      dm_device_name(t->md),
1676                                      bdevname(dd->dm_dev->bdev, b));
1677         }
1678
1679         list_for_each_entry(cb, &t->target_callbacks, list)
1680                 if (cb->congested_fn)
1681                         r |= cb->congested_fn(cb, bdi_bits);
1682
1683         return r;
1684 }
1685
1686 struct mapped_device *dm_table_get_md(struct dm_table *t)
1687 {
1688         return t->md;
1689 }
1690 EXPORT_SYMBOL(dm_table_get_md);
1691
1692 void dm_table_run_md_queue_async(struct dm_table *t)
1693 {
1694         struct mapped_device *md;
1695         struct request_queue *queue;
1696         unsigned long flags;
1697
1698         if (!dm_table_request_based(t))
1699                 return;
1700
1701         md = dm_table_get_md(t);
1702         queue = dm_get_md_queue(md);
1703         if (queue) {
1704                 if (queue->mq_ops)
1705                         blk_mq_run_hw_queues(queue, true);
1706                 else {
1707                         spin_lock_irqsave(queue->queue_lock, flags);
1708                         blk_run_queue_async(queue);
1709                         spin_unlock_irqrestore(queue->queue_lock, flags);
1710                 }
1711         }
1712 }
1713 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1714