OSDN Git Service

2e71de8e0048c9eb1e1815d79fbedc8aaedf772a
[uclinux-h8/linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20
21 #define DM_MSG_PREFIX   "thin"
22
23 /*
24  * Tunable constants
25  */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT (HZ * 60)
31
32 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
33                 "A percentage of time allocated for copy on write");
34
35 /*
36  * The block size of the device holding pool data must be
37  * between 64KB and 1GB.
38  */
39 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
40 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
41
42 /*
43  * Device id is restricted to 24 bits.
44  */
45 #define MAX_DEV_ID ((1 << 24) - 1)
46
47 /*
48  * How do we handle breaking sharing of data blocks?
49  * =================================================
50  *
51  * We use a standard copy-on-write btree to store the mappings for the
52  * devices (note I'm talking about copy-on-write of the metadata here, not
53  * the data).  When you take an internal snapshot you clone the root node
54  * of the origin btree.  After this there is no concept of an origin or a
55  * snapshot.  They are just two device trees that happen to point to the
56  * same data blocks.
57  *
58  * When we get a write in we decide if it's to a shared data block using
59  * some timestamp magic.  If it is, we have to break sharing.
60  *
61  * Let's say we write to a shared block in what was the origin.  The
62  * steps are:
63  *
64  * i) plug io further to this physical block. (see bio_prison code).
65  *
66  * ii) quiesce any read io to that shared data block.  Obviously
67  * including all devices that share this block.  (see dm_deferred_set code)
68  *
69  * iii) copy the data block to a newly allocate block.  This step can be
70  * missed out if the io covers the block. (schedule_copy).
71  *
72  * iv) insert the new mapping into the origin's btree
73  * (process_prepared_mapping).  This act of inserting breaks some
74  * sharing of btree nodes between the two devices.  Breaking sharing only
75  * effects the btree of that specific device.  Btrees for the other
76  * devices that share the block never change.  The btree for the origin
77  * device as it was after the last commit is untouched, ie. we're using
78  * persistent data structures in the functional programming sense.
79  *
80  * v) unplug io to this physical block, including the io that triggered
81  * the breaking of sharing.
82  *
83  * Steps (ii) and (iii) occur in parallel.
84  *
85  * The metadata _doesn't_ need to be committed before the io continues.  We
86  * get away with this because the io is always written to a _new_ block.
87  * If there's a crash, then:
88  *
89  * - The origin mapping will point to the old origin block (the shared
90  * one).  This will contain the data as it was before the io that triggered
91  * the breaking of sharing came in.
92  *
93  * - The snap mapping still points to the old block.  As it would after
94  * the commit.
95  *
96  * The downside of this scheme is the timestamp magic isn't perfect, and
97  * will continue to think that data block in the snapshot device is shared
98  * even after the write to the origin has broken sharing.  I suspect data
99  * blocks will typically be shared by many different devices, so we're
100  * breaking sharing n + 1 times, rather than n, where n is the number of
101  * devices that reference this data block.  At the moment I think the
102  * benefits far, far outweigh the disadvantages.
103  */
104
105 /*----------------------------------------------------------------*/
106
107 /*
108  * Key building.
109  */
110 static void build_data_key(struct dm_thin_device *td,
111                            dm_block_t b, struct dm_cell_key *key)
112 {
113         key->virtual = 0;
114         key->dev = dm_thin_dev_id(td);
115         key->block = b;
116 }
117
118 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
119                               struct dm_cell_key *key)
120 {
121         key->virtual = 1;
122         key->dev = dm_thin_dev_id(td);
123         key->block = b;
124 }
125
126 /*----------------------------------------------------------------*/
127
128 /*
129  * A pool device ties together a metadata device and a data device.  It
130  * also provides the interface for creating and destroying internal
131  * devices.
132  */
133 struct dm_thin_new_mapping;
134
135 /*
136  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
137  */
138 enum pool_mode {
139         PM_WRITE,               /* metadata may be changed */
140         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
141         PM_READ_ONLY,           /* metadata may not be changed */
142         PM_FAIL,                /* all I/O fails */
143 };
144
145 struct pool_features {
146         enum pool_mode mode;
147
148         bool zero_new_blocks:1;
149         bool discard_enabled:1;
150         bool discard_passdown:1;
151         bool error_if_no_space:1;
152 };
153
154 struct thin_c;
155 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
156 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
157
158 struct pool {
159         struct list_head list;
160         struct dm_target *ti;   /* Only set if a pool target is bound */
161
162         struct mapped_device *pool_md;
163         struct block_device *md_dev;
164         struct dm_pool_metadata *pmd;
165
166         dm_block_t low_water_blocks;
167         uint32_t sectors_per_block;
168         int sectors_per_block_shift;
169
170         struct pool_features pf;
171         bool low_water_triggered:1;     /* A dm event has been sent */
172
173         struct dm_bio_prison *prison;
174         struct dm_kcopyd_client *copier;
175
176         struct workqueue_struct *wq;
177         struct work_struct worker;
178         struct delayed_work waker;
179         struct delayed_work no_space_timeout;
180
181         unsigned long last_commit_jiffies;
182         unsigned ref_count;
183
184         spinlock_t lock;
185         struct bio_list deferred_flush_bios;
186         struct list_head prepared_mappings;
187         struct list_head prepared_discards;
188         struct list_head active_thins;
189
190         struct dm_deferred_set *shared_read_ds;
191         struct dm_deferred_set *all_io_ds;
192
193         struct dm_thin_new_mapping *next_mapping;
194         mempool_t *mapping_pool;
195
196         process_bio_fn process_bio;
197         process_bio_fn process_discard;
198
199         process_mapping_fn process_prepared_mapping;
200         process_mapping_fn process_prepared_discard;
201 };
202
203 static enum pool_mode get_pool_mode(struct pool *pool);
204 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
205
206 /*
207  * Target context for a pool.
208  */
209 struct pool_c {
210         struct dm_target *ti;
211         struct pool *pool;
212         struct dm_dev *data_dev;
213         struct dm_dev *metadata_dev;
214         struct dm_target_callbacks callbacks;
215
216         dm_block_t low_water_blocks;
217         struct pool_features requested_pf; /* Features requested during table load */
218         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
219 };
220
221 /*
222  * Target context for a thin.
223  */
224 struct thin_c {
225         struct list_head list;
226         struct dm_dev *pool_dev;
227         struct dm_dev *origin_dev;
228         dm_thin_id dev_id;
229
230         struct pool *pool;
231         struct dm_thin_device *td;
232         bool requeue_mode:1;
233         spinlock_t lock;
234         struct bio_list deferred_bio_list;
235         struct bio_list retry_on_resume_list;
236         struct rb_root sort_bio_list; /* sorted list of deferred bios */
237
238         /*
239          * Ensures the thin is not destroyed until the worker has finished
240          * iterating the active_thins list.
241          */
242         atomic_t refcount;
243         struct completion can_destroy;
244 };
245
246 /*----------------------------------------------------------------*/
247
248 /*
249  * wake_worker() is used when new work is queued and when pool_resume is
250  * ready to continue deferred IO processing.
251  */
252 static void wake_worker(struct pool *pool)
253 {
254         queue_work(pool->wq, &pool->worker);
255 }
256
257 /*----------------------------------------------------------------*/
258
259 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
260                       struct dm_bio_prison_cell **cell_result)
261 {
262         int r;
263         struct dm_bio_prison_cell *cell_prealloc;
264
265         /*
266          * Allocate a cell from the prison's mempool.
267          * This might block but it can't fail.
268          */
269         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
270
271         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
272         if (r)
273                 /*
274                  * We reused an old cell; we can get rid of
275                  * the new one.
276                  */
277                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
278
279         return r;
280 }
281
282 static void cell_release(struct pool *pool,
283                          struct dm_bio_prison_cell *cell,
284                          struct bio_list *bios)
285 {
286         dm_cell_release(pool->prison, cell, bios);
287         dm_bio_prison_free_cell(pool->prison, cell);
288 }
289
290 static void cell_release_no_holder(struct pool *pool,
291                                    struct dm_bio_prison_cell *cell,
292                                    struct bio_list *bios)
293 {
294         dm_cell_release_no_holder(pool->prison, cell, bios);
295         dm_bio_prison_free_cell(pool->prison, cell);
296 }
297
298 static void cell_defer_no_holder_no_free(struct thin_c *tc,
299                                          struct dm_bio_prison_cell *cell)
300 {
301         struct pool *pool = tc->pool;
302         unsigned long flags;
303
304         spin_lock_irqsave(&tc->lock, flags);
305         dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
306         spin_unlock_irqrestore(&tc->lock, flags);
307
308         wake_worker(pool);
309 }
310
311 static void cell_error(struct pool *pool,
312                        struct dm_bio_prison_cell *cell)
313 {
314         dm_cell_error(pool->prison, cell);
315         dm_bio_prison_free_cell(pool->prison, cell);
316 }
317
318 /*----------------------------------------------------------------*/
319
320 /*
321  * A global list of pools that uses a struct mapped_device as a key.
322  */
323 static struct dm_thin_pool_table {
324         struct mutex mutex;
325         struct list_head pools;
326 } dm_thin_pool_table;
327
328 static void pool_table_init(void)
329 {
330         mutex_init(&dm_thin_pool_table.mutex);
331         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
332 }
333
334 static void __pool_table_insert(struct pool *pool)
335 {
336         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
337         list_add(&pool->list, &dm_thin_pool_table.pools);
338 }
339
340 static void __pool_table_remove(struct pool *pool)
341 {
342         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
343         list_del(&pool->list);
344 }
345
346 static struct pool *__pool_table_lookup(struct mapped_device *md)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->pool_md == md) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
363 {
364         struct pool *pool = NULL, *tmp;
365
366         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
367
368         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
369                 if (tmp->md_dev == md_dev) {
370                         pool = tmp;
371                         break;
372                 }
373         }
374
375         return pool;
376 }
377
378 /*----------------------------------------------------------------*/
379
380 struct dm_thin_endio_hook {
381         struct thin_c *tc;
382         struct dm_deferred_entry *shared_read_entry;
383         struct dm_deferred_entry *all_io_entry;
384         struct dm_thin_new_mapping *overwrite_mapping;
385         struct rb_node rb_node;
386 };
387
388 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
389 {
390         struct bio *bio;
391         struct bio_list bios;
392         unsigned long flags;
393
394         bio_list_init(&bios);
395
396         spin_lock_irqsave(&tc->lock, flags);
397         bio_list_merge(&bios, master);
398         bio_list_init(master);
399         spin_unlock_irqrestore(&tc->lock, flags);
400
401         while ((bio = bio_list_pop(&bios)))
402                 bio_endio(bio, DM_ENDIO_REQUEUE);
403 }
404
405 static void requeue_io(struct thin_c *tc)
406 {
407         requeue_bio_list(tc, &tc->deferred_bio_list);
408         requeue_bio_list(tc, &tc->retry_on_resume_list);
409 }
410
411 static void error_thin_retry_list(struct thin_c *tc)
412 {
413         struct bio *bio;
414         unsigned long flags;
415         struct bio_list bios;
416
417         bio_list_init(&bios);
418
419         spin_lock_irqsave(&tc->lock, flags);
420         bio_list_merge(&bios, &tc->retry_on_resume_list);
421         bio_list_init(&tc->retry_on_resume_list);
422         spin_unlock_irqrestore(&tc->lock, flags);
423
424         while ((bio = bio_list_pop(&bios)))
425                 bio_io_error(bio);
426 }
427
428 static void error_retry_list(struct pool *pool)
429 {
430         struct thin_c *tc;
431
432         rcu_read_lock();
433         list_for_each_entry_rcu(tc, &pool->active_thins, list)
434                 error_thin_retry_list(tc);
435         rcu_read_unlock();
436 }
437
438 /*
439  * This section of code contains the logic for processing a thin device's IO.
440  * Much of the code depends on pool object resources (lists, workqueues, etc)
441  * but most is exclusively called from the thin target rather than the thin-pool
442  * target.
443  */
444
445 static bool block_size_is_power_of_two(struct pool *pool)
446 {
447         return pool->sectors_per_block_shift >= 0;
448 }
449
450 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
451 {
452         struct pool *pool = tc->pool;
453         sector_t block_nr = bio->bi_iter.bi_sector;
454
455         if (block_size_is_power_of_two(pool))
456                 block_nr >>= pool->sectors_per_block_shift;
457         else
458                 (void) sector_div(block_nr, pool->sectors_per_block);
459
460         return block_nr;
461 }
462
463 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
464 {
465         struct pool *pool = tc->pool;
466         sector_t bi_sector = bio->bi_iter.bi_sector;
467
468         bio->bi_bdev = tc->pool_dev->bdev;
469         if (block_size_is_power_of_two(pool))
470                 bio->bi_iter.bi_sector =
471                         (block << pool->sectors_per_block_shift) |
472                         (bi_sector & (pool->sectors_per_block - 1));
473         else
474                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
475                                  sector_div(bi_sector, pool->sectors_per_block);
476 }
477
478 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
479 {
480         bio->bi_bdev = tc->origin_dev->bdev;
481 }
482
483 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
484 {
485         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
486                 dm_thin_changed_this_transaction(tc->td);
487 }
488
489 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
490 {
491         struct dm_thin_endio_hook *h;
492
493         if (bio->bi_rw & REQ_DISCARD)
494                 return;
495
496         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
497         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
498 }
499
500 static void issue(struct thin_c *tc, struct bio *bio)
501 {
502         struct pool *pool = tc->pool;
503         unsigned long flags;
504
505         if (!bio_triggers_commit(tc, bio)) {
506                 generic_make_request(bio);
507                 return;
508         }
509
510         /*
511          * Complete bio with an error if earlier I/O caused changes to
512          * the metadata that can't be committed e.g, due to I/O errors
513          * on the metadata device.
514          */
515         if (dm_thin_aborted_changes(tc->td)) {
516                 bio_io_error(bio);
517                 return;
518         }
519
520         /*
521          * Batch together any bios that trigger commits and then issue a
522          * single commit for them in process_deferred_bios().
523          */
524         spin_lock_irqsave(&pool->lock, flags);
525         bio_list_add(&pool->deferred_flush_bios, bio);
526         spin_unlock_irqrestore(&pool->lock, flags);
527 }
528
529 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
530 {
531         remap_to_origin(tc, bio);
532         issue(tc, bio);
533 }
534
535 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
536                             dm_block_t block)
537 {
538         remap(tc, bio, block);
539         issue(tc, bio);
540 }
541
542 /*----------------------------------------------------------------*/
543
544 /*
545  * Bio endio functions.
546  */
547 struct dm_thin_new_mapping {
548         struct list_head list;
549
550         bool quiesced:1;
551         bool prepared:1;
552         bool pass_discard:1;
553         bool definitely_not_shared:1;
554
555         int err;
556         struct thin_c *tc;
557         dm_block_t virt_block;
558         dm_block_t data_block;
559         struct dm_bio_prison_cell *cell, *cell2;
560
561         /*
562          * If the bio covers the whole area of a block then we can avoid
563          * zeroing or copying.  Instead this bio is hooked.  The bio will
564          * still be in the cell, so care has to be taken to avoid issuing
565          * the bio twice.
566          */
567         struct bio *bio;
568         bio_end_io_t *saved_bi_end_io;
569 };
570
571 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
572 {
573         struct pool *pool = m->tc->pool;
574
575         if (m->quiesced && m->prepared) {
576                 list_add_tail(&m->list, &pool->prepared_mappings);
577                 wake_worker(pool);
578         }
579 }
580
581 static void copy_complete(int read_err, unsigned long write_err, void *context)
582 {
583         unsigned long flags;
584         struct dm_thin_new_mapping *m = context;
585         struct pool *pool = m->tc->pool;
586
587         m->err = read_err || write_err ? -EIO : 0;
588
589         spin_lock_irqsave(&pool->lock, flags);
590         m->prepared = true;
591         __maybe_add_mapping(m);
592         spin_unlock_irqrestore(&pool->lock, flags);
593 }
594
595 static void overwrite_endio(struct bio *bio, int err)
596 {
597         unsigned long flags;
598         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
599         struct dm_thin_new_mapping *m = h->overwrite_mapping;
600         struct pool *pool = m->tc->pool;
601
602         m->err = err;
603
604         spin_lock_irqsave(&pool->lock, flags);
605         m->prepared = true;
606         __maybe_add_mapping(m);
607         spin_unlock_irqrestore(&pool->lock, flags);
608 }
609
610 /*----------------------------------------------------------------*/
611
612 /*
613  * Workqueue.
614  */
615
616 /*
617  * Prepared mapping jobs.
618  */
619
620 /*
621  * This sends the bios in the cell back to the deferred_bios list.
622  */
623 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
624 {
625         struct pool *pool = tc->pool;
626         unsigned long flags;
627
628         spin_lock_irqsave(&tc->lock, flags);
629         cell_release(pool, cell, &tc->deferred_bio_list);
630         spin_unlock_irqrestore(&tc->lock, flags);
631
632         wake_worker(pool);
633 }
634
635 /*
636  * Same as cell_defer above, except it omits the original holder of the cell.
637  */
638 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
639 {
640         struct pool *pool = tc->pool;
641         unsigned long flags;
642
643         spin_lock_irqsave(&tc->lock, flags);
644         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
645         spin_unlock_irqrestore(&tc->lock, flags);
646
647         wake_worker(pool);
648 }
649
650 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
651 {
652         if (m->bio) {
653                 m->bio->bi_end_io = m->saved_bi_end_io;
654                 atomic_inc(&m->bio->bi_remaining);
655         }
656         cell_error(m->tc->pool, m->cell);
657         list_del(&m->list);
658         mempool_free(m, m->tc->pool->mapping_pool);
659 }
660
661 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
662 {
663         struct thin_c *tc = m->tc;
664         struct pool *pool = tc->pool;
665         struct bio *bio;
666         int r;
667
668         bio = m->bio;
669         if (bio) {
670                 bio->bi_end_io = m->saved_bi_end_io;
671                 atomic_inc(&bio->bi_remaining);
672         }
673
674         if (m->err) {
675                 cell_error(pool, m->cell);
676                 goto out;
677         }
678
679         /*
680          * Commit the prepared block into the mapping btree.
681          * Any I/O for this block arriving after this point will get
682          * remapped to it directly.
683          */
684         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
685         if (r) {
686                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
687                 cell_error(pool, m->cell);
688                 goto out;
689         }
690
691         /*
692          * Release any bios held while the block was being provisioned.
693          * If we are processing a write bio that completely covers the block,
694          * we already processed it so can ignore it now when processing
695          * the bios in the cell.
696          */
697         if (bio) {
698                 cell_defer_no_holder(tc, m->cell);
699                 bio_endio(bio, 0);
700         } else
701                 cell_defer(tc, m->cell);
702
703 out:
704         list_del(&m->list);
705         mempool_free(m, pool->mapping_pool);
706 }
707
708 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
709 {
710         struct thin_c *tc = m->tc;
711
712         bio_io_error(m->bio);
713         cell_defer_no_holder(tc, m->cell);
714         cell_defer_no_holder(tc, m->cell2);
715         mempool_free(m, tc->pool->mapping_pool);
716 }
717
718 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
719 {
720         struct thin_c *tc = m->tc;
721
722         inc_all_io_entry(tc->pool, m->bio);
723         cell_defer_no_holder(tc, m->cell);
724         cell_defer_no_holder(tc, m->cell2);
725
726         if (m->pass_discard)
727                 if (m->definitely_not_shared)
728                         remap_and_issue(tc, m->bio, m->data_block);
729                 else {
730                         bool used = false;
731                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
732                                 bio_endio(m->bio, 0);
733                         else
734                                 remap_and_issue(tc, m->bio, m->data_block);
735                 }
736         else
737                 bio_endio(m->bio, 0);
738
739         mempool_free(m, tc->pool->mapping_pool);
740 }
741
742 static void process_prepared_discard(struct dm_thin_new_mapping *m)
743 {
744         int r;
745         struct thin_c *tc = m->tc;
746
747         r = dm_thin_remove_block(tc->td, m->virt_block);
748         if (r)
749                 DMERR_LIMIT("dm_thin_remove_block() failed");
750
751         process_prepared_discard_passdown(m);
752 }
753
754 static void process_prepared(struct pool *pool, struct list_head *head,
755                              process_mapping_fn *fn)
756 {
757         unsigned long flags;
758         struct list_head maps;
759         struct dm_thin_new_mapping *m, *tmp;
760
761         INIT_LIST_HEAD(&maps);
762         spin_lock_irqsave(&pool->lock, flags);
763         list_splice_init(head, &maps);
764         spin_unlock_irqrestore(&pool->lock, flags);
765
766         list_for_each_entry_safe(m, tmp, &maps, list)
767                 (*fn)(m);
768 }
769
770 /*
771  * Deferred bio jobs.
772  */
773 static int io_overlaps_block(struct pool *pool, struct bio *bio)
774 {
775         return bio->bi_iter.bi_size ==
776                 (pool->sectors_per_block << SECTOR_SHIFT);
777 }
778
779 static int io_overwrites_block(struct pool *pool, struct bio *bio)
780 {
781         return (bio_data_dir(bio) == WRITE) &&
782                 io_overlaps_block(pool, bio);
783 }
784
785 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
786                                bio_end_io_t *fn)
787 {
788         *save = bio->bi_end_io;
789         bio->bi_end_io = fn;
790 }
791
792 static int ensure_next_mapping(struct pool *pool)
793 {
794         if (pool->next_mapping)
795                 return 0;
796
797         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
798
799         return pool->next_mapping ? 0 : -ENOMEM;
800 }
801
802 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
803 {
804         struct dm_thin_new_mapping *m = pool->next_mapping;
805
806         BUG_ON(!pool->next_mapping);
807
808         memset(m, 0, sizeof(struct dm_thin_new_mapping));
809         INIT_LIST_HEAD(&m->list);
810         m->bio = NULL;
811
812         pool->next_mapping = NULL;
813
814         return m;
815 }
816
817 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
818                           struct dm_dev *origin, dm_block_t data_origin,
819                           dm_block_t data_dest,
820                           struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822         int r;
823         struct pool *pool = tc->pool;
824         struct dm_thin_new_mapping *m = get_next_mapping(pool);
825
826         m->tc = tc;
827         m->virt_block = virt_block;
828         m->data_block = data_dest;
829         m->cell = cell;
830
831         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
832                 m->quiesced = true;
833
834         /*
835          * IO to pool_dev remaps to the pool target's data_dev.
836          *
837          * If the whole block of data is being overwritten, we can issue the
838          * bio immediately. Otherwise we use kcopyd to clone the data first.
839          */
840         if (io_overwrites_block(pool, bio)) {
841                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
842
843                 h->overwrite_mapping = m;
844                 m->bio = bio;
845                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
846                 inc_all_io_entry(pool, bio);
847                 remap_and_issue(tc, bio, data_dest);
848         } else {
849                 struct dm_io_region from, to;
850
851                 from.bdev = origin->bdev;
852                 from.sector = data_origin * pool->sectors_per_block;
853                 from.count = pool->sectors_per_block;
854
855                 to.bdev = tc->pool_dev->bdev;
856                 to.sector = data_dest * pool->sectors_per_block;
857                 to.count = pool->sectors_per_block;
858
859                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
860                                    0, copy_complete, m);
861                 if (r < 0) {
862                         mempool_free(m, pool->mapping_pool);
863                         DMERR_LIMIT("dm_kcopyd_copy() failed");
864                         cell_error(pool, cell);
865                 }
866         }
867 }
868
869 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
870                                    dm_block_t data_origin, dm_block_t data_dest,
871                                    struct dm_bio_prison_cell *cell, struct bio *bio)
872 {
873         schedule_copy(tc, virt_block, tc->pool_dev,
874                       data_origin, data_dest, cell, bio);
875 }
876
877 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
878                                    dm_block_t data_dest,
879                                    struct dm_bio_prison_cell *cell, struct bio *bio)
880 {
881         schedule_copy(tc, virt_block, tc->origin_dev,
882                       virt_block, data_dest, cell, bio);
883 }
884
885 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
886                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
887                           struct bio *bio)
888 {
889         struct pool *pool = tc->pool;
890         struct dm_thin_new_mapping *m = get_next_mapping(pool);
891
892         m->quiesced = true;
893         m->prepared = false;
894         m->tc = tc;
895         m->virt_block = virt_block;
896         m->data_block = data_block;
897         m->cell = cell;
898
899         /*
900          * If the whole block of data is being overwritten or we are not
901          * zeroing pre-existing data, we can issue the bio immediately.
902          * Otherwise we use kcopyd to zero the data first.
903          */
904         if (!pool->pf.zero_new_blocks)
905                 process_prepared_mapping(m);
906
907         else if (io_overwrites_block(pool, bio)) {
908                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
909
910                 h->overwrite_mapping = m;
911                 m->bio = bio;
912                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
913                 inc_all_io_entry(pool, bio);
914                 remap_and_issue(tc, bio, data_block);
915         } else {
916                 int r;
917                 struct dm_io_region to;
918
919                 to.bdev = tc->pool_dev->bdev;
920                 to.sector = data_block * pool->sectors_per_block;
921                 to.count = pool->sectors_per_block;
922
923                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
924                 if (r < 0) {
925                         mempool_free(m, pool->mapping_pool);
926                         DMERR_LIMIT("dm_kcopyd_zero() failed");
927                         cell_error(pool, cell);
928                 }
929         }
930 }
931
932 /*
933  * A non-zero return indicates read_only or fail_io mode.
934  * Many callers don't care about the return value.
935  */
936 static int commit(struct pool *pool)
937 {
938         int r;
939
940         if (get_pool_mode(pool) >= PM_READ_ONLY)
941                 return -EINVAL;
942
943         r = dm_pool_commit_metadata(pool->pmd);
944         if (r)
945                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
946
947         return r;
948 }
949
950 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
951 {
952         unsigned long flags;
953
954         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
955                 DMWARN("%s: reached low water mark for data device: sending event.",
956                        dm_device_name(pool->pool_md));
957                 spin_lock_irqsave(&pool->lock, flags);
958                 pool->low_water_triggered = true;
959                 spin_unlock_irqrestore(&pool->lock, flags);
960                 dm_table_event(pool->ti->table);
961         }
962 }
963
964 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
965
966 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
967 {
968         int r;
969         dm_block_t free_blocks;
970         struct pool *pool = tc->pool;
971
972         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
973                 return -EINVAL;
974
975         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
976         if (r) {
977                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
978                 return r;
979         }
980
981         check_low_water_mark(pool, free_blocks);
982
983         if (!free_blocks) {
984                 /*
985                  * Try to commit to see if that will free up some
986                  * more space.
987                  */
988                 r = commit(pool);
989                 if (r)
990                         return r;
991
992                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
993                 if (r) {
994                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
995                         return r;
996                 }
997
998                 if (!free_blocks) {
999                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1000                         return -ENOSPC;
1001                 }
1002         }
1003
1004         r = dm_pool_alloc_data_block(pool->pmd, result);
1005         if (r) {
1006                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1007                 return r;
1008         }
1009
1010         return 0;
1011 }
1012
1013 /*
1014  * If we have run out of space, queue bios until the device is
1015  * resumed, presumably after having been reloaded with more space.
1016  */
1017 static void retry_on_resume(struct bio *bio)
1018 {
1019         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1020         struct thin_c *tc = h->tc;
1021         unsigned long flags;
1022
1023         spin_lock_irqsave(&tc->lock, flags);
1024         bio_list_add(&tc->retry_on_resume_list, bio);
1025         spin_unlock_irqrestore(&tc->lock, flags);
1026 }
1027
1028 static bool should_error_unserviceable_bio(struct pool *pool)
1029 {
1030         enum pool_mode m = get_pool_mode(pool);
1031
1032         switch (m) {
1033         case PM_WRITE:
1034                 /* Shouldn't get here */
1035                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1036                 return true;
1037
1038         case PM_OUT_OF_DATA_SPACE:
1039                 return pool->pf.error_if_no_space;
1040
1041         case PM_READ_ONLY:
1042         case PM_FAIL:
1043                 return true;
1044         default:
1045                 /* Shouldn't get here */
1046                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1047                 return true;
1048         }
1049 }
1050
1051 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1052 {
1053         if (should_error_unserviceable_bio(pool))
1054                 bio_io_error(bio);
1055         else
1056                 retry_on_resume(bio);
1057 }
1058
1059 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1060 {
1061         struct bio *bio;
1062         struct bio_list bios;
1063
1064         if (should_error_unserviceable_bio(pool)) {
1065                 cell_error(pool, cell);
1066                 return;
1067         }
1068
1069         bio_list_init(&bios);
1070         cell_release(pool, cell, &bios);
1071
1072         if (should_error_unserviceable_bio(pool))
1073                 while ((bio = bio_list_pop(&bios)))
1074                         bio_io_error(bio);
1075         else
1076                 while ((bio = bio_list_pop(&bios)))
1077                         retry_on_resume(bio);
1078 }
1079
1080 static void process_discard(struct thin_c *tc, struct bio *bio)
1081 {
1082         int r;
1083         unsigned long flags;
1084         struct pool *pool = tc->pool;
1085         struct dm_bio_prison_cell *cell, *cell2;
1086         struct dm_cell_key key, key2;
1087         dm_block_t block = get_bio_block(tc, bio);
1088         struct dm_thin_lookup_result lookup_result;
1089         struct dm_thin_new_mapping *m;
1090
1091         build_virtual_key(tc->td, block, &key);
1092         if (bio_detain(tc->pool, &key, bio, &cell))
1093                 return;
1094
1095         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1096         switch (r) {
1097         case 0:
1098                 /*
1099                  * Check nobody is fiddling with this pool block.  This can
1100                  * happen if someone's in the process of breaking sharing
1101                  * on this block.
1102                  */
1103                 build_data_key(tc->td, lookup_result.block, &key2);
1104                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1105                         cell_defer_no_holder(tc, cell);
1106                         break;
1107                 }
1108
1109                 if (io_overlaps_block(pool, bio)) {
1110                         /*
1111                          * IO may still be going to the destination block.  We must
1112                          * quiesce before we can do the removal.
1113                          */
1114                         m = get_next_mapping(pool);
1115                         m->tc = tc;
1116                         m->pass_discard = pool->pf.discard_passdown;
1117                         m->definitely_not_shared = !lookup_result.shared;
1118                         m->virt_block = block;
1119                         m->data_block = lookup_result.block;
1120                         m->cell = cell;
1121                         m->cell2 = cell2;
1122                         m->bio = bio;
1123
1124                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1125                                 spin_lock_irqsave(&pool->lock, flags);
1126                                 list_add_tail(&m->list, &pool->prepared_discards);
1127                                 spin_unlock_irqrestore(&pool->lock, flags);
1128                                 wake_worker(pool);
1129                         }
1130                 } else {
1131                         inc_all_io_entry(pool, bio);
1132                         cell_defer_no_holder(tc, cell);
1133                         cell_defer_no_holder(tc, cell2);
1134
1135                         /*
1136                          * The DM core makes sure that the discard doesn't span
1137                          * a block boundary.  So we submit the discard of a
1138                          * partial block appropriately.
1139                          */
1140                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1141                                 remap_and_issue(tc, bio, lookup_result.block);
1142                         else
1143                                 bio_endio(bio, 0);
1144                 }
1145                 break;
1146
1147         case -ENODATA:
1148                 /*
1149                  * It isn't provisioned, just forget it.
1150                  */
1151                 cell_defer_no_holder(tc, cell);
1152                 bio_endio(bio, 0);
1153                 break;
1154
1155         default:
1156                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1157                             __func__, r);
1158                 cell_defer_no_holder(tc, cell);
1159                 bio_io_error(bio);
1160                 break;
1161         }
1162 }
1163
1164 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1165                           struct dm_cell_key *key,
1166                           struct dm_thin_lookup_result *lookup_result,
1167                           struct dm_bio_prison_cell *cell)
1168 {
1169         int r;
1170         dm_block_t data_block;
1171         struct pool *pool = tc->pool;
1172
1173         r = alloc_data_block(tc, &data_block);
1174         switch (r) {
1175         case 0:
1176                 schedule_internal_copy(tc, block, lookup_result->block,
1177                                        data_block, cell, bio);
1178                 break;
1179
1180         case -ENOSPC:
1181                 retry_bios_on_resume(pool, cell);
1182                 break;
1183
1184         default:
1185                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1186                             __func__, r);
1187                 cell_error(pool, cell);
1188                 break;
1189         }
1190 }
1191
1192 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1193                                dm_block_t block,
1194                                struct dm_thin_lookup_result *lookup_result)
1195 {
1196         struct dm_bio_prison_cell *cell;
1197         struct pool *pool = tc->pool;
1198         struct dm_cell_key key;
1199
1200         /*
1201          * If cell is already occupied, then sharing is already in the process
1202          * of being broken so we have nothing further to do here.
1203          */
1204         build_data_key(tc->td, lookup_result->block, &key);
1205         if (bio_detain(pool, &key, bio, &cell))
1206                 return;
1207
1208         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1209                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1210         else {
1211                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1212
1213                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1214                 inc_all_io_entry(pool, bio);
1215                 cell_defer_no_holder(tc, cell);
1216
1217                 remap_and_issue(tc, bio, lookup_result->block);
1218         }
1219 }
1220
1221 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1222                             struct dm_bio_prison_cell *cell)
1223 {
1224         int r;
1225         dm_block_t data_block;
1226         struct pool *pool = tc->pool;
1227
1228         /*
1229          * Remap empty bios (flushes) immediately, without provisioning.
1230          */
1231         if (!bio->bi_iter.bi_size) {
1232                 inc_all_io_entry(pool, bio);
1233                 cell_defer_no_holder(tc, cell);
1234
1235                 remap_and_issue(tc, bio, 0);
1236                 return;
1237         }
1238
1239         /*
1240          * Fill read bios with zeroes and complete them immediately.
1241          */
1242         if (bio_data_dir(bio) == READ) {
1243                 zero_fill_bio(bio);
1244                 cell_defer_no_holder(tc, cell);
1245                 bio_endio(bio, 0);
1246                 return;
1247         }
1248
1249         r = alloc_data_block(tc, &data_block);
1250         switch (r) {
1251         case 0:
1252                 if (tc->origin_dev)
1253                         schedule_external_copy(tc, block, data_block, cell, bio);
1254                 else
1255                         schedule_zero(tc, block, data_block, cell, bio);
1256                 break;
1257
1258         case -ENOSPC:
1259                 retry_bios_on_resume(pool, cell);
1260                 break;
1261
1262         default:
1263                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1264                             __func__, r);
1265                 cell_error(pool, cell);
1266                 break;
1267         }
1268 }
1269
1270 static void process_bio(struct thin_c *tc, struct bio *bio)
1271 {
1272         int r;
1273         struct pool *pool = tc->pool;
1274         dm_block_t block = get_bio_block(tc, bio);
1275         struct dm_bio_prison_cell *cell;
1276         struct dm_cell_key key;
1277         struct dm_thin_lookup_result lookup_result;
1278
1279         /*
1280          * If cell is already occupied, then the block is already
1281          * being provisioned so we have nothing further to do here.
1282          */
1283         build_virtual_key(tc->td, block, &key);
1284         if (bio_detain(pool, &key, bio, &cell))
1285                 return;
1286
1287         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1288         switch (r) {
1289         case 0:
1290                 if (lookup_result.shared) {
1291                         process_shared_bio(tc, bio, block, &lookup_result);
1292                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1293                 } else {
1294                         inc_all_io_entry(pool, bio);
1295                         cell_defer_no_holder(tc, cell);
1296
1297                         remap_and_issue(tc, bio, lookup_result.block);
1298                 }
1299                 break;
1300
1301         case -ENODATA:
1302                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1303                         inc_all_io_entry(pool, bio);
1304                         cell_defer_no_holder(tc, cell);
1305
1306                         remap_to_origin_and_issue(tc, bio);
1307                 } else
1308                         provision_block(tc, bio, block, cell);
1309                 break;
1310
1311         default:
1312                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1313                             __func__, r);
1314                 cell_defer_no_holder(tc, cell);
1315                 bio_io_error(bio);
1316                 break;
1317         }
1318 }
1319
1320 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1321 {
1322         int r;
1323         int rw = bio_data_dir(bio);
1324         dm_block_t block = get_bio_block(tc, bio);
1325         struct dm_thin_lookup_result lookup_result;
1326
1327         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1328         switch (r) {
1329         case 0:
1330                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1331                         handle_unserviceable_bio(tc->pool, bio);
1332                 else {
1333                         inc_all_io_entry(tc->pool, bio);
1334                         remap_and_issue(tc, bio, lookup_result.block);
1335                 }
1336                 break;
1337
1338         case -ENODATA:
1339                 if (rw != READ) {
1340                         handle_unserviceable_bio(tc->pool, bio);
1341                         break;
1342                 }
1343
1344                 if (tc->origin_dev) {
1345                         inc_all_io_entry(tc->pool, bio);
1346                         remap_to_origin_and_issue(tc, bio);
1347                         break;
1348                 }
1349
1350                 zero_fill_bio(bio);
1351                 bio_endio(bio, 0);
1352                 break;
1353
1354         default:
1355                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1356                             __func__, r);
1357                 bio_io_error(bio);
1358                 break;
1359         }
1360 }
1361
1362 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1363 {
1364         bio_endio(bio, 0);
1365 }
1366
1367 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1368 {
1369         bio_io_error(bio);
1370 }
1371
1372 /*
1373  * FIXME: should we also commit due to size of transaction, measured in
1374  * metadata blocks?
1375  */
1376 static int need_commit_due_to_time(struct pool *pool)
1377 {
1378         return jiffies < pool->last_commit_jiffies ||
1379                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1380 }
1381
1382 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1383 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1384
1385 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1386 {
1387         struct rb_node **rbp, *parent;
1388         struct dm_thin_endio_hook *pbd;
1389         sector_t bi_sector = bio->bi_iter.bi_sector;
1390
1391         rbp = &tc->sort_bio_list.rb_node;
1392         parent = NULL;
1393         while (*rbp) {
1394                 parent = *rbp;
1395                 pbd = thin_pbd(parent);
1396
1397                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1398                         rbp = &(*rbp)->rb_left;
1399                 else
1400                         rbp = &(*rbp)->rb_right;
1401         }
1402
1403         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1404         rb_link_node(&pbd->rb_node, parent, rbp);
1405         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1406 }
1407
1408 static void __extract_sorted_bios(struct thin_c *tc)
1409 {
1410         struct rb_node *node;
1411         struct dm_thin_endio_hook *pbd;
1412         struct bio *bio;
1413
1414         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1415                 pbd = thin_pbd(node);
1416                 bio = thin_bio(pbd);
1417
1418                 bio_list_add(&tc->deferred_bio_list, bio);
1419                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1420         }
1421
1422         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1423 }
1424
1425 static void __sort_thin_deferred_bios(struct thin_c *tc)
1426 {
1427         struct bio *bio;
1428         struct bio_list bios;
1429
1430         bio_list_init(&bios);
1431         bio_list_merge(&bios, &tc->deferred_bio_list);
1432         bio_list_init(&tc->deferred_bio_list);
1433
1434         /* Sort deferred_bio_list using rb-tree */
1435         while ((bio = bio_list_pop(&bios)))
1436                 __thin_bio_rb_add(tc, bio);
1437
1438         /*
1439          * Transfer the sorted bios in sort_bio_list back to
1440          * deferred_bio_list to allow lockless submission of
1441          * all bios.
1442          */
1443         __extract_sorted_bios(tc);
1444 }
1445
1446 static void process_thin_deferred_bios(struct thin_c *tc)
1447 {
1448         struct pool *pool = tc->pool;
1449         unsigned long flags;
1450         struct bio *bio;
1451         struct bio_list bios;
1452         struct blk_plug plug;
1453
1454         if (tc->requeue_mode) {
1455                 requeue_bio_list(tc, &tc->deferred_bio_list);
1456                 return;
1457         }
1458
1459         bio_list_init(&bios);
1460
1461         spin_lock_irqsave(&tc->lock, flags);
1462
1463         if (bio_list_empty(&tc->deferred_bio_list)) {
1464                 spin_unlock_irqrestore(&tc->lock, flags);
1465                 return;
1466         }
1467
1468         __sort_thin_deferred_bios(tc);
1469
1470         bio_list_merge(&bios, &tc->deferred_bio_list);
1471         bio_list_init(&tc->deferred_bio_list);
1472
1473         spin_unlock_irqrestore(&tc->lock, flags);
1474
1475         blk_start_plug(&plug);
1476         while ((bio = bio_list_pop(&bios))) {
1477                 /*
1478                  * If we've got no free new_mapping structs, and processing
1479                  * this bio might require one, we pause until there are some
1480                  * prepared mappings to process.
1481                  */
1482                 if (ensure_next_mapping(pool)) {
1483                         spin_lock_irqsave(&tc->lock, flags);
1484                         bio_list_add(&tc->deferred_bio_list, bio);
1485                         bio_list_merge(&tc->deferred_bio_list, &bios);
1486                         spin_unlock_irqrestore(&tc->lock, flags);
1487                         break;
1488                 }
1489
1490                 if (bio->bi_rw & REQ_DISCARD)
1491                         pool->process_discard(tc, bio);
1492                 else
1493                         pool->process_bio(tc, bio);
1494         }
1495         blk_finish_plug(&plug);
1496 }
1497
1498 static void thin_get(struct thin_c *tc);
1499 static void thin_put(struct thin_c *tc);
1500
1501 /*
1502  * We can't hold rcu_read_lock() around code that can block.  So we
1503  * find a thin with the rcu lock held; bump a refcount; then drop
1504  * the lock.
1505  */
1506 static struct thin_c *get_first_thin(struct pool *pool)
1507 {
1508         struct thin_c *tc = NULL;
1509
1510         rcu_read_lock();
1511         if (!list_empty(&pool->active_thins)) {
1512                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1513                 thin_get(tc);
1514         }
1515         rcu_read_unlock();
1516
1517         return tc;
1518 }
1519
1520 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1521 {
1522         struct thin_c *old_tc = tc;
1523
1524         rcu_read_lock();
1525         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1526                 thin_get(tc);
1527                 thin_put(old_tc);
1528                 rcu_read_unlock();
1529                 return tc;
1530         }
1531         thin_put(old_tc);
1532         rcu_read_unlock();
1533
1534         return NULL;
1535 }
1536
1537 static void process_deferred_bios(struct pool *pool)
1538 {
1539         unsigned long flags;
1540         struct bio *bio;
1541         struct bio_list bios;
1542         struct thin_c *tc;
1543
1544         tc = get_first_thin(pool);
1545         while (tc) {
1546                 process_thin_deferred_bios(tc);
1547                 tc = get_next_thin(pool, tc);
1548         }
1549
1550         /*
1551          * If there are any deferred flush bios, we must commit
1552          * the metadata before issuing them.
1553          */
1554         bio_list_init(&bios);
1555         spin_lock_irqsave(&pool->lock, flags);
1556         bio_list_merge(&bios, &pool->deferred_flush_bios);
1557         bio_list_init(&pool->deferred_flush_bios);
1558         spin_unlock_irqrestore(&pool->lock, flags);
1559
1560         if (bio_list_empty(&bios) &&
1561             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1562                 return;
1563
1564         if (commit(pool)) {
1565                 while ((bio = bio_list_pop(&bios)))
1566                         bio_io_error(bio);
1567                 return;
1568         }
1569         pool->last_commit_jiffies = jiffies;
1570
1571         while ((bio = bio_list_pop(&bios)))
1572                 generic_make_request(bio);
1573 }
1574
1575 static void do_worker(struct work_struct *ws)
1576 {
1577         struct pool *pool = container_of(ws, struct pool, worker);
1578
1579         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1580         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1581         process_deferred_bios(pool);
1582 }
1583
1584 /*
1585  * We want to commit periodically so that not too much
1586  * unwritten data builds up.
1587  */
1588 static void do_waker(struct work_struct *ws)
1589 {
1590         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1591         wake_worker(pool);
1592         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1593 }
1594
1595 /*
1596  * We're holding onto IO to allow userland time to react.  After the
1597  * timeout either the pool will have been resized (and thus back in
1598  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1599  */
1600 static void do_no_space_timeout(struct work_struct *ws)
1601 {
1602         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1603                                          no_space_timeout);
1604
1605         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1606                 set_pool_mode(pool, PM_READ_ONLY);
1607 }
1608
1609 /*----------------------------------------------------------------*/
1610
1611 struct noflush_work {
1612         struct work_struct worker;
1613         struct thin_c *tc;
1614
1615         atomic_t complete;
1616         wait_queue_head_t wait;
1617 };
1618
1619 static void complete_noflush_work(struct noflush_work *w)
1620 {
1621         atomic_set(&w->complete, 1);
1622         wake_up(&w->wait);
1623 }
1624
1625 static void do_noflush_start(struct work_struct *ws)
1626 {
1627         struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1628         w->tc->requeue_mode = true;
1629         requeue_io(w->tc);
1630         complete_noflush_work(w);
1631 }
1632
1633 static void do_noflush_stop(struct work_struct *ws)
1634 {
1635         struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1636         w->tc->requeue_mode = false;
1637         complete_noflush_work(w);
1638 }
1639
1640 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1641 {
1642         struct noflush_work w;
1643
1644         INIT_WORK_ONSTACK(&w.worker, fn);
1645         w.tc = tc;
1646         atomic_set(&w.complete, 0);
1647         init_waitqueue_head(&w.wait);
1648
1649         queue_work(tc->pool->wq, &w.worker);
1650
1651         wait_event(w.wait, atomic_read(&w.complete));
1652 }
1653
1654 /*----------------------------------------------------------------*/
1655
1656 static enum pool_mode get_pool_mode(struct pool *pool)
1657 {
1658         return pool->pf.mode;
1659 }
1660
1661 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1662 {
1663         dm_table_event(pool->ti->table);
1664         DMINFO("%s: switching pool to %s mode",
1665                dm_device_name(pool->pool_md), new_mode);
1666 }
1667
1668 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1669 {
1670         struct pool_c *pt = pool->ti->private;
1671         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1672         enum pool_mode old_mode = get_pool_mode(pool);
1673
1674         /*
1675          * Never allow the pool to transition to PM_WRITE mode if user
1676          * intervention is required to verify metadata and data consistency.
1677          */
1678         if (new_mode == PM_WRITE && needs_check) {
1679                 DMERR("%s: unable to switch pool to write mode until repaired.",
1680                       dm_device_name(pool->pool_md));
1681                 if (old_mode != new_mode)
1682                         new_mode = old_mode;
1683                 else
1684                         new_mode = PM_READ_ONLY;
1685         }
1686         /*
1687          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1688          * not going to recover without a thin_repair.  So we never let the
1689          * pool move out of the old mode.
1690          */
1691         if (old_mode == PM_FAIL)
1692                 new_mode = old_mode;
1693
1694         switch (new_mode) {
1695         case PM_FAIL:
1696                 if (old_mode != new_mode)
1697                         notify_of_pool_mode_change(pool, "failure");
1698                 dm_pool_metadata_read_only(pool->pmd);
1699                 pool->process_bio = process_bio_fail;
1700                 pool->process_discard = process_bio_fail;
1701                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1702                 pool->process_prepared_discard = process_prepared_discard_fail;
1703
1704                 error_retry_list(pool);
1705                 break;
1706
1707         case PM_READ_ONLY:
1708                 if (old_mode != new_mode)
1709                         notify_of_pool_mode_change(pool, "read-only");
1710                 dm_pool_metadata_read_only(pool->pmd);
1711                 pool->process_bio = process_bio_read_only;
1712                 pool->process_discard = process_bio_success;
1713                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1714                 pool->process_prepared_discard = process_prepared_discard_passdown;
1715
1716                 error_retry_list(pool);
1717                 break;
1718
1719         case PM_OUT_OF_DATA_SPACE:
1720                 /*
1721                  * Ideally we'd never hit this state; the low water mark
1722                  * would trigger userland to extend the pool before we
1723                  * completely run out of data space.  However, many small
1724                  * IOs to unprovisioned space can consume data space at an
1725                  * alarming rate.  Adjust your low water mark if you're
1726                  * frequently seeing this mode.
1727                  */
1728                 if (old_mode != new_mode)
1729                         notify_of_pool_mode_change(pool, "out-of-data-space");
1730                 pool->process_bio = process_bio_read_only;
1731                 pool->process_discard = process_discard;
1732                 pool->process_prepared_mapping = process_prepared_mapping;
1733                 pool->process_prepared_discard = process_prepared_discard_passdown;
1734
1735                 if (!pool->pf.error_if_no_space)
1736                         queue_delayed_work(pool->wq, &pool->no_space_timeout, NO_SPACE_TIMEOUT);
1737                 break;
1738
1739         case PM_WRITE:
1740                 if (old_mode != new_mode)
1741                         notify_of_pool_mode_change(pool, "write");
1742                 dm_pool_metadata_read_write(pool->pmd);
1743                 pool->process_bio = process_bio;
1744                 pool->process_discard = process_discard;
1745                 pool->process_prepared_mapping = process_prepared_mapping;
1746                 pool->process_prepared_discard = process_prepared_discard;
1747                 break;
1748         }
1749
1750         pool->pf.mode = new_mode;
1751         /*
1752          * The pool mode may have changed, sync it so bind_control_target()
1753          * doesn't cause an unexpected mode transition on resume.
1754          */
1755         pt->adjusted_pf.mode = new_mode;
1756 }
1757
1758 static void abort_transaction(struct pool *pool)
1759 {
1760         const char *dev_name = dm_device_name(pool->pool_md);
1761
1762         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1763         if (dm_pool_abort_metadata(pool->pmd)) {
1764                 DMERR("%s: failed to abort metadata transaction", dev_name);
1765                 set_pool_mode(pool, PM_FAIL);
1766         }
1767
1768         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1769                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1770                 set_pool_mode(pool, PM_FAIL);
1771         }
1772 }
1773
1774 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1775 {
1776         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1777                     dm_device_name(pool->pool_md), op, r);
1778
1779         abort_transaction(pool);
1780         set_pool_mode(pool, PM_READ_ONLY);
1781 }
1782
1783 /*----------------------------------------------------------------*/
1784
1785 /*
1786  * Mapping functions.
1787  */
1788
1789 /*
1790  * Called only while mapping a thin bio to hand it over to the workqueue.
1791  */
1792 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1793 {
1794         unsigned long flags;
1795         struct pool *pool = tc->pool;
1796
1797         spin_lock_irqsave(&tc->lock, flags);
1798         bio_list_add(&tc->deferred_bio_list, bio);
1799         spin_unlock_irqrestore(&tc->lock, flags);
1800
1801         wake_worker(pool);
1802 }
1803
1804 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1805 {
1806         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1807
1808         h->tc = tc;
1809         h->shared_read_entry = NULL;
1810         h->all_io_entry = NULL;
1811         h->overwrite_mapping = NULL;
1812 }
1813
1814 /*
1815  * Non-blocking function called from the thin target's map function.
1816  */
1817 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1818 {
1819         int r;
1820         struct thin_c *tc = ti->private;
1821         dm_block_t block = get_bio_block(tc, bio);
1822         struct dm_thin_device *td = tc->td;
1823         struct dm_thin_lookup_result result;
1824         struct dm_bio_prison_cell cell1, cell2;
1825         struct dm_bio_prison_cell *cell_result;
1826         struct dm_cell_key key;
1827
1828         thin_hook_bio(tc, bio);
1829
1830         if (tc->requeue_mode) {
1831                 bio_endio(bio, DM_ENDIO_REQUEUE);
1832                 return DM_MAPIO_SUBMITTED;
1833         }
1834
1835         if (get_pool_mode(tc->pool) == PM_FAIL) {
1836                 bio_io_error(bio);
1837                 return DM_MAPIO_SUBMITTED;
1838         }
1839
1840         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1841                 thin_defer_bio(tc, bio);
1842                 return DM_MAPIO_SUBMITTED;
1843         }
1844
1845         r = dm_thin_find_block(td, block, 0, &result);
1846
1847         /*
1848          * Note that we defer readahead too.
1849          */
1850         switch (r) {
1851         case 0:
1852                 if (unlikely(result.shared)) {
1853                         /*
1854                          * We have a race condition here between the
1855                          * result.shared value returned by the lookup and
1856                          * snapshot creation, which may cause new
1857                          * sharing.
1858                          *
1859                          * To avoid this always quiesce the origin before
1860                          * taking the snap.  You want to do this anyway to
1861                          * ensure a consistent application view
1862                          * (i.e. lockfs).
1863                          *
1864                          * More distant ancestors are irrelevant. The
1865                          * shared flag will be set in their case.
1866                          */
1867                         thin_defer_bio(tc, bio);
1868                         return DM_MAPIO_SUBMITTED;
1869                 }
1870
1871                 build_virtual_key(tc->td, block, &key);
1872                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1873                         return DM_MAPIO_SUBMITTED;
1874
1875                 build_data_key(tc->td, result.block, &key);
1876                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1877                         cell_defer_no_holder_no_free(tc, &cell1);
1878                         return DM_MAPIO_SUBMITTED;
1879                 }
1880
1881                 inc_all_io_entry(tc->pool, bio);
1882                 cell_defer_no_holder_no_free(tc, &cell2);
1883                 cell_defer_no_holder_no_free(tc, &cell1);
1884
1885                 remap(tc, bio, result.block);
1886                 return DM_MAPIO_REMAPPED;
1887
1888         case -ENODATA:
1889                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1890                         /*
1891                          * This block isn't provisioned, and we have no way
1892                          * of doing so.
1893                          */
1894                         handle_unserviceable_bio(tc->pool, bio);
1895                         return DM_MAPIO_SUBMITTED;
1896                 }
1897                 /* fall through */
1898
1899         case -EWOULDBLOCK:
1900                 /*
1901                  * In future, the failed dm_thin_find_block above could
1902                  * provide the hint to load the metadata into cache.
1903                  */
1904                 thin_defer_bio(tc, bio);
1905                 return DM_MAPIO_SUBMITTED;
1906
1907         default:
1908                 /*
1909                  * Must always call bio_io_error on failure.
1910                  * dm_thin_find_block can fail with -EINVAL if the
1911                  * pool is switched to fail-io mode.
1912                  */
1913                 bio_io_error(bio);
1914                 return DM_MAPIO_SUBMITTED;
1915         }
1916 }
1917
1918 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1919 {
1920         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1921         struct request_queue *q;
1922
1923         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1924                 return 1;
1925
1926         q = bdev_get_queue(pt->data_dev->bdev);
1927         return bdi_congested(&q->backing_dev_info, bdi_bits);
1928 }
1929
1930 static void requeue_bios(struct pool *pool)
1931 {
1932         unsigned long flags;
1933         struct thin_c *tc;
1934
1935         rcu_read_lock();
1936         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1937                 spin_lock_irqsave(&tc->lock, flags);
1938                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1939                 bio_list_init(&tc->retry_on_resume_list);
1940                 spin_unlock_irqrestore(&tc->lock, flags);
1941         }
1942         rcu_read_unlock();
1943 }
1944
1945 /*----------------------------------------------------------------
1946  * Binding of control targets to a pool object
1947  *--------------------------------------------------------------*/
1948 static bool data_dev_supports_discard(struct pool_c *pt)
1949 {
1950         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1951
1952         return q && blk_queue_discard(q);
1953 }
1954
1955 static bool is_factor(sector_t block_size, uint32_t n)
1956 {
1957         return !sector_div(block_size, n);
1958 }
1959
1960 /*
1961  * If discard_passdown was enabled verify that the data device
1962  * supports discards.  Disable discard_passdown if not.
1963  */
1964 static void disable_passdown_if_not_supported(struct pool_c *pt)
1965 {
1966         struct pool *pool = pt->pool;
1967         struct block_device *data_bdev = pt->data_dev->bdev;
1968         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1969         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1970         const char *reason = NULL;
1971         char buf[BDEVNAME_SIZE];
1972
1973         if (!pt->adjusted_pf.discard_passdown)
1974                 return;
1975
1976         if (!data_dev_supports_discard(pt))
1977                 reason = "discard unsupported";
1978
1979         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1980                 reason = "max discard sectors smaller than a block";
1981
1982         else if (data_limits->discard_granularity > block_size)
1983                 reason = "discard granularity larger than a block";
1984
1985         else if (!is_factor(block_size, data_limits->discard_granularity))
1986                 reason = "discard granularity not a factor of block size";
1987
1988         if (reason) {
1989                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1990                 pt->adjusted_pf.discard_passdown = false;
1991         }
1992 }
1993
1994 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1995 {
1996         struct pool_c *pt = ti->private;
1997
1998         /*
1999          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2000          */
2001         enum pool_mode old_mode = get_pool_mode(pool);
2002         enum pool_mode new_mode = pt->adjusted_pf.mode;
2003
2004         /*
2005          * Don't change the pool's mode until set_pool_mode() below.
2006          * Otherwise the pool's process_* function pointers may
2007          * not match the desired pool mode.
2008          */
2009         pt->adjusted_pf.mode = old_mode;
2010
2011         pool->ti = ti;
2012         pool->pf = pt->adjusted_pf;
2013         pool->low_water_blocks = pt->low_water_blocks;
2014
2015         set_pool_mode(pool, new_mode);
2016
2017         return 0;
2018 }
2019
2020 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2021 {
2022         if (pool->ti == ti)
2023                 pool->ti = NULL;
2024 }
2025
2026 /*----------------------------------------------------------------
2027  * Pool creation
2028  *--------------------------------------------------------------*/
2029 /* Initialize pool features. */
2030 static void pool_features_init(struct pool_features *pf)
2031 {
2032         pf->mode = PM_WRITE;
2033         pf->zero_new_blocks = true;
2034         pf->discard_enabled = true;
2035         pf->discard_passdown = true;
2036         pf->error_if_no_space = false;
2037 }
2038
2039 static void __pool_destroy(struct pool *pool)
2040 {
2041         __pool_table_remove(pool);
2042
2043         if (dm_pool_metadata_close(pool->pmd) < 0)
2044                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2045
2046         dm_bio_prison_destroy(pool->prison);
2047         dm_kcopyd_client_destroy(pool->copier);
2048
2049         if (pool->wq)
2050                 destroy_workqueue(pool->wq);
2051
2052         if (pool->next_mapping)
2053                 mempool_free(pool->next_mapping, pool->mapping_pool);
2054         mempool_destroy(pool->mapping_pool);
2055         dm_deferred_set_destroy(pool->shared_read_ds);
2056         dm_deferred_set_destroy(pool->all_io_ds);
2057         kfree(pool);
2058 }
2059
2060 static struct kmem_cache *_new_mapping_cache;
2061
2062 static struct pool *pool_create(struct mapped_device *pool_md,
2063                                 struct block_device *metadata_dev,
2064                                 unsigned long block_size,
2065                                 int read_only, char **error)
2066 {
2067         int r;
2068         void *err_p;
2069         struct pool *pool;
2070         struct dm_pool_metadata *pmd;
2071         bool format_device = read_only ? false : true;
2072
2073         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2074         if (IS_ERR(pmd)) {
2075                 *error = "Error creating metadata object";
2076                 return (struct pool *)pmd;
2077         }
2078
2079         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2080         if (!pool) {
2081                 *error = "Error allocating memory for pool";
2082                 err_p = ERR_PTR(-ENOMEM);
2083                 goto bad_pool;
2084         }
2085
2086         pool->pmd = pmd;
2087         pool->sectors_per_block = block_size;
2088         if (block_size & (block_size - 1))
2089                 pool->sectors_per_block_shift = -1;
2090         else
2091                 pool->sectors_per_block_shift = __ffs(block_size);
2092         pool->low_water_blocks = 0;
2093         pool_features_init(&pool->pf);
2094         pool->prison = dm_bio_prison_create(PRISON_CELLS);
2095         if (!pool->prison) {
2096                 *error = "Error creating pool's bio prison";
2097                 err_p = ERR_PTR(-ENOMEM);
2098                 goto bad_prison;
2099         }
2100
2101         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2102         if (IS_ERR(pool->copier)) {
2103                 r = PTR_ERR(pool->copier);
2104                 *error = "Error creating pool's kcopyd client";
2105                 err_p = ERR_PTR(r);
2106                 goto bad_kcopyd_client;
2107         }
2108
2109         /*
2110          * Create singlethreaded workqueue that will service all devices
2111          * that use this metadata.
2112          */
2113         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2114         if (!pool->wq) {
2115                 *error = "Error creating pool's workqueue";
2116                 err_p = ERR_PTR(-ENOMEM);
2117                 goto bad_wq;
2118         }
2119
2120         INIT_WORK(&pool->worker, do_worker);
2121         INIT_DELAYED_WORK(&pool->waker, do_waker);
2122         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2123         spin_lock_init(&pool->lock);
2124         bio_list_init(&pool->deferred_flush_bios);
2125         INIT_LIST_HEAD(&pool->prepared_mappings);
2126         INIT_LIST_HEAD(&pool->prepared_discards);
2127         INIT_LIST_HEAD(&pool->active_thins);
2128         pool->low_water_triggered = false;
2129
2130         pool->shared_read_ds = dm_deferred_set_create();
2131         if (!pool->shared_read_ds) {
2132                 *error = "Error creating pool's shared read deferred set";
2133                 err_p = ERR_PTR(-ENOMEM);
2134                 goto bad_shared_read_ds;
2135         }
2136
2137         pool->all_io_ds = dm_deferred_set_create();
2138         if (!pool->all_io_ds) {
2139                 *error = "Error creating pool's all io deferred set";
2140                 err_p = ERR_PTR(-ENOMEM);
2141                 goto bad_all_io_ds;
2142         }
2143
2144         pool->next_mapping = NULL;
2145         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2146                                                       _new_mapping_cache);
2147         if (!pool->mapping_pool) {
2148                 *error = "Error creating pool's mapping mempool";
2149                 err_p = ERR_PTR(-ENOMEM);
2150                 goto bad_mapping_pool;
2151         }
2152
2153         pool->ref_count = 1;
2154         pool->last_commit_jiffies = jiffies;
2155         pool->pool_md = pool_md;
2156         pool->md_dev = metadata_dev;
2157         __pool_table_insert(pool);
2158
2159         return pool;
2160
2161 bad_mapping_pool:
2162         dm_deferred_set_destroy(pool->all_io_ds);
2163 bad_all_io_ds:
2164         dm_deferred_set_destroy(pool->shared_read_ds);
2165 bad_shared_read_ds:
2166         destroy_workqueue(pool->wq);
2167 bad_wq:
2168         dm_kcopyd_client_destroy(pool->copier);
2169 bad_kcopyd_client:
2170         dm_bio_prison_destroy(pool->prison);
2171 bad_prison:
2172         kfree(pool);
2173 bad_pool:
2174         if (dm_pool_metadata_close(pmd))
2175                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2176
2177         return err_p;
2178 }
2179
2180 static void __pool_inc(struct pool *pool)
2181 {
2182         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2183         pool->ref_count++;
2184 }
2185
2186 static void __pool_dec(struct pool *pool)
2187 {
2188         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2189         BUG_ON(!pool->ref_count);
2190         if (!--pool->ref_count)
2191                 __pool_destroy(pool);
2192 }
2193
2194 static struct pool *__pool_find(struct mapped_device *pool_md,
2195                                 struct block_device *metadata_dev,
2196                                 unsigned long block_size, int read_only,
2197                                 char **error, int *created)
2198 {
2199         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2200
2201         if (pool) {
2202                 if (pool->pool_md != pool_md) {
2203                         *error = "metadata device already in use by a pool";
2204                         return ERR_PTR(-EBUSY);
2205                 }
2206                 __pool_inc(pool);
2207
2208         } else {
2209                 pool = __pool_table_lookup(pool_md);
2210                 if (pool) {
2211                         if (pool->md_dev != metadata_dev) {
2212                                 *error = "different pool cannot replace a pool";
2213                                 return ERR_PTR(-EINVAL);
2214                         }
2215                         __pool_inc(pool);
2216
2217                 } else {
2218                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2219                         *created = 1;
2220                 }
2221         }
2222
2223         return pool;
2224 }
2225
2226 /*----------------------------------------------------------------
2227  * Pool target methods
2228  *--------------------------------------------------------------*/
2229 static void pool_dtr(struct dm_target *ti)
2230 {
2231         struct pool_c *pt = ti->private;
2232
2233         mutex_lock(&dm_thin_pool_table.mutex);
2234
2235         unbind_control_target(pt->pool, ti);
2236         __pool_dec(pt->pool);
2237         dm_put_device(ti, pt->metadata_dev);
2238         dm_put_device(ti, pt->data_dev);
2239         kfree(pt);
2240
2241         mutex_unlock(&dm_thin_pool_table.mutex);
2242 }
2243
2244 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2245                                struct dm_target *ti)
2246 {
2247         int r;
2248         unsigned argc;
2249         const char *arg_name;
2250
2251         static struct dm_arg _args[] = {
2252                 {0, 4, "Invalid number of pool feature arguments"},
2253         };
2254
2255         /*
2256          * No feature arguments supplied.
2257          */
2258         if (!as->argc)
2259                 return 0;
2260
2261         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2262         if (r)
2263                 return -EINVAL;
2264
2265         while (argc && !r) {
2266                 arg_name = dm_shift_arg(as);
2267                 argc--;
2268
2269                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2270                         pf->zero_new_blocks = false;
2271
2272                 else if (!strcasecmp(arg_name, "ignore_discard"))
2273                         pf->discard_enabled = false;
2274
2275                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2276                         pf->discard_passdown = false;
2277
2278                 else if (!strcasecmp(arg_name, "read_only"))
2279                         pf->mode = PM_READ_ONLY;
2280
2281                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2282                         pf->error_if_no_space = true;
2283
2284                 else {
2285                         ti->error = "Unrecognised pool feature requested";
2286                         r = -EINVAL;
2287                         break;
2288                 }
2289         }
2290
2291         return r;
2292 }
2293
2294 static void metadata_low_callback(void *context)
2295 {
2296         struct pool *pool = context;
2297
2298         DMWARN("%s: reached low water mark for metadata device: sending event.",
2299                dm_device_name(pool->pool_md));
2300
2301         dm_table_event(pool->ti->table);
2302 }
2303
2304 static sector_t get_dev_size(struct block_device *bdev)
2305 {
2306         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2307 }
2308
2309 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2310 {
2311         sector_t metadata_dev_size = get_dev_size(bdev);
2312         char buffer[BDEVNAME_SIZE];
2313
2314         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2315                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2316                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2317 }
2318
2319 static sector_t get_metadata_dev_size(struct block_device *bdev)
2320 {
2321         sector_t metadata_dev_size = get_dev_size(bdev);
2322
2323         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2324                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2325
2326         return metadata_dev_size;
2327 }
2328
2329 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2330 {
2331         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2332
2333         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2334
2335         return metadata_dev_size;
2336 }
2337
2338 /*
2339  * When a metadata threshold is crossed a dm event is triggered, and
2340  * userland should respond by growing the metadata device.  We could let
2341  * userland set the threshold, like we do with the data threshold, but I'm
2342  * not sure they know enough to do this well.
2343  */
2344 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2345 {
2346         /*
2347          * 4M is ample for all ops with the possible exception of thin
2348          * device deletion which is harmless if it fails (just retry the
2349          * delete after you've grown the device).
2350          */
2351         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2352         return min((dm_block_t)1024ULL /* 4M */, quarter);
2353 }
2354
2355 /*
2356  * thin-pool <metadata dev> <data dev>
2357  *           <data block size (sectors)>
2358  *           <low water mark (blocks)>
2359  *           [<#feature args> [<arg>]*]
2360  *
2361  * Optional feature arguments are:
2362  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2363  *           ignore_discard: disable discard
2364  *           no_discard_passdown: don't pass discards down to the data device
2365  *           read_only: Don't allow any changes to be made to the pool metadata.
2366  *           error_if_no_space: error IOs, instead of queueing, if no space.
2367  */
2368 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2369 {
2370         int r, pool_created = 0;
2371         struct pool_c *pt;
2372         struct pool *pool;
2373         struct pool_features pf;
2374         struct dm_arg_set as;
2375         struct dm_dev *data_dev;
2376         unsigned long block_size;
2377         dm_block_t low_water_blocks;
2378         struct dm_dev *metadata_dev;
2379         fmode_t metadata_mode;
2380
2381         /*
2382          * FIXME Remove validation from scope of lock.
2383          */
2384         mutex_lock(&dm_thin_pool_table.mutex);
2385
2386         if (argc < 4) {
2387                 ti->error = "Invalid argument count";
2388                 r = -EINVAL;
2389                 goto out_unlock;
2390         }
2391
2392         as.argc = argc;
2393         as.argv = argv;
2394
2395         /*
2396          * Set default pool features.
2397          */
2398         pool_features_init(&pf);
2399
2400         dm_consume_args(&as, 4);
2401         r = parse_pool_features(&as, &pf, ti);
2402         if (r)
2403                 goto out_unlock;
2404
2405         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2406         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2407         if (r) {
2408                 ti->error = "Error opening metadata block device";
2409                 goto out_unlock;
2410         }
2411         warn_if_metadata_device_too_big(metadata_dev->bdev);
2412
2413         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2414         if (r) {
2415                 ti->error = "Error getting data device";
2416                 goto out_metadata;
2417         }
2418
2419         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2420             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2421             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2422             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2423                 ti->error = "Invalid block size";
2424                 r = -EINVAL;
2425                 goto out;
2426         }
2427
2428         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2429                 ti->error = "Invalid low water mark";
2430                 r = -EINVAL;
2431                 goto out;
2432         }
2433
2434         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2435         if (!pt) {
2436                 r = -ENOMEM;
2437                 goto out;
2438         }
2439
2440         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2441                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2442         if (IS_ERR(pool)) {
2443                 r = PTR_ERR(pool);
2444                 goto out_free_pt;
2445         }
2446
2447         /*
2448          * 'pool_created' reflects whether this is the first table load.
2449          * Top level discard support is not allowed to be changed after
2450          * initial load.  This would require a pool reload to trigger thin
2451          * device changes.
2452          */
2453         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2454                 ti->error = "Discard support cannot be disabled once enabled";
2455                 r = -EINVAL;
2456                 goto out_flags_changed;
2457         }
2458
2459         pt->pool = pool;
2460         pt->ti = ti;
2461         pt->metadata_dev = metadata_dev;
2462         pt->data_dev = data_dev;
2463         pt->low_water_blocks = low_water_blocks;
2464         pt->adjusted_pf = pt->requested_pf = pf;
2465         ti->num_flush_bios = 1;
2466
2467         /*
2468          * Only need to enable discards if the pool should pass
2469          * them down to the data device.  The thin device's discard
2470          * processing will cause mappings to be removed from the btree.
2471          */
2472         ti->discard_zeroes_data_unsupported = true;
2473         if (pf.discard_enabled && pf.discard_passdown) {
2474                 ti->num_discard_bios = 1;
2475
2476                 /*
2477                  * Setting 'discards_supported' circumvents the normal
2478                  * stacking of discard limits (this keeps the pool and
2479                  * thin devices' discard limits consistent).
2480                  */
2481                 ti->discards_supported = true;
2482         }
2483         ti->private = pt;
2484
2485         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2486                                                 calc_metadata_threshold(pt),
2487                                                 metadata_low_callback,
2488                                                 pool);
2489         if (r)
2490                 goto out_free_pt;
2491
2492         pt->callbacks.congested_fn = pool_is_congested;
2493         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2494
2495         mutex_unlock(&dm_thin_pool_table.mutex);
2496
2497         return 0;
2498
2499 out_flags_changed:
2500         __pool_dec(pool);
2501 out_free_pt:
2502         kfree(pt);
2503 out:
2504         dm_put_device(ti, data_dev);
2505 out_metadata:
2506         dm_put_device(ti, metadata_dev);
2507 out_unlock:
2508         mutex_unlock(&dm_thin_pool_table.mutex);
2509
2510         return r;
2511 }
2512
2513 static int pool_map(struct dm_target *ti, struct bio *bio)
2514 {
2515         int r;
2516         struct pool_c *pt = ti->private;
2517         struct pool *pool = pt->pool;
2518         unsigned long flags;
2519
2520         /*
2521          * As this is a singleton target, ti->begin is always zero.
2522          */
2523         spin_lock_irqsave(&pool->lock, flags);
2524         bio->bi_bdev = pt->data_dev->bdev;
2525         r = DM_MAPIO_REMAPPED;
2526         spin_unlock_irqrestore(&pool->lock, flags);
2527
2528         return r;
2529 }
2530
2531 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2532 {
2533         int r;
2534         struct pool_c *pt = ti->private;
2535         struct pool *pool = pt->pool;
2536         sector_t data_size = ti->len;
2537         dm_block_t sb_data_size;
2538
2539         *need_commit = false;
2540
2541         (void) sector_div(data_size, pool->sectors_per_block);
2542
2543         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2544         if (r) {
2545                 DMERR("%s: failed to retrieve data device size",
2546                       dm_device_name(pool->pool_md));
2547                 return r;
2548         }
2549
2550         if (data_size < sb_data_size) {
2551                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2552                       dm_device_name(pool->pool_md),
2553                       (unsigned long long)data_size, sb_data_size);
2554                 return -EINVAL;
2555
2556         } else if (data_size > sb_data_size) {
2557                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2558                         DMERR("%s: unable to grow the data device until repaired.",
2559                               dm_device_name(pool->pool_md));
2560                         return 0;
2561                 }
2562
2563                 if (sb_data_size)
2564                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2565                                dm_device_name(pool->pool_md),
2566                                sb_data_size, (unsigned long long)data_size);
2567                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2568                 if (r) {
2569                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2570                         return r;
2571                 }
2572
2573                 *need_commit = true;
2574         }
2575
2576         return 0;
2577 }
2578
2579 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2580 {
2581         int r;
2582         struct pool_c *pt = ti->private;
2583         struct pool *pool = pt->pool;
2584         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2585
2586         *need_commit = false;
2587
2588         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2589
2590         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2591         if (r) {
2592                 DMERR("%s: failed to retrieve metadata device size",
2593                       dm_device_name(pool->pool_md));
2594                 return r;
2595         }
2596
2597         if (metadata_dev_size < sb_metadata_dev_size) {
2598                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2599                       dm_device_name(pool->pool_md),
2600                       metadata_dev_size, sb_metadata_dev_size);
2601                 return -EINVAL;
2602
2603         } else if (metadata_dev_size > sb_metadata_dev_size) {
2604                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2605                         DMERR("%s: unable to grow the metadata device until repaired.",
2606                               dm_device_name(pool->pool_md));
2607                         return 0;
2608                 }
2609
2610                 warn_if_metadata_device_too_big(pool->md_dev);
2611                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2612                        dm_device_name(pool->pool_md),
2613                        sb_metadata_dev_size, metadata_dev_size);
2614                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2615                 if (r) {
2616                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2617                         return r;
2618                 }
2619
2620                 *need_commit = true;
2621         }
2622
2623         return 0;
2624 }
2625
2626 /*
2627  * Retrieves the number of blocks of the data device from
2628  * the superblock and compares it to the actual device size,
2629  * thus resizing the data device in case it has grown.
2630  *
2631  * This both copes with opening preallocated data devices in the ctr
2632  * being followed by a resume
2633  * -and-
2634  * calling the resume method individually after userspace has
2635  * grown the data device in reaction to a table event.
2636  */
2637 static int pool_preresume(struct dm_target *ti)
2638 {
2639         int r;
2640         bool need_commit1, need_commit2;
2641         struct pool_c *pt = ti->private;
2642         struct pool *pool = pt->pool;
2643
2644         /*
2645          * Take control of the pool object.
2646          */
2647         r = bind_control_target(pool, ti);
2648         if (r)
2649                 return r;
2650
2651         r = maybe_resize_data_dev(ti, &need_commit1);
2652         if (r)
2653                 return r;
2654
2655         r = maybe_resize_metadata_dev(ti, &need_commit2);
2656         if (r)
2657                 return r;
2658
2659         if (need_commit1 || need_commit2)
2660                 (void) commit(pool);
2661
2662         return 0;
2663 }
2664
2665 static void pool_resume(struct dm_target *ti)
2666 {
2667         struct pool_c *pt = ti->private;
2668         struct pool *pool = pt->pool;
2669         unsigned long flags;
2670
2671         spin_lock_irqsave(&pool->lock, flags);
2672         pool->low_water_triggered = false;
2673         spin_unlock_irqrestore(&pool->lock, flags);
2674         requeue_bios(pool);
2675
2676         do_waker(&pool->waker.work);
2677 }
2678
2679 static void pool_postsuspend(struct dm_target *ti)
2680 {
2681         struct pool_c *pt = ti->private;
2682         struct pool *pool = pt->pool;
2683
2684         cancel_delayed_work(&pool->waker);
2685         cancel_delayed_work(&pool->no_space_timeout);
2686         flush_workqueue(pool->wq);
2687         (void) commit(pool);
2688 }
2689
2690 static int check_arg_count(unsigned argc, unsigned args_required)
2691 {
2692         if (argc != args_required) {
2693                 DMWARN("Message received with %u arguments instead of %u.",
2694                        argc, args_required);
2695                 return -EINVAL;
2696         }
2697
2698         return 0;
2699 }
2700
2701 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2702 {
2703         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2704             *dev_id <= MAX_DEV_ID)
2705                 return 0;
2706
2707         if (warning)
2708                 DMWARN("Message received with invalid device id: %s", arg);
2709
2710         return -EINVAL;
2711 }
2712
2713 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2714 {
2715         dm_thin_id dev_id;
2716         int r;
2717
2718         r = check_arg_count(argc, 2);
2719         if (r)
2720                 return r;
2721
2722         r = read_dev_id(argv[1], &dev_id, 1);
2723         if (r)
2724                 return r;
2725
2726         r = dm_pool_create_thin(pool->pmd, dev_id);
2727         if (r) {
2728                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2729                        argv[1]);
2730                 return r;
2731         }
2732
2733         return 0;
2734 }
2735
2736 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2737 {
2738         dm_thin_id dev_id;
2739         dm_thin_id origin_dev_id;
2740         int r;
2741
2742         r = check_arg_count(argc, 3);
2743         if (r)
2744                 return r;
2745
2746         r = read_dev_id(argv[1], &dev_id, 1);
2747         if (r)
2748                 return r;
2749
2750         r = read_dev_id(argv[2], &origin_dev_id, 1);
2751         if (r)
2752                 return r;
2753
2754         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2755         if (r) {
2756                 DMWARN("Creation of new snapshot %s of device %s failed.",
2757                        argv[1], argv[2]);
2758                 return r;
2759         }
2760
2761         return 0;
2762 }
2763
2764 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2765 {
2766         dm_thin_id dev_id;
2767         int r;
2768
2769         r = check_arg_count(argc, 2);
2770         if (r)
2771                 return r;
2772
2773         r = read_dev_id(argv[1], &dev_id, 1);
2774         if (r)
2775                 return r;
2776
2777         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2778         if (r)
2779                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2780
2781         return r;
2782 }
2783
2784 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2785 {
2786         dm_thin_id old_id, new_id;
2787         int r;
2788
2789         r = check_arg_count(argc, 3);
2790         if (r)
2791                 return r;
2792
2793         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2794                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2795                 return -EINVAL;
2796         }
2797
2798         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2799                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2800                 return -EINVAL;
2801         }
2802
2803         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2804         if (r) {
2805                 DMWARN("Failed to change transaction id from %s to %s.",
2806                        argv[1], argv[2]);
2807                 return r;
2808         }
2809
2810         return 0;
2811 }
2812
2813 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2814 {
2815         int r;
2816
2817         r = check_arg_count(argc, 1);
2818         if (r)
2819                 return r;
2820
2821         (void) commit(pool);
2822
2823         r = dm_pool_reserve_metadata_snap(pool->pmd);
2824         if (r)
2825                 DMWARN("reserve_metadata_snap message failed.");
2826
2827         return r;
2828 }
2829
2830 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2831 {
2832         int r;
2833
2834         r = check_arg_count(argc, 1);
2835         if (r)
2836                 return r;
2837
2838         r = dm_pool_release_metadata_snap(pool->pmd);
2839         if (r)
2840                 DMWARN("release_metadata_snap message failed.");
2841
2842         return r;
2843 }
2844
2845 /*
2846  * Messages supported:
2847  *   create_thin        <dev_id>
2848  *   create_snap        <dev_id> <origin_id>
2849  *   delete             <dev_id>
2850  *   trim               <dev_id> <new_size_in_sectors>
2851  *   set_transaction_id <current_trans_id> <new_trans_id>
2852  *   reserve_metadata_snap
2853  *   release_metadata_snap
2854  */
2855 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2856 {
2857         int r = -EINVAL;
2858         struct pool_c *pt = ti->private;
2859         struct pool *pool = pt->pool;
2860
2861         if (!strcasecmp(argv[0], "create_thin"))
2862                 r = process_create_thin_mesg(argc, argv, pool);
2863
2864         else if (!strcasecmp(argv[0], "create_snap"))
2865                 r = process_create_snap_mesg(argc, argv, pool);
2866
2867         else if (!strcasecmp(argv[0], "delete"))
2868                 r = process_delete_mesg(argc, argv, pool);
2869
2870         else if (!strcasecmp(argv[0], "set_transaction_id"))
2871                 r = process_set_transaction_id_mesg(argc, argv, pool);
2872
2873         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2874                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2875
2876         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2877                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2878
2879         else
2880                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2881
2882         if (!r)
2883                 (void) commit(pool);
2884
2885         return r;
2886 }
2887
2888 static void emit_flags(struct pool_features *pf, char *result,
2889                        unsigned sz, unsigned maxlen)
2890 {
2891         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2892                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2893                 pf->error_if_no_space;
2894         DMEMIT("%u ", count);
2895
2896         if (!pf->zero_new_blocks)
2897                 DMEMIT("skip_block_zeroing ");
2898
2899         if (!pf->discard_enabled)
2900                 DMEMIT("ignore_discard ");
2901
2902         if (!pf->discard_passdown)
2903                 DMEMIT("no_discard_passdown ");
2904
2905         if (pf->mode == PM_READ_ONLY)
2906                 DMEMIT("read_only ");
2907
2908         if (pf->error_if_no_space)
2909                 DMEMIT("error_if_no_space ");
2910 }
2911
2912 /*
2913  * Status line is:
2914  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2915  *    <used data sectors>/<total data sectors> <held metadata root>
2916  */
2917 static void pool_status(struct dm_target *ti, status_type_t type,
2918                         unsigned status_flags, char *result, unsigned maxlen)
2919 {
2920         int r;
2921         unsigned sz = 0;
2922         uint64_t transaction_id;
2923         dm_block_t nr_free_blocks_data;
2924         dm_block_t nr_free_blocks_metadata;
2925         dm_block_t nr_blocks_data;
2926         dm_block_t nr_blocks_metadata;
2927         dm_block_t held_root;
2928         char buf[BDEVNAME_SIZE];
2929         char buf2[BDEVNAME_SIZE];
2930         struct pool_c *pt = ti->private;
2931         struct pool *pool = pt->pool;
2932
2933         switch (type) {
2934         case STATUSTYPE_INFO:
2935                 if (get_pool_mode(pool) == PM_FAIL) {
2936                         DMEMIT("Fail");
2937                         break;
2938                 }
2939
2940                 /* Commit to ensure statistics aren't out-of-date */
2941                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2942                         (void) commit(pool);
2943
2944                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2945                 if (r) {
2946                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2947                               dm_device_name(pool->pool_md), r);
2948                         goto err;
2949                 }
2950
2951                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2952                 if (r) {
2953                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2954                               dm_device_name(pool->pool_md), r);
2955                         goto err;
2956                 }
2957
2958                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2959                 if (r) {
2960                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2961                               dm_device_name(pool->pool_md), r);
2962                         goto err;
2963                 }
2964
2965                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2966                 if (r) {
2967                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2968                               dm_device_name(pool->pool_md), r);
2969                         goto err;
2970                 }
2971
2972                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2973                 if (r) {
2974                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2975                               dm_device_name(pool->pool_md), r);
2976                         goto err;
2977                 }
2978
2979                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2980                 if (r) {
2981                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2982                               dm_device_name(pool->pool_md), r);
2983                         goto err;
2984                 }
2985
2986                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2987                        (unsigned long long)transaction_id,
2988                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2989                        (unsigned long long)nr_blocks_metadata,
2990                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2991                        (unsigned long long)nr_blocks_data);
2992
2993                 if (held_root)
2994                         DMEMIT("%llu ", held_root);
2995                 else
2996                         DMEMIT("- ");
2997
2998                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2999                         DMEMIT("out_of_data_space ");
3000                 else if (pool->pf.mode == PM_READ_ONLY)
3001                         DMEMIT("ro ");
3002                 else
3003                         DMEMIT("rw ");
3004
3005                 if (!pool->pf.discard_enabled)
3006                         DMEMIT("ignore_discard ");
3007                 else if (pool->pf.discard_passdown)
3008                         DMEMIT("discard_passdown ");
3009                 else
3010                         DMEMIT("no_discard_passdown ");
3011
3012                 if (pool->pf.error_if_no_space)
3013                         DMEMIT("error_if_no_space ");
3014                 else
3015                         DMEMIT("queue_if_no_space ");
3016
3017                 break;
3018
3019         case STATUSTYPE_TABLE:
3020                 DMEMIT("%s %s %lu %llu ",
3021                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3022                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3023                        (unsigned long)pool->sectors_per_block,
3024                        (unsigned long long)pt->low_water_blocks);
3025                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3026                 break;
3027         }
3028         return;
3029
3030 err:
3031         DMEMIT("Error");
3032 }
3033
3034 static int pool_iterate_devices(struct dm_target *ti,
3035                                 iterate_devices_callout_fn fn, void *data)
3036 {
3037         struct pool_c *pt = ti->private;
3038
3039         return fn(ti, pt->data_dev, 0, ti->len, data);
3040 }
3041
3042 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3043                       struct bio_vec *biovec, int max_size)
3044 {
3045         struct pool_c *pt = ti->private;
3046         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3047
3048         if (!q->merge_bvec_fn)
3049                 return max_size;
3050
3051         bvm->bi_bdev = pt->data_dev->bdev;
3052
3053         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3054 }
3055
3056 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3057 {
3058         struct pool *pool = pt->pool;
3059         struct queue_limits *data_limits;
3060
3061         limits->max_discard_sectors = pool->sectors_per_block;
3062
3063         /*
3064          * discard_granularity is just a hint, and not enforced.
3065          */
3066         if (pt->adjusted_pf.discard_passdown) {
3067                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3068                 limits->discard_granularity = data_limits->discard_granularity;
3069         } else
3070                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3071 }
3072
3073 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3074 {
3075         struct pool_c *pt = ti->private;
3076         struct pool *pool = pt->pool;
3077         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3078
3079         /*
3080          * If the system-determined stacked limits are compatible with the
3081          * pool's blocksize (io_opt is a factor) do not override them.
3082          */
3083         if (io_opt_sectors < pool->sectors_per_block ||
3084             do_div(io_opt_sectors, pool->sectors_per_block)) {
3085                 blk_limits_io_min(limits, 0);
3086                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3087         }
3088
3089         /*
3090          * pt->adjusted_pf is a staging area for the actual features to use.
3091          * They get transferred to the live pool in bind_control_target()
3092          * called from pool_preresume().
3093          */
3094         if (!pt->adjusted_pf.discard_enabled) {
3095                 /*
3096                  * Must explicitly disallow stacking discard limits otherwise the
3097                  * block layer will stack them if pool's data device has support.
3098                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3099                  * user to see that, so make sure to set all discard limits to 0.
3100                  */
3101                 limits->discard_granularity = 0;
3102                 return;
3103         }
3104
3105         disable_passdown_if_not_supported(pt);
3106
3107         set_discard_limits(pt, limits);
3108 }
3109
3110 static struct target_type pool_target = {
3111         .name = "thin-pool",
3112         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3113                     DM_TARGET_IMMUTABLE,
3114         .version = {1, 12, 0},
3115         .module = THIS_MODULE,
3116         .ctr = pool_ctr,
3117         .dtr = pool_dtr,
3118         .map = pool_map,
3119         .postsuspend = pool_postsuspend,
3120         .preresume = pool_preresume,
3121         .resume = pool_resume,
3122         .message = pool_message,
3123         .status = pool_status,
3124         .merge = pool_merge,
3125         .iterate_devices = pool_iterate_devices,
3126         .io_hints = pool_io_hints,
3127 };
3128
3129 /*----------------------------------------------------------------
3130  * Thin target methods
3131  *--------------------------------------------------------------*/
3132 static void thin_get(struct thin_c *tc)
3133 {
3134         atomic_inc(&tc->refcount);
3135 }
3136
3137 static void thin_put(struct thin_c *tc)
3138 {
3139         if (atomic_dec_and_test(&tc->refcount))
3140                 complete(&tc->can_destroy);
3141 }
3142
3143 static void thin_dtr(struct dm_target *ti)
3144 {
3145         struct thin_c *tc = ti->private;
3146         unsigned long flags;
3147
3148         thin_put(tc);
3149         wait_for_completion(&tc->can_destroy);
3150
3151         spin_lock_irqsave(&tc->pool->lock, flags);
3152         list_del_rcu(&tc->list);
3153         spin_unlock_irqrestore(&tc->pool->lock, flags);
3154         synchronize_rcu();
3155
3156         mutex_lock(&dm_thin_pool_table.mutex);
3157
3158         __pool_dec(tc->pool);
3159         dm_pool_close_thin_device(tc->td);
3160         dm_put_device(ti, tc->pool_dev);
3161         if (tc->origin_dev)
3162                 dm_put_device(ti, tc->origin_dev);
3163         kfree(tc);
3164
3165         mutex_unlock(&dm_thin_pool_table.mutex);
3166 }
3167
3168 /*
3169  * Thin target parameters:
3170  *
3171  * <pool_dev> <dev_id> [origin_dev]
3172  *
3173  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3174  * dev_id: the internal device identifier
3175  * origin_dev: a device external to the pool that should act as the origin
3176  *
3177  * If the pool device has discards disabled, they get disabled for the thin
3178  * device as well.
3179  */
3180 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3181 {
3182         int r;
3183         struct thin_c *tc;
3184         struct dm_dev *pool_dev, *origin_dev;
3185         struct mapped_device *pool_md;
3186         unsigned long flags;
3187
3188         mutex_lock(&dm_thin_pool_table.mutex);
3189
3190         if (argc != 2 && argc != 3) {
3191                 ti->error = "Invalid argument count";
3192                 r = -EINVAL;
3193                 goto out_unlock;
3194         }
3195
3196         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3197         if (!tc) {
3198                 ti->error = "Out of memory";
3199                 r = -ENOMEM;
3200                 goto out_unlock;
3201         }
3202         spin_lock_init(&tc->lock);
3203         bio_list_init(&tc->deferred_bio_list);
3204         bio_list_init(&tc->retry_on_resume_list);
3205         tc->sort_bio_list = RB_ROOT;
3206
3207         if (argc == 3) {
3208                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3209                 if (r) {
3210                         ti->error = "Error opening origin device";
3211                         goto bad_origin_dev;
3212                 }
3213                 tc->origin_dev = origin_dev;
3214         }
3215
3216         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3217         if (r) {
3218                 ti->error = "Error opening pool device";
3219                 goto bad_pool_dev;
3220         }
3221         tc->pool_dev = pool_dev;
3222
3223         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3224                 ti->error = "Invalid device id";
3225                 r = -EINVAL;
3226                 goto bad_common;
3227         }
3228
3229         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3230         if (!pool_md) {
3231                 ti->error = "Couldn't get pool mapped device";
3232                 r = -EINVAL;
3233                 goto bad_common;
3234         }
3235
3236         tc->pool = __pool_table_lookup(pool_md);
3237         if (!tc->pool) {
3238                 ti->error = "Couldn't find pool object";
3239                 r = -EINVAL;
3240                 goto bad_pool_lookup;
3241         }
3242         __pool_inc(tc->pool);
3243
3244         if (get_pool_mode(tc->pool) == PM_FAIL) {
3245                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3246                 r = -EINVAL;
3247                 goto bad_thin_open;
3248         }
3249
3250         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3251         if (r) {
3252                 ti->error = "Couldn't open thin internal device";
3253                 goto bad_thin_open;
3254         }
3255
3256         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3257         if (r)
3258                 goto bad_target_max_io_len;
3259
3260         ti->num_flush_bios = 1;
3261         ti->flush_supported = true;
3262         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3263
3264         /* In case the pool supports discards, pass them on. */
3265         ti->discard_zeroes_data_unsupported = true;
3266         if (tc->pool->pf.discard_enabled) {
3267                 ti->discards_supported = true;
3268                 ti->num_discard_bios = 1;
3269                 /* Discard bios must be split on a block boundary */
3270                 ti->split_discard_bios = true;
3271         }
3272
3273         dm_put(pool_md);
3274
3275         mutex_unlock(&dm_thin_pool_table.mutex);
3276
3277         atomic_set(&tc->refcount, 1);
3278         init_completion(&tc->can_destroy);
3279
3280         spin_lock_irqsave(&tc->pool->lock, flags);
3281         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3282         spin_unlock_irqrestore(&tc->pool->lock, flags);
3283         /*
3284          * This synchronize_rcu() call is needed here otherwise we risk a
3285          * wake_worker() call finding no bios to process (because the newly
3286          * added tc isn't yet visible).  So this reduces latency since we
3287          * aren't then dependent on the periodic commit to wake_worker().
3288          */
3289         synchronize_rcu();
3290
3291         return 0;
3292
3293 bad_target_max_io_len:
3294         dm_pool_close_thin_device(tc->td);
3295 bad_thin_open:
3296         __pool_dec(tc->pool);
3297 bad_pool_lookup:
3298         dm_put(pool_md);
3299 bad_common:
3300         dm_put_device(ti, tc->pool_dev);
3301 bad_pool_dev:
3302         if (tc->origin_dev)
3303                 dm_put_device(ti, tc->origin_dev);
3304 bad_origin_dev:
3305         kfree(tc);
3306 out_unlock:
3307         mutex_unlock(&dm_thin_pool_table.mutex);
3308
3309         return r;
3310 }
3311
3312 static int thin_map(struct dm_target *ti, struct bio *bio)
3313 {
3314         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3315
3316         return thin_bio_map(ti, bio);
3317 }
3318
3319 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3320 {
3321         unsigned long flags;
3322         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3323         struct list_head work;
3324         struct dm_thin_new_mapping *m, *tmp;
3325         struct pool *pool = h->tc->pool;
3326
3327         if (h->shared_read_entry) {
3328                 INIT_LIST_HEAD(&work);
3329                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3330
3331                 spin_lock_irqsave(&pool->lock, flags);
3332                 list_for_each_entry_safe(m, tmp, &work, list) {
3333                         list_del(&m->list);
3334                         m->quiesced = true;
3335                         __maybe_add_mapping(m);
3336                 }
3337                 spin_unlock_irqrestore(&pool->lock, flags);
3338         }
3339
3340         if (h->all_io_entry) {
3341                 INIT_LIST_HEAD(&work);
3342                 dm_deferred_entry_dec(h->all_io_entry, &work);
3343                 if (!list_empty(&work)) {
3344                         spin_lock_irqsave(&pool->lock, flags);
3345                         list_for_each_entry_safe(m, tmp, &work, list)
3346                                 list_add_tail(&m->list, &pool->prepared_discards);
3347                         spin_unlock_irqrestore(&pool->lock, flags);
3348                         wake_worker(pool);
3349                 }
3350         }
3351
3352         return 0;
3353 }
3354
3355 static void thin_presuspend(struct dm_target *ti)
3356 {
3357         struct thin_c *tc = ti->private;
3358
3359         if (dm_noflush_suspending(ti))
3360                 noflush_work(tc, do_noflush_start);
3361 }
3362
3363 static void thin_postsuspend(struct dm_target *ti)
3364 {
3365         struct thin_c *tc = ti->private;
3366
3367         /*
3368          * The dm_noflush_suspending flag has been cleared by now, so
3369          * unfortunately we must always run this.
3370          */
3371         noflush_work(tc, do_noflush_stop);
3372 }
3373
3374 /*
3375  * <nr mapped sectors> <highest mapped sector>
3376  */
3377 static void thin_status(struct dm_target *ti, status_type_t type,
3378                         unsigned status_flags, char *result, unsigned maxlen)
3379 {
3380         int r;
3381         ssize_t sz = 0;
3382         dm_block_t mapped, highest;
3383         char buf[BDEVNAME_SIZE];
3384         struct thin_c *tc = ti->private;
3385
3386         if (get_pool_mode(tc->pool) == PM_FAIL) {
3387                 DMEMIT("Fail");
3388                 return;
3389         }
3390
3391         if (!tc->td)
3392                 DMEMIT("-");
3393         else {
3394                 switch (type) {
3395                 case STATUSTYPE_INFO:
3396                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3397                         if (r) {
3398                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3399                                 goto err;
3400                         }
3401
3402                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3403                         if (r < 0) {
3404                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3405                                 goto err;
3406                         }
3407
3408                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3409                         if (r)
3410                                 DMEMIT("%llu", ((highest + 1) *
3411                                                 tc->pool->sectors_per_block) - 1);
3412                         else
3413                                 DMEMIT("-");
3414                         break;
3415
3416                 case STATUSTYPE_TABLE:
3417                         DMEMIT("%s %lu",
3418                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3419                                (unsigned long) tc->dev_id);
3420                         if (tc->origin_dev)
3421                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3422                         break;
3423                 }
3424         }
3425
3426         return;
3427
3428 err:
3429         DMEMIT("Error");
3430 }
3431
3432 static int thin_iterate_devices(struct dm_target *ti,
3433                                 iterate_devices_callout_fn fn, void *data)
3434 {
3435         sector_t blocks;
3436         struct thin_c *tc = ti->private;
3437         struct pool *pool = tc->pool;
3438
3439         /*
3440          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3441          * we follow a more convoluted path through to the pool's target.
3442          */
3443         if (!pool->ti)
3444                 return 0;       /* nothing is bound */
3445
3446         blocks = pool->ti->len;
3447         (void) sector_div(blocks, pool->sectors_per_block);
3448         if (blocks)
3449                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3450
3451         return 0;
3452 }
3453
3454 static struct target_type thin_target = {
3455         .name = "thin",
3456         .version = {1, 12, 0},
3457         .module = THIS_MODULE,
3458         .ctr = thin_ctr,
3459         .dtr = thin_dtr,
3460         .map = thin_map,
3461         .end_io = thin_endio,
3462         .presuspend = thin_presuspend,
3463         .postsuspend = thin_postsuspend,
3464         .status = thin_status,
3465         .iterate_devices = thin_iterate_devices,
3466 };
3467
3468 /*----------------------------------------------------------------*/
3469
3470 static int __init dm_thin_init(void)
3471 {
3472         int r;
3473
3474         pool_table_init();
3475
3476         r = dm_register_target(&thin_target);
3477         if (r)
3478                 return r;
3479
3480         r = dm_register_target(&pool_target);
3481         if (r)
3482                 goto bad_pool_target;
3483
3484         r = -ENOMEM;
3485
3486         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3487         if (!_new_mapping_cache)
3488                 goto bad_new_mapping_cache;
3489
3490         return 0;
3491
3492 bad_new_mapping_cache:
3493         dm_unregister_target(&pool_target);
3494 bad_pool_target:
3495         dm_unregister_target(&thin_target);
3496
3497         return r;
3498 }
3499
3500 static void dm_thin_exit(void)
3501 {
3502         dm_unregister_target(&thin_target);
3503         dm_unregister_target(&pool_target);
3504
3505         kmem_cache_destroy(_new_mapping_cache);
3506 }
3507
3508 module_init(dm_thin_init);
3509 module_exit(dm_thin_exit);
3510
3511 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3512 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3513 MODULE_LICENSE("GPL");