OSDN Git Service

dm thin: performance improvement to discard processing
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/log2.h>
15 #include <linux/list.h>
16 #include <linux/rculist.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/rbtree.h>
21
22 #define DM_MSG_PREFIX   "thin"
23
24 /*
25  * Tunable constants
26  */
27 #define ENDIO_HOOK_POOL_SIZE 1024
28 #define MAPPING_POOL_SIZE 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35                 "A percentage of time allocated for copy on write");
36
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106
107 /*----------------------------------------------------------------*/
108
109 /*
110  * Key building.
111  */
112 static void build_data_key(struct dm_thin_device *td,
113                            dm_block_t b, struct dm_cell_key *key)
114 {
115         key->virtual = 0;
116         key->dev = dm_thin_dev_id(td);
117         key->block = b;
118 }
119
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121                               struct dm_cell_key *key)
122 {
123         key->virtual = 1;
124         key->dev = dm_thin_dev_id(td);
125         key->block = b;
126 }
127
128 /*----------------------------------------------------------------*/
129
130 #define THROTTLE_THRESHOLD (1 * HZ)
131
132 struct throttle {
133         struct rw_semaphore lock;
134         unsigned long threshold;
135         bool throttle_applied;
136 };
137
138 static void throttle_init(struct throttle *t)
139 {
140         init_rwsem(&t->lock);
141         t->throttle_applied = false;
142 }
143
144 static void throttle_work_start(struct throttle *t)
145 {
146         t->threshold = jiffies + THROTTLE_THRESHOLD;
147 }
148
149 static void throttle_work_update(struct throttle *t)
150 {
151         if (!t->throttle_applied && jiffies > t->threshold) {
152                 down_write(&t->lock);
153                 t->throttle_applied = true;
154         }
155 }
156
157 static void throttle_work_complete(struct throttle *t)
158 {
159         if (t->throttle_applied) {
160                 t->throttle_applied = false;
161                 up_write(&t->lock);
162         }
163 }
164
165 static void throttle_lock(struct throttle *t)
166 {
167         down_read(&t->lock);
168 }
169
170 static void throttle_unlock(struct throttle *t)
171 {
172         up_read(&t->lock);
173 }
174
175 /*----------------------------------------------------------------*/
176
177 /*
178  * A pool device ties together a metadata device and a data device.  It
179  * also provides the interface for creating and destroying internal
180  * devices.
181  */
182 struct dm_thin_new_mapping;
183
184 /*
185  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
186  */
187 enum pool_mode {
188         PM_WRITE,               /* metadata may be changed */
189         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
190         PM_READ_ONLY,           /* metadata may not be changed */
191         PM_FAIL,                /* all I/O fails */
192 };
193
194 struct pool_features {
195         enum pool_mode mode;
196
197         bool zero_new_blocks:1;
198         bool discard_enabled:1;
199         bool discard_passdown:1;
200         bool error_if_no_space:1;
201 };
202
203 struct thin_c;
204 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
205 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
206
207 struct pool {
208         struct list_head list;
209         struct dm_target *ti;   /* Only set if a pool target is bound */
210
211         struct mapped_device *pool_md;
212         struct block_device *md_dev;
213         struct dm_pool_metadata *pmd;
214
215         dm_block_t low_water_blocks;
216         uint32_t sectors_per_block;
217         int sectors_per_block_shift;
218
219         struct pool_features pf;
220         bool low_water_triggered:1;     /* A dm event has been sent */
221
222         struct dm_bio_prison *prison;
223         struct dm_kcopyd_client *copier;
224
225         struct workqueue_struct *wq;
226         struct throttle throttle;
227         struct work_struct worker;
228         struct delayed_work waker;
229         struct delayed_work no_space_timeout;
230
231         unsigned long last_commit_jiffies;
232         unsigned ref_count;
233
234         spinlock_t lock;
235         struct bio_list deferred_flush_bios;
236         struct list_head prepared_mappings;
237         struct list_head prepared_discards;
238         struct list_head active_thins;
239
240         struct dm_deferred_set *shared_read_ds;
241         struct dm_deferred_set *all_io_ds;
242
243         struct dm_thin_new_mapping *next_mapping;
244         mempool_t *mapping_pool;
245
246         process_bio_fn process_bio;
247         process_bio_fn process_discard;
248
249         process_mapping_fn process_prepared_mapping;
250         process_mapping_fn process_prepared_discard;
251 };
252
253 static enum pool_mode get_pool_mode(struct pool *pool);
254 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
255
256 /*
257  * Target context for a pool.
258  */
259 struct pool_c {
260         struct dm_target *ti;
261         struct pool *pool;
262         struct dm_dev *data_dev;
263         struct dm_dev *metadata_dev;
264         struct dm_target_callbacks callbacks;
265
266         dm_block_t low_water_blocks;
267         struct pool_features requested_pf; /* Features requested during table load */
268         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
269 };
270
271 /*
272  * Target context for a thin.
273  */
274 struct thin_c {
275         struct list_head list;
276         struct dm_dev *pool_dev;
277         struct dm_dev *origin_dev;
278         sector_t origin_size;
279         dm_thin_id dev_id;
280
281         struct pool *pool;
282         struct dm_thin_device *td;
283         bool requeue_mode:1;
284         spinlock_t lock;
285         struct bio_list deferred_bio_list;
286         struct bio_list retry_on_resume_list;
287         struct rb_root sort_bio_list; /* sorted list of deferred bios */
288
289         /*
290          * Ensures the thin is not destroyed until the worker has finished
291          * iterating the active_thins list.
292          */
293         atomic_t refcount;
294         struct completion can_destroy;
295 };
296
297 /*----------------------------------------------------------------*/
298
299 /*
300  * wake_worker() is used when new work is queued and when pool_resume is
301  * ready to continue deferred IO processing.
302  */
303 static void wake_worker(struct pool *pool)
304 {
305         queue_work(pool->wq, &pool->worker);
306 }
307
308 /*----------------------------------------------------------------*/
309
310 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
311                       struct dm_bio_prison_cell **cell_result)
312 {
313         int r;
314         struct dm_bio_prison_cell *cell_prealloc;
315
316         /*
317          * Allocate a cell from the prison's mempool.
318          * This might block but it can't fail.
319          */
320         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
321
322         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
323         if (r)
324                 /*
325                  * We reused an old cell; we can get rid of
326                  * the new one.
327                  */
328                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
329
330         return r;
331 }
332
333 static void cell_release(struct pool *pool,
334                          struct dm_bio_prison_cell *cell,
335                          struct bio_list *bios)
336 {
337         dm_cell_release(pool->prison, cell, bios);
338         dm_bio_prison_free_cell(pool->prison, cell);
339 }
340
341 static void cell_release_no_holder(struct pool *pool,
342                                    struct dm_bio_prison_cell *cell,
343                                    struct bio_list *bios)
344 {
345         dm_cell_release_no_holder(pool->prison, cell, bios);
346         dm_bio_prison_free_cell(pool->prison, cell);
347 }
348
349 static void cell_defer_no_holder_no_free(struct thin_c *tc,
350                                          struct dm_bio_prison_cell *cell)
351 {
352         struct pool *pool = tc->pool;
353         unsigned long flags;
354
355         spin_lock_irqsave(&tc->lock, flags);
356         dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
357         spin_unlock_irqrestore(&tc->lock, flags);
358
359         wake_worker(pool);
360 }
361
362 static void cell_error_with_code(struct pool *pool,
363                                  struct dm_bio_prison_cell *cell, int error_code)
364 {
365         dm_cell_error(pool->prison, cell, error_code);
366         dm_bio_prison_free_cell(pool->prison, cell);
367 }
368
369 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
370 {
371         cell_error_with_code(pool, cell, -EIO);
372 }
373
374 /*----------------------------------------------------------------*/
375
376 /*
377  * A global list of pools that uses a struct mapped_device as a key.
378  */
379 static struct dm_thin_pool_table {
380         struct mutex mutex;
381         struct list_head pools;
382 } dm_thin_pool_table;
383
384 static void pool_table_init(void)
385 {
386         mutex_init(&dm_thin_pool_table.mutex);
387         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
388 }
389
390 static void __pool_table_insert(struct pool *pool)
391 {
392         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
393         list_add(&pool->list, &dm_thin_pool_table.pools);
394 }
395
396 static void __pool_table_remove(struct pool *pool)
397 {
398         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
399         list_del(&pool->list);
400 }
401
402 static struct pool *__pool_table_lookup(struct mapped_device *md)
403 {
404         struct pool *pool = NULL, *tmp;
405
406         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
407
408         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
409                 if (tmp->pool_md == md) {
410                         pool = tmp;
411                         break;
412                 }
413         }
414
415         return pool;
416 }
417
418 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
419 {
420         struct pool *pool = NULL, *tmp;
421
422         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
423
424         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
425                 if (tmp->md_dev == md_dev) {
426                         pool = tmp;
427                         break;
428                 }
429         }
430
431         return pool;
432 }
433
434 /*----------------------------------------------------------------*/
435
436 struct dm_thin_endio_hook {
437         struct thin_c *tc;
438         struct dm_deferred_entry *shared_read_entry;
439         struct dm_deferred_entry *all_io_entry;
440         struct dm_thin_new_mapping *overwrite_mapping;
441         struct rb_node rb_node;
442 };
443
444 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
445 {
446         struct bio *bio;
447         struct bio_list bios;
448         unsigned long flags;
449
450         bio_list_init(&bios);
451
452         spin_lock_irqsave(&tc->lock, flags);
453         bio_list_merge(&bios, master);
454         bio_list_init(master);
455         spin_unlock_irqrestore(&tc->lock, flags);
456
457         while ((bio = bio_list_pop(&bios)))
458                 bio_endio(bio, DM_ENDIO_REQUEUE);
459 }
460
461 static void requeue_io(struct thin_c *tc)
462 {
463         requeue_bio_list(tc, &tc->deferred_bio_list);
464         requeue_bio_list(tc, &tc->retry_on_resume_list);
465 }
466
467 static void error_thin_retry_list(struct thin_c *tc)
468 {
469         struct bio *bio;
470         unsigned long flags;
471         struct bio_list bios;
472
473         bio_list_init(&bios);
474
475         spin_lock_irqsave(&tc->lock, flags);
476         bio_list_merge(&bios, &tc->retry_on_resume_list);
477         bio_list_init(&tc->retry_on_resume_list);
478         spin_unlock_irqrestore(&tc->lock, flags);
479
480         while ((bio = bio_list_pop(&bios)))
481                 bio_io_error(bio);
482 }
483
484 static void error_retry_list(struct pool *pool)
485 {
486         struct thin_c *tc;
487
488         rcu_read_lock();
489         list_for_each_entry_rcu(tc, &pool->active_thins, list)
490                 error_thin_retry_list(tc);
491         rcu_read_unlock();
492 }
493
494 /*
495  * This section of code contains the logic for processing a thin device's IO.
496  * Much of the code depends on pool object resources (lists, workqueues, etc)
497  * but most is exclusively called from the thin target rather than the thin-pool
498  * target.
499  */
500
501 static bool block_size_is_power_of_two(struct pool *pool)
502 {
503         return pool->sectors_per_block_shift >= 0;
504 }
505
506 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
507 {
508         struct pool *pool = tc->pool;
509         sector_t block_nr = bio->bi_iter.bi_sector;
510
511         if (block_size_is_power_of_two(pool))
512                 block_nr >>= pool->sectors_per_block_shift;
513         else
514                 (void) sector_div(block_nr, pool->sectors_per_block);
515
516         return block_nr;
517 }
518
519 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
520 {
521         struct pool *pool = tc->pool;
522         sector_t bi_sector = bio->bi_iter.bi_sector;
523
524         bio->bi_bdev = tc->pool_dev->bdev;
525         if (block_size_is_power_of_two(pool))
526                 bio->bi_iter.bi_sector =
527                         (block << pool->sectors_per_block_shift) |
528                         (bi_sector & (pool->sectors_per_block - 1));
529         else
530                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
531                                  sector_div(bi_sector, pool->sectors_per_block);
532 }
533
534 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
535 {
536         bio->bi_bdev = tc->origin_dev->bdev;
537 }
538
539 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
540 {
541         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
542                 dm_thin_changed_this_transaction(tc->td);
543 }
544
545 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
546 {
547         struct dm_thin_endio_hook *h;
548
549         if (bio->bi_rw & REQ_DISCARD)
550                 return;
551
552         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
553         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
554 }
555
556 static void issue(struct thin_c *tc, struct bio *bio)
557 {
558         struct pool *pool = tc->pool;
559         unsigned long flags;
560
561         if (!bio_triggers_commit(tc, bio)) {
562                 generic_make_request(bio);
563                 return;
564         }
565
566         /*
567          * Complete bio with an error if earlier I/O caused changes to
568          * the metadata that can't be committed e.g, due to I/O errors
569          * on the metadata device.
570          */
571         if (dm_thin_aborted_changes(tc->td)) {
572                 bio_io_error(bio);
573                 return;
574         }
575
576         /*
577          * Batch together any bios that trigger commits and then issue a
578          * single commit for them in process_deferred_bios().
579          */
580         spin_lock_irqsave(&pool->lock, flags);
581         bio_list_add(&pool->deferred_flush_bios, bio);
582         spin_unlock_irqrestore(&pool->lock, flags);
583 }
584
585 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
586 {
587         remap_to_origin(tc, bio);
588         issue(tc, bio);
589 }
590
591 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
592                             dm_block_t block)
593 {
594         remap(tc, bio, block);
595         issue(tc, bio);
596 }
597
598 /*----------------------------------------------------------------*/
599
600 /*
601  * Bio endio functions.
602  */
603 struct dm_thin_new_mapping {
604         struct list_head list;
605
606         bool pass_discard:1;
607         bool definitely_not_shared:1;
608
609         /*
610          * Track quiescing, copying and zeroing preparation actions.  When this
611          * counter hits zero the block is prepared and can be inserted into the
612          * btree.
613          */
614         atomic_t prepare_actions;
615
616         int err;
617         struct thin_c *tc;
618         dm_block_t virt_block;
619         dm_block_t data_block;
620         struct dm_bio_prison_cell *cell, *cell2;
621
622         /*
623          * If the bio covers the whole area of a block then we can avoid
624          * zeroing or copying.  Instead this bio is hooked.  The bio will
625          * still be in the cell, so care has to be taken to avoid issuing
626          * the bio twice.
627          */
628         struct bio *bio;
629         bio_end_io_t *saved_bi_end_io;
630 };
631
632 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
633 {
634         struct pool *pool = m->tc->pool;
635
636         if (atomic_dec_and_test(&m->prepare_actions)) {
637                 list_add_tail(&m->list, &pool->prepared_mappings);
638                 wake_worker(pool);
639         }
640 }
641
642 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
643 {
644         unsigned long flags;
645         struct pool *pool = m->tc->pool;
646
647         spin_lock_irqsave(&pool->lock, flags);
648         __complete_mapping_preparation(m);
649         spin_unlock_irqrestore(&pool->lock, flags);
650 }
651
652 static void copy_complete(int read_err, unsigned long write_err, void *context)
653 {
654         struct dm_thin_new_mapping *m = context;
655
656         m->err = read_err || write_err ? -EIO : 0;
657         complete_mapping_preparation(m);
658 }
659
660 static void overwrite_endio(struct bio *bio, int err)
661 {
662         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
663         struct dm_thin_new_mapping *m = h->overwrite_mapping;
664
665         m->err = err;
666         complete_mapping_preparation(m);
667 }
668
669 /*----------------------------------------------------------------*/
670
671 /*
672  * Workqueue.
673  */
674
675 /*
676  * Prepared mapping jobs.
677  */
678
679 /*
680  * This sends the bios in the cell back to the deferred_bios list.
681  */
682 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
683 {
684         struct pool *pool = tc->pool;
685         unsigned long flags;
686
687         spin_lock_irqsave(&tc->lock, flags);
688         cell_release(pool, cell, &tc->deferred_bio_list);
689         spin_unlock_irqrestore(&tc->lock, flags);
690
691         wake_worker(pool);
692 }
693
694 /*
695  * Same as cell_defer above, except it omits the original holder of the cell.
696  */
697 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
698 {
699         struct pool *pool = tc->pool;
700         unsigned long flags;
701
702         spin_lock_irqsave(&tc->lock, flags);
703         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
704         spin_unlock_irqrestore(&tc->lock, flags);
705
706         wake_worker(pool);
707 }
708
709 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
710 {
711         if (m->bio) {
712                 m->bio->bi_end_io = m->saved_bi_end_io;
713                 atomic_inc(&m->bio->bi_remaining);
714         }
715         cell_error(m->tc->pool, m->cell);
716         list_del(&m->list);
717         mempool_free(m, m->tc->pool->mapping_pool);
718 }
719
720 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
721 {
722         struct thin_c *tc = m->tc;
723         struct pool *pool = tc->pool;
724         struct bio *bio;
725         int r;
726
727         bio = m->bio;
728         if (bio) {
729                 bio->bi_end_io = m->saved_bi_end_io;
730                 atomic_inc(&bio->bi_remaining);
731         }
732
733         if (m->err) {
734                 cell_error(pool, m->cell);
735                 goto out;
736         }
737
738         /*
739          * Commit the prepared block into the mapping btree.
740          * Any I/O for this block arriving after this point will get
741          * remapped to it directly.
742          */
743         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
744         if (r) {
745                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
746                 cell_error(pool, m->cell);
747                 goto out;
748         }
749
750         /*
751          * Release any bios held while the block was being provisioned.
752          * If we are processing a write bio that completely covers the block,
753          * we already processed it so can ignore it now when processing
754          * the bios in the cell.
755          */
756         if (bio) {
757                 cell_defer_no_holder(tc, m->cell);
758                 bio_endio(bio, 0);
759         } else
760                 cell_defer(tc, m->cell);
761
762 out:
763         list_del(&m->list);
764         mempool_free(m, pool->mapping_pool);
765 }
766
767 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
768 {
769         struct thin_c *tc = m->tc;
770
771         bio_io_error(m->bio);
772         cell_defer_no_holder(tc, m->cell);
773         cell_defer_no_holder(tc, m->cell2);
774         mempool_free(m, tc->pool->mapping_pool);
775 }
776
777 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
778 {
779         struct thin_c *tc = m->tc;
780
781         inc_all_io_entry(tc->pool, m->bio);
782         cell_defer_no_holder(tc, m->cell);
783         cell_defer_no_holder(tc, m->cell2);
784
785         if (m->pass_discard)
786                 if (m->definitely_not_shared)
787                         remap_and_issue(tc, m->bio, m->data_block);
788                 else {
789                         bool used = false;
790                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
791                                 bio_endio(m->bio, 0);
792                         else
793                                 remap_and_issue(tc, m->bio, m->data_block);
794                 }
795         else
796                 bio_endio(m->bio, 0);
797
798         mempool_free(m, tc->pool->mapping_pool);
799 }
800
801 static void process_prepared_discard(struct dm_thin_new_mapping *m)
802 {
803         int r;
804         struct thin_c *tc = m->tc;
805
806         r = dm_thin_remove_block(tc->td, m->virt_block);
807         if (r)
808                 DMERR_LIMIT("dm_thin_remove_block() failed");
809
810         process_prepared_discard_passdown(m);
811 }
812
813 static void process_prepared(struct pool *pool, struct list_head *head,
814                              process_mapping_fn *fn)
815 {
816         unsigned long flags;
817         struct list_head maps;
818         struct dm_thin_new_mapping *m, *tmp;
819
820         INIT_LIST_HEAD(&maps);
821         spin_lock_irqsave(&pool->lock, flags);
822         list_splice_init(head, &maps);
823         spin_unlock_irqrestore(&pool->lock, flags);
824
825         list_for_each_entry_safe(m, tmp, &maps, list)
826                 (*fn)(m);
827 }
828
829 /*
830  * Deferred bio jobs.
831  */
832 static int io_overlaps_block(struct pool *pool, struct bio *bio)
833 {
834         return bio->bi_iter.bi_size ==
835                 (pool->sectors_per_block << SECTOR_SHIFT);
836 }
837
838 static int io_overwrites_block(struct pool *pool, struct bio *bio)
839 {
840         return (bio_data_dir(bio) == WRITE) &&
841                 io_overlaps_block(pool, bio);
842 }
843
844 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
845                                bio_end_io_t *fn)
846 {
847         *save = bio->bi_end_io;
848         bio->bi_end_io = fn;
849 }
850
851 static int ensure_next_mapping(struct pool *pool)
852 {
853         if (pool->next_mapping)
854                 return 0;
855
856         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
857
858         return pool->next_mapping ? 0 : -ENOMEM;
859 }
860
861 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
862 {
863         struct dm_thin_new_mapping *m = pool->next_mapping;
864
865         BUG_ON(!pool->next_mapping);
866
867         memset(m, 0, sizeof(struct dm_thin_new_mapping));
868         INIT_LIST_HEAD(&m->list);
869         m->bio = NULL;
870
871         pool->next_mapping = NULL;
872
873         return m;
874 }
875
876 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
877                     sector_t begin, sector_t end)
878 {
879         int r;
880         struct dm_io_region to;
881
882         to.bdev = tc->pool_dev->bdev;
883         to.sector = begin;
884         to.count = end - begin;
885
886         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
887         if (r < 0) {
888                 DMERR_LIMIT("dm_kcopyd_zero() failed");
889                 copy_complete(1, 1, m);
890         }
891 }
892
893 /*
894  * A partial copy also needs to zero the uncopied region.
895  */
896 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
897                           struct dm_dev *origin, dm_block_t data_origin,
898                           dm_block_t data_dest,
899                           struct dm_bio_prison_cell *cell, struct bio *bio,
900                           sector_t len)
901 {
902         int r;
903         struct pool *pool = tc->pool;
904         struct dm_thin_new_mapping *m = get_next_mapping(pool);
905
906         m->tc = tc;
907         m->virt_block = virt_block;
908         m->data_block = data_dest;
909         m->cell = cell;
910
911         /*
912          * quiesce action + copy action + an extra reference held for the
913          * duration of this function (we may need to inc later for a
914          * partial zero).
915          */
916         atomic_set(&m->prepare_actions, 3);
917
918         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
919                 complete_mapping_preparation(m); /* already quiesced */
920
921         /*
922          * IO to pool_dev remaps to the pool target's data_dev.
923          *
924          * If the whole block of data is being overwritten, we can issue the
925          * bio immediately. Otherwise we use kcopyd to clone the data first.
926          */
927         if (io_overwrites_block(pool, bio)) {
928                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
929
930                 h->overwrite_mapping = m;
931                 m->bio = bio;
932                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
933                 inc_all_io_entry(pool, bio);
934                 remap_and_issue(tc, bio, data_dest);
935         } else {
936                 struct dm_io_region from, to;
937
938                 from.bdev = origin->bdev;
939                 from.sector = data_origin * pool->sectors_per_block;
940                 from.count = len;
941
942                 to.bdev = tc->pool_dev->bdev;
943                 to.sector = data_dest * pool->sectors_per_block;
944                 to.count = len;
945
946                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
947                                    0, copy_complete, m);
948                 if (r < 0) {
949                         DMERR_LIMIT("dm_kcopyd_copy() failed");
950                         copy_complete(1, 1, m);
951
952                         /*
953                          * We allow the zero to be issued, to simplify the
954                          * error path.  Otherwise we'd need to start
955                          * worrying about decrementing the prepare_actions
956                          * counter.
957                          */
958                 }
959
960                 /*
961                  * Do we need to zero a tail region?
962                  */
963                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
964                         atomic_inc(&m->prepare_actions);
965                         ll_zero(tc, m,
966                                 data_dest * pool->sectors_per_block + len,
967                                 (data_dest + 1) * pool->sectors_per_block);
968                 }
969         }
970
971         complete_mapping_preparation(m); /* drop our ref */
972 }
973
974 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
975                                    dm_block_t data_origin, dm_block_t data_dest,
976                                    struct dm_bio_prison_cell *cell, struct bio *bio)
977 {
978         schedule_copy(tc, virt_block, tc->pool_dev,
979                       data_origin, data_dest, cell, bio,
980                       tc->pool->sectors_per_block);
981 }
982
983 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
984                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
985                           struct bio *bio)
986 {
987         struct pool *pool = tc->pool;
988         struct dm_thin_new_mapping *m = get_next_mapping(pool);
989
990         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
991         m->tc = tc;
992         m->virt_block = virt_block;
993         m->data_block = data_block;
994         m->cell = cell;
995
996         /*
997          * If the whole block of data is being overwritten or we are not
998          * zeroing pre-existing data, we can issue the bio immediately.
999          * Otherwise we use kcopyd to zero the data first.
1000          */
1001         if (!pool->pf.zero_new_blocks)
1002                 process_prepared_mapping(m);
1003
1004         else if (io_overwrites_block(pool, bio)) {
1005                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1006
1007                 h->overwrite_mapping = m;
1008                 m->bio = bio;
1009                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1010                 inc_all_io_entry(pool, bio);
1011                 remap_and_issue(tc, bio, data_block);
1012
1013         } else
1014                 ll_zero(tc, m,
1015                         data_block * pool->sectors_per_block,
1016                         (data_block + 1) * pool->sectors_per_block);
1017 }
1018
1019 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1020                                    dm_block_t data_dest,
1021                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1022 {
1023         struct pool *pool = tc->pool;
1024         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1025         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1026
1027         if (virt_block_end <= tc->origin_size)
1028                 schedule_copy(tc, virt_block, tc->origin_dev,
1029                               virt_block, data_dest, cell, bio,
1030                               pool->sectors_per_block);
1031
1032         else if (virt_block_begin < tc->origin_size)
1033                 schedule_copy(tc, virt_block, tc->origin_dev,
1034                               virt_block, data_dest, cell, bio,
1035                               tc->origin_size - virt_block_begin);
1036
1037         else
1038                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1039 }
1040
1041 /*
1042  * A non-zero return indicates read_only or fail_io mode.
1043  * Many callers don't care about the return value.
1044  */
1045 static int commit(struct pool *pool)
1046 {
1047         int r;
1048
1049         if (get_pool_mode(pool) >= PM_READ_ONLY)
1050                 return -EINVAL;
1051
1052         r = dm_pool_commit_metadata(pool->pmd);
1053         if (r)
1054                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1055
1056         return r;
1057 }
1058
1059 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1060 {
1061         unsigned long flags;
1062
1063         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1064                 DMWARN("%s: reached low water mark for data device: sending event.",
1065                        dm_device_name(pool->pool_md));
1066                 spin_lock_irqsave(&pool->lock, flags);
1067                 pool->low_water_triggered = true;
1068                 spin_unlock_irqrestore(&pool->lock, flags);
1069                 dm_table_event(pool->ti->table);
1070         }
1071 }
1072
1073 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1074
1075 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1076 {
1077         int r;
1078         dm_block_t free_blocks;
1079         struct pool *pool = tc->pool;
1080
1081         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1082                 return -EINVAL;
1083
1084         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1085         if (r) {
1086                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1087                 return r;
1088         }
1089
1090         check_low_water_mark(pool, free_blocks);
1091
1092         if (!free_blocks) {
1093                 /*
1094                  * Try to commit to see if that will free up some
1095                  * more space.
1096                  */
1097                 r = commit(pool);
1098                 if (r)
1099                         return r;
1100
1101                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1102                 if (r) {
1103                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1104                         return r;
1105                 }
1106
1107                 if (!free_blocks) {
1108                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1109                         return -ENOSPC;
1110                 }
1111         }
1112
1113         r = dm_pool_alloc_data_block(pool->pmd, result);
1114         if (r) {
1115                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1116                 return r;
1117         }
1118
1119         return 0;
1120 }
1121
1122 /*
1123  * If we have run out of space, queue bios until the device is
1124  * resumed, presumably after having been reloaded with more space.
1125  */
1126 static void retry_on_resume(struct bio *bio)
1127 {
1128         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1129         struct thin_c *tc = h->tc;
1130         unsigned long flags;
1131
1132         spin_lock_irqsave(&tc->lock, flags);
1133         bio_list_add(&tc->retry_on_resume_list, bio);
1134         spin_unlock_irqrestore(&tc->lock, flags);
1135 }
1136
1137 static int should_error_unserviceable_bio(struct pool *pool)
1138 {
1139         enum pool_mode m = get_pool_mode(pool);
1140
1141         switch (m) {
1142         case PM_WRITE:
1143                 /* Shouldn't get here */
1144                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1145                 return -EIO;
1146
1147         case PM_OUT_OF_DATA_SPACE:
1148                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1149
1150         case PM_READ_ONLY:
1151         case PM_FAIL:
1152                 return -EIO;
1153         default:
1154                 /* Shouldn't get here */
1155                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1156                 return -EIO;
1157         }
1158 }
1159
1160 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1161 {
1162         int error = should_error_unserviceable_bio(pool);
1163
1164         if (error)
1165                 bio_endio(bio, error);
1166         else
1167                 retry_on_resume(bio);
1168 }
1169
1170 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1171 {
1172         struct bio *bio;
1173         struct bio_list bios;
1174         int error;
1175
1176         error = should_error_unserviceable_bio(pool);
1177         if (error) {
1178                 cell_error_with_code(pool, cell, error);
1179                 return;
1180         }
1181
1182         bio_list_init(&bios);
1183         cell_release(pool, cell, &bios);
1184
1185         error = should_error_unserviceable_bio(pool);
1186         if (error)
1187                 while ((bio = bio_list_pop(&bios)))
1188                         bio_endio(bio, error);
1189         else
1190                 while ((bio = bio_list_pop(&bios)))
1191                         retry_on_resume(bio);
1192 }
1193
1194 static void process_discard(struct thin_c *tc, struct bio *bio)
1195 {
1196         int r;
1197         struct pool *pool = tc->pool;
1198         struct dm_bio_prison_cell *cell, *cell2;
1199         struct dm_cell_key key, key2;
1200         dm_block_t block = get_bio_block(tc, bio);
1201         struct dm_thin_lookup_result lookup_result;
1202         struct dm_thin_new_mapping *m;
1203
1204         build_virtual_key(tc->td, block, &key);
1205         if (bio_detain(tc->pool, &key, bio, &cell))
1206                 return;
1207
1208         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1209         switch (r) {
1210         case 0:
1211                 /*
1212                  * Check nobody is fiddling with this pool block.  This can
1213                  * happen if someone's in the process of breaking sharing
1214                  * on this block.
1215                  */
1216                 build_data_key(tc->td, lookup_result.block, &key2);
1217                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1218                         cell_defer_no_holder(tc, cell);
1219                         break;
1220                 }
1221
1222                 if (io_overlaps_block(pool, bio)) {
1223                         /*
1224                          * IO may still be going to the destination block.  We must
1225                          * quiesce before we can do the removal.
1226                          */
1227                         m = get_next_mapping(pool);
1228                         m->tc = tc;
1229                         m->pass_discard = pool->pf.discard_passdown;
1230                         m->definitely_not_shared = !lookup_result.shared;
1231                         m->virt_block = block;
1232                         m->data_block = lookup_result.block;
1233                         m->cell = cell;
1234                         m->cell2 = cell2;
1235                         m->bio = bio;
1236
1237                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1238                                 pool->process_prepared_discard(m);
1239
1240                 } else {
1241                         inc_all_io_entry(pool, bio);
1242                         cell_defer_no_holder(tc, cell);
1243                         cell_defer_no_holder(tc, cell2);
1244
1245                         /*
1246                          * The DM core makes sure that the discard doesn't span
1247                          * a block boundary.  So we submit the discard of a
1248                          * partial block appropriately.
1249                          */
1250                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1251                                 remap_and_issue(tc, bio, lookup_result.block);
1252                         else
1253                                 bio_endio(bio, 0);
1254                 }
1255                 break;
1256
1257         case -ENODATA:
1258                 /*
1259                  * It isn't provisioned, just forget it.
1260                  */
1261                 cell_defer_no_holder(tc, cell);
1262                 bio_endio(bio, 0);
1263                 break;
1264
1265         default:
1266                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1267                             __func__, r);
1268                 cell_defer_no_holder(tc, cell);
1269                 bio_io_error(bio);
1270                 break;
1271         }
1272 }
1273
1274 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1275                           struct dm_cell_key *key,
1276                           struct dm_thin_lookup_result *lookup_result,
1277                           struct dm_bio_prison_cell *cell)
1278 {
1279         int r;
1280         dm_block_t data_block;
1281         struct pool *pool = tc->pool;
1282
1283         r = alloc_data_block(tc, &data_block);
1284         switch (r) {
1285         case 0:
1286                 schedule_internal_copy(tc, block, lookup_result->block,
1287                                        data_block, cell, bio);
1288                 break;
1289
1290         case -ENOSPC:
1291                 retry_bios_on_resume(pool, cell);
1292                 break;
1293
1294         default:
1295                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1296                             __func__, r);
1297                 cell_error(pool, cell);
1298                 break;
1299         }
1300 }
1301
1302 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1303                                dm_block_t block,
1304                                struct dm_thin_lookup_result *lookup_result)
1305 {
1306         struct dm_bio_prison_cell *cell;
1307         struct pool *pool = tc->pool;
1308         struct dm_cell_key key;
1309
1310         /*
1311          * If cell is already occupied, then sharing is already in the process
1312          * of being broken so we have nothing further to do here.
1313          */
1314         build_data_key(tc->td, lookup_result->block, &key);
1315         if (bio_detain(pool, &key, bio, &cell))
1316                 return;
1317
1318         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1319                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1320         else {
1321                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1322
1323                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1324                 inc_all_io_entry(pool, bio);
1325                 cell_defer_no_holder(tc, cell);
1326
1327                 remap_and_issue(tc, bio, lookup_result->block);
1328         }
1329 }
1330
1331 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1332                             struct dm_bio_prison_cell *cell)
1333 {
1334         int r;
1335         dm_block_t data_block;
1336         struct pool *pool = tc->pool;
1337
1338         /*
1339          * Remap empty bios (flushes) immediately, without provisioning.
1340          */
1341         if (!bio->bi_iter.bi_size) {
1342                 inc_all_io_entry(pool, bio);
1343                 cell_defer_no_holder(tc, cell);
1344
1345                 remap_and_issue(tc, bio, 0);
1346                 return;
1347         }
1348
1349         /*
1350          * Fill read bios with zeroes and complete them immediately.
1351          */
1352         if (bio_data_dir(bio) == READ) {
1353                 zero_fill_bio(bio);
1354                 cell_defer_no_holder(tc, cell);
1355                 bio_endio(bio, 0);
1356                 return;
1357         }
1358
1359         r = alloc_data_block(tc, &data_block);
1360         switch (r) {
1361         case 0:
1362                 if (tc->origin_dev)
1363                         schedule_external_copy(tc, block, data_block, cell, bio);
1364                 else
1365                         schedule_zero(tc, block, data_block, cell, bio);
1366                 break;
1367
1368         case -ENOSPC:
1369                 retry_bios_on_resume(pool, cell);
1370                 break;
1371
1372         default:
1373                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1374                             __func__, r);
1375                 cell_error(pool, cell);
1376                 break;
1377         }
1378 }
1379
1380 static void process_bio(struct thin_c *tc, struct bio *bio)
1381 {
1382         int r;
1383         struct pool *pool = tc->pool;
1384         dm_block_t block = get_bio_block(tc, bio);
1385         struct dm_bio_prison_cell *cell;
1386         struct dm_cell_key key;
1387         struct dm_thin_lookup_result lookup_result;
1388
1389         /*
1390          * If cell is already occupied, then the block is already
1391          * being provisioned so we have nothing further to do here.
1392          */
1393         build_virtual_key(tc->td, block, &key);
1394         if (bio_detain(pool, &key, bio, &cell))
1395                 return;
1396
1397         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1398         switch (r) {
1399         case 0:
1400                 if (lookup_result.shared) {
1401                         process_shared_bio(tc, bio, block, &lookup_result);
1402                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1403                 } else {
1404                         inc_all_io_entry(pool, bio);
1405                         cell_defer_no_holder(tc, cell);
1406
1407                         remap_and_issue(tc, bio, lookup_result.block);
1408                 }
1409                 break;
1410
1411         case -ENODATA:
1412                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1413                         inc_all_io_entry(pool, bio);
1414                         cell_defer_no_holder(tc, cell);
1415
1416                         if (bio_end_sector(bio) <= tc->origin_size)
1417                                 remap_to_origin_and_issue(tc, bio);
1418
1419                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1420                                 zero_fill_bio(bio);
1421                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1422                                 remap_to_origin_and_issue(tc, bio);
1423
1424                         } else {
1425                                 zero_fill_bio(bio);
1426                                 bio_endio(bio, 0);
1427                         }
1428                 } else
1429                         provision_block(tc, bio, block, cell);
1430                 break;
1431
1432         default:
1433                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1434                             __func__, r);
1435                 cell_defer_no_holder(tc, cell);
1436                 bio_io_error(bio);
1437                 break;
1438         }
1439 }
1440
1441 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1442 {
1443         int r;
1444         int rw = bio_data_dir(bio);
1445         dm_block_t block = get_bio_block(tc, bio);
1446         struct dm_thin_lookup_result lookup_result;
1447
1448         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1449         switch (r) {
1450         case 0:
1451                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1452                         handle_unserviceable_bio(tc->pool, bio);
1453                 else {
1454                         inc_all_io_entry(tc->pool, bio);
1455                         remap_and_issue(tc, bio, lookup_result.block);
1456                 }
1457                 break;
1458
1459         case -ENODATA:
1460                 if (rw != READ) {
1461                         handle_unserviceable_bio(tc->pool, bio);
1462                         break;
1463                 }
1464
1465                 if (tc->origin_dev) {
1466                         inc_all_io_entry(tc->pool, bio);
1467                         remap_to_origin_and_issue(tc, bio);
1468                         break;
1469                 }
1470
1471                 zero_fill_bio(bio);
1472                 bio_endio(bio, 0);
1473                 break;
1474
1475         default:
1476                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1477                             __func__, r);
1478                 bio_io_error(bio);
1479                 break;
1480         }
1481 }
1482
1483 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1484 {
1485         bio_endio(bio, 0);
1486 }
1487
1488 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1489 {
1490         bio_io_error(bio);
1491 }
1492
1493 /*
1494  * FIXME: should we also commit due to size of transaction, measured in
1495  * metadata blocks?
1496  */
1497 static int need_commit_due_to_time(struct pool *pool)
1498 {
1499         return jiffies < pool->last_commit_jiffies ||
1500                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1501 }
1502
1503 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1504 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1505
1506 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1507 {
1508         struct rb_node **rbp, *parent;
1509         struct dm_thin_endio_hook *pbd;
1510         sector_t bi_sector = bio->bi_iter.bi_sector;
1511
1512         rbp = &tc->sort_bio_list.rb_node;
1513         parent = NULL;
1514         while (*rbp) {
1515                 parent = *rbp;
1516                 pbd = thin_pbd(parent);
1517
1518                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1519                         rbp = &(*rbp)->rb_left;
1520                 else
1521                         rbp = &(*rbp)->rb_right;
1522         }
1523
1524         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1525         rb_link_node(&pbd->rb_node, parent, rbp);
1526         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1527 }
1528
1529 static void __extract_sorted_bios(struct thin_c *tc)
1530 {
1531         struct rb_node *node;
1532         struct dm_thin_endio_hook *pbd;
1533         struct bio *bio;
1534
1535         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1536                 pbd = thin_pbd(node);
1537                 bio = thin_bio(pbd);
1538
1539                 bio_list_add(&tc->deferred_bio_list, bio);
1540                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1541         }
1542
1543         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1544 }
1545
1546 static void __sort_thin_deferred_bios(struct thin_c *tc)
1547 {
1548         struct bio *bio;
1549         struct bio_list bios;
1550
1551         bio_list_init(&bios);
1552         bio_list_merge(&bios, &tc->deferred_bio_list);
1553         bio_list_init(&tc->deferred_bio_list);
1554
1555         /* Sort deferred_bio_list using rb-tree */
1556         while ((bio = bio_list_pop(&bios)))
1557                 __thin_bio_rb_add(tc, bio);
1558
1559         /*
1560          * Transfer the sorted bios in sort_bio_list back to
1561          * deferred_bio_list to allow lockless submission of
1562          * all bios.
1563          */
1564         __extract_sorted_bios(tc);
1565 }
1566
1567 static void process_thin_deferred_bios(struct thin_c *tc)
1568 {
1569         struct pool *pool = tc->pool;
1570         unsigned long flags;
1571         struct bio *bio;
1572         struct bio_list bios;
1573         struct blk_plug plug;
1574         unsigned count = 0;
1575
1576         if (tc->requeue_mode) {
1577                 requeue_bio_list(tc, &tc->deferred_bio_list);
1578                 return;
1579         }
1580
1581         bio_list_init(&bios);
1582
1583         spin_lock_irqsave(&tc->lock, flags);
1584
1585         if (bio_list_empty(&tc->deferred_bio_list)) {
1586                 spin_unlock_irqrestore(&tc->lock, flags);
1587                 return;
1588         }
1589
1590         __sort_thin_deferred_bios(tc);
1591
1592         bio_list_merge(&bios, &tc->deferred_bio_list);
1593         bio_list_init(&tc->deferred_bio_list);
1594
1595         spin_unlock_irqrestore(&tc->lock, flags);
1596
1597         blk_start_plug(&plug);
1598         while ((bio = bio_list_pop(&bios))) {
1599                 /*
1600                  * If we've got no free new_mapping structs, and processing
1601                  * this bio might require one, we pause until there are some
1602                  * prepared mappings to process.
1603                  */
1604                 if (ensure_next_mapping(pool)) {
1605                         spin_lock_irqsave(&tc->lock, flags);
1606                         bio_list_add(&tc->deferred_bio_list, bio);
1607                         bio_list_merge(&tc->deferred_bio_list, &bios);
1608                         spin_unlock_irqrestore(&tc->lock, flags);
1609                         break;
1610                 }
1611
1612                 if (bio->bi_rw & REQ_DISCARD)
1613                         pool->process_discard(tc, bio);
1614                 else
1615                         pool->process_bio(tc, bio);
1616
1617                 if ((count++ & 127) == 0) {
1618                         throttle_work_update(&pool->throttle);
1619                         dm_pool_issue_prefetches(pool->pmd);
1620                 }
1621         }
1622         blk_finish_plug(&plug);
1623 }
1624
1625 static void thin_get(struct thin_c *tc);
1626 static void thin_put(struct thin_c *tc);
1627
1628 /*
1629  * We can't hold rcu_read_lock() around code that can block.  So we
1630  * find a thin with the rcu lock held; bump a refcount; then drop
1631  * the lock.
1632  */
1633 static struct thin_c *get_first_thin(struct pool *pool)
1634 {
1635         struct thin_c *tc = NULL;
1636
1637         rcu_read_lock();
1638         if (!list_empty(&pool->active_thins)) {
1639                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1640                 thin_get(tc);
1641         }
1642         rcu_read_unlock();
1643
1644         return tc;
1645 }
1646
1647 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1648 {
1649         struct thin_c *old_tc = tc;
1650
1651         rcu_read_lock();
1652         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1653                 thin_get(tc);
1654                 thin_put(old_tc);
1655                 rcu_read_unlock();
1656                 return tc;
1657         }
1658         thin_put(old_tc);
1659         rcu_read_unlock();
1660
1661         return NULL;
1662 }
1663
1664 static void process_deferred_bios(struct pool *pool)
1665 {
1666         unsigned long flags;
1667         struct bio *bio;
1668         struct bio_list bios;
1669         struct thin_c *tc;
1670
1671         tc = get_first_thin(pool);
1672         while (tc) {
1673                 process_thin_deferred_bios(tc);
1674                 tc = get_next_thin(pool, tc);
1675         }
1676
1677         /*
1678          * If there are any deferred flush bios, we must commit
1679          * the metadata before issuing them.
1680          */
1681         bio_list_init(&bios);
1682         spin_lock_irqsave(&pool->lock, flags);
1683         bio_list_merge(&bios, &pool->deferred_flush_bios);
1684         bio_list_init(&pool->deferred_flush_bios);
1685         spin_unlock_irqrestore(&pool->lock, flags);
1686
1687         if (bio_list_empty(&bios) &&
1688             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1689                 return;
1690
1691         if (commit(pool)) {
1692                 while ((bio = bio_list_pop(&bios)))
1693                         bio_io_error(bio);
1694                 return;
1695         }
1696         pool->last_commit_jiffies = jiffies;
1697
1698         while ((bio = bio_list_pop(&bios)))
1699                 generic_make_request(bio);
1700 }
1701
1702 static void do_worker(struct work_struct *ws)
1703 {
1704         struct pool *pool = container_of(ws, struct pool, worker);
1705
1706         throttle_work_start(&pool->throttle);
1707         dm_pool_issue_prefetches(pool->pmd);
1708         throttle_work_update(&pool->throttle);
1709         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1710         throttle_work_update(&pool->throttle);
1711         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1712         throttle_work_update(&pool->throttle);
1713         process_deferred_bios(pool);
1714         throttle_work_complete(&pool->throttle);
1715 }
1716
1717 /*
1718  * We want to commit periodically so that not too much
1719  * unwritten data builds up.
1720  */
1721 static void do_waker(struct work_struct *ws)
1722 {
1723         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1724         wake_worker(pool);
1725         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1726 }
1727
1728 /*
1729  * We're holding onto IO to allow userland time to react.  After the
1730  * timeout either the pool will have been resized (and thus back in
1731  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1732  */
1733 static void do_no_space_timeout(struct work_struct *ws)
1734 {
1735         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1736                                          no_space_timeout);
1737
1738         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1739                 set_pool_mode(pool, PM_READ_ONLY);
1740 }
1741
1742 /*----------------------------------------------------------------*/
1743
1744 struct pool_work {
1745         struct work_struct worker;
1746         struct completion complete;
1747 };
1748
1749 static struct pool_work *to_pool_work(struct work_struct *ws)
1750 {
1751         return container_of(ws, struct pool_work, worker);
1752 }
1753
1754 static void pool_work_complete(struct pool_work *pw)
1755 {
1756         complete(&pw->complete);
1757 }
1758
1759 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1760                            void (*fn)(struct work_struct *))
1761 {
1762         INIT_WORK_ONSTACK(&pw->worker, fn);
1763         init_completion(&pw->complete);
1764         queue_work(pool->wq, &pw->worker);
1765         wait_for_completion(&pw->complete);
1766 }
1767
1768 /*----------------------------------------------------------------*/
1769
1770 struct noflush_work {
1771         struct pool_work pw;
1772         struct thin_c *tc;
1773 };
1774
1775 static struct noflush_work *to_noflush(struct work_struct *ws)
1776 {
1777         return container_of(to_pool_work(ws), struct noflush_work, pw);
1778 }
1779
1780 static void do_noflush_start(struct work_struct *ws)
1781 {
1782         struct noflush_work *w = to_noflush(ws);
1783         w->tc->requeue_mode = true;
1784         requeue_io(w->tc);
1785         pool_work_complete(&w->pw);
1786 }
1787
1788 static void do_noflush_stop(struct work_struct *ws)
1789 {
1790         struct noflush_work *w = to_noflush(ws);
1791         w->tc->requeue_mode = false;
1792         pool_work_complete(&w->pw);
1793 }
1794
1795 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1796 {
1797         struct noflush_work w;
1798
1799         w.tc = tc;
1800         pool_work_wait(&w.pw, tc->pool, fn);
1801 }
1802
1803 /*----------------------------------------------------------------*/
1804
1805 static enum pool_mode get_pool_mode(struct pool *pool)
1806 {
1807         return pool->pf.mode;
1808 }
1809
1810 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1811 {
1812         dm_table_event(pool->ti->table);
1813         DMINFO("%s: switching pool to %s mode",
1814                dm_device_name(pool->pool_md), new_mode);
1815 }
1816
1817 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1818 {
1819         struct pool_c *pt = pool->ti->private;
1820         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1821         enum pool_mode old_mode = get_pool_mode(pool);
1822         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1823
1824         /*
1825          * Never allow the pool to transition to PM_WRITE mode if user
1826          * intervention is required to verify metadata and data consistency.
1827          */
1828         if (new_mode == PM_WRITE && needs_check) {
1829                 DMERR("%s: unable to switch pool to write mode until repaired.",
1830                       dm_device_name(pool->pool_md));
1831                 if (old_mode != new_mode)
1832                         new_mode = old_mode;
1833                 else
1834                         new_mode = PM_READ_ONLY;
1835         }
1836         /*
1837          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1838          * not going to recover without a thin_repair.  So we never let the
1839          * pool move out of the old mode.
1840          */
1841         if (old_mode == PM_FAIL)
1842                 new_mode = old_mode;
1843
1844         switch (new_mode) {
1845         case PM_FAIL:
1846                 if (old_mode != new_mode)
1847                         notify_of_pool_mode_change(pool, "failure");
1848                 dm_pool_metadata_read_only(pool->pmd);
1849                 pool->process_bio = process_bio_fail;
1850                 pool->process_discard = process_bio_fail;
1851                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1852                 pool->process_prepared_discard = process_prepared_discard_fail;
1853
1854                 error_retry_list(pool);
1855                 break;
1856
1857         case PM_READ_ONLY:
1858                 if (old_mode != new_mode)
1859                         notify_of_pool_mode_change(pool, "read-only");
1860                 dm_pool_metadata_read_only(pool->pmd);
1861                 pool->process_bio = process_bio_read_only;
1862                 pool->process_discard = process_bio_success;
1863                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1864                 pool->process_prepared_discard = process_prepared_discard_passdown;
1865
1866                 error_retry_list(pool);
1867                 break;
1868
1869         case PM_OUT_OF_DATA_SPACE:
1870                 /*
1871                  * Ideally we'd never hit this state; the low water mark
1872                  * would trigger userland to extend the pool before we
1873                  * completely run out of data space.  However, many small
1874                  * IOs to unprovisioned space can consume data space at an
1875                  * alarming rate.  Adjust your low water mark if you're
1876                  * frequently seeing this mode.
1877                  */
1878                 if (old_mode != new_mode)
1879                         notify_of_pool_mode_change(pool, "out-of-data-space");
1880                 pool->process_bio = process_bio_read_only;
1881                 pool->process_discard = process_discard;
1882                 pool->process_prepared_mapping = process_prepared_mapping;
1883                 pool->process_prepared_discard = process_prepared_discard_passdown;
1884
1885                 if (!pool->pf.error_if_no_space && no_space_timeout)
1886                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1887                 break;
1888
1889         case PM_WRITE:
1890                 if (old_mode != new_mode)
1891                         notify_of_pool_mode_change(pool, "write");
1892                 dm_pool_metadata_read_write(pool->pmd);
1893                 pool->process_bio = process_bio;
1894                 pool->process_discard = process_discard;
1895                 pool->process_prepared_mapping = process_prepared_mapping;
1896                 pool->process_prepared_discard = process_prepared_discard;
1897                 break;
1898         }
1899
1900         pool->pf.mode = new_mode;
1901         /*
1902          * The pool mode may have changed, sync it so bind_control_target()
1903          * doesn't cause an unexpected mode transition on resume.
1904          */
1905         pt->adjusted_pf.mode = new_mode;
1906 }
1907
1908 static void abort_transaction(struct pool *pool)
1909 {
1910         const char *dev_name = dm_device_name(pool->pool_md);
1911
1912         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1913         if (dm_pool_abort_metadata(pool->pmd)) {
1914                 DMERR("%s: failed to abort metadata transaction", dev_name);
1915                 set_pool_mode(pool, PM_FAIL);
1916         }
1917
1918         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1919                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1920                 set_pool_mode(pool, PM_FAIL);
1921         }
1922 }
1923
1924 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1925 {
1926         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1927                     dm_device_name(pool->pool_md), op, r);
1928
1929         abort_transaction(pool);
1930         set_pool_mode(pool, PM_READ_ONLY);
1931 }
1932
1933 /*----------------------------------------------------------------*/
1934
1935 /*
1936  * Mapping functions.
1937  */
1938
1939 /*
1940  * Called only while mapping a thin bio to hand it over to the workqueue.
1941  */
1942 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1943 {
1944         unsigned long flags;
1945         struct pool *pool = tc->pool;
1946
1947         spin_lock_irqsave(&tc->lock, flags);
1948         bio_list_add(&tc->deferred_bio_list, bio);
1949         spin_unlock_irqrestore(&tc->lock, flags);
1950
1951         wake_worker(pool);
1952 }
1953
1954 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
1955 {
1956         struct pool *pool = tc->pool;
1957
1958         throttle_lock(&pool->throttle);
1959         thin_defer_bio(tc, bio);
1960         throttle_unlock(&pool->throttle);
1961 }
1962
1963 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1964 {
1965         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1966
1967         h->tc = tc;
1968         h->shared_read_entry = NULL;
1969         h->all_io_entry = NULL;
1970         h->overwrite_mapping = NULL;
1971 }
1972
1973 /*
1974  * Non-blocking function called from the thin target's map function.
1975  */
1976 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1977 {
1978         int r;
1979         struct thin_c *tc = ti->private;
1980         dm_block_t block = get_bio_block(tc, bio);
1981         struct dm_thin_device *td = tc->td;
1982         struct dm_thin_lookup_result result;
1983         struct dm_bio_prison_cell cell1, cell2;
1984         struct dm_bio_prison_cell *cell_result;
1985         struct dm_cell_key key;
1986
1987         thin_hook_bio(tc, bio);
1988
1989         if (tc->requeue_mode) {
1990                 bio_endio(bio, DM_ENDIO_REQUEUE);
1991                 return DM_MAPIO_SUBMITTED;
1992         }
1993
1994         if (get_pool_mode(tc->pool) == PM_FAIL) {
1995                 bio_io_error(bio);
1996                 return DM_MAPIO_SUBMITTED;
1997         }
1998
1999         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2000                 thin_defer_bio_with_throttle(tc, bio);
2001                 return DM_MAPIO_SUBMITTED;
2002         }
2003
2004         /*
2005          * We must hold the virtual cell before doing the lookup, otherwise
2006          * there's a race with discard.
2007          */
2008         build_virtual_key(tc->td, block, &key);
2009         if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
2010                 return DM_MAPIO_SUBMITTED;
2011
2012         r = dm_thin_find_block(td, block, 0, &result);
2013
2014         /*
2015          * Note that we defer readahead too.
2016          */
2017         switch (r) {
2018         case 0:
2019                 if (unlikely(result.shared)) {
2020                         /*
2021                          * We have a race condition here between the
2022                          * result.shared value returned by the lookup and
2023                          * snapshot creation, which may cause new
2024                          * sharing.
2025                          *
2026                          * To avoid this always quiesce the origin before
2027                          * taking the snap.  You want to do this anyway to
2028                          * ensure a consistent application view
2029                          * (i.e. lockfs).
2030                          *
2031                          * More distant ancestors are irrelevant. The
2032                          * shared flag will be set in their case.
2033                          */
2034                         thin_defer_bio(tc, bio);
2035                         cell_defer_no_holder_no_free(tc, &cell1);
2036                         return DM_MAPIO_SUBMITTED;
2037                 }
2038
2039                 build_data_key(tc->td, result.block, &key);
2040                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
2041                         cell_defer_no_holder_no_free(tc, &cell1);
2042                         return DM_MAPIO_SUBMITTED;
2043                 }
2044
2045                 inc_all_io_entry(tc->pool, bio);
2046                 cell_defer_no_holder_no_free(tc, &cell2);
2047                 cell_defer_no_holder_no_free(tc, &cell1);
2048
2049                 remap(tc, bio, result.block);
2050                 return DM_MAPIO_REMAPPED;
2051
2052         case -ENODATA:
2053                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2054                         /*
2055                          * This block isn't provisioned, and we have no way
2056                          * of doing so.
2057                          */
2058                         handle_unserviceable_bio(tc->pool, bio);
2059                         cell_defer_no_holder_no_free(tc, &cell1);
2060                         return DM_MAPIO_SUBMITTED;
2061                 }
2062                 /* fall through */
2063
2064         case -EWOULDBLOCK:
2065                 thin_defer_bio(tc, bio);
2066                 cell_defer_no_holder_no_free(tc, &cell1);
2067                 return DM_MAPIO_SUBMITTED;
2068
2069         default:
2070                 /*
2071                  * Must always call bio_io_error on failure.
2072                  * dm_thin_find_block can fail with -EINVAL if the
2073                  * pool is switched to fail-io mode.
2074                  */
2075                 bio_io_error(bio);
2076                 cell_defer_no_holder_no_free(tc, &cell1);
2077                 return DM_MAPIO_SUBMITTED;
2078         }
2079 }
2080
2081 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2082 {
2083         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2084         struct request_queue *q;
2085
2086         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2087                 return 1;
2088
2089         q = bdev_get_queue(pt->data_dev->bdev);
2090         return bdi_congested(&q->backing_dev_info, bdi_bits);
2091 }
2092
2093 static void requeue_bios(struct pool *pool)
2094 {
2095         unsigned long flags;
2096         struct thin_c *tc;
2097
2098         rcu_read_lock();
2099         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2100                 spin_lock_irqsave(&tc->lock, flags);
2101                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2102                 bio_list_init(&tc->retry_on_resume_list);
2103                 spin_unlock_irqrestore(&tc->lock, flags);
2104         }
2105         rcu_read_unlock();
2106 }
2107
2108 /*----------------------------------------------------------------
2109  * Binding of control targets to a pool object
2110  *--------------------------------------------------------------*/
2111 static bool data_dev_supports_discard(struct pool_c *pt)
2112 {
2113         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2114
2115         return q && blk_queue_discard(q);
2116 }
2117
2118 static bool is_factor(sector_t block_size, uint32_t n)
2119 {
2120         return !sector_div(block_size, n);
2121 }
2122
2123 /*
2124  * If discard_passdown was enabled verify that the data device
2125  * supports discards.  Disable discard_passdown if not.
2126  */
2127 static void disable_passdown_if_not_supported(struct pool_c *pt)
2128 {
2129         struct pool *pool = pt->pool;
2130         struct block_device *data_bdev = pt->data_dev->bdev;
2131         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2132         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2133         const char *reason = NULL;
2134         char buf[BDEVNAME_SIZE];
2135
2136         if (!pt->adjusted_pf.discard_passdown)
2137                 return;
2138
2139         if (!data_dev_supports_discard(pt))
2140                 reason = "discard unsupported";
2141
2142         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2143                 reason = "max discard sectors smaller than a block";
2144
2145         else if (data_limits->discard_granularity > block_size)
2146                 reason = "discard granularity larger than a block";
2147
2148         else if (!is_factor(block_size, data_limits->discard_granularity))
2149                 reason = "discard granularity not a factor of block size";
2150
2151         if (reason) {
2152                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2153                 pt->adjusted_pf.discard_passdown = false;
2154         }
2155 }
2156
2157 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2158 {
2159         struct pool_c *pt = ti->private;
2160
2161         /*
2162          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2163          */
2164         enum pool_mode old_mode = get_pool_mode(pool);
2165         enum pool_mode new_mode = pt->adjusted_pf.mode;
2166
2167         /*
2168          * Don't change the pool's mode until set_pool_mode() below.
2169          * Otherwise the pool's process_* function pointers may
2170          * not match the desired pool mode.
2171          */
2172         pt->adjusted_pf.mode = old_mode;
2173
2174         pool->ti = ti;
2175         pool->pf = pt->adjusted_pf;
2176         pool->low_water_blocks = pt->low_water_blocks;
2177
2178         set_pool_mode(pool, new_mode);
2179
2180         return 0;
2181 }
2182
2183 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2184 {
2185         if (pool->ti == ti)
2186                 pool->ti = NULL;
2187 }
2188
2189 /*----------------------------------------------------------------
2190  * Pool creation
2191  *--------------------------------------------------------------*/
2192 /* Initialize pool features. */
2193 static void pool_features_init(struct pool_features *pf)
2194 {
2195         pf->mode = PM_WRITE;
2196         pf->zero_new_blocks = true;
2197         pf->discard_enabled = true;
2198         pf->discard_passdown = true;
2199         pf->error_if_no_space = false;
2200 }
2201
2202 static void __pool_destroy(struct pool *pool)
2203 {
2204         __pool_table_remove(pool);
2205
2206         if (dm_pool_metadata_close(pool->pmd) < 0)
2207                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2208
2209         dm_bio_prison_destroy(pool->prison);
2210         dm_kcopyd_client_destroy(pool->copier);
2211
2212         if (pool->wq)
2213                 destroy_workqueue(pool->wq);
2214
2215         if (pool->next_mapping)
2216                 mempool_free(pool->next_mapping, pool->mapping_pool);
2217         mempool_destroy(pool->mapping_pool);
2218         dm_deferred_set_destroy(pool->shared_read_ds);
2219         dm_deferred_set_destroy(pool->all_io_ds);
2220         kfree(pool);
2221 }
2222
2223 static struct kmem_cache *_new_mapping_cache;
2224
2225 static struct pool *pool_create(struct mapped_device *pool_md,
2226                                 struct block_device *metadata_dev,
2227                                 unsigned long block_size,
2228                                 int read_only, char **error)
2229 {
2230         int r;
2231         void *err_p;
2232         struct pool *pool;
2233         struct dm_pool_metadata *pmd;
2234         bool format_device = read_only ? false : true;
2235
2236         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2237         if (IS_ERR(pmd)) {
2238                 *error = "Error creating metadata object";
2239                 return (struct pool *)pmd;
2240         }
2241
2242         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2243         if (!pool) {
2244                 *error = "Error allocating memory for pool";
2245                 err_p = ERR_PTR(-ENOMEM);
2246                 goto bad_pool;
2247         }
2248
2249         pool->pmd = pmd;
2250         pool->sectors_per_block = block_size;
2251         if (block_size & (block_size - 1))
2252                 pool->sectors_per_block_shift = -1;
2253         else
2254                 pool->sectors_per_block_shift = __ffs(block_size);
2255         pool->low_water_blocks = 0;
2256         pool_features_init(&pool->pf);
2257         pool->prison = dm_bio_prison_create();
2258         if (!pool->prison) {
2259                 *error = "Error creating pool's bio prison";
2260                 err_p = ERR_PTR(-ENOMEM);
2261                 goto bad_prison;
2262         }
2263
2264         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2265         if (IS_ERR(pool->copier)) {
2266                 r = PTR_ERR(pool->copier);
2267                 *error = "Error creating pool's kcopyd client";
2268                 err_p = ERR_PTR(r);
2269                 goto bad_kcopyd_client;
2270         }
2271
2272         /*
2273          * Create singlethreaded workqueue that will service all devices
2274          * that use this metadata.
2275          */
2276         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2277         if (!pool->wq) {
2278                 *error = "Error creating pool's workqueue";
2279                 err_p = ERR_PTR(-ENOMEM);
2280                 goto bad_wq;
2281         }
2282
2283         throttle_init(&pool->throttle);
2284         INIT_WORK(&pool->worker, do_worker);
2285         INIT_DELAYED_WORK(&pool->waker, do_waker);
2286         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2287         spin_lock_init(&pool->lock);
2288         bio_list_init(&pool->deferred_flush_bios);
2289         INIT_LIST_HEAD(&pool->prepared_mappings);
2290         INIT_LIST_HEAD(&pool->prepared_discards);
2291         INIT_LIST_HEAD(&pool->active_thins);
2292         pool->low_water_triggered = false;
2293
2294         pool->shared_read_ds = dm_deferred_set_create();
2295         if (!pool->shared_read_ds) {
2296                 *error = "Error creating pool's shared read deferred set";
2297                 err_p = ERR_PTR(-ENOMEM);
2298                 goto bad_shared_read_ds;
2299         }
2300
2301         pool->all_io_ds = dm_deferred_set_create();
2302         if (!pool->all_io_ds) {
2303                 *error = "Error creating pool's all io deferred set";
2304                 err_p = ERR_PTR(-ENOMEM);
2305                 goto bad_all_io_ds;
2306         }
2307
2308         pool->next_mapping = NULL;
2309         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2310                                                       _new_mapping_cache);
2311         if (!pool->mapping_pool) {
2312                 *error = "Error creating pool's mapping mempool";
2313                 err_p = ERR_PTR(-ENOMEM);
2314                 goto bad_mapping_pool;
2315         }
2316
2317         pool->ref_count = 1;
2318         pool->last_commit_jiffies = jiffies;
2319         pool->pool_md = pool_md;
2320         pool->md_dev = metadata_dev;
2321         __pool_table_insert(pool);
2322
2323         return pool;
2324
2325 bad_mapping_pool:
2326         dm_deferred_set_destroy(pool->all_io_ds);
2327 bad_all_io_ds:
2328         dm_deferred_set_destroy(pool->shared_read_ds);
2329 bad_shared_read_ds:
2330         destroy_workqueue(pool->wq);
2331 bad_wq:
2332         dm_kcopyd_client_destroy(pool->copier);
2333 bad_kcopyd_client:
2334         dm_bio_prison_destroy(pool->prison);
2335 bad_prison:
2336         kfree(pool);
2337 bad_pool:
2338         if (dm_pool_metadata_close(pmd))
2339                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2340
2341         return err_p;
2342 }
2343
2344 static void __pool_inc(struct pool *pool)
2345 {
2346         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2347         pool->ref_count++;
2348 }
2349
2350 static void __pool_dec(struct pool *pool)
2351 {
2352         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2353         BUG_ON(!pool->ref_count);
2354         if (!--pool->ref_count)
2355                 __pool_destroy(pool);
2356 }
2357
2358 static struct pool *__pool_find(struct mapped_device *pool_md,
2359                                 struct block_device *metadata_dev,
2360                                 unsigned long block_size, int read_only,
2361                                 char **error, int *created)
2362 {
2363         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2364
2365         if (pool) {
2366                 if (pool->pool_md != pool_md) {
2367                         *error = "metadata device already in use by a pool";
2368                         return ERR_PTR(-EBUSY);
2369                 }
2370                 __pool_inc(pool);
2371
2372         } else {
2373                 pool = __pool_table_lookup(pool_md);
2374                 if (pool) {
2375                         if (pool->md_dev != metadata_dev) {
2376                                 *error = "different pool cannot replace a pool";
2377                                 return ERR_PTR(-EINVAL);
2378                         }
2379                         __pool_inc(pool);
2380
2381                 } else {
2382                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2383                         *created = 1;
2384                 }
2385         }
2386
2387         return pool;
2388 }
2389
2390 /*----------------------------------------------------------------
2391  * Pool target methods
2392  *--------------------------------------------------------------*/
2393 static void pool_dtr(struct dm_target *ti)
2394 {
2395         struct pool_c *pt = ti->private;
2396
2397         mutex_lock(&dm_thin_pool_table.mutex);
2398
2399         unbind_control_target(pt->pool, ti);
2400         __pool_dec(pt->pool);
2401         dm_put_device(ti, pt->metadata_dev);
2402         dm_put_device(ti, pt->data_dev);
2403         kfree(pt);
2404
2405         mutex_unlock(&dm_thin_pool_table.mutex);
2406 }
2407
2408 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2409                                struct dm_target *ti)
2410 {
2411         int r;
2412         unsigned argc;
2413         const char *arg_name;
2414
2415         static struct dm_arg _args[] = {
2416                 {0, 4, "Invalid number of pool feature arguments"},
2417         };
2418
2419         /*
2420          * No feature arguments supplied.
2421          */
2422         if (!as->argc)
2423                 return 0;
2424
2425         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2426         if (r)
2427                 return -EINVAL;
2428
2429         while (argc && !r) {
2430                 arg_name = dm_shift_arg(as);
2431                 argc--;
2432
2433                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2434                         pf->zero_new_blocks = false;
2435
2436                 else if (!strcasecmp(arg_name, "ignore_discard"))
2437                         pf->discard_enabled = false;
2438
2439                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2440                         pf->discard_passdown = false;
2441
2442                 else if (!strcasecmp(arg_name, "read_only"))
2443                         pf->mode = PM_READ_ONLY;
2444
2445                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2446                         pf->error_if_no_space = true;
2447
2448                 else {
2449                         ti->error = "Unrecognised pool feature requested";
2450                         r = -EINVAL;
2451                         break;
2452                 }
2453         }
2454
2455         return r;
2456 }
2457
2458 static void metadata_low_callback(void *context)
2459 {
2460         struct pool *pool = context;
2461
2462         DMWARN("%s: reached low water mark for metadata device: sending event.",
2463                dm_device_name(pool->pool_md));
2464
2465         dm_table_event(pool->ti->table);
2466 }
2467
2468 static sector_t get_dev_size(struct block_device *bdev)
2469 {
2470         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2471 }
2472
2473 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2474 {
2475         sector_t metadata_dev_size = get_dev_size(bdev);
2476         char buffer[BDEVNAME_SIZE];
2477
2478         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2479                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2480                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2481 }
2482
2483 static sector_t get_metadata_dev_size(struct block_device *bdev)
2484 {
2485         sector_t metadata_dev_size = get_dev_size(bdev);
2486
2487         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2488                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2489
2490         return metadata_dev_size;
2491 }
2492
2493 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2494 {
2495         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2496
2497         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2498
2499         return metadata_dev_size;
2500 }
2501
2502 /*
2503  * When a metadata threshold is crossed a dm event is triggered, and
2504  * userland should respond by growing the metadata device.  We could let
2505  * userland set the threshold, like we do with the data threshold, but I'm
2506  * not sure they know enough to do this well.
2507  */
2508 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2509 {
2510         /*
2511          * 4M is ample for all ops with the possible exception of thin
2512          * device deletion which is harmless if it fails (just retry the
2513          * delete after you've grown the device).
2514          */
2515         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2516         return min((dm_block_t)1024ULL /* 4M */, quarter);
2517 }
2518
2519 /*
2520  * thin-pool <metadata dev> <data dev>
2521  *           <data block size (sectors)>
2522  *           <low water mark (blocks)>
2523  *           [<#feature args> [<arg>]*]
2524  *
2525  * Optional feature arguments are:
2526  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2527  *           ignore_discard: disable discard
2528  *           no_discard_passdown: don't pass discards down to the data device
2529  *           read_only: Don't allow any changes to be made to the pool metadata.
2530  *           error_if_no_space: error IOs, instead of queueing, if no space.
2531  */
2532 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2533 {
2534         int r, pool_created = 0;
2535         struct pool_c *pt;
2536         struct pool *pool;
2537         struct pool_features pf;
2538         struct dm_arg_set as;
2539         struct dm_dev *data_dev;
2540         unsigned long block_size;
2541         dm_block_t low_water_blocks;
2542         struct dm_dev *metadata_dev;
2543         fmode_t metadata_mode;
2544
2545         /*
2546          * FIXME Remove validation from scope of lock.
2547          */
2548         mutex_lock(&dm_thin_pool_table.mutex);
2549
2550         if (argc < 4) {
2551                 ti->error = "Invalid argument count";
2552                 r = -EINVAL;
2553                 goto out_unlock;
2554         }
2555
2556         as.argc = argc;
2557         as.argv = argv;
2558
2559         /*
2560          * Set default pool features.
2561          */
2562         pool_features_init(&pf);
2563
2564         dm_consume_args(&as, 4);
2565         r = parse_pool_features(&as, &pf, ti);
2566         if (r)
2567                 goto out_unlock;
2568
2569         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2570         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2571         if (r) {
2572                 ti->error = "Error opening metadata block device";
2573                 goto out_unlock;
2574         }
2575         warn_if_metadata_device_too_big(metadata_dev->bdev);
2576
2577         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2578         if (r) {
2579                 ti->error = "Error getting data device";
2580                 goto out_metadata;
2581         }
2582
2583         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2584             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2585             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2586             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2587                 ti->error = "Invalid block size";
2588                 r = -EINVAL;
2589                 goto out;
2590         }
2591
2592         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2593                 ti->error = "Invalid low water mark";
2594                 r = -EINVAL;
2595                 goto out;
2596         }
2597
2598         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2599         if (!pt) {
2600                 r = -ENOMEM;
2601                 goto out;
2602         }
2603
2604         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2605                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2606         if (IS_ERR(pool)) {
2607                 r = PTR_ERR(pool);
2608                 goto out_free_pt;
2609         }
2610
2611         /*
2612          * 'pool_created' reflects whether this is the first table load.
2613          * Top level discard support is not allowed to be changed after
2614          * initial load.  This would require a pool reload to trigger thin
2615          * device changes.
2616          */
2617         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2618                 ti->error = "Discard support cannot be disabled once enabled";
2619                 r = -EINVAL;
2620                 goto out_flags_changed;
2621         }
2622
2623         pt->pool = pool;
2624         pt->ti = ti;
2625         pt->metadata_dev = metadata_dev;
2626         pt->data_dev = data_dev;
2627         pt->low_water_blocks = low_water_blocks;
2628         pt->adjusted_pf = pt->requested_pf = pf;
2629         ti->num_flush_bios = 1;
2630
2631         /*
2632          * Only need to enable discards if the pool should pass
2633          * them down to the data device.  The thin device's discard
2634          * processing will cause mappings to be removed from the btree.
2635          */
2636         ti->discard_zeroes_data_unsupported = true;
2637         if (pf.discard_enabled && pf.discard_passdown) {
2638                 ti->num_discard_bios = 1;
2639
2640                 /*
2641                  * Setting 'discards_supported' circumvents the normal
2642                  * stacking of discard limits (this keeps the pool and
2643                  * thin devices' discard limits consistent).
2644                  */
2645                 ti->discards_supported = true;
2646         }
2647         ti->private = pt;
2648
2649         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2650                                                 calc_metadata_threshold(pt),
2651                                                 metadata_low_callback,
2652                                                 pool);
2653         if (r)
2654                 goto out_free_pt;
2655
2656         pt->callbacks.congested_fn = pool_is_congested;
2657         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2658
2659         mutex_unlock(&dm_thin_pool_table.mutex);
2660
2661         return 0;
2662
2663 out_flags_changed:
2664         __pool_dec(pool);
2665 out_free_pt:
2666         kfree(pt);
2667 out:
2668         dm_put_device(ti, data_dev);
2669 out_metadata:
2670         dm_put_device(ti, metadata_dev);
2671 out_unlock:
2672         mutex_unlock(&dm_thin_pool_table.mutex);
2673
2674         return r;
2675 }
2676
2677 static int pool_map(struct dm_target *ti, struct bio *bio)
2678 {
2679         int r;
2680         struct pool_c *pt = ti->private;
2681         struct pool *pool = pt->pool;
2682         unsigned long flags;
2683
2684         /*
2685          * As this is a singleton target, ti->begin is always zero.
2686          */
2687         spin_lock_irqsave(&pool->lock, flags);
2688         bio->bi_bdev = pt->data_dev->bdev;
2689         r = DM_MAPIO_REMAPPED;
2690         spin_unlock_irqrestore(&pool->lock, flags);
2691
2692         return r;
2693 }
2694
2695 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2696 {
2697         int r;
2698         struct pool_c *pt = ti->private;
2699         struct pool *pool = pt->pool;
2700         sector_t data_size = ti->len;
2701         dm_block_t sb_data_size;
2702
2703         *need_commit = false;
2704
2705         (void) sector_div(data_size, pool->sectors_per_block);
2706
2707         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2708         if (r) {
2709                 DMERR("%s: failed to retrieve data device size",
2710                       dm_device_name(pool->pool_md));
2711                 return r;
2712         }
2713
2714         if (data_size < sb_data_size) {
2715                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2716                       dm_device_name(pool->pool_md),
2717                       (unsigned long long)data_size, sb_data_size);
2718                 return -EINVAL;
2719
2720         } else if (data_size > sb_data_size) {
2721                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2722                         DMERR("%s: unable to grow the data device until repaired.",
2723                               dm_device_name(pool->pool_md));
2724                         return 0;
2725                 }
2726
2727                 if (sb_data_size)
2728                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2729                                dm_device_name(pool->pool_md),
2730                                sb_data_size, (unsigned long long)data_size);
2731                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2732                 if (r) {
2733                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2734                         return r;
2735                 }
2736
2737                 *need_commit = true;
2738         }
2739
2740         return 0;
2741 }
2742
2743 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2744 {
2745         int r;
2746         struct pool_c *pt = ti->private;
2747         struct pool *pool = pt->pool;
2748         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2749
2750         *need_commit = false;
2751
2752         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2753
2754         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2755         if (r) {
2756                 DMERR("%s: failed to retrieve metadata device size",
2757                       dm_device_name(pool->pool_md));
2758                 return r;
2759         }
2760
2761         if (metadata_dev_size < sb_metadata_dev_size) {
2762                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2763                       dm_device_name(pool->pool_md),
2764                       metadata_dev_size, sb_metadata_dev_size);
2765                 return -EINVAL;
2766
2767         } else if (metadata_dev_size > sb_metadata_dev_size) {
2768                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2769                         DMERR("%s: unable to grow the metadata device until repaired.",
2770                               dm_device_name(pool->pool_md));
2771                         return 0;
2772                 }
2773
2774                 warn_if_metadata_device_too_big(pool->md_dev);
2775                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2776                        dm_device_name(pool->pool_md),
2777                        sb_metadata_dev_size, metadata_dev_size);
2778                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2779                 if (r) {
2780                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2781                         return r;
2782                 }
2783
2784                 *need_commit = true;
2785         }
2786
2787         return 0;
2788 }
2789
2790 /*
2791  * Retrieves the number of blocks of the data device from
2792  * the superblock and compares it to the actual device size,
2793  * thus resizing the data device in case it has grown.
2794  *
2795  * This both copes with opening preallocated data devices in the ctr
2796  * being followed by a resume
2797  * -and-
2798  * calling the resume method individually after userspace has
2799  * grown the data device in reaction to a table event.
2800  */
2801 static int pool_preresume(struct dm_target *ti)
2802 {
2803         int r;
2804         bool need_commit1, need_commit2;
2805         struct pool_c *pt = ti->private;
2806         struct pool *pool = pt->pool;
2807
2808         /*
2809          * Take control of the pool object.
2810          */
2811         r = bind_control_target(pool, ti);
2812         if (r)
2813                 return r;
2814
2815         r = maybe_resize_data_dev(ti, &need_commit1);
2816         if (r)
2817                 return r;
2818
2819         r = maybe_resize_metadata_dev(ti, &need_commit2);
2820         if (r)
2821                 return r;
2822
2823         if (need_commit1 || need_commit2)
2824                 (void) commit(pool);
2825
2826         return 0;
2827 }
2828
2829 static void pool_resume(struct dm_target *ti)
2830 {
2831         struct pool_c *pt = ti->private;
2832         struct pool *pool = pt->pool;
2833         unsigned long flags;
2834
2835         spin_lock_irqsave(&pool->lock, flags);
2836         pool->low_water_triggered = false;
2837         spin_unlock_irqrestore(&pool->lock, flags);
2838         requeue_bios(pool);
2839
2840         do_waker(&pool->waker.work);
2841 }
2842
2843 static void pool_postsuspend(struct dm_target *ti)
2844 {
2845         struct pool_c *pt = ti->private;
2846         struct pool *pool = pt->pool;
2847
2848         cancel_delayed_work(&pool->waker);
2849         cancel_delayed_work(&pool->no_space_timeout);
2850         flush_workqueue(pool->wq);
2851         (void) commit(pool);
2852 }
2853
2854 static int check_arg_count(unsigned argc, unsigned args_required)
2855 {
2856         if (argc != args_required) {
2857                 DMWARN("Message received with %u arguments instead of %u.",
2858                        argc, args_required);
2859                 return -EINVAL;
2860         }
2861
2862         return 0;
2863 }
2864
2865 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2866 {
2867         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2868             *dev_id <= MAX_DEV_ID)
2869                 return 0;
2870
2871         if (warning)
2872                 DMWARN("Message received with invalid device id: %s", arg);
2873
2874         return -EINVAL;
2875 }
2876
2877 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2878 {
2879         dm_thin_id dev_id;
2880         int r;
2881
2882         r = check_arg_count(argc, 2);
2883         if (r)
2884                 return r;
2885
2886         r = read_dev_id(argv[1], &dev_id, 1);
2887         if (r)
2888                 return r;
2889
2890         r = dm_pool_create_thin(pool->pmd, dev_id);
2891         if (r) {
2892                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2893                        argv[1]);
2894                 return r;
2895         }
2896
2897         return 0;
2898 }
2899
2900 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2901 {
2902         dm_thin_id dev_id;
2903         dm_thin_id origin_dev_id;
2904         int r;
2905
2906         r = check_arg_count(argc, 3);
2907         if (r)
2908                 return r;
2909
2910         r = read_dev_id(argv[1], &dev_id, 1);
2911         if (r)
2912                 return r;
2913
2914         r = read_dev_id(argv[2], &origin_dev_id, 1);
2915         if (r)
2916                 return r;
2917
2918         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2919         if (r) {
2920                 DMWARN("Creation of new snapshot %s of device %s failed.",
2921                        argv[1], argv[2]);
2922                 return r;
2923         }
2924
2925         return 0;
2926 }
2927
2928 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2929 {
2930         dm_thin_id dev_id;
2931         int r;
2932
2933         r = check_arg_count(argc, 2);
2934         if (r)
2935                 return r;
2936
2937         r = read_dev_id(argv[1], &dev_id, 1);
2938         if (r)
2939                 return r;
2940
2941         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2942         if (r)
2943                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2944
2945         return r;
2946 }
2947
2948 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2949 {
2950         dm_thin_id old_id, new_id;
2951         int r;
2952
2953         r = check_arg_count(argc, 3);
2954         if (r)
2955                 return r;
2956
2957         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2958                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2959                 return -EINVAL;
2960         }
2961
2962         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2963                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2964                 return -EINVAL;
2965         }
2966
2967         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2968         if (r) {
2969                 DMWARN("Failed to change transaction id from %s to %s.",
2970                        argv[1], argv[2]);
2971                 return r;
2972         }
2973
2974         return 0;
2975 }
2976
2977 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2978 {
2979         int r;
2980
2981         r = check_arg_count(argc, 1);
2982         if (r)
2983                 return r;
2984
2985         (void) commit(pool);
2986
2987         r = dm_pool_reserve_metadata_snap(pool->pmd);
2988         if (r)
2989                 DMWARN("reserve_metadata_snap message failed.");
2990
2991         return r;
2992 }
2993
2994 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2995 {
2996         int r;
2997
2998         r = check_arg_count(argc, 1);
2999         if (r)
3000                 return r;
3001
3002         r = dm_pool_release_metadata_snap(pool->pmd);
3003         if (r)
3004                 DMWARN("release_metadata_snap message failed.");
3005
3006         return r;
3007 }
3008
3009 /*
3010  * Messages supported:
3011  *   create_thin        <dev_id>
3012  *   create_snap        <dev_id> <origin_id>
3013  *   delete             <dev_id>
3014  *   trim               <dev_id> <new_size_in_sectors>
3015  *   set_transaction_id <current_trans_id> <new_trans_id>
3016  *   reserve_metadata_snap
3017  *   release_metadata_snap
3018  */
3019 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3020 {
3021         int r = -EINVAL;
3022         struct pool_c *pt = ti->private;
3023         struct pool *pool = pt->pool;
3024
3025         if (!strcasecmp(argv[0], "create_thin"))
3026                 r = process_create_thin_mesg(argc, argv, pool);
3027
3028         else if (!strcasecmp(argv[0], "create_snap"))
3029                 r = process_create_snap_mesg(argc, argv, pool);
3030
3031         else if (!strcasecmp(argv[0], "delete"))
3032                 r = process_delete_mesg(argc, argv, pool);
3033
3034         else if (!strcasecmp(argv[0], "set_transaction_id"))
3035                 r = process_set_transaction_id_mesg(argc, argv, pool);
3036
3037         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3038                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3039
3040         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3041                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3042
3043         else
3044                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3045
3046         if (!r)
3047                 (void) commit(pool);
3048
3049         return r;
3050 }
3051
3052 static void emit_flags(struct pool_features *pf, char *result,
3053                        unsigned sz, unsigned maxlen)
3054 {
3055         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3056                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3057                 pf->error_if_no_space;
3058         DMEMIT("%u ", count);
3059
3060         if (!pf->zero_new_blocks)
3061                 DMEMIT("skip_block_zeroing ");
3062
3063         if (!pf->discard_enabled)
3064                 DMEMIT("ignore_discard ");
3065
3066         if (!pf->discard_passdown)
3067                 DMEMIT("no_discard_passdown ");
3068
3069         if (pf->mode == PM_READ_ONLY)
3070                 DMEMIT("read_only ");
3071
3072         if (pf->error_if_no_space)
3073                 DMEMIT("error_if_no_space ");
3074 }
3075
3076 /*
3077  * Status line is:
3078  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3079  *    <used data sectors>/<total data sectors> <held metadata root>
3080  */
3081 static void pool_status(struct dm_target *ti, status_type_t type,
3082                         unsigned status_flags, char *result, unsigned maxlen)
3083 {
3084         int r;
3085         unsigned sz = 0;
3086         uint64_t transaction_id;
3087         dm_block_t nr_free_blocks_data;
3088         dm_block_t nr_free_blocks_metadata;
3089         dm_block_t nr_blocks_data;
3090         dm_block_t nr_blocks_metadata;
3091         dm_block_t held_root;
3092         char buf[BDEVNAME_SIZE];
3093         char buf2[BDEVNAME_SIZE];
3094         struct pool_c *pt = ti->private;
3095         struct pool *pool = pt->pool;
3096
3097         switch (type) {
3098         case STATUSTYPE_INFO:
3099                 if (get_pool_mode(pool) == PM_FAIL) {
3100                         DMEMIT("Fail");
3101                         break;
3102                 }
3103
3104                 /* Commit to ensure statistics aren't out-of-date */
3105                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3106                         (void) commit(pool);
3107
3108                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3109                 if (r) {
3110                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3111                               dm_device_name(pool->pool_md), r);
3112                         goto err;
3113                 }
3114
3115                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3116                 if (r) {
3117                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3118                               dm_device_name(pool->pool_md), r);
3119                         goto err;
3120                 }
3121
3122                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3123                 if (r) {
3124                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3125                               dm_device_name(pool->pool_md), r);
3126                         goto err;
3127                 }
3128
3129                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3130                 if (r) {
3131                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3132                               dm_device_name(pool->pool_md), r);
3133                         goto err;
3134                 }
3135
3136                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3137                 if (r) {
3138                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3139                               dm_device_name(pool->pool_md), r);
3140                         goto err;
3141                 }
3142
3143                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3144                 if (r) {
3145                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3146                               dm_device_name(pool->pool_md), r);
3147                         goto err;
3148                 }
3149
3150                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3151                        (unsigned long long)transaction_id,
3152                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3153                        (unsigned long long)nr_blocks_metadata,
3154                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3155                        (unsigned long long)nr_blocks_data);
3156
3157                 if (held_root)
3158                         DMEMIT("%llu ", held_root);
3159                 else
3160                         DMEMIT("- ");
3161
3162                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3163                         DMEMIT("out_of_data_space ");
3164                 else if (pool->pf.mode == PM_READ_ONLY)
3165                         DMEMIT("ro ");
3166                 else
3167                         DMEMIT("rw ");
3168
3169                 if (!pool->pf.discard_enabled)
3170                         DMEMIT("ignore_discard ");
3171                 else if (pool->pf.discard_passdown)
3172                         DMEMIT("discard_passdown ");
3173                 else
3174                         DMEMIT("no_discard_passdown ");
3175
3176                 if (pool->pf.error_if_no_space)
3177                         DMEMIT("error_if_no_space ");
3178                 else
3179                         DMEMIT("queue_if_no_space ");
3180
3181                 break;
3182
3183         case STATUSTYPE_TABLE:
3184                 DMEMIT("%s %s %lu %llu ",
3185                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3186                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3187                        (unsigned long)pool->sectors_per_block,
3188                        (unsigned long long)pt->low_water_blocks);
3189                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3190                 break;
3191         }
3192         return;
3193
3194 err:
3195         DMEMIT("Error");
3196 }
3197
3198 static int pool_iterate_devices(struct dm_target *ti,
3199                                 iterate_devices_callout_fn fn, void *data)
3200 {
3201         struct pool_c *pt = ti->private;
3202
3203         return fn(ti, pt->data_dev, 0, ti->len, data);
3204 }
3205
3206 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3207                       struct bio_vec *biovec, int max_size)
3208 {
3209         struct pool_c *pt = ti->private;
3210         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3211
3212         if (!q->merge_bvec_fn)
3213                 return max_size;
3214
3215         bvm->bi_bdev = pt->data_dev->bdev;
3216
3217         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3218 }
3219
3220 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3221 {
3222         struct pool *pool = pt->pool;
3223         struct queue_limits *data_limits;
3224
3225         limits->max_discard_sectors = pool->sectors_per_block;
3226
3227         /*
3228          * discard_granularity is just a hint, and not enforced.
3229          */
3230         if (pt->adjusted_pf.discard_passdown) {
3231                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3232                 limits->discard_granularity = max(data_limits->discard_granularity,
3233                                                   pool->sectors_per_block << SECTOR_SHIFT);
3234         } else
3235                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3236 }
3237
3238 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3239 {
3240         struct pool_c *pt = ti->private;
3241         struct pool *pool = pt->pool;
3242         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3243
3244         /*
3245          * Adjust max_sectors_kb to highest possible power-of-2
3246          * factor of pool->sectors_per_block.
3247          */
3248         if (limits->max_hw_sectors & (limits->max_hw_sectors - 1))
3249                 limits->max_sectors = rounddown_pow_of_two(limits->max_hw_sectors);
3250         else
3251                 limits->max_sectors = limits->max_hw_sectors;
3252
3253         if (limits->max_sectors < pool->sectors_per_block) {
3254                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3255                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3256                                 limits->max_sectors--;
3257                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3258                 }
3259         } else if (block_size_is_power_of_two(pool)) {
3260                 /* max_sectors_kb is >= power-of-2 thinp blocksize */
3261                 while (!is_factor(limits->max_sectors, pool->sectors_per_block)) {
3262                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3263                                 limits->max_sectors--;
3264                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3265                 }
3266         }
3267
3268         /*
3269          * If the system-determined stacked limits are compatible with the
3270          * pool's blocksize (io_opt is a factor) do not override them.
3271          */
3272         if (io_opt_sectors < pool->sectors_per_block ||
3273             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3274                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3275                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3276                 else
3277                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3278                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3279         }
3280
3281         /*
3282          * pt->adjusted_pf is a staging area for the actual features to use.
3283          * They get transferred to the live pool in bind_control_target()
3284          * called from pool_preresume().
3285          */
3286         if (!pt->adjusted_pf.discard_enabled) {
3287                 /*
3288                  * Must explicitly disallow stacking discard limits otherwise the
3289                  * block layer will stack them if pool's data device has support.
3290                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3291                  * user to see that, so make sure to set all discard limits to 0.
3292                  */
3293                 limits->discard_granularity = 0;
3294                 return;
3295         }
3296
3297         disable_passdown_if_not_supported(pt);
3298
3299         set_discard_limits(pt, limits);
3300 }
3301
3302 static struct target_type pool_target = {
3303         .name = "thin-pool",
3304         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3305                     DM_TARGET_IMMUTABLE,
3306         .version = {1, 14, 0},
3307         .module = THIS_MODULE,
3308         .ctr = pool_ctr,
3309         .dtr = pool_dtr,
3310         .map = pool_map,
3311         .postsuspend = pool_postsuspend,
3312         .preresume = pool_preresume,
3313         .resume = pool_resume,
3314         .message = pool_message,
3315         .status = pool_status,
3316         .merge = pool_merge,
3317         .iterate_devices = pool_iterate_devices,
3318         .io_hints = pool_io_hints,
3319 };
3320
3321 /*----------------------------------------------------------------
3322  * Thin target methods
3323  *--------------------------------------------------------------*/
3324 static void thin_get(struct thin_c *tc)
3325 {
3326         atomic_inc(&tc->refcount);
3327 }
3328
3329 static void thin_put(struct thin_c *tc)
3330 {
3331         if (atomic_dec_and_test(&tc->refcount))
3332                 complete(&tc->can_destroy);
3333 }
3334
3335 static void thin_dtr(struct dm_target *ti)
3336 {
3337         struct thin_c *tc = ti->private;
3338         unsigned long flags;
3339
3340         thin_put(tc);
3341         wait_for_completion(&tc->can_destroy);
3342
3343         spin_lock_irqsave(&tc->pool->lock, flags);
3344         list_del_rcu(&tc->list);
3345         spin_unlock_irqrestore(&tc->pool->lock, flags);
3346         synchronize_rcu();
3347
3348         mutex_lock(&dm_thin_pool_table.mutex);
3349
3350         __pool_dec(tc->pool);
3351         dm_pool_close_thin_device(tc->td);
3352         dm_put_device(ti, tc->pool_dev);
3353         if (tc->origin_dev)
3354                 dm_put_device(ti, tc->origin_dev);
3355         kfree(tc);
3356
3357         mutex_unlock(&dm_thin_pool_table.mutex);
3358 }
3359
3360 /*
3361  * Thin target parameters:
3362  *
3363  * <pool_dev> <dev_id> [origin_dev]
3364  *
3365  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3366  * dev_id: the internal device identifier
3367  * origin_dev: a device external to the pool that should act as the origin
3368  *
3369  * If the pool device has discards disabled, they get disabled for the thin
3370  * device as well.
3371  */
3372 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3373 {
3374         int r;
3375         struct thin_c *tc;
3376         struct dm_dev *pool_dev, *origin_dev;
3377         struct mapped_device *pool_md;
3378         unsigned long flags;
3379
3380         mutex_lock(&dm_thin_pool_table.mutex);
3381
3382         if (argc != 2 && argc != 3) {
3383                 ti->error = "Invalid argument count";
3384                 r = -EINVAL;
3385                 goto out_unlock;
3386         }
3387
3388         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3389         if (!tc) {
3390                 ti->error = "Out of memory";
3391                 r = -ENOMEM;
3392                 goto out_unlock;
3393         }
3394         spin_lock_init(&tc->lock);
3395         bio_list_init(&tc->deferred_bio_list);
3396         bio_list_init(&tc->retry_on_resume_list);
3397         tc->sort_bio_list = RB_ROOT;
3398
3399         if (argc == 3) {
3400                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3401                 if (r) {
3402                         ti->error = "Error opening origin device";
3403                         goto bad_origin_dev;
3404                 }
3405                 tc->origin_dev = origin_dev;
3406         }
3407
3408         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3409         if (r) {
3410                 ti->error = "Error opening pool device";
3411                 goto bad_pool_dev;
3412         }
3413         tc->pool_dev = pool_dev;
3414
3415         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3416                 ti->error = "Invalid device id";
3417                 r = -EINVAL;
3418                 goto bad_common;
3419         }
3420
3421         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3422         if (!pool_md) {
3423                 ti->error = "Couldn't get pool mapped device";
3424                 r = -EINVAL;
3425                 goto bad_common;
3426         }
3427
3428         tc->pool = __pool_table_lookup(pool_md);
3429         if (!tc->pool) {
3430                 ti->error = "Couldn't find pool object";
3431                 r = -EINVAL;
3432                 goto bad_pool_lookup;
3433         }
3434         __pool_inc(tc->pool);
3435
3436         if (get_pool_mode(tc->pool) == PM_FAIL) {
3437                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3438                 r = -EINVAL;
3439                 goto bad_thin_open;
3440         }
3441
3442         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3443         if (r) {
3444                 ti->error = "Couldn't open thin internal device";
3445                 goto bad_thin_open;
3446         }
3447
3448         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3449         if (r)
3450                 goto bad_target_max_io_len;
3451
3452         ti->num_flush_bios = 1;
3453         ti->flush_supported = true;
3454         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3455
3456         /* In case the pool supports discards, pass them on. */
3457         ti->discard_zeroes_data_unsupported = true;
3458         if (tc->pool->pf.discard_enabled) {
3459                 ti->discards_supported = true;
3460                 ti->num_discard_bios = 1;
3461                 /* Discard bios must be split on a block boundary */
3462                 ti->split_discard_bios = true;
3463         }
3464
3465         dm_put(pool_md);
3466
3467         mutex_unlock(&dm_thin_pool_table.mutex);
3468
3469         atomic_set(&tc->refcount, 1);
3470         init_completion(&tc->can_destroy);
3471
3472         spin_lock_irqsave(&tc->pool->lock, flags);
3473         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3474         spin_unlock_irqrestore(&tc->pool->lock, flags);
3475         /*
3476          * This synchronize_rcu() call is needed here otherwise we risk a
3477          * wake_worker() call finding no bios to process (because the newly
3478          * added tc isn't yet visible).  So this reduces latency since we
3479          * aren't then dependent on the periodic commit to wake_worker().
3480          */
3481         synchronize_rcu();
3482
3483         return 0;
3484
3485 bad_target_max_io_len:
3486         dm_pool_close_thin_device(tc->td);
3487 bad_thin_open:
3488         __pool_dec(tc->pool);
3489 bad_pool_lookup:
3490         dm_put(pool_md);
3491 bad_common:
3492         dm_put_device(ti, tc->pool_dev);
3493 bad_pool_dev:
3494         if (tc->origin_dev)
3495                 dm_put_device(ti, tc->origin_dev);
3496 bad_origin_dev:
3497         kfree(tc);
3498 out_unlock:
3499         mutex_unlock(&dm_thin_pool_table.mutex);
3500
3501         return r;
3502 }
3503
3504 static int thin_map(struct dm_target *ti, struct bio *bio)
3505 {
3506         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3507
3508         return thin_bio_map(ti, bio);
3509 }
3510
3511 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3512 {
3513         unsigned long flags;
3514         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3515         struct list_head work;
3516         struct dm_thin_new_mapping *m, *tmp;
3517         struct pool *pool = h->tc->pool;
3518
3519         if (h->shared_read_entry) {
3520                 INIT_LIST_HEAD(&work);
3521                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3522
3523                 spin_lock_irqsave(&pool->lock, flags);
3524                 list_for_each_entry_safe(m, tmp, &work, list) {
3525                         list_del(&m->list);
3526                         __complete_mapping_preparation(m);
3527                 }
3528                 spin_unlock_irqrestore(&pool->lock, flags);
3529         }
3530
3531         if (h->all_io_entry) {
3532                 INIT_LIST_HEAD(&work);
3533                 dm_deferred_entry_dec(h->all_io_entry, &work);
3534                 if (!list_empty(&work)) {
3535                         spin_lock_irqsave(&pool->lock, flags);
3536                         list_for_each_entry_safe(m, tmp, &work, list)
3537                                 list_add_tail(&m->list, &pool->prepared_discards);
3538                         spin_unlock_irqrestore(&pool->lock, flags);
3539                         wake_worker(pool);
3540                 }
3541         }
3542
3543         return 0;
3544 }
3545
3546 static void thin_presuspend(struct dm_target *ti)
3547 {
3548         struct thin_c *tc = ti->private;
3549
3550         if (dm_noflush_suspending(ti))
3551                 noflush_work(tc, do_noflush_start);
3552 }
3553
3554 static void thin_postsuspend(struct dm_target *ti)
3555 {
3556         struct thin_c *tc = ti->private;
3557
3558         /*
3559          * The dm_noflush_suspending flag has been cleared by now, so
3560          * unfortunately we must always run this.
3561          */
3562         noflush_work(tc, do_noflush_stop);
3563 }
3564
3565 static int thin_preresume(struct dm_target *ti)
3566 {
3567         struct thin_c *tc = ti->private;
3568
3569         if (tc->origin_dev)
3570                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3571
3572         return 0;
3573 }
3574
3575 /*
3576  * <nr mapped sectors> <highest mapped sector>
3577  */
3578 static void thin_status(struct dm_target *ti, status_type_t type,
3579                         unsigned status_flags, char *result, unsigned maxlen)
3580 {
3581         int r;
3582         ssize_t sz = 0;
3583         dm_block_t mapped, highest;
3584         char buf[BDEVNAME_SIZE];
3585         struct thin_c *tc = ti->private;
3586
3587         if (get_pool_mode(tc->pool) == PM_FAIL) {
3588                 DMEMIT("Fail");
3589                 return;
3590         }
3591
3592         if (!tc->td)
3593                 DMEMIT("-");
3594         else {
3595                 switch (type) {
3596                 case STATUSTYPE_INFO:
3597                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3598                         if (r) {
3599                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3600                                 goto err;
3601                         }
3602
3603                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3604                         if (r < 0) {
3605                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3606                                 goto err;
3607                         }
3608
3609                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3610                         if (r)
3611                                 DMEMIT("%llu", ((highest + 1) *
3612                                                 tc->pool->sectors_per_block) - 1);
3613                         else
3614                                 DMEMIT("-");
3615                         break;
3616
3617                 case STATUSTYPE_TABLE:
3618                         DMEMIT("%s %lu",
3619                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3620                                (unsigned long) tc->dev_id);
3621                         if (tc->origin_dev)
3622                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3623                         break;
3624                 }
3625         }
3626
3627         return;
3628
3629 err:
3630         DMEMIT("Error");
3631 }
3632
3633 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3634                       struct bio_vec *biovec, int max_size)
3635 {
3636         struct thin_c *tc = ti->private;
3637         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
3638
3639         if (!q->merge_bvec_fn)
3640                 return max_size;
3641
3642         bvm->bi_bdev = tc->pool_dev->bdev;
3643         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
3644
3645         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3646 }
3647
3648 static int thin_iterate_devices(struct dm_target *ti,
3649                                 iterate_devices_callout_fn fn, void *data)
3650 {
3651         sector_t blocks;
3652         struct thin_c *tc = ti->private;
3653         struct pool *pool = tc->pool;
3654
3655         /*
3656          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3657          * we follow a more convoluted path through to the pool's target.
3658          */
3659         if (!pool->ti)
3660                 return 0;       /* nothing is bound */
3661
3662         blocks = pool->ti->len;
3663         (void) sector_div(blocks, pool->sectors_per_block);
3664         if (blocks)
3665                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3666
3667         return 0;
3668 }
3669
3670 static struct target_type thin_target = {
3671         .name = "thin",
3672         .version = {1, 14, 0},
3673         .module = THIS_MODULE,
3674         .ctr = thin_ctr,
3675         .dtr = thin_dtr,
3676         .map = thin_map,
3677         .end_io = thin_endio,
3678         .preresume = thin_preresume,
3679         .presuspend = thin_presuspend,
3680         .postsuspend = thin_postsuspend,
3681         .status = thin_status,
3682         .merge = thin_merge,
3683         .iterate_devices = thin_iterate_devices,
3684 };
3685
3686 /*----------------------------------------------------------------*/
3687
3688 static int __init dm_thin_init(void)
3689 {
3690         int r;
3691
3692         pool_table_init();
3693
3694         r = dm_register_target(&thin_target);
3695         if (r)
3696                 return r;
3697
3698         r = dm_register_target(&pool_target);
3699         if (r)
3700                 goto bad_pool_target;
3701
3702         r = -ENOMEM;
3703
3704         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3705         if (!_new_mapping_cache)
3706                 goto bad_new_mapping_cache;
3707
3708         return 0;
3709
3710 bad_new_mapping_cache:
3711         dm_unregister_target(&pool_target);
3712 bad_pool_target:
3713         dm_unregister_target(&thin_target);
3714
3715         return r;
3716 }
3717
3718 static void dm_thin_exit(void)
3719 {
3720         dm_unregister_target(&thin_target);
3721         dm_unregister_target(&pool_target);
3722
3723         kmem_cache_destroy(_new_mapping_cache);
3724 }
3725
3726 module_init(dm_thin_init);
3727 module_exit(dm_thin_exit);
3728
3729 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3730 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3731
3732 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3733 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3734 MODULE_LICENSE("GPL");